
Xmodeler Bluebook
Contents

1. Introduction and Tool Overview
1.1. Introduction

1.1.1. What is Xmodeler?
1.1.2. Using Xmodeler

1.1.2.1. Domain Models
1.1.2.2. Concrete Syntax
1.1.2.3. Behaviour
1.1.2.4. Transformations and Mappings
1.1.2.5. Extensibility

1.1.3. Why use Xmodeler?
1.1.4. Technical Features
1.1.5. Architecture

1.1.5.1. Operating System
1.1.5.2. Virtual Machine
1.1.5.3. Kernel
1.1.5.4. XOCL
1.1.5.5. Base Toolset
1.1.5.6. Tool Definition
1.1.5.7. Xmodeler Clients

2. Xmodeler Walkthroughs
2.1. Creating and Interacting with a Domain Model

2.1.1. Example
2.1.2. Getting Started
2.1.3. Constructing a Domain Model

2.1.3.1. Adding Classes
2.1.3.2. Adding Attributes
2.1.3.3. Adding Associations

2.1.4. Using the Property Editor
2.1.5. Saving and Loading
2.1.6. Interacting with Models
2.1.7. Snapshots

2.1.7.1. Creating Standalone Snapshots
2.1.7.2. Dealing with Sequences
2.1.7.3. Synchronisation between Snapshots and Class Models
2.1.7.4. Creating Multiple Views of Snapshots
2.1.7.5. Exporting Snapshots

2.1.8. Saving and Loading Diagram Layout
2.1.9. Adding Constraints

2.1.9.1. Constraint Reasons
2.1.9.2. Parse Errors
2.1.9.3. Checking Snapshots

2.1.9.3.1. Interpreting the results
2.1.9.4. Exercises

2.1.10. Adding Queries
2.1.10.1. Exercises

2.1.11. Running Operations
2.1.11.1. Running Operations on Snapshots

2.1.12. Operations
2.1.12.1. Exercises

2.1.13. Adding Getters and Setters
2.1.13.1. Exercises

2.1.14. Adding Constructors
2.1.14.1. Exercises

2.1.15. Interacting with Models using the Console
2.1.15.1. Other Console Hints and Tips
2.1.15.2. Editing Values via the Console
2.1.15.3. Using Global Variables
2.1.15.4. Error Reports

2.1.16. Using Snapshots
2.1.16.1. Generating Snapshots from the Console

2.1.17. Adding Package Operations
2.1.17.1. Adding and Running Package Operations

2.1.18. Next Steps
2.2. Working with the Modelling Interface

2.2.1. Windows
2.2.1.1. Displaying Multiple Diagrams and Windows

2.2.2. Preferences
2.2.3. Property Editor

2.3. An Introduction to XOCL
2.3.1. Introduction
2.3.2. Basic Types

2.3.2.1. Examples
2.3.3. Models
2.3.4. Using XOCL

2.3.4.1. Context
2.3.4.2. Self

2.3.5. Operations
2.3.5.1. Constructors
2.3.5.2. Constraints

2.3.6. Variables
2.3.7. Types
2.3.8. Navigation
2.3.9. Collections

2.3.9.1. Collection Operations
2.3.9.1.1. Select
2.3.9.1.2. Collect
2.3.9.1.3. Iterate
2.3.9.1.4. Other Operations

2.3.10. Logical Expressions
2.3.11. Conditional Expressions
2.3.12. Imperative Features

2.3.12.1. Object Creation
2.3.12.2. Assignment
2.3.12.3. Sequential Execution
2.3.12.4. Operation Invocation
2.3.12.5. Looping

2.3.13. Exceptions
2.3.14. Formatting
2.3.15. Advanced Features

2.4. Debugging Operations
2.5. Constructing and Running Mappings

2.5.1. A Simple Mapping
2.5.1.1. Running the Mapping

2.5.2. A Simple Model to C# Mapping
2.5.2.1. The C# Model
2.5.2.2. The Mapping
2.5.2.3. Executing the Mapping

2.5.3. Mapping Hints and Tips

2.5.3.1. Error Reporting
2.5.4. Constructing a Pretty Printer

2.6. Constructing an XML Parser and Generator
2.6.1. First Steps
2.6.2. Constructing the Grammar
2.6.3. Invoking the Parser
2.6.4. Example
2.6.5. Debugging the Parser
2.6.6. Generating XML

2.7. Using the Programming Interface
2.7.1. Getting Started
2.7.2. Compiling and Loading
2.7.3. Checking the Model
2.7.4. Adding Constraints
2.7.5. Adding Operations
2.7.6. Context
2.7.7. Importing Packages

2.8. Toolbar Menus and Initialisation Files
2.8.1. Toolbar menus
2.8.2. Some Useful Operations
2.8.3. Initialisation Files

2.9. Constructing a Diagram Tool for a Model in XTools
2.9.1. Domain Model
2.9.2. A Candidate Diagram Syntax
2.9.3. Constructing an XTool Definition

2.9.3.1. Creating the Tool Definition
2.9.3.2. Adding a Node
2.9.3.3. Adding a Box to the Node
2.9.3.4. Adding an Attribute to the Box
2.9.3.5. Adding a Free Node
2.9.3.6. Adding Tool Bars
2.9.3.7. Running the Tool
2.9.3.8. Adding Edges
2.9.3.9. Adding Edge Toolbar Buttons
2.9.3.10. Adding Menus
2.9.3.11. Re-running the tool

2.9.4. Other XTool Capabilities
2.10. Importing XMI
2.11. Constructing a Textual Syntax and Parser

2.11.1. Parsing and Synthesising Instances of Models
2.12. Creating a Meta-Profile

2.12.1. An Example Profile
2.12.1.1. Adding Constraints

2.13. Generating Code
2.13.1. Generating Java

2.14. Using Manifests and Deploying Models
2.14.1. Manifest Actions
2.14.2. Deploying Manifests

3. Reference
3.1. Namespace, Classes, Packages and MetaClasses

3.1.1. Introduction
3.1.2. NameSpaces
3.1.3. Classes

3.1.3.1. Class Definition
3.1.3.2. Attributes
3.1.3.3. Operations
3.1.3.4. Constraints

3.1.3.5. Inheritance
3.1.3.5.1. Multiple
3.1.3.5.2. Run-Super

3.1.4. Packages
3.1.5. Metaclasses

3.1.5.1. Message Passing
3.1.5.2. Object Creation
3.1.5.3. Slot Access
3.1.5.4. Slot Update
3.1.5.5. Default Parents
3.1.5.6. Example

3.2. Working with Syntax
3.2.1. Introduction
3.2.2. Grammar and Text Processing

3.2.2.1. Introduction
3.2.2.2. A Simple language Grammar
3.2.2.3. Debugging
3.2.2.4. XBNF Grammar
3.2.2.5. The Grammar Domain Model
3.2.2.6. The XBNF Grammar
3.2.2.7. Tokens

3.2.3. Xmodeler Execution Architecture
3.2.3.1. Introduction
3.2.3.2. Performable Elements
3.2.3.3. Syntax Extensions

3.2.4. Synthesising Syntax
3.2.4.1. Introduction
3.2.4.2. The OCL Package
3.2.4.3. Examples

3.2.4.3.1. Checking Conditions
3.2.4.3.2. Specification
3.2.4.3.3. A For Loop

3.2.5. Quasi-Quotes
3.2.5.1. Introduction
3.2.5.2. Literal Syntax
3.2.5.3. Syntax Templates
3.2.5.4. Splicing
3.2.5.5. Patterns

3.2.6. New Performable Elements
3.2.6.1. Introduction
3.2.6.2. Sugar

3.2.6.2.1. Introduction
3.2.6.2.2. Guarded Statements
3.2.6.2.3. Conditional Expressions

3.2.6.3. Syntax
3.2.6.4. Exp

3.2.6.4.1. Introduction
3.2.6.4.2. State Machines

3.3. XCore
3.3.1. Introduction
3.3.2. The XCore Package

3.3.2.1. Attribute
3.3.2.2. Behavioural Feature
3.3.2.3. Bind
3.3.2.4. Classifier
3.3.2.5. Class
3.3.2.6. CodeBox

3.3.2.7. Collection
3.3.2.8. Compiled Operation
3.3.2.9. Constraint
3.3.2.10. Constraint Report
3.3.2.11. Constructor
3.3.2.12. Contained
3.3.2.13. Container
3.3.2.14. Daemon
3.3.2.15. Data Type
3.3.2.16. Dependency
3.3.2.17. Doc
3.3.2.18. DocumentedElement
3.3.2.19. Element
3.3.2.20. Enum
3.3.2.21. Exception
3.3.2.22. ForeignOperation
3.3.2.23. IndexedContainer
3.3.2.24. InterpretedOperation
3.3.2.25. Namespace
3.3.2.26. NamedElement
3.3.2.27. Object
3.3.2.28. Operation
3.3.2.29. OrderedCollection
3.3.2.30. Package
3.3.2.31. Parameter
3.3.2.32. Performable
3.3.2.33. Resource
3.3.2.34. Seq
3.3.2.35. Set
3.3.2.36. Snapshot
3.3.2.37. StructuralFeature
3.3.2.38. Table
3.3.2.39. Thread
3.3.2.40. TypedElement
3.3.2.41. Unordered Collection
3.3.2.42. Vector

3.4. XMap
3.4.1. Introduction
3.4.2. Language Basics
3.4.3. Syntax

3.4.3.1. Diagrammatical Syntax
3.4.3.2. Textual Syntax
3.4.3.3. Clause Syntax

3.4.3.3.1. Pattern Syntax
3.4.4. Execution
3.4.5. Constructing Mappings

3.4.5.1. Creating Mappings via the Modelling Interface
3.4.5.2. Creating Mappings via the Programming Interface

3.4.6. Running Mappings
3.4.7. Example

3.4.7.1. Class Model to Database
3.4.7.1.1. Class Model
3.4.7.1.2. Database Model
3.4.7.1.3. Database Mapping

3.4.7.2. Running the Mapping
3.4.8. Other Aspects of Mappings

3.4.8.1. Operations

3.4.8.2. Attributes
3.4.8.3. Variable Passing

3.5. XML
3.5.1. Introduction
3.5.2. XML
3.5.3. Parsing XML

3.5.3.1. Introduction
3.5.3.2. Example

3.5.3.2.1. Two Dimensional Tables
3.5.3.2.2. Dealing with References
3.5.3.2.3. Representing Models in XML

3.5.3.3. Debugging XML Grammars
3.5.4. The XML Parsing Grammar
3.5.5. DOM Input Channel
3.5.6. SAX Input Channel
3.5.7. XML Output

3.5.7.1. Introduction
3.5.7.2. XML Output Patterns
3.5.7.3. XML Output Channels

3.5.7.3.1. Introduction
3.5.7.3.2. Basic XML Output
3.5.7.3.3. Object Formatters
3.5.7.3.4. Name Space Formatters
3.5.7.3.5. Saving Models as XML

3.5.8. Raising Events
3.5.9. Deploying Java

3.5.9.1. Introduction
3.5.9.2. Deploying Models
3.5.9.3. Deploying Parsers
3.5.9.4. Deploying Factories

3.6. XOCL
3.6.1. Introduction

3.6.1.1. Purpose
3.6.1.2. Language Basics
3.6.1.3. Overview of Syntax

3.6.2. Basic Data Types
3.6.3. Program Constructs

3.6.3.1. Self Evaluating Expressions
3.6.3.2. Variables and Update
3.6.3.3. Calling Operations
3.6.3.4. Infix Operators
3.6.3.5. Prefix Operators
3.6.3.6. Sequencing
3.6.3.7. Special Forms
3.6.3.8. Quasi-Quotes
3.6.3.9. The Meta Character @

3.6.4. Documentation
3.6.5. Error Handling
3.6.6. Control Statements

3.6.6.1. If
3.6.6.2. Case
3.6.6.3. CaseInt
3.6.6.4. TypeCase
3.6.6.5. While
3.6.6.6. For
3.6.6.7. Find
3.6.6.8. Iterators

3.6.6.8.1. Select
3.6.6.8.2. Reject
3.6.6.8.3. Collect
3.6.6.8.4. Iterate

3.6.7. Assignment
3.6.8. Pattern Matching

3.6.8.1. Patterns and Pattern Matching
3.6.8.2. Pattern Categories

3.6.8.2.1. Variables
3.6.8.2.2. Constants
3.6.8.2.3. Sequences
3.6.8.2.4. Constructors
3.6.8.2.5. Conditions
3.6.8.2.6. Sets
3.6.8.2.7. Sequences
3.6.8.2.8. Syntax

3.6.8.3. Pattern Contexts
3.6.9. Data Type Operations

3.6.9.1. Boolean
3.6.9.1.1. Operators
3.6.9.1.2. Examples

3.6.9.2. Channels
3.6.9.2.1. Standard Input and Output
3.6.9.2.2. Formatting Output
3.6.9.2.3. File Based Input and Output

3.6.9.3. Clients
3.6.9.4. Daemons
3.6.9.5. Elements
3.6.9.6. Integers

3.6.9.6.1. Operators
3.6.9.6.2. Operations
3.6.9.6.3. Examples

3.6.9.7. Floats
3.6.9.7.1. Operators
3.6.9.7.2. Operations
3.6.9.7.3. Examples

3.6.9.8. Objects
3.6.9.9. Null
3.6.9.10. Operations

3.6.9.10.1. Operations
3.6.9.11. Strings

3.6.9.11.1. Operators
3.6.9.11.2. Operations
3.6.9.11.3. Examples

3.6.9.12. Sequences
3.6.9.12.1. Operators
3.6.9.12.2. Operations
3.6.9.12.3. Examples

3.6.9.13. Sets
3.6.9.13.1. Operators
3.6.9.13.2. Operations
3.6.9.13.3. Examples

3.6.9.14. Symbols
3.6.9.14.1. Operations

3.6.9.15. Tables
3.6.9.15.1. Operations
3.6.9.15.2. Examples

3.6.9.16. Threads
3.6.9.17. Vectors

3.6.9.17.1. Operations
3.6.9.17.2. Examples

3.6.9.18. Debugging
3.6.10. Relationship to OCL and ASL
3.6.11. XOCL Grammar
3.6.12. Pattern Grammar

3.7. XTools
3.7.1. Introduction
3.7.2. The XTools Architecture

3.7.2.1. Introduction
3.7.2.2. Tool Component
3.7.2.3. Tool Event
3.7.2.4. Tool Definition
3.7.2.5. Tool Deployment

3.7.3. Diagram Tools
3.7.3.1. Introduction
3.7.3.2. Diagram Tool Components
3.7.3.3. Nodes and Edges
3.7.3.4. Toolbar
3.7.3.5. Menus
3.7.3.6. Diagram Events
3.7.3.7. An Example Domain Specific XTool

3.7.3.7.1. A Domain Model
3.7.3.7.2. Design of the User Interface
3.7.3.7.3. Defining the Tool Type
3.7.3.7.4. Defining the Element Manager
3.7.3.7.5. Handling Diagram Events
3.7.3.7.6. Handling Managed Element Events
3.7.3.7.7. Creating a Tool from a Domain Model Instance

3.7.3.8. Display Elements
3.7.3.8.1. Introduction
3.7.3.8.2. Box
3.7.3.8.3. Ellipse
3.7.3.8.4. Image
3.7.3.8.5. Text

3.7.3.9. Diagram Layout
3.7.3.9.1. Element Layout
3.7.3.9.2. Container Layout

3.7.3.10. Example Tool: Class Diagrams
3.7.4. Form Tools

3.7.4.1. Introduction
3.7.4.2. Form Components
3.7.4.3. Menus on Forms
3.7.4.4. Form Events
3.7.4.5. Example: Airports

3.7.4.5.1. Domain Model
3.7.4.5.2. Property Editor
3.7.4.5.3. Browser

3.8. Clients
3.8.1. Introduction
3.8.2. Introduction

3.8.2.1. Message Based Client
3.8.2.2. Eclipse Implementation

3.8.2.2.1. Dependencies
3.8.2.2.2. Basic structure

3.8.2.2.3. Handling Messages
3.8.2.2.4. Handling Calls
3.8.2.2.5. Raising Events
3.8.2.2.6. Registering the Client

3.8.2.3. Xmodeler Implementation
3.8.2.3.1. Architecture
3.8.2.3.2. Sending Messages and Making Calls
3.8.2.3.3. Handling Events
3.8.2.3.4. Putting it Together
3.8.2.3.5. Starting the Communication

3.8.3. Internal Clients
3.8.4. External (Socket Based) Clients

Xmodeler Bluebook

1. Part I. Introduction and Tool Overview

1.1. Introduction

This is the definitive guide to Xmodeler. This guide is divided into 3 parts. This part provides an introduction to
Xmodeler and its key technical features. The second part gives an overview of Xmodeler’s capabilities through a
number of example walkthroughs. The third part provides an in-depth technical manual that covers all aspects of
Xmodeler and the languages it is based on.

1.1.1. What is Xmodeler?

Xmodeler is a model-driven development platform. Model-driven development (MDD) is an approach to enterprise
system and software development where the key drivers of the process are models. By capturing these artefacts
as models, significant advantages can be achieved over traditional programming approaches. MDD has the
potential to greatly reduce the cost of development by facilitating the automation of many important development
processes, including validation of models and generation of code.

Xmodeler enables the rapid development of model-driven solutions that are tailored to the specific needs of a
customer or application domain. These tools provide significant help in automating and managing the development
process.

Here are some examples of tools that can be built with Xmodeler:

Tools for designing and inputting a specific type of product, e.g. an aircraft or a financial product.
Tools for transforming designs into code, for example, generating code from an aircraft model.
Tools for validating designs, for example validating the correctness of new financial products.

In Xmodeler, you create models that capture the key features of the concepts that are managed by the tool.
Xmodeler then provides a rich array of facilities for creating tools based around this model.

A key feature of Xmodeler is that it is completely modelled in itself – in other words, it is used to design itself.
Because the user has access to these models, it offers a highly open and extensible platform.

Xmodeler is based on Eclipse (an industrial strength open source IDE) and supports a number of open standards

for capturing tool data and behaviour.

1.1.2. Using Xmodeler

Xmodeler provides support for an approach to building tools in which all aspects of the tool is fully modelled. By
modelled we mean a 'high-level description'. The following diagram gives an example of the general-architecture of
a tool built using Xmodeler:

Domain Models

At the heart of most application specific tools is a domain model. This is a model of the concepts that are
manipulated by the tool. For example, a tool for capturing user-interfaces might contain concepts such as 'Button',
'Window' and so on. A domain model can also be viewed as representing the vocabulary of concepts that form the
'language' of user-interface modelling.

Constructing a precise domain model is crucial to building good tools. Xmodeler provides a a rich array of tools for
this purpose. These allow the concepts and their relationships to be captured using both diagrammatical and
textual syntax. In addition, domain models often need to be constrained by what they can represent. For example,
we might require that a window cannot contain itself. To support this, Xmodeler provides a rich constraint language
based on OCL (the Object Constraint Language) and fully interactive facilities for creating instances of domain
models and testing them against their constraints. The constraint language also enables complex queries over
models to be conveniently expressed.

Concrete Syntax

While the domain captures the concepts manipulated by the tool, concrete syntax describes the concrete
representation of those concepts. There are two main types of concrete syntax:

Diagrammatical syntax: instances of the domain concepts are represented as diagram elements, e.g. boxes
and lines. A diagram editor is used to construct the diagram.
Textual syntax: instances of the domain concepts are represented as text, which can be parsed and edited
in a text editor. This could programming style syntax or a standard representation such as XML.

Xmodeler provides support for both these styles of syntax.

It provides a collection of diagram and user-interface languages and tools called XTools. These enable
domain specific diagram editors to be rapidly constructed along with customised forms and browsers.
A generic parser language is provided for building parsers for a wide variety of syntaxes include
programming and XML syntaxes.

Behaviour

Most useful tools have executable behaviour (semantics). For instance, a tool for modelling user interfaces may
providing rapid prototyping capabilities that enable prototype interfaces to be built and interacted with. A state
machine tool might allow state machines to be executed, and so on.

Xmodeler provides a first class programming language for building executable tools, called XOCL - the eXtensible
Object Command Language. XOCL:

Supports all the key object-oriented programming facilities.
Provides many useful tool programming facilities, including patternmatching and model synchronisation
primitives.
Is fully extensible: new programming constructs can be conveniently embedded in the language.
Provides full access to all meta-levels in a tool.

Xmodeler enables the semantics of existing languages and tools to be readily reused via specialisation of
meta-classes, for example, the semantics of Xmodeler's own tools can be reused and specialised to a specific
domain.

Transformations and Mappings

Tools often need to transform and map the data they manage to different representations. This may involve
transforming a model into another model, or mapping a model to code written in another language.

Xmodeler provides a variety of mechanisms that support the convenient representations of model to model
transformations and model to code mappings. These include:

XMap: a language for model to model transformations that supports pattern based mapping of input models
with output models.
A powerful text formatting language is provided for flexible pretty-printing of textual code within XOCL
programs.

Xmodeler includes a number of transformations out of the box, including the generation of Java from XCore
models, and XML serialisation of models. These transformations can be readily modified by the user.

Extensibility

One of the critical features of a good tool platform is the ability to reuse and extend its existing capabilities.

Xmodeler provides a number of approaches to achieving this

By extending existing meta-classes: Because all aspects of Xmodeler are defined as instances of a
meta-data model (XCore), they can be extended through class specialisation. Furthermore, Xmodeler
understands when this extension has taken place and automatically provides new tool buttons etc to support
the extension.
By extending existing concrete syntax definition

Xmodeler also provides support for extensibility at the programming level. XOCL provides facilities for extending its
syntax. This enables complex patterns of code to be conveniently wrapped up into simple programming
statements. Furthermore, new programming languages can be rapidly added by extending existing languages.

1.1.3. Why use Xmodeler?

Xmodeler provides a convenient and fully integrated solution for developers who wish to have complete control

over the tools they use in their development processes. In comparison with building tools in general-purpose
languages like Java, Xmodeler offers significant reduction in construction effort, better extensibility, and a more
intuitive and integrated solution to tool construction. This also applies to IDE's like Eclipse. Xmodeler-Mosiac
provides a next level of abstraction over typical IDE facilities. For example, Xmodeler provides domain specific
programming languages for building user-interfaces, which are significantly more productive than programming the
interfaces from scratch even in an IDE.

There are some strong business cases for developing tool solutions that precisely fit your development processes.
Here are some:

Tools that specifically target a problem domain significantly increase productivity. They achieve this by
reducing the design space, enabling developers to focus on what they are developing, rather than how to
express the same information in a general purpose language.
Code and documentation generators are easier to write as the source of the generators is a precisely
targetted domain model.
Creating a domain model is a benefit in its own right as it gives a deeper understanding of the concepts that
the business works with.
Automation becomes a key part of the development processes. Once instilled, this process can lead to large
costs savings across many parts of an organisation.

1.1.4. Technical Features

Xmodeler is a rich and powerful modelling tool, which supports all the following capabilities:
Domain modelling: create models of domain concepts using a rich MOF based visual modelling tool.
Constraint checking: write complex constraints and querys and test them on the fly.
Model execution: write complex operations that manipulate models using XOCL - the eXtensible Object
Command Language - and test them on the fly.
Domain specific modelling: rapidly create diagram editors, browsers and form editors for specific
modelling languages
Domain specific programming: create parsers for new languages and rapidly link them to a domain
model.
Model to model transformations: build model to code and model to model transformations.
Extensibility: new languages and tools can be created by extending and reusing existing language and tool
definitions.
Document generation: documentation can be generated for all aspects of a tool.
Consistent definition: all aspects of Xmodeler are designed using itself. This facilitates its superior
extensibility. New capabilities are added simply by designing them in the tool using high level tool modelling
capabilities.
Key meta-data standards. This means that the toolset accessible to developers and is very open.
Customers do not worry that their data is going to be ‘locked’ into the tool.
Fully interactive execution: no compilation phase is required to run Xmodeler models: interactively test
tools and models before deploying them to code.

Over time, Xmodeler will be supplied with an increasing array of development capabilities that address both
domain specific and general-purpose software development requirements.

1.1.5. Architecture

This section provides a detailed technical description of the main components of Xmodeler.

Xmodeler is a layered open modular system that is specifically designed to support the definition a rich array of tool
development capabilities. The Mosaic layer provides general-purpose graphical interfaces on top of Xmodeler that
support features such as diagram and property editors.

The following diagram is an overview of the architecture of Xmodeler Mosaic V 1.0. Each block is a system
component that relies on the components below it. Everything above the Virtual Machine is written in Xmodeler in
the form of models. The system is open in the sense that users can browse, modify and extend the system models.
Xmodeler can be used as a server where external clients communicate via sockets.

Operating System

The Operating System (XOS) provides services that allow Xmodeler to connect to the outside world, to interface to
code written in Java and to schedule Xmodeler threads. XOS implements a collection of channel types that are
used for input and output including file channels, compressed data channels and XML channels. XOS acts as a
server for external clients that connect to Xmodeler using sockets. Inside Xmodeler the connection provides input
and output data channels. An external client is any third party software component that can connect using a
socket; communication with the client may be synchronous or asynchronous. Internal clients are written in Java
and are registered with XOS; they run in the same process space as Xmodeler and communicate with Xmodeler
using channels. XOS is written in Java.

Virtual Machine

Xmodeler source code is compiled to a binary format that is performed on the Virtual Machine (XVM). XVM is an
object-oriented machine whose instruction set is designed to efficiently support meta-circular language definitions
based on XCore. XVM has a rich data set including integers, floats, collections, channels and objects. XVM is
multi-threaded and allows multiple threads to run concurrently. Xmodeler source code can be compiled directly into
the XVM heap during a session or can be written to a binary file (.o) and loaded into a subsequent Xmodeler
session. XVM supports a number of novel features that supports the definition of Xmodeler tools including
meta-object-protocols and object daemons. XVM is also designed to interface to external programming languages,
such as Java, through “foreign” operations.

Kernel

Xmodeler provides a collection of classes that form the basis of all Xmodeler defined tools. These classes form the
kernel of Xmodeler and are collectively called XCore. The classes are self-describing: all XCore classes are
instances of XCore classes. This feature is called meta-circularity and is the key to modularity, uniformity and
reusability throughout all system and user defined Xmodeler tools. XCore is based on the MOF (Meta-Object
Facility, a meta-data standard developed by the Object Management Group).

XCore includes class definitions for the basic types including Integer, Boolean and String and collection types for
sets and sequences of values. XCore is object-oriented, it provides basic notions of Object and Class. XCore is

executable; it provides definitions for executable (Performable) entities and Operations.

All tools built using Xmodeler are instances of XCore; therefore tools that are defined to work on instances of
XCore can be used on any tool data. For example, general-purpose editors and mappings are provided by
Xmodeler that are guaranteed to work across all system and user defined data.

Key classes in XCore are:

Class. Xmodeler is a class-based system. Tools are defined as collections of classes whose instances have
state and behaviour. The class Class defines the essential features of a class. Inheritance is used to extend
class features in Xmodeler. Since Class is available; user defined tools can extend what it means to be a
class. This ability is the basis for meta-programming. For example, Class may be extended with the ability to
keep track of all instances or to access instance data from an external database.
Daemon. Daemons monitor the state of objects and perform actions when the object changes state.
Daemon technology is the key to implementing a variety of modular reusable tool architectures such as the
observer pattern. Xmodeler uses daemons extensively to synchronize data across multiple tools. User
defined tools can use daemons to make tools reactive and to ensure data is always consistent.
DataType. Instances of this class are Xmodeler types for basic data values. Xmodeler types include Integer,
String, Boolean and Float.
Element. All classes in Xmodeler are extensions of the class Element. Element defines the essential
behaviour of all Xmodeler data. For example Element defines features such as being able to produce a
printed representation and the ability to handle messages. Xmodeler is a dynamically extensible system;
this means that new behaviour can be added to existing classes. This is sometimes referred to as aspect
oriented programming. Since Element is available, user defined tools can add system-wide aspects. For
example this can be used to add the ability to export any Xmodeler data in any required format (binary
encoded, XML, text etc).
Exception. Xmodeler provides exception handling for dealing with exceptional circumstances in running
code. The class Exception is the basis for a hierarchy of classes that implement specific types of errors.
Exceptions are raise at the point at which they occur and encapsulate data that describes exactly the source
of the problem.
Operation. The basis for all Xmodeler execution is the class Operation. An operation has parameters and a
body and is equivalent to a standard programming language procedure or function. A significant difference
to conventional procedures is that operations are Xmodeler objects that can be created and stored just like
any other object. This makes Xmodeler very flexible since behaviour can be encapsulated at the appropriate
point in models and data.
Package. Xmodeler supports name spaces that contain collections of named elements. The class Package
is used to structure collections of class and sub-package definitions. Xmodeler is structured as a tree of
packages containing definitions of all aspects of the system (including XCore). The root name space is
called Root; all Xmodeler classes can be referenced via Root.
Performable. Xmodeler provides an environment in which executable languages can be conveniently
developed. An executable language implements the interface defined by the abstract class Performable.
XOCL is an example of a language that implements this interface.

XCore is an example of a language that can be executed on the Virtual Machine. The Virtual Machine may be
initialised with different kernel language definitions although in practice it relies on a small sub-set of XCore being
present. This feature allows Xmodeler to deploy embedded systems that run application code without requiring the
tools that were used in Xmodeler to develop the application.

XOCL

Xmodeler provides an extensive language for constructing tools; the language is built from XCore and runs on the
the Virtual Machine. The language, called XOCL, or eXtensible Object Command Language provides a first class
language for manipulating XCore objects.

XOCL provides a large number of language features that address the implementation of real-world scalable tools
(the whole of Xmodeler is written in about 100KLOC XOCL). These include side-effects, object creation, exception
handling, multi-tasking, pattern matching, first-class types, first-class operations, efficient looping constructs, input
output, client-server support, daemon mechanisms and support for dealing with syntax constructs.

XOCL also supports many features of OCL (the Object Constraint Language, mandated by the Object
Management Group), and therefore is an excellent foundation for querying models and writing constraints over
models.

Base Toolset

Xmodeler provides a basic collection of languages and tools defined in XOCL. These include the following:

The XOCL compiler. XOCL is an example of a language that is constructed on top of XCore and running on
the XVM. The XOCL compiler is a fully bootstrapped parser and language translator that converts text (or
instances of the XOCL classes) into sequences of XVM instructions. The compiler can be invoked on files,
strings or instances of the XOCL model. The compiler is extensible – new language constructs can be
introduced that define how to translate themselves to instances of the XVM instruction model
Xmodeler provides a BNF-style parser language called XBNF for defining new textual languages. XCore
allows grammars to be defined for classes and XOCL allows language constructs defined by any newly
defined grammar to be integrated with any existing language construct. This makes XOCL an infinitely
extensible programming language. XOCL takes the form of a grammar for a basic language and then many
extra language features are added to XOCL (including fancy looping mechanisms, various definitional
constructs and case statements) in terms of separately defined grammars. The extension mechanism is
very convenient; once the grammar is defined and loaded, the new language feature is ready to use.
Language features can implement new commands or appropriate ways of defining new data constructs (and
mixtures of the two).
XOCL does not need to be compiled in order to run. Xmodeler provides an XOCL interpreter. The XOCL
class Performable defines an interface for any language construct that is to be executed, including
interpreted. Interpretation is often more convenient that compilation since no language translation is
involved.
Xmodeler provides a top-level console based command interpreter that can be used as the interactive
interface to an Xmodeler or Xmodeler session. The command interpreter reads any valid XOCL syntax
typed at the console, evaluates it and then prints the result. The user can access any data in the Xmodeler
system via the console, inspect it and modify it. The command interpreter provides a collection of
convenient top-level commands that can be extended to provide productivity accelerators.
XOCL provides powerful inbuilt support for pattern matching using XMatch. XMatch enables patterns of
expressions to be matched across XOCL statements thereby facilitating the declarative definition of
mappings, constructors, etc.
The XSync language provides a high-level way of synchronising data, where changes in one element cause
changes to be automatically propagated to other elements.
XMap is a language that is used to write model-to-model transformations. In XMap, patterns are used to
describe how objects of a specific type and structure are mapped to objects of another type and structure.
XMap patterns can incorporate arbitrary XOCL, enabling complex mappings to be implemented with ease.
XMap is based on the emerging QVT (Query, Views, Transformations) standard.
Xmodeler provides facilities for parsing and generating XML documents. High-level grammar rules can be
written which state how a specific XML element pattern can be mapped to a XCore element or trigger the
invocation a XOCL action. These rules can be used to generate a parser for a specific XML syntax.
XWalk is an extension to XOCL that provides facilities for efficiently running over large XCore object
structures and evaluating its properties, for example running constraints or modifying data.
In Xmodeler, documentation is captured using a special language extension. This enables documentation
to be processed and managed at the model level, facilitating flexible production of documentation in
Xmodeler.
Projects provide a resource for managing models and for deploying them to code and to files. Projects can
be created in the browser, and can be saved and loaded using the Xmodeler (.xar) serialisation format.

Tool Definition

The base toolset provides a powerful collection of tools for the rapid construction of new development tools.
Everything from small tools that analyse data to full scale modelling and/or programming language environments
can be defined in an open, flexible and transparent way. Currently, the base version of Xmodeler is distributed with
some languages built in, including:

A Java based language called MicroJava, which implements the key features of Java (including statements
and expressions). A mapping from XOCL is provided to MicroJava. MicroJava knows how to pretty-print
itself to executable code.

Xmodeler Clients

Xmodeler can be connected to a wide variety of external clients (using socket channels) and internal clients (via
the XOS). External clients can be any software that supports a well-defined API, for instance other tools or IDE
environments. The Mosaic clients are pre-defined internal clients that provide common tool based user interface
clients for the languages defined in Xmodeler such as diagram editors, browsers and so on. Each of these clients
has two aspects: an Xmodeler client model of the abstractions and functionality provided the by client and an
external client implementation of the rendering of these abstractions. Because the clients are modelled in a generic
fashion, independently of the rendering technology, clients are extremely flexible and adaptable. As a result, new
user interface clients can be constructed very rapidly.

Some of the client models that are supported by Mosaic include:

Diagrams: provides general diagramming abstractions.
Browser: provides general facilities for creating browsers and attaching menus, etc.
Forms: provide general form based abstractions.
Text: provides text editing, generic syntax highlighting and manipulation functions and html functionality.
Console provides input and output streams to a console.

These clients have been used to construct all the user interface tools provided with Xmodeler, including the
following:

Class diagrams for visualising XCore models
Mapping diagrams (as an extension to Class diagrams)
Model browsers
Snapshot diagrams
The file browser

The implementations of the clients have been constructed using Eclipse: a generic, open source IDE platform.

2. Part II. Xmodeler Walkthroughs
This section provides a number of walkthroughs that describe how to use many of the key features of Xmodeler.
These walkthroughs are broadly structured as follows:

Domain modelling.
Introduction to XOCL.
Constructing and running mappings.
Parsing and generating XML and code.

Construction of domain specific user interfaces.

Together they provide an overview of the different approaches that can be used to construct tools in Xmodeler.

2.1. Creating and Interacting with a Domain Model

One of the key steps in building a tool to support a specific application domain, is to precisely capture the domain
concepts that the tool will manipulate.

To do this, we need to construct a domain model. A domain model captures the key concepts in the domain, along
with their properties and relationships. For example, if the domain is business processes, then we would aim to
capture all the concepts of a business process (activities, flow, constraints, etc) in the model.

This part describes how to model the concepts in a domain. It describes how to capture the domain concepts as
class models, and how the model can be enriched with constraints, operations and constructors. It then shows how
the powerful dynamic capabiltites of Xmodeler can be used to validate the domain model, through the creation of
model instances and by executing the model.

2.1.1. Example

The example we are going to use is a simple component modelling domain. This domain deals with capturing
information about the components in a system, their interfaces (ports) and their connections to one another
(connectors).

2.1.2. Getting Started

Boot up Xmodeler.

The first step in creating a model is to create a project.

From the file menu, select New Project.

Alternatively, the same operation can be called by right clicking on the User project in the browser.

A new empty project with a default name appears in the MyProrjects project tree.

We want the name of the project to reflect what it contains, so the project name is selected and changed to
“Components”.

By default, a project contains a package - this is where the model will reside.

The package can be viewed by expanding the (Component) project icon by clicking on the cross. By default it has
the same name as the project.

2.1.3. Constructing a Domain Model

We are now going to create a domain model of the concepts in the component modelling domain. We will do this
using a class model. This model will focus primarily on describing the concepts in the domain.

The model can be constructed as follows:

First, right click on the Components package in the browser and select Create Diagram > Class Diagram.

A class diagram editor will be shown.

Adding Classes

In order to add a class to the model select the Class button and click on the diagram. The newly added class is
automatically given a default name.

Click on the class name to change or amend it. In this case, we will change the name of Class0 to
ComponentModel.

The properties of the class can be edited by right clicking on the class and selecting Edit.

The property editor tells us that:

The element being edited (self) is ComponentModel.
It is an instance of the class Class.
It has no attributes (see right hand panel).
Its name is ComponentModel.
It is owned by the Components package.

We can ignore the grammar and default properties for now.

Let's add another class. This time a class called NamedElement.

We want to make this abstract (i.e. non-instantiable). To do this, right click on the class and select Edit. In the
class's property editor tick the isAbstract box. The name of the class will become italicised to indicate that it is now
an abstract class.

Let's add some more domain concepts to the model.

Adding Attributes

Attributes are variables owned by a class. Attributes are used to represent properties of a class. They have a name
and a type.

The class NamedElement requires an attribute 'name' of type String. This is added by left clicking on the selected
class. From the Add Element menu select an Attribute of type String.

Double click on the attribute name in the class box and change it to 'name'.

Attributes can also have a class as their type. They are represented as named arrows connecting the owner of the
attribute to the class that is its type. Note, this use of attributes are similar to uni-directional associations in UML.

The relationship between a Component and a Port can be described by an attribute "ports" whose owner is a
Component, and whose type is a Port.

Let's add this attribute to the model. First select the Attribute button in the toolbar. Select the Component class and
then drag the edge to the Port class. Edit the name of the attribute by clicking on it. In this case, we are going to
change it to "ports".

Note, the name of the attribute can be moved by left clicking on it and dragging it with the mouse.

The attribute edge can be moved by clicking on it, and moving the cursor over the waypoint. A drag icon will
appear. Click and drag the edge to the required position. This can also be used to add waypoints to the line.

A default multiplicity of one is associated with the newly added attribute. Change the multiplicity by right clicking on
the attribute line and selecting the appropriate multiplicity. In this case a Component is associated with many Ports,
so select * (many):

Adding Associations

Associations represent bi-directional relationships between two classes. In Xmodeler, an association is equivalent
to a pair of attributes owned by two classes and a constraint which guarantees that there is a round-trip
relationship between the attributes.

As an example, an association is required between the classes ComponentModel and Component.

The relationship we want to capture is that a ComponentModel contains many Components, and a Component is
owned by a ComponentModel.

To create an Association, select the Association tool button and drag the edge from the ComponentModel to the
Component. Change the names of the association ends as shown below. The multiplicity of each association end
is changed by right clicking on its role name and selecting Multiplicity.

A more comprehensive Components model can now be constructed. Here further attributes have been added,
along with two generalizations. The latter ensure that the Component and Port classes inherit the name attribute
from the class NamedElement.

Note: right click on an edge and select Straighten to straighten an edge.

2.1.4. Using the Property Editor

The property editor provides some useful features for viewing and managing the properties of model elements.
Right clicking and selecting Edit on an element will display a property editor for that element. For example, editing
the package Components (in the browser) will show the properties of the package:

Single value properties (slots) are displayed on the left hand of the property editor. For instance, the package
Components has a name slot whose value is "Component" and an owned slot whose value is the "Root" package.
The "of" slot is the class that the element is an instance "of", in this case, a Package.

Double clicking on the value of a slot will display a property editor for that element, for example clicking on the
Component class in the classes list will show the property editor for the class Component..

One of the powerful features of Xmodeler is its uniform representation of its own implementation. To see this,
double cllck on the "of" slot. This will display a property editor for the class Package - the class that defines what a
package is.

When navigating through the properties of large models, it is often useful to be able to quickly flick back to previous
property editors. Rather than displaying hundreds of tabs, Xmodeler provides buttons for managing property editor
histories. These can be found in the top right hand bar of the property editor. The left and right hand arrows allow
you to move between previous and next editors in the history.

A list of all the editors can be seen by clicking on the up and down arrows. A history can be deleted by clicking on
the eraser icon. Finally, property editors can be kept as tabs by clicking on the lock icon - when a new property
editor is shown, it will be displayed in a new tab. This is useful when comparing two or more properties.

2.1.5. Saving and Loading

Save the project by right clicking on the project in the browser and selecting Save As or Save. Files are saved in a
.xar file.

Saving the project for the first time requires that it is given a name, for example Components.xar.

Subsequent saves will save the project under the same name. Save As can be used to save the project under a
different name.

A backup (.xar.bak) file is also be saved.

Projects can be loaded by selecting Open Project ... from the File menu. Choose the project to load from the file
chooser.

2.1.6. Interacting with Models

A key difference between Xmodeler and other modelling tools is that its models are fully interactive. In Xmodeler
you can create and visualise instances of models in a variety of different ways, and then write operations,
transformations, etc. that do things with the models. The ability to interact with models is essential when capturing
and validating detailed properties of a complex problem domain. In addition, because Xmodeler is itself completely
modelled, all the properties of the tool can be accessed in exactly the same way, resulting in a consistent and
highly interoperable approach to tool definition.

The following sections describe these facilities in detail.

2.1.7. Snapshots

Snapshots provide a visual way of interacting with instances of a model. A snapshot is a diagram that contains
instances of classes in package.

Note, snapshots are intended to provide a simple visual way of viewing instances, but they can become difficult to
read if they are applied to large numbers of objects.

To create a snapshot of a specific package right click on a package in the model browser and select Create
Snapshot. Instances of the classes in the package (or its sub-packages) can now be created.

Add objects by selecting the Object button and then clicking onto the diagram. The list of object types that can be
created will be displayed. Select the appropriate one and it will be added to the snapshot.

For example, a Component can be added to the diagram.

The value of primitive slot (attribute) values can be changed by double clicking on the values in the object.

It is also possible to change the name of the object by clicking on it.

Links can be created between objects by selecting the Slot Value button and connecting the owning object to the
target object. As an example, add an instance of the class ComponentModel to the snapshot and create a link
between the ComponentModel instance and the Component instance.

Slot names will be assigned automatically where possible (as shown here), but a choice of slot names will be
provided if there is more than one possible attribute that the slot can be an instance of.

A complete snapshot of the model can be created as illustrated below. This represents a simple Component model,
in which two components (Displays and Navigation) are connected together. The Displays component expects to
receive the current position from the Navigation component.

Just like other model elements in Xmodeler, objects can be edited (using right click > Edit). Here is the result of
editing object2.

Creating Standalone Snapshots

Sometimes it is useful to create instances of elements in another package or project, for example, when we want to
manage them separately from the model. To do this, first create a snapshot in the project which the snapshot is to
be saved under. Next select the snapshot in the browser and right click > Set Parents. A list of all available
packages will be shown. Select the appropriate package, and the snapshot can now be populated with instances of
the selected package.

As an example, here is a separate snapshot project that has been created for the Components model:

Dealing with Sequences

Snapshots can also accommodate the ordering of objects in a collection. As an example, imagine we want to
extend the Components model to accommodate ports with sequences of parameters. The extended model is
shown below:

Our example snapshot can be extended as follows:

Objects can be re-ordered by right clicking on the owning object, in this case object4, and re-ordering the
elements:

Edit the objects in the diagram to find out which objects are associated with each id.

Synchronisation between Snapshots and Class Models

In Xmodeler, snapshots are designed to stay in step with class models, even if changes are made to the class
model. As an example, let's imagine that we want to delete the attribute, type, from a Port as we will defer it to a
parameter. We can delete type from Port and add it to the Parameter instead. The snapshot remains in sync, the
type slot has been removed from the Port objects and has been added to the Parameter objects:

Creating Multiple Views of Snapshots

Just as with class diagrams, multiple views of the same snapshot can be created in Xmodeler. This is very useful
when you wish to capture different aspects of a model instance, and can considerably reduce the size of the
snapshots you create.

To create a new snapshot, simply right click on the snapshot and select Create > Snapshot Diagram. This will
create a partial (empty view) of the snapshot. Adding more objects to it will add new objects to the snapshot.

To create a total (synchronised view), select Create > Snapshot Diagram (Total View). This will create a diagram
containing all the objects in the snapshot.

Exporting Snapshots

There are two main ways that snapshot (instance data) can be exported: as XOCL and as XML.

To export a snapshot as XOCL, right click on a the snapshot and select Deploy > Snapshot.

Choose where to put the file. A .Xmodeler file will be generated containing XOCL code. Here is the XOCL for the
Components snapshot:

parserImport XOCL;

context Root
 @Snapshot snapshot0

 object0 = Root::Components::ComponentModel[
 connectors = Set{object5};
 components = Set{object1,object3}]
 object5 = Root::Components::Connector[
 source = object2;
 target = object4]
 object4 = Root::Components::Port[
 name = "CurrentPosition";
 type = "LatLong"]
 object1 = Root::Components::Component[
 ports = Set{object2};
 name = "Displays";
 owner = object0]
 object2 = Root::Components::Port[
 name = "CurrentPosition";
 type = "LatLong"]
 object3 = Root::Components::Component[
 ports = Set{object4};
 name = "Navigation";
 owner = object0]

 end

The code contains the XOCL constructors and data necessary to compile and then load the snapshot back into the
tool.

To re-load, simply open the file in Xmodeler and then Compile and Load it. Note, the snapshot is saved by default
as owned by the Root package. This can be changed to an appropriate project package, e.g. Components or
ComponentSnapshots, by editing the package name.

To view the contents of a loaded snapshot, a diagram needs to be created. Select Create Diagram > Snapshot
Diagram (Total View).

Note, this will not save the layout of the diagram. To do this, follow the instructions for saving and loading diagram
layout below.

To export as XML, select the Deploy > XML option.

2.1.8. Saving and Loading Diagram Layout

It is possible to save and load the layout of a diagram, so that when it is imported in an un-formatted way, its layout
can be reconstructed. This is useful when re-constructing snapshots saved as XML or XOCL (see above), or when
working with class models written in code.

To save the diagram layout, right click on the diagram and choose Layout > Save Layout:

To load, right click on the diagram you wish to lay out, then choose Layout > Load Layout and load the layout file.
Note, only diagram elements whose layout has been saved will be laid out.

2.1.9. Adding Constraints

A class diagram can only capture certain information about the concepts and relationships in a domain. To add
extra information, Xmodeler provides a language for conveniently writing constraints and operations on models.
This language is called XOCL (eXtensible Object Command Language). XOCL is based on OCL (the Object
Constraint Language). See the XOCL walkthrough for more details.

To add a constraint, right click on a class in the class diagram or in the browser and choose New>Constraint. A
new constraint is added to the browser under the class. Click on it to show the constraint property editor.

The constraint property editor provides a text window for entering constraint expressions.

The maximise button can be used to expand the window if required.

The following expression is added to the constraint. Right click > Commit Changes to update the model with the
new constraint. Edit self to change the constraint name.

This constraint states that a connector should only connect two port if they are of the same type.

Note the code box will turn a tasteful shade of pink when the code changes. This will clear when the code is
successfully committed.

Constraint Reasons

When a constraint fails, it is often useful to generate a report that describes the reason for the failure.

A reason can be added to a constraint via the reason editor (scroll down to view it). Add an XOCL expression that
generates an appropriate string report. For example, the following report generates a reason for the failure of the
SamePortType constraint:

Parse Errors

When entering code into the bodies of constraints, operations, etc. parse errors will displayed if an attempt is made
to commit code that does not parse.

For example, try adding an additional "." to the SamePortType expression. A parse error will be displayed indicating
where the parser reached before it failed.

In this case, the code box will remain pink until the mistake is removed, or, the right click > Cancel Changes option
is chosen. This will return the code box to its previous (valid) state.

Many other constraints can be added to the model. As an example, the following constraint on ComponentModel
ensures that no two components can have the same name:

Checking Snapshots

Objects in a snapshot can be checked against their constraints in the following ways:

Via the Object menu in the browser:

Right click on the object, select Invoke Operation ..., then choose checkConstraints()

Via the Snapshot menu in the browser or diagram:

Right click on the snapshot icon in the browser, or the background of the snapshot diagram, and select
Check Constraints. This will check the constraints on all the objects in the snapshot. Note, a choice of
whether to check only the objects in the diagram, or all the objects in the snapshot (if using a partial view)
can be made at this point.

Via the Console:

Invoke the checkConstraints() operation on the relevant object. The details of the ConstraintReport can be
edited by appending .edit() to checkConstraints().

Here is the constraint checker being invoked via the snapshot diagram:

The result of checking an object or snapshot is to display a ConstraintReport: a tree of object constraint reports.

Interpreting the results

A ConstraintReport is displayed as a tree containing the result of each constraint check:

In this example, every object has passed its constraints.

Let's change the snapshot so that it fails a constraint, for example by setting the type of one of the ports to be
different from a port it is connected to. Do this by editing the value of type in the object. Running the constraint
checker produces the following:

In this case, the snapshot fails the constraint check, and if we expand it to see why, it is because the types don't
match. Furthermore, because we added a Constraint Reason when we wrote the constraint, it has printed out
some helpful diagnostics.

The failed constraint can be edited by double clicking on it.

Finally, a constraint report can be exported in HTML. Right click on the background of the report and choose Export
> HTML, or View > HTML.

Exercises

Here are some other constraints to try adding to the domain model:

A connector cannot connect the same port.
A component cannot contain two or more ports with the same name.
The component models connectors can only connect ports belonging to its components.
Write constraint reasons for the above.

2.1.10. Adding Queries

Queries are operations that do not change the state of the model. They are a very useful means of navigating
around a model, filtering and collecting information about its properties.

Operations can be added to classes in a similar way to adding constraints and queries.

To add an operation, right click on a class in the class diagram or in the browser and choose Add
Element>Operation. A new operation will be added to the browser under the class. Click on it to show the operation
editor.

The default syntax for an operation will be displayed.

The name of the operation, its parameters, return type and body can all be entered as part of the code. Right click
> Commit Changes to update the model.

You should not change the "@Operation" and "end" parts of the expression.

An an example, here is a query on the class ComponentModel that returns all the connectros whose source and
target port types don't match.

Queries may also take parameter values. Here is a query on the class ComponentModel that returns all the
connectors that are connected to a port, p.

Exercises

Add the following queries to the domain model:

A query on the class ComponentModel that returns the set of components that have more than x ports.
A query on the class Component that returns all the components whose ports it is connected to.

2.1.11. Running Operations

Operations and queries can be run in a number of different of ways in Xmodeler. The following describes the most
common ways.

Running Operations on Snapshots

Operations and queries can be run on objects in a snapshot.

Right click on the object in the browser and select Invoke Operation. This will display the operations that can be
invoked on the object. Because all classes inherit from Object, this list will include all operations that have been

defined for an Object. In addition, operations on the class will be displayed.

Only operations with zero parameters are displayed in this list (operations that require parameters should be
accessed via the console or via the expression evaluator - see later).

As an example, we can call the dontMatch() query via Invoke Operation.

The result of running the operation will be displayed in the property editor.

Note that operations are immediately available via the menu once they have been successfully committed.

In the case of operations with parameters, we must be able to pass the parameters into the operation in order to
call it. This can be achieved using the console (see later). However, there is menu based support for this as
follows:

First assign any objects that will be used as parameter values to global variables. To do this right click on the object
in a property editor and then select Assign To Global Variable. Give the object a name, in this case we are
assigning p to a Port.

Next, select the object that the operation is to be run on, and select right click > Evaluate Expression.

A simple expression editor will appear. Type the operation in, followed by an edit() operation to show the results.
Press OK to run the operation.

2.1.12. Operations

In addition to writing queries, operations also enable instances of models to be manipulated (just as you would
manipulate data in a programming language). XOCL provides a number of imperative (programming style) features
for the purpose of writing operations. These include standard "for", "while", and "case" constructs among others.
Full details can be found in part 3 of the Bluebook.

As an example, the following operation sets the name of a Port to be the value passed by the parameter of the
operation.

Right click > Commit Changes to update the model with the new operation. Edit self to change the operation name.

Again, if the code is not syntactically correct a parse error will be raised.

Operations can make use of queries to access properties of a model before they manipulate them. For example,
the following operation uses a query to calculate all the connections that target the port, p, and then sets the
source port names to tbe the same as p's name:

Exercises

Try adding the following operations to the domain model:

An operation on the class Component that sets its owner to be a passed ComponentModel.
An operation on the class Component that sets the name of the Component to be a passed String.

2.1.13. Adding Getters and Setters

Getter and Setter operations for specific attributes can be conveniently added to a class. Right click on the attribute
(in the diagram or browser) and select Create Getter or Creat Setter.

Creating a Setter will add operations for adding new instances to the attribute (as shown below), while adding a
Getter will add an operation to query the value of an attribute.

Exercises

Create a Setter for the attribute "components" of the class ComponentModel.

2.1.14. Adding Constructors

Constructors are operations on classes which are called when creating a new instance of the class.

Note by default all classes have the empty constructor and this need not be defined.

To add a constructor right click on a class in the class diagram or in the browser and choose New>Constructor. A
new constructor will be added to the browser under the class. Click on it to show the constructor editor.

Parameters can be added to a constructor. To do this, add the name of each parameter in the desired order within
the comma separated sequence of names. For example, the following constructor for a Port has 'name' and 'type'
as its parameters.

Note each name should correspond to a name of an attribute of the class that is to be instantiated when the
constructor is called.

Any number of constructors may be defined for a class. This enables different tasks to be performed per type of
instantiation depending on the number of parameters that are passed.

In addition to supporting simple parameter passing, XOCL code can be entered in the body of a constructor to
perform a specific task when the constructor is called.

Here is an example of an action that sets the name of a Port to be uppercase when it is created.

After this action is performed, an action to return the object (self) is called. If this were not added the constructor
would only return the value of self.name.

Exercises

Try adding a constructor for a Component takes its name as a parameter.

2.1.15. Interacting with Models using the Console

Once a model has been built, it is useful to validate that it is accurate. One way to do this is by interacting with the
model via the console. The console is an interpreter for evaluating XOCL expressions.

Switch to the console by clicking on the Console View tab on property editor. XOCL expressions can be entered
that evaluate to create instances of models, modify them and invoke operations on them.

For example, the following shows the use of the console to interact with and test the Components model:

Here is what is happening:

The ?i command is used to import the Components package so that all its contents are visible. Note,
otherwise we would have to give the full path names to each element, e.g. Components::Component.
A is the result of creating an instance of the class ComponentModel In XOCL, the use of brackets after a
class name denotes the invocation of a constructor. Note, we will have needed to create a constructor for
Component beforehand.
The result of navigating down the components of A is evaluated. Because no components have been added
to A it returns the empty set Set{}.
A new Component is added to A by invoking the addToComponents() operation on A. The string “Displays”
is passed as a parameter to the constructor.
We enter "A.components" again and a Set containing the new Component is returned.
The process is repeated by adding a new Component named 'Navigation'.
Finally, the names of the components are returned by perfoming the expression A.components.name

Other Console Hints and Tips

The console is a very flexible tool for interacting with models. The following are some examples.

Basic variable values can be created simply by typing them into the console. In addition, the console is a useful
place to test out XOCL operations and expressions.

All values can be assigned to variables.

The console is also useful for creating instances of classes. As described in the XOCL manual, there are two ways
that instances of classes can be created in XOCL. The first is to use a constructor as described above. The second
approach is to use a pattern constructor. The following uses a pattern constructor to create an instance of a
component and match its name to the string literal "Navigation". The advantage of a pattern constructor is that it
allows values to be explicitly assigned to local variables.

When using the console, the up and down cursor keys can be used to move between previous commands.

The console provides a number of "hot keys". These can be accessed by typing ?h (no semi-colon is required).

Any operation running in the console can be interupted by pressing the escape key.

Editing Values via the Console

At any point we can edit/view the properties of an object in a property editor by running edit() against it. For
example, let’s edit the ComponentModel instance which was assigned to the variable A (above):

A collection editor will be displayed containing the instance.

Using Global Variables

Global variables can be assigned to elements which can then be used in the console. For example, edit the
properties of a Port object, then select right click > Assign to Global Variable. The tool will prompt for a global
variable name for the object.

The port object is then available in the console:

Error Reports

If errors occur when building the model, they will be shown as an ErrorReport.

Try modifying addToComponents() so that it attempts to update an invalid slot, e.g. change “components” to
“component”.

Error reports can be expanded to show the sequence of calls that resulted in the error. These go from the most
specific call right down to the engine calls that handled the error.

2.1.16. Using Snapshots

Generating Snapshots from the Console

Snapshots can also be generated from an object by running toSnapshot() followed by showDiagram() on the
object. Select TotalView (a partial view will by default not be populated with objects). For example, running
A.toSnapshot().showDiagram() in the console produces the following snapshot:

2.1.17. Adding Package Operations

In Xmodeler, packages have class like features. They can have operations and attributes, can be instantiated and
inherit from other packages.

Package operations in particular are useful for capturing global operations that apply across an entire model.

Adding and Running Package Operations

To add an operation to a package, right click New > Operation. Edit the operation in the browser. The following
operation creates an instance of a ComponentModel and populates it with values.

The operation can be invoked via the console using the special package operation invocation syntax
(Package::Op()). The result of runnning the operation can be edited by adding .edit() after the operation call.

2.1.18. Next Steps

Although more can be added, most of the basic concepts in the domain have been captured. In the remainder of
this document, different ways of manipulating models of languages are described and illustrated through this
example.

2.2. Working with the Modelling Interface

The previous chapter showed how models can be constructed in Xmodeler. This chapter gives some general hints
and tips for getting the most from the modelling interface.

2.2.1. Windows

Displaying Multiple Diagrams and Windows

Any number of diagram windows can be displayed at once by dragging a diagram tab to one of the edges of
another diagram. For example, a snapshot diagram can be placed next to a class diagram:

Diagrams can be tiled both horizontally and vertically.

Browser and property editors can be split in exactly the same way. For example, the Root browser and a Project
browser can be split:

It is also possible to move windows outside of Xmodeler. Both the browser and console can be moved in this way.

2.2.2. Preferences

Many different preferences can be set for different aspects of Xmodeler, including the diagram editor, console and
text editors. Preferences can be changed via the Window > Preferences menu and are automatically loaded at
boot. Preferences can also be imported and exported.

2.2.3. Property Editor

Property editors provide facilities for managing property histories. Everytime a new propery is displayed, the old
property is overwritten in the in the property editor window. However, the old property editor can still be viewed by
looking at its history. For instance, if we edit the class Port followed by the class Component, the properties of the
Airport will be the last to be displayed in the property editor. To view the history right, click on the history icon in the
top right hand of the property editor. Select the propery to view: We can also flip backwards and forwards between
histories using the left and right arrow buttons (like a browser).

If you don't want a property to be overwritten, it can be locked by clicking on the padlock icon in the top right hand
of the property editor window:

Clicking on the eraser icon clears the history.

2.3. An Introduction to XOCL

2.3.1. Introduction

XOCL (the eXtensible Object Command Language) is a flexible and powerful language for writing programs and
constraints on models. XOCL is based on OCL (the Object Constraint Language) but extends it with programming
features that make it much more productive.

XOCL includes many useful features, including facilities for conveniently navigating around models, and for filtering
and manipulating model data. XOCL is based on standard OO programming principles, which means it is easy to
learn. XOCL can be used in a wide variety of places in a model; wherever there is a need to evaluate a property of
a model or modify it in some way. This means that once you have learnt XOCL it can be used in many different
contexts.

This chapter provides a walkthrough of the key features of XOCL. It includes an introduction to its basic types, the
basic features offered by XOCL for manipulating values and navigating around models, and its imperative
programming features.

For an in-depth description of all the features of XOCL, see Part 3 of the Bluebook.

2.3.2. Basic Types

XOCL provides four basic types

Boolean
String
Integer
Float (64 bit real numbers)

All the usual operators, e.g. arithimetic operators, are provided (see the Bluebook for a detailed list).

XOCL also provides the inbuilt value "null" for situations when the result of an expression cannot be evaluated.

Examples

Type the following into the console:

 1 + 2;
 10.mod(3);
 true and false;
 true implies false;
 "Hello" + "World";

 "Hello".toUpper();
 10.1.cos();
 3.14.sqrt();
 null;

2.3.3. Models

XOCL is used to add important detail to models. One of the most important types of models is a class model,
where XOCL is typically used to write constraints, operations and constructors on classes..

Classes can be declared in two main ways: via UML style class diagrams or via code.

Here is an example of a class diagram:

Here is the equivalent model represented as code:

parserImport XOCL;

context Root
 @Package Components

 @Class ComponentModel

 @Attribute components : Set(Component) (?,!) end
 @Attribute connectors : Set(Connector) (?,!) end

 end

 @Class Component extends NamedElement

 @Attribute owner : ComponentModel (?,!) end
 @Attribute ports : Set(Port) (?,!) end

 end

 @Class NamedElement isabstract

 @Attribute name : String (?,!) end

 end

 @Class Connector

 @Attribute target : Port (?,!) end
 @Attribute source : Port (?,!) en

 end

 @Class Port extends NamedElement

 @Attribute type : String (?,!) end

 end
 end

2.3.4. Using XOCL

In a class model, XOCL is used in the bodies of constraints, operations and constructors. The way that XOCL is
added depends on the interface being used.

For details on how to use XOCL in a class diagram, see chapter Creating and Interacting with a Domain Model.

For details on how to use XOCL in code, see chapter Using the Programming Interface.

XOCL is also used in the body of XMap mappings, see chapter Constructing and Running Mappings.

Context

The context of an XOCL expression is the model element whose instances will be referenced by the expression. In
the case of an operation or constraint, this might be the class that owns the operation/constraint.

When writing code via the text editor, the context of an expression can be defined in two ways. Firstly, by
embedding the operation or constraint in the body of the relevant code definition, for example as follows:

context Components
 @Class Port extends NamedElement
 @Attribute type : String (?,!) end
 @Operation setPortName(name : String)
 self.type := name
 end
 end

Alternatively, the context keyword can be used to separate the definitions, e.g.

context Components
 @Class Port extends NamedElement
 @Attribute type : String (?,!) end
 end

context Port
 @Operation setPortName(name : String)
 self.type := name
 end

Contexts are a useful way to separate different aspects of a model into different files.

In the diagram editor, context is assigned automatically depending on the model element being edited (see the

creating a domain model walkthrough).

For example, if we want to add the operation setPortName() to the class Port, we would use the Add Element >
Operation menu option on the class Port:

A new operation will be added to the class in the browser - the class Port is now the context of the operation.

Double clicking on the operation will launch the operation editor and the code for the operation can be entered:

From now on, we will assume that the code examples in this chapter can be added to their context as follows: ..

Via the text editor (by explicity writing their context or embedding them in the appropriate context element
declaration)
Via the diagram editor (by selecting the context element and using the appopriate Add Element menu)

Self

The variable "self" is a reserved word used to refer to instances of the context model element. In the case of the
operation setPortName() above, self refers to an instance of the Port class.

Self is important when referencing the context object as a value, and is required when assigning values to a slot.

2.3.5. Operations

Operations capture the behaviour of classes. Operations can be added to classes either via the diagram editor, or
by declaring them in code. Operations can change the state of objects, or simply return information without causing
a state change (i.e. perform a query).

The syntax of an operation is as follows:

context model_element

 @Operation name(parameter_list):return_type
 body
 end

Here is an example of an operation that sets the name of a Port object:

context Port
 @Operation setPortName(name : String)
 self.type := name
 end

Operations have a context, which is the model element whose instances will be referenced by the operation. In the
case of an operation added to a class in the diagram editor, this context is set automatically.

Constructors

Constructors are operations that are called when a class is instantiated. Constructors may have parameters that
contain values that are passed to the attribute values (slots) of an object when it is created.

The syntax of a Constructor is a follows:

context model_element
 @Constructor(parameter_list)
 body
 end

The body of constructor is code that is run on initialisation of the object.

As an example, the following is a constructor for a Port. A port has two attributes, its name and type. By default, if
the names of the parameters match the attribute names, their values will be assigned automatically when the class
is instantiated. Note, any number of constructors can be created for a specific class - the constructor that is
invoked is determined by the number of parameters passed.

context Port
 @Constructor(name,type)
 end

Here is an example where the body of the constructor is used to assign a value to a slot:

context Port
 @Constructor(name)
 self.type := name + "_Type"
 end

Note, the use of self in the assignment is required.

Constraints

Constraints are XOCL expressions which evaluate to true or false. Constraints are typically added to classes.

The syntax of a constraint is as follows:

context model_element
 @Constraint name
 boolean_expression
 end

Constraints have a context and a name. The body of a constraint should be a boolean expression.

The following constraint states that the source and target ports of a connector should have the same type.

context Connector

 @Constraint SamePortType
 source.type = target.type
 end

2.3.6. Variables

Variables can be declared in a number of different ways in XOCL:

As attributes on classes (and packages)
As local variables
Using a binding (not described here)

We have already seen attribute declarations.

Local variables are declared using the let expression. The syntax of a let expression is as follows:

let var_name_1 = expression_1;
 var_name_2 = expression _2
in
 body
end

Variable declarations are seperated by semicolons. They can be referenced by any expression in the body of the
let expression. As an example, the following let expression introduces three variables x,y,z into an expression:

let x = 1;
 y = 2;
 z = 3
in
 x + y + z
end

Variable declarations cannot normally reference each other unless they are in the body of another let expression.
However, the "then" expression provides a convenient way of permitting this:

let x = 1;
 y = 2 then
 c = x + y
in
 c + z
end

2.3.7. Types

XOCL provides full access to the type of an object via the of() operation. For instance, if the object o is of type
Connector, then o.of() will return the class Connector.

Because XOCL treats all elements as objects, the of() operation can be used to determine the type of all model
elements. For example, Component.of() will return the class Class because a Component class is an instance of
the class Class.

XOCL also provides facilities for testing type conformance. If we extend the Components model by specialising the
class Port like so:

the operation isKindOf() can be used to determine the type of a Port object.

If p is a port, then the expression

p.isKindOf(Provides)

will return true if p is an instance of the class Provides.

2.3.8. Navigation

The dot notation “.” is used to navigate down attribute values. It has the form:

obj.attribute_name

The result of the navigation depends on the type of the attribute. If the attribute type is a Set, then a set of
elements will be returned. If the type is a Sequence, a sequence of elements will be returned.

In the case of a class model, this means that navigating down attributes and association ends of multiplicity * and
{ordered} will return a set or a sequence of objects respectively. For example, the following operation will return the
result of navigating down the components attribute of a ComponentModel, and will return a set of components.
Note the use of self is optional when navigating down attributes and associations.

context ComponentModel
 @Operation components()
 self.components
 end

The dot notation can be applied multiple times. In XOCL, the result of navigating down multiple attributes whose
types are sets or sequences is not sets of sequences, etc, but the result of flattening the resultant values. For
example, the following expression will return the set of Ports associated with all the components belonging to the
component model:

context ComponentModel
 @Operation components()
 self.components.ports
 end

2.3.9. Collections

XOCL provides two main types for managing collections of elements: Sets and Sequences.

The value of a Sequence and Set are represented by the following literals:

Set{v1,v2,..} // The set containing the elements v1, v2, ..
Seq{v1,v2,..} // The sequence containing the ordered elements v1, v2, ..

As an example, try entering the following into the console:

Set{"bill","ed","hilda"};
Seq{1,2,3,4};

Sets and Sequences can also contain objects and other values, including other sets, sequences, etc.

Collection Operations

XOCL provides a number of OCL based operations for dealing with collections of objects. These are important
when dealing with the results of navigating over models.

The three primary operations are select, collect and iterate.

XOCL uses the "->" notation to denote the application of an operation on a collection, e.g. collection->select(c |
expression)

Select

Select filters a collection. It has the following syntax:

collection->select(var | expression_with_var)

Selects just those elements of the collection that satisfy the expression. The variable var is bound to each element
in turn.

The following operation makes use of select to return only those connectors whose source and target ports don't
match:

context ComponentModel
 @Operation dontMatch()
 connectors->select(c |
 c.source.type <> c.target.type)
 end

Collect

Collect builds a collection of values. It has the following syntax:

collection->collect(var | expression_with_var)

Collects the result of evaluating the expression. The variable var is bound to each element in turn.

The following operation makes use of collect to return the set of port names associated with all components:

context ComponentModel
 @Operation portNames()
 components.ports->collect(p | p.name))
 end

Iterate

Accumulate a collection of values. It has the following syntax:

collection->iterate(var acc=expression | expression_with_var)

Accumulates the result of evaluating an expression in the variable acc. The variable var is bound to each element
in turn. The inital value of acc is expression.

The following operation makes use of iterate to accumulate the total number of ports of type t:

context ComponentModel
 @Operation numberOfPorts(t:String)
 components->iterate(c tot=0 |
 tot + (c.ports->select(p | p.type = t)->size))
 end

Other Operations

XOCL many other useful collection operations. Here are a few of the most commonly used.

collection->size() // Returns the number of elements in the collection
collection->includes(x) // Returns true if the collection includes x
collection->including(x) // The result of including x in the collection

Some operations relate specifically to Sequences or Sets. The following are some common Sequence operations:

sequence->head() // Returns the value at the head of the sequence
sequence->tail() // Returns the tail of the sequence
sequence + sequence // The concatenation of two sequences
sequence->asSet // Turns a sequence into a set

2.3.10. Logical Expressions

XOCL provides all the usual Boolean expressions including: and, or, not and equals.

In addition, it provide "exists" and "forAll" for evaluating Boolean expressions over collections. Their syntax is as
follows:

collection->forAll(c | boolean_expression_with_c) // returns true if the expression evaluates to true
 // for all element of the collection
collection->exists(c | boolean_expression_with_c) // returns true if the expression evaluates to true
 // for at least one element of the collection

As an example, the following operation returns true if all connectors match ports of the same type:

context ComponentModel
 @Operation validConnections : Boolean
 connections->forAll(c | c.source.type = c.target.type)
 end

The following operation returns true if there is at least one invalid connection:

context ComponentModel
 @Operation invalidConnection : Boolean
 connections->exists(c | c.source.type <> c.target.type)
 end

2.3.11. Conditional Expressions

The standard if and case expressions are provided in XOCL.

The syntax of an "if" expression is shown below. Note, both the else and elseif expressions are optional.

if condition then
 expression
elseif condition
 expression
else
 expression
end

Here is an example that makes use of an "if" expression to determine whether a new component can be added to a
component model.

context ComponentModel
 @Operation addToComponents(v : Component):XCore::Element
 if components->exists(c |
 c.name = v.name)
 then
 self.error("Cant add a component with the same name as an existing component")
 else
 self.components := self.components->including(v)
 end
 end

The syntax of a "case" expression is shown below.

@Case var of
 [pattern1] do expression end
 [pattern2] do expression end
end

Here is an example that makes use of a "case" expression to determine the type of a Port and to print out a report.

context Port
 @Operation testPort()
 let p = self.type
 in @Case p of
 ["Integer"] do
 "An Integer Port".println()
 end
 ["Complex"] do
 "A Complex Port".println()
 end
 end
 end

2.3.12. Imperative Features

XOCL extends OCL with a number of imperative programming features, which turn it into a powerful programming
language.

Object Creation

Objects are instances of classes. Objects are created by calling a class constructor. The syntax is as follows:

class_name(parameter_values)

Assumng that the Components model example is in scope, the following can be typed into the console:

Port();

This will create an instance of the class Port using the default (empty) constructor.

Note, if we define a constructor for the class then we could call this by passing the appropriate parameter values.
For example, if the following constructor has been created:

context Port
 @Constructor(name,type)
 end

We can pass the name and type of the Port to the instance like so:

Port("x","Integer");

An alternative instantiation syntax is also provided, which enables values to be bound to slots using name
bindings. The following binds the values to the slots by their name:

Port[name = "x", type = "Integer");

Assignment

Values can be assigned to attributes (slot update) using the assignment operator.

var := expression // assigns the result of evaluating the expression to var

The following operation gives an example of setting the owner of a Component to be the ComponentModel, c.

context Component
 @Operation setOwner(c : ComponentModel)
 self.owner := c
 end

Note, that self is required when setting slot values.

A common assignment pattern is adding a new element to a collection. This can be easily achieved using the
including() operation:

context ComponentModel
 @Operation addToComponents(v : Component)
 self.components := self.components->including(v)
 end

Sequential Execution

A sequential operator (";") is provided for sequencing different operations. For example, adding a component to a
component model and setting it to be owned by the component model.

context ComponentModel
 @Operation addToComponents(c : Component)
 self.components := self.components->including(v);
 c.owner := self
 end

Operation Invocation

The dot notation (".") is used to invoke operations on objects. The following operation invokes the setOwner()
operation on the component, c.

context ComponentModel
 @Operation addToComponents(c : Component)

 self.components := self.components->including(v);
 c.setOwner(self)
 end

Looping

XOCL provides a number of looping constructs, including while loops and for loops.

The syntax for a "for" loop is as follows:

@For var in collection do
 expression
end

The reAssign() operation uses a for loop to reassign any connections that target the Port, old, to the Port, new.

context ComponentModel
 @Operation reAssign(old:Port,new:Port)
 @For c in connectors do
 if c.target = old then
 c.target := new
 end
 end
 end

The syntax for a "while" loop is as follows:

@While condition do
 expression
end

Here is an example of a simple counter that makes use of a while loop.

context Root
 @Operation count()
 let x = 0
 in @While x < 1000000 do
 x := x + 1
 end;
 x.println()
 end
 end

2.3.13. Exceptions

XOCL provides the operation error() to raise an error which can be caught by the Xmodeler Virtual Machine. Here
is an example of its use to raise an error when an invalid Component is about to be added to a ComponentModel.

context ComponentModel
 @Operation addToComponents(v : Component):XCore::Element
 if components->exists(c |
 c.name = v.name)
 then
 self.error("Cant add a component with the same name as an existing component")
 else
 self.components := self.components->including(v)
 end

 end

XOCL also provides a try catch mechanism for handling exceptions. For full details see the XOCL guide in the
Bluebook.

2.3.14. Formatting

XOCL provides a powerful facility called "format" for formatting and outputting data to a variety of output streams.
The general form a format expression is:

format(OUTPUT,CONTROLSTRING,SEQOFARGS)

where

OUTPUT is an output channel (often stdout).
CONTROLSTRING is a string of chars and control chars (see below).
SEQOFARGS is a sequence of args consumed by the control string. This is optional if no args are required
by the control string.

The control string a little program. The simplest form is just a string containing no control characters:

format(stdout,"Hello world")

sends the chars to the output channel. Control characters start with a ~, for example:

format(stdout,"Hello~%World~%")

prints a newline (~% meaning print a newline char) after each word. Control characters can consume args:

format(stdout,"Hello ~S, how are you ~S~%",Seq{"Fred","diddling"})

the ~S control consumes the next arg, turns it to a string using .toString() and then prints it. Some of the control
characters take args:

format(stdout,"Hello~<?,x>S~%",Seq{10,"Fred"})

prints Fred in a column width of 10 characters padding the extra spaces out with 'x' like so:

HelloFredxxxxxx

A useful control char is ~{ which is used to loop through a sequence:

format(stdout,"~{~S~%~}",Seq{names})

prints each element of the sequence names on a new line. The ~{ can include separator chars:

format(stdout,"~{,~%~;~S~}",Seq{names})

prints each element iof the sequence names with a ',' followed by a new line char between each pair. The ~; is
used to terminate the separator. This is particularly useful when generating comma separated code in a
programming language.

format(stdout,"~S~^~S",Seq{1,2,3});

The ~^ control character enables you to repeat a print (~S) statement. For example, the above prints, 1 followed by
1. This is useful when printing a string at both the start and end of an expression, e.g. proc A end A.

2.3.15. Advanced Features

XOCL provides a number of powerful programming features which for brevity are not described here. These
include:

Pattern matching.
Continuations.
An extensible grammar (the @For and @Case constructs are examples of extensions to the language).

See the XOCL guide for more information.

2.4. Debugging Operations

Operations can be debugged by setting a trace on them. Calls to the operation will be displayed in the console.

A trace can be set in a number of ways:

By right clicking on an operation and selecting Trace from its Debug menu.
By right clicking on a container, e.g. a Class, and selecting Trace from its Debug menu. All operations
belonging to the container (and transitively belonging to all its containers) will be traced.
Via the console, by typing the path to the operation or container and calling trace(). Note, calling untrace()
will stop the trace.

As an example, try tracing the operation, addToComponents() on the ComponentModel class:

Running the operation will print the result of tracing the operation:

Note, you should not run trace on System classes, e.g. XCore or Root.

2.5. Constructing and Running Mappings

Mappings are an essential part of being able to transform models written in one language to models written in
another language. This part describes how to construct model to model mappings in XMap: a declarative pattern
matching mapping language. Full details of the XMap language can be found in part 3 of the Bluebook.

2.5.1. A Simple Mapping

We want to create a simple mapping from one class to another class.

The source model is a simple domain model of Airports:

Create or load the Airports model.

Next, create a new project Example1 containing the classes that we want to map between.

Note, the Route class has been copied from the Airports model. This is achieved by right clicking on the class in
the Airports model, selecting Drop in Class Diagram and then choosing the Example1 package.

Next, a mapping is added to the model. Select the Mapping from the icons in the diagram editor and place it on the
diagram and give it a name.

A mapping must have at least one domain and a single range.

Select these from the icons underneath the mapping icon.

The domain is the input to the mapping and the range is its output. Although compulsory, it is important to think of
the domain and range as indicating a dependency between a mapping and its constituents. In practice, the actual
values passed to the mapping need not necessarily be of the domain type. Similarly, the range need not be of the
target type.

The rules and actions performed by a mapping are described by clauses. Add a new clause to a mapping by right
clicking on the mapping in the diagram editor or browser and choosing New > Clause.

Now, edit the clause by double clicking on it in the browser.

A clause editor will be displayed.

A clause has a name, and a default clause expression followed by a “do” action.

The expression is a pattern that must be matched before the clause will fire.

When the clause is matched, the action after the 'do' will be performed.

We wish to capture the rule that a Route with a capacity less than 250 will be mapped to a ShortHaul Route with
the same name. In addition, we want to map a Route with a capacity >= 250 to a LongHaul Route.

To achieve this we need to write two clauses. The first clause matches with a Route whose capacity is less than
250 and generates a Short Haul Route.

@Clause Short
 Airports::Route[
 name = N,
 source = S,
 destination = D,
 capacity = C]
when C < 250
do
 ShortHaul[
 name = N,
 source = S,
 destination = D]
end

Here:

The name of the clause has been changed to Short
The clause expression is a Route, whose name equals the variable 'N', whose source and destination
equals the variables 'S' and 'D' and whose capacity equals the variable C.
The when condition states that this clause can only fire if the capacity is < 250.
The 'do' action creates a ShortHaul Route whose name is equal to the variable 'N', and which has the same
source and destination.

Note because the variables are global they are matched across the clause, ensuring for example that the name of
the source Route matches the target Route name.

To enter the clause, enter the text and right click > Commit it.

To deal with the other possibility (that the capacity >= 250) we need to create another clause and add it to the
mapping.

Again, right click on the mapping in the diagram editor or browser and choose New > Clause. Edit and commit the
clause as before.

@Clause Long
 Airports::Route[

 name = N,
 source = S,
 destination = D,
 capacity = C]
when C >= 250
do
 LongHaul[
 name = N,
 source = S,
 destination = D]
end

The code is similar to that of the previous clause, but the “when” condition requires that the capacity of the route is
>= 250. The resulting action creates an instance of a LongHaul Route.

Running the Mapping

Mappings can be run in two ways: via the console or by passing the object to the mapping.

Here's an example of running a mapping via the console. Let's create an instance of a Route, x, named
"LAX2LHR", with a capacity of 200 and source and destination "LAX" and "LHR" respectively..

The mapping can be run by calling the mapping and passing it the Route, x.

The result of the mapping is a ShortHaul Route whose name is "LAX2LHR" as we would expect.

The same result can be achieved by creating the same instance of a Route in a Snapshot and selecting Apply
Mapping from the object's menu:

A choice of available mappings will be displayed. Select the mapping that the object is to be passed to, and it will
be invoked.

2.5.2. A Simple Model to C# Mapping

This section describes the construction of a mapping between model (XCore) packages and classes to a small
model of the C# programming language.

The C# Model

The following is a simple model of the abstract syntax of C# that will be used in the mapping. A C# model consists
of a program containing a number of classes, which have attributes.

The Mapping

We'll construct two mappings. The first mapping (Package2CSProgram) turns a Package into a C# Program . This
mapping then calls the Class2CSClass mapping, which iterates over the classes in the Package and maps them to
CSClasses. Of course, further mappings can be constructed to map Class operations and attributes, etc, but we
won't deal with those here.

First, we need to import the Package and Class classes from the XCore package. To do this, open the
Root::Kernel::XCore package in the browser. Select the classes Package and Class and then select Drop in Class
Diagram to drop them into the mapping package. Note, we also need to import the C# classes CSProgram and
CSClass by dropping them into the model from the CS model.

Next, the mappings are added. Remember that the domain and range arrows are added by selecting the domain
and range buttons respectively. A dependency arrow is also added to indicate that the Package2CSProgram
mapping is dependent on the Class2CSClass mapping.

Let’s add the mapping clause by starting with the simplest mapping. The Class2CSClass mapping transforms an
instance of a Class into an instance of a CSClass.

Its clause says that whenever the mapping is given a Class it returns a CSClass with the same name.

@Clause Clause0
 XCore::Class[name = N]
do
 CS::CSClass[name = N]
end

The Package2CSProgram maps a Package to a CSProgram. In doing so, it maps each class in the package to a
CSClass by calling the Class2CSClass mapping.

@Clause Clause0
 XCore::Package[name = N, classes = C]
do
 CS::CSProgram[name = N, classes = Cs]
where
 Cs = C->collect(c | Class2CSClass()(c))
end

Executing the Mapping

Just as in the previous example, the mapping can be executed via the console.

Because we are mapping from XCore packages, we can actually pass a package from a model into the mapping
and see what it produces. Let's map the Airports package

As expected, the mapping has generated a C# Program. If we edit it, we can see it has produced a CSClass for
each class in the Airports package.

2.5.3. Mapping Hints and Tips

Error Reporting

When running a mapping, all the usual exception reports will be displayed if for example, the mapping attempts to
set an invalid slot or create an invalid instance. In addition, a MapFailed exception is raised if mapping cannot find
a clause that matches the input to the mapping.

As an example, try running the mapping by passing an invalid object, for instance a Class to the
Package2CSProgram mapping. Because the Package2CSProgram mapping is expecting a Package it will fail and
generate the following exception.

Additional information on the cause of the exception can be found by expanding the tree nodes.

Here, the value being passed to the mapping can be seen in local(0).

Clearly, it is of the wrong type.

If we wanted to examine the passed object in more detail it can be navigated to by double clicking on local(0).

2.5.4. Constructing a Pretty Printer

In the previous section, a mapping from packages and classes to C# was constructed. In practice however, the
objective will be to generate concrete code (not just an instance of the C# model). For example, we might expect to
generate some code of the following form:

using System;

 class Route
 {
 integer capacity;
 string name;
 string source;
 string destination;
 }
 class Passenger
 {
 string name;
 }

 class Airline
 {
 string name;
 }
 class Airport
 {
 string name;
 }
 class Flight
 {
 string date;
 }

The basic approach is to add operations to the language model to pretty print it. The first step is to load your
language model and plan where the appropriate operations need to be added. In general, it is best to start at the
leaf classes where there is minimum dependency on other elements in the model.

As an example, a pretty print operation can be added to the class CPPAtt (a C# attribute). First, add a pretty print
operation to the class and give it a name, e.g. pprint().

Now, edit the operation. Two parameters are required by the operation: an output type, out, which will be used to
direct the output of the operation to an editor or to a file, and an indent, which is the current indent of the code.

We can now construct the body of the operation. An attribute will be pretty printed as the type name and the
attribute name, terminated with a semicolon.

@Operation pprint(out : XCore::Element,indent : XCore::Element):XCore::Element
 format(out,"~V~S~%",Seq{indent, type.name + " " + name + ";"})
 end

The format command is used to generate the text. The sequence of control characters dictates the format of
elements that occur in the sequence of elements that are to be formatted. For example, ~V denotes a vertical
space, ~S is a string and ~% is a line return. Note, full details of the format command can be found in Part 3 of this
guide.

In this case an indent is inserted before the string is printed, and a character return is inserted after the semicolon.

The definition of pprint on CSClass is as follows:

@Operation pprint(out : XCore::Element,indent : XCore::Element):XCore::Element
 format(out,"~V~S~%",Seq{indent,"class " + name + " ",indent,"{"});
 attributes->collect(a |
 a.pprint(out,indent + 2));
 format(out,"~V~S~%",Seq{indent,"}"})
 end

The class signature and name of the class is printed followed by the attributes and operations of the class.

Finally, we need to construct the pretty printer for a CSProgram.

@Operation pprint(out : XCore::Element,indent : XCore::Element):XCore::Element
 format(out,"~V~S~%",Seq{indent,"using System;"});
 classes->collect(c |
 a.pprint(out,indent + 2))
 end

If we run the pprint operation on the result of mapping the Airports package, the following code is generated:

using System;

 class Route

 {
 }
 class Passenger
 {
 }
 class Airline
 {
 }
 class Airport
 {
 }
 class Flight
 {
 }

A lot more needs to be done to complete the mapping. In particular mappings from Attribute and Operation to C#
Attributes and Operations need to be defined. However, it is simply a case of following the same overall approach.

2.6. Constructing an XML Parser and Generator

It is often useful to be able to interchange models or programs as XML data. For example, there may be a third
party tool that does some pre- or post-processing tasks on the data, or we may want to maintain models and
instances of models as XML files.

This section describes how an XML parser and generator can be constructed in Xmodeler enabling any format of
XML to be parsed and exported to a from an instance of a model. It is based on (XXML) a generic, high-level
grammar language that can be used to capture XML grammars and the rules for mapping them to models.

The following sections give an example of its application to the Components model, enabling instances of the
model to be represented as and parsed as XML.

2.6.1. First Steps

The first step in constructing an XML grammar for a language is to create a file to contain the grammar definition.
This can be done via the file browser (see Part 1 of this guide).

Open the file browser by right clicking on a project in the browser and selecting Create File Browser.

Select the directory that the file will be created in, and create the file, e.g. AircraftsGrammar.Xmodeler.

2.6.2. Constructing the Grammar

First we need to add the relevant imports to the file so that it can be compiled and loaded by Xmodeler. We import
the parsers for XOCL and XML.

We import the Components and XML packages.

parserImport XOCL;
parserImport XML::Parser;

import Components;
import XML::Parser; // Get ParserChannel and Ref

A grammar can now be constructed using XXML.

In the context of the ComponentModel class, we declare a Grammar definition, called ComponentModel.

context ComponentModel
 @Grammar ComponentModel

Associated with the Grammar are a number of grammar rules which state how the XML should be parsed.

 ComponentModel ::=
 <ComponentModel>
 C = Component*
 N = Connector*
 </ComponentModel>
 { ComponentModel[components=C,connectors=N] }.
 Component ::=
 <Component n=name>
 P = Port*
 </Component>
 { Component[name=n,ports=P] }.
 Port ::=
 <Port n=name t=type i=id/>
 i := { Port[name=n,type=t] }.
 Connector ::=
 <Connector sid=source tid=target/>
 { Connector[source=Ref(sid),target=Ref(tid)] }.
 end

Each grammar rule describes a rule for recognizing the next bit of XML. It checks the next element tag and binds
the variables to the attribute values. The child elements must match the rules defined by the child grammars and
binds the variables to the result. If the match is successful then the XOCL action occurs and returns a value.

The ComponentModel grammar is defined to be the XML tag <ComponentModel> followed by some child
grammars (it has no attributes). The child grammars bind the result of parsing a sequence of Components followed
by a sequence of Connectors.

The rule is terminated by the tag </ComponentModel>

Every time the grammar rule is parsed, its effect is to unify the variables with the values that are parsed.

These values are then used to perform an XOCL action, which is written in curly brackets after the grammar
expression.

Here, the action instantiates the class ComponentModel with the variable values.

Similar grammar rules are written for the other elements in the model.

The grammar for Component is straightforward - it returns a Component instance.

The grammar for a Port illustrates the use of an "id" which is associated with each new Port instance.

The grammar for a Connector uses this "id" to look up the values of the source and target ports of the Connector.
This is performed using the Ref() operation. This is how cross-references are managed in XXML.

2.6.3. Invoking the Parser

The following code provides operations for reading in XML files and parsing them using the parser.

context Components
 @Operation parseFile()

 let file = Xmodeler.openFile(Xmodeler.projDir(),"*.xml")
 in if file <> ""
 then
 @WithOpenFile(fout <- file)
 Components::parse(fout).edit()
 end
 else Xmodeler.message("Parse Cancelled")
 end
 end
 end

context Components
 @Operation parse(inch:InputChannel)
 let grammar = ComponentModel::ComponentModel.compile()
 in let xin = ParserChannel(inch,grammar)
 in xin.debug := true;
 xin.parse("ComponentModel");
 // Get the result and resolve the references.
 xin.result(true)
 end
 end
 end

The package operation parseFile() first opens a browser to select the XML to be imported. If the file exists. This
calls the parse() operation, which opens an XMLInputChannel and the XML is read into variable xin. The result (an
instance of the ComponentsModel) is returned.

2.6.4. Example

As an example we can construct a small XML file such as below and save it in an XML file, e.g example.xml.

<ComponentModel>
 <Component name="Displays">
 <Port id="Displays:CurrentPosition" type="Long" name="CurrentPosition" />
 </Component>
 <Component name="Navigation">
 <Port id="Navigation:CurrentPosition" type="LatLong" name="CurrentPosition" />
 </Component>
 <Connector target="Navigation:CurrentPosition" source="Displays:CurrentPosition" />
</ComponentModel>

To run the parser, run the parseFile() package operation from the console by typing Components::parseFile();

The result will be to parse the XML and create an instance of the Components model:

2.6.5. Debugging the Parser

If debug has been set to true for a grammar, the console will display a trace of pattern matches that have taken
place during the parsing process:

Components::parseFile();
<ComponentModel>
 <Component name='Displays'>
 BIND n = Displays
 <Port id='Displays:CurrentPosition' type='Long' name='CurrentPosition'>
 BIND n = CurrentPosition
 BIND t = Long
 BIND i = Displays:CurrentPosition
 </Port>
 PUSH(<Port d69cc1>)
 BIND x = <Port d69cc1>
 </Component>
 PUSH(Seq{})
 BIND xs = Seq{}
 PUSH(Seq{})
 PUSH(<Port d69cc1>)
 PUSH(Seq{<Port d69cc1>})
 BIND P = Seq{<Port d69cc1>}
 PUSH(Seq{<Port d69cc1>})
 BIND P = Seq{<Port d69cc1>}
 PUSH(<Component d6f173>)
 BIND x = <Component d6f173>
 <Component name='Navigation'>
 BIND n = Navigation
 <Port id='Navigation:CurrentPosition' type='LatLong' name='CurrentPosition'>
 BIND n = CurrentPosition
 BIND t = LatLong
 BIND i = Navigation:CurrentPosition
 </Port>
 PUSH(<Port d76f09>)
 BIND x = <Port d76f09>
 </Component>
 PUSH(Seq{})
 BIND xs = Seq{}
 PUSH(Seq{})
 PUSH(<Port d76f09>)
 PUSH(Seq{<Port d76f09>})

 BIND P = Seq{<Port d76f09>}
 PUSH(Seq{<Port d76f09>})
 BIND P = Seq{<Port d76f09>}
 PUSH(<Component d7c2d5>)
 BIND x = <Component d7c2d5>
 <Connector target='Navigation:CurrentPosition' source='Displays:CurrentPosition'>
 PUSH(Seq{})
 BIND xs = Seq{}
 PUSH(Seq{})
 PUSH(<Component d7c2d5>)
 PUSH(Seq{<Component d7c2d5>})
 BIND xs = Seq{<Component d7c2d5>}
 PUSH(Seq{<Component d7c2d5>})
 PUSH(<Component d6f173>)
 PUSH(Seq{<Component d6f173>,<Component d7c2d5>})
 BIND C = Seq{<Component d6f173>,<Component d7c2d5>}
 BIND sid = Displays:CurrentPosition
 BIND tid = Navigation:CurrentPosition
 </Connector>
 PUSH(<Connector d86f69>)
 BIND x = <Connector d86f69>
</ComponentModel>
PUSH(Seq{})
BIND xs = Seq{}
PUSH(Seq{})
PUSH(<Connector d86f69>)
PUSH(Seq{<Connector d86f69>})
BIND N = Seq{<Connector d86f69>}
PUSH(Seq{<Connector d86f69>})
PUSH(Seq{<Component d6f173>,<Component d7c2d5>})
BIND C = Seq{<Component d6f173>,<Component d7c2d5>}
BIND N = Seq{<Connector d86f69>}
PUSH(<ComponentModel d8a323>)

The parser starts at the root of the grammar tree and calls each element in turn. Whenever an XML element is
encountered that matches a grammar element, the values of variables are bound with the attributes of the element.
Once successfully bound, the action associated with the grammar expression is performed to create the
appropriate model instance/s.

Once you are happy with the grammar, the debug option should be switched off for efficient execution of the
parser.

2.6.6. Generating XML

A similar approach can be used to construct an XML generator. A simple domain specific language is used to
capture the rules for generating XML. Here are the rules for generating XML for instances of the Component
model:

context ComponentModel
 @Operation exportXML(out:OutputChannel)
 @XML(out)
 <ComponentModel>
 @For component in components do
 component.exportXML(out)
 end;
 @For connector in connectors do

 connector.exportXML(out,self)
 end
 </ComponentModel>
 end
 end

context ComponentModel
 @Operation portId(port:Port):String
 @Find(component,components)
 when component.ports->includes(port)
 do component.name + ":" + port.name
 else self.error("Cannot find port " + port.toString())
 end
 end

context Component
 @Operation exportXML(out:OutputChannel)
 @XML(out)
 <Component name=name>
 @For port in ports do
 port.exportXML(out,self)
 end
 </Component>
 end
 end

context Port
 @Operation exportXML(out:OutputChannel,component:Component)
 let portId = component.name + ":" + name
 in @XML(out)
 <Port name=name type=type id=portId/>
 end
 end
 end

context Connector
 @Operation exportXML(out:OutputChannel,model:ComponentModel)
 let sourceId = model.portId(source);
 targetId = model.portId(target)
 in @XML(out)
 <Connector source=sourceId target=targetId/>
 end
 end
 end

The structure of each rule is as follows:

@XML(outputChannel)
 <Tag name=exp name=exp …>
 body
 </Tag>
end

An @XML command writes the XML data to the supplied output channel. The XML elements and their attributes
are then written. The body is XOCL code that writes the child elements.

As an example, the exportXML() operation generats a ComponentModel tag, followed by the results of calling the
exportXML() operation on the ComponentModel's components and connectors.

To generate the XML, the following operation is defined:

parserImport XOCL;
parserImport XML::PrintXML;

import Components;
import IO;

context ComponentModel

 @Operation exportXML()
 let file = Xmodeler.saveFile(Xmodeler.projDir(),"*.xml")
 in if file <> ""
 then
 if not file.fileExists() orelse Xmodeler.question("Overwrite " + file)
 then
 @WithOpenFile(fout -> file)
 self.exportXML(fout);
 Xmodeler.message("written " + self.toString() + " to " + file)
 end
 else Xmodeler.message("Deployment Cancelled")
 end
 else Xmodeler.message("Deployment Cancelled")
 end
 end
 end

//Rest of rules

This can be run on any ComponentModel instance, for example:

The following XML is produced:

<ComponentModel>
 <Component name="Displays">
 <Port id="Displays:CurrentPosition" type="Long" name="CurrentPosition" />
 </Component>
 <Component name="Navigation">
 <Port id="Navigation:CurrentPosition" type="LatLong" name="CurrentPosition" />
 </Component>

 <Connector target="Navigation:CurrentPosition" source="Displays:CurrentPosition" />
</ComponentModel>

This can now be parsed back into the tool if required using the XML parser!

2.7. Using the Programming Interface

This section shows how to use the programming interface to construct some of the models described above. We
will add use the programming interface (see Part 1 of this guide) to construct the code.

2.7.1. Getting Started

Select File Browser .. from the File menu. Choose a directory (or create one), where you want the code to reside.

Right click on the directory and choose New Xmodeler File From Template > Package to create an Xmodeler file.

The file will contain the default declarations needed to construct an Xmodeler package definition. Change the
name of the file to Components.Xmodeler.

We will be creating a package in the context of the Root package, so make sure that the context is set to Root.
There are no imports.

Code can now be entered for each of the classes in the model. For a detailed guide to XOCL and Xmodeler
classes and package see Part 3 of this guide.

The following code constructs the classes used in the Airports model. Note that constructors have been added for
each class, and that attributes have getters (?) and setters (!), and in the case of Set and Sequence types,
updators (+) and removers (-).

parserImport XOCL;

context Root
 @Package Components

 @Doc The Components model end

 @Class ComponentModel

 @Attribute components : Set(Component) (?,!,+,-) end
 @Attribute connectors : Set(Connector) (?,!,+,-) end

 @Constructor(components,connectors) end

 end

 @Class Component extends NamedElement

 @Attribute owner : ComponentModel (?,!,+,-) end
 @Attribute ports : Set(Port) (?,!,+,-) end

 @Constructor(ports,owner,name) end

 end

 @Class NamedElement isabstract

 @Attribute name : String (?,!) end

 @Constructor(name) ! end

 end

 @Class Connector

 @Attribute target : Port (?,!) end
 @Attribute source : Port (?,!) end

 @Constructor(target,source) ! end

 end

 @Class Port extends NamedElement

 @Attribute type : String (?,!) end

 @Constructor(type,name) ! end

 end
 end

2.7.2. Compiling and Loading

At any point, right click on the editor and select Save, Compile and Load to save, compile and load the model.

2.7.3. Checking the Model

The contents of the model can be checked in the property editor by editing the package via the console.

To view the package in the browser, enter the package name, Airports, followed by .browse().

2.7.4. Adding Constraints

Constraints can be added by using the @Constraint end declaration.

As an example, let’s add a constraint that checks for source and target port types:

 @Class Connector

 @Attribute target : Port (?,!) end
 @Attribute source : Port (?,!) end

 @Constructor(target,source) ! end

 @Constraint ValidPortTypes
 source.type = target.type
 end

 end

2.7.5. Adding Operations

Operations can be added in exactly the same way: This operation returns all the connectors whose port types don't
match

 @Class ComponentModel

 @Attribute components : Set(Component) (?,!,+,-) end
 @Attribute connectors : Set(Connector) (?,!,+,-) end

 @Constructor(components,connectors) end

 @Operation dontMatch()
 connectors->select(c |
 c.source.type <> c.target.type)
 end
 end

2.7.6. Context

A context is a powerful device for adding new elements to a class or package. It enables different aspects of an
element to be separated out and declared elsewhere.

To use a context, first declare the context, and then the element that is to be added to it. For example, we can add
the ValidPortTypes constraint using a context.

context Connector
 @Constraint ValidPortTypes
 source.type = target.type
 end

Note, this must be declared outside of the Airports package declaration to be syntactically valid.

In general, any element that has an owner can make use of context, including attributes, operations, classes and
packages.

2.7.7. Importing Packages

Import declarations enable the contents of other packages to be imported so that they can be referenced by other
elements. For instance, let’s say we wanted to separate out the constraints of the Components model from the
class. We can create a new file called ComponentsCons.Xmodeler that contains the constraints:

Provided that we have loaded the Components package, we can compile and run the new file and the constraints
will be added to the appropriate classes.

parserImport XOCL;

import Components;

context Connector

 @Constraint ValidPortTypes
 source.type = target.type
 end

Imports are transitive, and can be used to any depth.

2.8. Toolbar Menus and Initialisation Files

This section describes how Xmodeler can support user customised menus and intialisation files.

2.8.1. Toolbar menus

Xmodeler provides facilities for rapidly building customised menus that can be used to perform repetitive tasks
such as loading projects, or running operations.

You can add a new menu, or a new menu item to an existing menu, on the toolbar by sending a message to the
Xmodeler object: Xmodeler.addDropDownMenuItem(menuPath,handler) where menu path is a sequence of strings
that identifies the menu item, and handler is a 0-arity operation that is called when the new menu item is selected.
For example, the following can be run in the console:

Xmodeler.addDropDownMenuItem(Seq{"&A","B","&C"},@Operation() "Selected".println() end);

This will produce the following:

Selecting C will run the operation and generate the text "Selected" in the console.

Note, the menu item "B" denotes a menu category. If other menus are created using "A" and "B" they will be shown
as belonging to the same category of sub-menus.

Also note, if the menu item is preceded by an "&" it represents a key-binding. In this case, "Alt-A" followed by
"Alt-C" will run the operation.

Commands to add menus can be loaded on startup of the tool using the Init file (see below).

2.8.2. Some Useful Operations

The following are examples of useful operations that are typically used in menus.

This is an example of a menu that is used to load one or more .xar files in your projects directory, MyProjects, via a
Demo menu:

Xmodeler.addDropDownMenuItem(Seq{"&Demo","Main","Load Model"},
 @Operation()
 @Busy("Loading Model")
 Xmodeler.projectManager().getElement("MyProjects").loadMosaicProject(Xmodeler.projDir() + "/Dir/F
 end
 end);

This is an example of a menu that is used to load one or more compiled .o files:

Xmodeler.addDropDownMenuItem(Seq{"&Demo","Main","Load Model"},
 @Operation()
 @Busy("Loading Model")
 Xmodeler.projectManager().getElement("MyProjects").loadMosaicProject(Xmodeler.projDir() + "/Dir/F
 end
 end);

This example enables a specific file to be edited after selecting it using a file chooser. Note, the following two
examples need to import the XmodelerFileTree (as shown in the next section).

Xmodeler.addDropDownMenuItem(Seq{"&Demo","Main","Edit File"},
 @Operation()
 let file = Xmodeler.openFile(Xmodeler.projDir(),"*.Xmodeler") in
 if file.fileExists() then
 XmodelerFile(null,file).editText()
 end
 end
 end);

This example enables a specific file to be selected and then compiles and loads it: Note the use of the string
operation splitBy. This splits a file name around the "." into a sequence, the head of which is the preceding part of
the file name.

Xmodeler.addDropDownMenuItem(Seq{"&Demo","Main","Compile and Load File"},
 @Operation()
 let file = Xmodeler.openFile(Xmodeler.projDir(),"*.Xmodeler") in
 if file.fileExists() then
 @Busy("Compiling and loading "+file)
 let filename = file->splitBy(".",0,0)->head in
 Compiler::compileFile(file,true,true);
 (filename + ".o").loadBin()
 end
 end
 end
 end
 end);

2.8.3. Initialisation Files

To make the task of setting up menus and other general-purpose features easier, Xmodeler provides an init file
facility. This file, init.o, is automatically loaded on start-up of the tool provided that it is placed in the directory
referenced by the MOSAICINIT environment variable.

The following init file (init.Xmodeler) is an example of a simple init file. To use it, compile the file in the MOSAICINIT
directory. It contans a menu item which enables the init.Xmodeler file to be conveniently edited via a File > Edit >
Init menu.

// The init file is loaded on startup. It is used to automatically add user customised
// menus and operation to Xmodeler. These can be used for all sorts of
// purposes, including setting up menus for specific projects, or running
// any code you wish. To run the init file, it must be saved in the XmodelerINIT
// directory (this must be available under your windows system environment
// variables). Compile, save and load the init file before launching Xmodeler
// to run it.

parserImport XOCL;

import Clients;
import XmodelerFileTree;
import IO;

// Add your customised menus and operations here.

// Provides a drop down menu for editing the Init file. Note the sequence
// elements denotes the menu hierarchy starting with the root File menu.
// Use & to add shortcut key binding, e.g. Alt-F, Alt-E in this case to
// get to the Edit menu.

Xmodeler.addDropDownMenuItem(Seq{"&File","Extras","&Edit","Main","Init"},
 @Operation()
 XmodelerFile(null,Xmodeler.initFile()).editText()
 end);

// Provides a drop down menu for browsing the files in your project directory
Xmodeler.addDropDownMenuItem(Seq{"&File","Extras","&Browse","Main","Projects"},
 @Operation()
 Directory(Xmodeler.projDir(),Seq{".*.Xmodeler"}).browse()
 end);

// An example of a menu that is used to load one or more .xar files in your projects directory into
// MyProjects

Xmodeler.addDropDownMenuItem(Seq{"&Demo","Main","Load Model"},
 @Operation()
 @Busy("Loading Model")
 Xmodeler.projectManager().getElement("MyProjects").loadMosaicProject(Xmodeler.projDir() + "/Dir/F
 end
 end);

// An example of a menu that is used to load one or more compiled .o files

Xmodeler.addDropDownMenuItem(Seq{"&Demo","Main","Load File"},
 @Operation()
 @Busy("Loading File")
 (Xmodeler.projDir() + "/Dir/Code.o").loadBin()
 end
 end);

// An example of defining an operation that will be added automatically to Root
context Root
 @Operation hello()
 format(stdout,"HelloWorld")
 end

2.9. Constructing a Diagram Tool for a Model in XTools

XTools provides a suite of languages for modelling and deploying user-interfaces. This chapter describes how
diagram editors can be modelled and deployed in XTools.

2.9.1. Domain Model

We want to create a diagram tool which manipulates an underlying domain model.

As an example, let's construct a diagram editor for the component modelling language. Here is it's domain model:

When we construct a diagram in the tool, we want it to manipulate instances of this model.

2.9.2. A Candidate Diagram Syntax

We want to construct an editor that:

represents Components as rounded boxes with names
represents Ports as circles.
represents Connectors as arrows between Ports.
allows Ports to be connected to Components

In other words, something like the follows:

2.9.3. Constructing an XTool Definition

Let's go through the process of constructing an XTool definition.

Creating the Tool Definition

First, we need to create an XTool definition. This will contain all the information needed to support the XTool..

To do this, simply right click on the class that represents the root type of the model to be XTooled: In this case, it is
the class ComponentModel:

Enter a name for the XTool, e.g. Components.

A new XTool definition will be created.This will be displayed in the form editor and in the XTool browser.

Adding a Node

Two main types of diagram element can be added to the tool: nodes and edges.

Let's create a node definition that represents a Component.

To do this, right click on the root type and select New > Root Node.

A choice of elements to be displayed as nodes will be shown. In this case, we want to select the Component
element.

The Component node is then added to the XTool:

Adding a Box to the Node

A Node on its own will not have a diagrammatical representation. To enable this, we need to add a shape to it.

An Entity will be represented as a Box, so we'll add one to the Component node. To do this right click on the
Component node and create a new box:

Boxes can be parameterised in a wide variety of ways. In this case, we want the box to have a minimum width of
100, a minimum heights of 50 and a corner curve of 30 degrees. To change this, right click on the create box and
select Edit. Change the properties as required:

Adding an Attribute to the Box

In order to be able to edit the name of the Component, we need an Attribute text field. This can be added to the

Box as follows:

Right click on the box and select New > Attribute. Sele

Select the name attrbute from the drop down list. The new attribute has been added to the box:

A Text box is automatically added to the Attribute to display it's value. It can be edited to view its properties.

We want to ensure that the text for the Attribute is centred in the box. To do this, right click on the box and set its
Layout to Centre:

Adding a Free Node

A Free Node is a node whose class is not directly accessible from the root class. In this example, Port is a free
node.

To add a Free node, right cilck on the root element type and select New > Free Node. A list of all the packages
available in the system will be displayed. Select the Port class from the package Components.

The node will be added to the browser.

We want to represent a Port as an Ellipse. An ellipse can be added in the same way as a box:

We will need to adjust the size and colour of the ellipse. To change its fill colour, right click and select Colour > Fill
Colour.

The size of the ellipse can be changed by editing the properties of the Ellipse. In thie case, we want its height and
width properties to be 10 points, however, this is the default size, and we therefore don't need to make any
changes.

Adding Tool Bars

Toolbar groups and buttons need to be created to enable the selection of a creation tool for the element.

To do this, right click on the Tool Bar node and select New Group. Give the Group a name, e.g. Components:

This provides a tool bar group, under which a number of tool bar buttons can be added.

Let's create a button for adding Component nodes. Right click on the Component group and select New > Node
Button. Choose Root(component:Component) from the list. Change the name of the button to be "Component".

Follow exactly the same steps to add a button for Port nodes.

Running the Tool

One of the powerful features of XTools is that there is no compile cycle involved in running a tool. This makes
testing a very dynamic and iterative process.

Let's run the tool we have built so far.

First, Save the XTool (right click on the Root Node and select Save) so that it is backed up.

Next right click on the Object node in the XTool browser (select Browse > XTools Browser if you cannot see it in the
browser) and select Add Element > ComponentModel to create an instance of the ComponentModel class.

A ComponentModel object will be created. To show its diagram select it and right click Create Diagram >
Component.

A new diagram editor for the tool will be displayed. Note that the relevant tool bar and buttons are now available for
adding Component and Port nodes to the tool.

Adding Edges

Another type of diagram element is an Edge (a connection between Nodes). Edge definitions can be added to the
tool in a similar way to Node definitions.

Edges come in two types:

Associations, which map to a class that acts as a relationship between elements.
Links, which map to an attribute of a class.

We want to represent a Connector as an Association between Ports. To do this, we add an Association to the tool
definition as follows:

A choice of collections that the Association will map to will be displayed. Select the connectors collection.

An Association may define the shape of its ends, and in this case we can chose to make its target end an
arrowhead by setting the target arrow of the edge to be a simple arrow.

The second edge to add to the tool is the link between a Component and a Port which corresponds to the ports
attribute of the Component class.

To do this, add a new Link to the tool using the New menu.

Select the source of the Link (in this case the class Component), then select the attribute that will map to the link
(in this case the attribute ports). The resulting tool is shown below:

Adding Edge Toolbar Buttons

Edge tools bar buttons can be added in exactly the same as node buttons. Here the two edge buttons
corresponding to the Port Link and Connector Association have been added.

Adding Menus

It is possible to add menus to all diagram elements for performing a wide variety tasks. For example, Edit and
Delete menu items, or menu items that perform specific XOCL commands.

To add a menu item, select an element and right click on its Menu to add a New menu item. Here two menus have
been added. An Edit menu item to the tool diagram and a Delete menu item to the Component node.

Re-running the tool

We can re-run the tool to test out it's functionality.

Running Edit, will show the property editor for the ComponentModel instance being managed by the tool.

This is just the start of developing a fully blown tool. Additional menus and diagram elements can be added very
flexibly and tested interatively.

2.9.4. Other XTool Capabilities

Many other XTool capabilities are supported by Xmodeler, including support for modelling browsers and property
editors. Walkthroughs for these capabilities will be available in the next release of the tool.

2.10. Importing XMI

XMI can be imported into Xmodeler by selecting the import XMI option off a project. The list of currently supported
XMI versions will be shown in the menu. Select the required version and use the file chooser to select the .xml file
to be imported.

2.11. Constructing a Textual Syntax and Parser

This chapter demonstrates how a textual syntax can be constructed in XBNF: a language for defining grammars
and mappings of grammars to models.

Here we show how this can enable us to parse code and synthesise instances of models. However, XBNF
supports many other powerful capabilities, including capabilities for extending the grammars of existing languages
and for conveniently synthesising code.

2.11.1. Parsing and Synthesising Instances of Models

We want to synthesise instances of the following model by parsing in a textual representation:

parserImport XOCL;

context Root

 @Package EntityModels

 @Doc
 A Simple Entity Model
 end

 @Class Named extends XOCL::Syntax
 @Attribute name : String end
 end

 @Class EntityModel extends Named
 @Attribute entities : Set(Entity) end
 end

 @Class Entity extends Named
 @Attribute relationships : Set(Relationship) end
 end

 @Class Relationship extends Named
 @Attribute type : String end
 end

 end

Note that the class Named extends the class XOCL::Syntax. It is necessary for all classes we want to synthesise to
inherit from this class.

The code for a grammar for this language is shown below:

parserImport XOCL;
parserImport Parser::BNF;

import EntityModels;

context EntityModel

 @Grammar extends OCL::OCL.grammar

 EntityModel ::=
 name = Name
 entities = Entity*
 {EntityModel[name = name, entities = entities]}.

 Entity ::= 'entity' name = Name rels = Relationship*
 {Entity[name = name, relationships = rels]}.

 Relationship ::= 'rel' name = Name '->' type = Name
 {Relationship[name = name, type = type]}.

 end

Note, just as with the XML grammar in the previous chapter, we define a series of grammar rules that synthesise
instances of the model.

Here are some points to note:

The grammar first imports the parsers for XOCL and BNF. It also imports the EntityModels package (which
must be loaded). The grammar of the EntityModel class is defined as follows:

The root of the grammar is the rule EntityModel.
A rule is sequences of pattern declarations followed by an action (in curly brackets} which is called
after the parsing has occured.

In the case of the EntityModel rule, it is defined to be a name, followed by a sequence of Entity
(which is bound to the variable entities).
The result of parsing an EntityModel is to create an instance of a EntityModel class with the variables
name and entities populated with the above values.
An Entity is the string ‘name’ and a sequence of Relationships (bound to the variable rels). The result
of parsing it is to create an instance of a Event class with the variable name passed as a parameter.
A similar rule is used for Relationships.

The following is a small example of a model written in the syntax:

parserImport EntityModels;

import EntityModels;

Root::p :=
 @EntityModel Customers
 entity Customer
 rel Owns -> Account
 entity Account
 end;

Compiling and loading the above three files in order will load the model, the parser definition and the example. The
result will be stored in the Root variable p, which can be edited in the console using p.edit().

2.12. Creating a Meta-Profile

One common use of modelling tools is to tailor them to support a specific modelling domain. This typically involves
specialising modelling concepts already provided by the tool using stereotypes and tagged values. The advantage
of doing this is that the tool’s existing editing and drawing capabilities, etc, do not need to be physically changed.
By combining a number of different stereotypes together, a “profile” can be constructed for a specific modelling
requirement.

The disadvantage of traditional stereotype and tagged value mechanisms is that they are essentially just a way of
annotating existing model elements – little in the way of semantic or well-formedness information can be added to
them.

Xmodeler supports stereotypes and tagged values, but in a way that is significantly more controllable and powerful
than traditional tools. Xmodeler enables “meta profiles” to be constructed, in which stereotyped elements are true
instances of specialised language concepts.

2.12.1. An Example Profile

Let’s design a data modelling profile, which allows us to construct a data model as an instance of a datamodel
metamodel. The data modelling profile provides three key modelling concepts: a data model, a data entity and a
key attribute.

First, create a DBProfile project.

Next, browse and show the diagram for the project.

A key part of the profile is that it extends the XCore metamodel. This enables it to inherit the modelling capabilities
of XCore - the language used to describe class models.

Right click on the DBProfile package and select Set Parents, and tick the package XCore from the list.

At this point we can open the DBProfile package and begin constructing the profile. We want to be able to extend
existing modelling elements so that we can reuse their editing capabilities. Here is the model for the DBProfile:

Here a DataModel specialises the class Package, so we can now model with DataModels rather than Packages. A
Key is a specialisation of an Attribute, and an Entity specialises a Class. Finally, an additional attribute is added to
Entity to denote that some Entities are also containers.

Note that in order to specialise the XCore classes, we simply right clicked on each class and selected Inheritance >
Add Parent.

We can now create a model that makes use of this profile.

First create a new project and browse the package.

Rather than editing this package as an XCore package, we want to edit it as an instance of the profile.

To do this, right click on the model package and select Set MetaPackage.

A list of meta packages will be displayed.

Choose DBProfile.

Now, open the diagram for the model package using right click ShowDiagram.

Notice that in addition to the usual tool buttons, a new collection of buttons is displayed at the bottom.

We can select these elements and start creating models using the new model elements that are provide the by
profile.

For instance, a new DataModel can be created, called Accounts.

The contents of the Accounts can be viewed by showing its diagram (right click Show Diagram). However, when
this is done, the profile buttons are no longer there. This is because we need to set the metaPackage of the model
to be the profile package.

We could do this by hand, but manually setting its metaPackage is time consuming. A more general solution is to
extend the initialisation operation of the DataModel class so that this is done automatically. This is done as follows:

Right click on the class and add an init() operation.

The init() operation requires a single parameter args. Because it extends the init() operation on the class Package,
the operation calls its super class’s operation’s body and then sets the metaPackage.

Now when we view the diagram for a DataModel, the appropriate buttons are available, and a model can be
created.

Let's create some entities:

We now want to add an attribute to the customer class. However, in this case we want the attribute to be a Key. To
select this, Other is chosen from the New > Attribute menu.

The attribute name is then changed to custid.

Similarly, we require a Key for the Account class. We'll also add some other non-key attributes as well:

Finally, let's add a Bank entity. In this case, we want to capture the fact that the Bank entity is a container. If you
remember, the class Entity extended the attribute of the class Class, with an attribute called 'contents'. Because
the Bank is an instance of the the class Entity, we can now set this value to be true. To do this, right click on the
Bank and choose Show Contents > Slot Values. The result is to add a new compartment to the class in which the
Slot Value is displayed.

The Slot Value can be set to true by clicking on the value and editing it.

Adding Constraints

Constraints can also be added to the profile model to rule out specific relationships between elements. For
example, let's add a constraint to the class Entity that ensures it can only specialise another Entity.

The constraint rejects parents of type Object, as all elements will inherit from this class. It ensures that the type of
the parent must be the same as the child.

A model can be checked to see whether it conforms to its constraints. Here's a model that should fail:

To check the constraints on the model, we need to run checkConstraints on the contents of the package. To do
this, right click on the package in the browser and select Invoke Constraints > checkConstraints() from Container.

The constraint fails as we would expect.

2.13. Generating Code

Xmodeler provides a number of off the shelf routes for generating code from models. These are available off the
right click Deploy menu on a package.

2.13.1. Generating Java

Selecting Java from the Deploy menu will generate a new directory containing a Java classes for each of the
model classes. The Java classes include the attributes and appropriate accessor and updator operations. In
addition, a toXML operation is provided for serialising instances of Java classes as XML.

The following Java code was generated from the Components model.

package Components1;

public class ComponentModel {

 // Attributes...

 private java.util.Vector components;
 private java.util.Vector connectors;

 // Accessors...

 public java.util.Vector components() { return components; }
 public java.util.Vector connectors() { return connectors; }

 // Updaters...

 public void setComponents(java.util.Vector value) { this.components = value; }
 public void setConnectors(java.util.Vector value) { this.connectors = value; }

 // Display...

 public String toString() {
 String s = "ComponentModel[";
 return s + "]";
 }

 // Operation stubs...

 public int deleteFromComponents(int v) {
 return null;
 }

 public int addToComponents(int v) {
 return null;
 }

 public int connectedTo(int p) {
 return null;
 }

 public int dontMatch() {
 return null;
 }

 public int componentForPort(int p) {
 return null;
 }

 public int addToConnectors(int v) {
 return null;
 }

 public int deleteFromConnectors(int v) {
 return null;
 }
 // XML Serialization...

 public void writeXML(java.io.PrintStream out,java.util.Hashtable idTable) {
 if(idTable.containsKey(this))
 out.print("<Ref id='" + idTable.get(this) + "'/>");
 else {
 String id = Integer.toHexString(this.hashCode()).toUpperCase();
 out.print("<Object id='" + id + "'");
 out.print(">");
 out.print("<Slot name='components'>");
 out.print("<Set>");
 for(int i = 0; i < components.size(); i++) {
 Component o = (Component)components.elementAt(i);
 o.writeXML(out,idTable);
 }
 out.print("</Set>");
 out.print("</Slot>");
 out.print("<Slot name='connectors'>");
 out.print("<Set>");
 for(int i = 0; i < connectors.size(); i++) {
 Connector o = (Connector)connectors.elementAt(i);
 o.writeXML(out,idTable);
 }
 out.print("</Set>");
 out.print("</Slot>");
 out.print("</Object>");
 }
 }
}

2.14. Using Manifests and Deploying Models

In order to manage the compilation and loading of multiple files, Xmodeler supports a convenient project
management abstraction called a manifest. A manifest provides a convenient way of managing collections of files
that have dependencies on each other.

In version 1.0 of Xmodeler, manifests must be declared in a file. The following file imports the Manifest facility and
implements a manifest that compiles Airports.Xmodeler file followed by AirportsCons.Xmodeler:

parserImport Manifests;

@Manifest Airports
 p = @File Airports end
 @File AirportsCons end
end;

A manifest is declared using @Manifest. A manifest has a name (in this case Airports) and contains a list of files.

Save, Compile and Load the Manifest (right click > Save, Compile and Load). A manifest icon will appear in the file
browser which contains some additional menu options:

The two additional options are:

Build Manifest: This will compile all the files in the manifest.

Load Manifest: This will load the binary of the files.

Compile, Build and Load: Compiles the Manifest, then Builds and Loads the files.

These can be used to compile and load as many files as required in a specific development project.

2.14.1. Manifest Actions

Actions can be added to a manifest to perform specific tasks once the manifest has compiled and loaded its list of
files. For example, we might want to edit the results, or we might want to post process the loaded model in some
way.

In the following example, p is the package that results after loading two files: Network and NetworkCons. The
action that is called after the “do” launches an editor for p.

parserImport Manifests;

@Manifest Networks
 p = @File Network end
 @File NetworkCons end do
 p.edit()
end;

Building and loading the manifest results in the appropriate property editor being launched.

2.14.2. Deploying Manifests

Often, we don’t want to create manifests for a model by hand. Xmodeler provides a deployment capability that

enables manifests (and the files they manage) to be automatically generated from a model in the model editor.

As an example, let’s imagine we want to generate a manifest and associated files for the Airports model:

First right click on the packageand choose deploy.

This will offer a number of deployment types.

Select XOCL.

Now choose the directory that you want to save the deployed code to.

Now create a file browser (right click on any Project in the browser) for the created directory.

Each of the classes in the model will have been deployed in code, along with a Manifest file.

The manifest file will contain all the relevant files:

parserImport XOCL;
parserImport Manifests;

// Manifest deployed by Andy on Sat Sep 24 17:22:04 BST 2005

@Manifest Components
 p = @File Components end
 @File Component end
 @File ComponentModel end
 @File Port end
 @File NamedElement end
 @File Connector end
do p
end;

Right click Compile, Build and Load to compile, buld and load the manifest.

3. Part III. Reference

3.1. Namespace, Classes, Packages and MetaClasses

3.1.1. Introduction

3.1.2. NameSpaces

3.1.3. Classes

Xmodeler is a class-based object-oriented modelling environment. Each value in Xmodeler has a type or classifier

that describes its structure and behaviour. Values in Xmodeler are divided into objects and non-objects. Object
types are called classes and non-object types are called classifiers. If a value v is of a type c then we say that v is
an instance of c. Xmodeler is provided with a large number of classes and classifiers; Xmodeler developers can
define their own classes and classifiers as extensions of those provided.

Classes and classifiers classify their instances by running constraints. A constraint is a boolean valued expression
that runs in the context of the current state of the candidate instance. The outcome of constraint checking is a
constraint report containing details of the constraints that were performed, the candidates, the outcome and a
reason for any constraints that failed. Constraint checking is a powerful mechanism for checking whether a model
or a model scenario is correctly formed.

Class Definition

A class describes the structure and behaviour of its instances. A class has a name and lives in a name-space. The
following is a basic class that lives in the name-space Root:

context Root

 @Class EmptyClass

 end

By default, the class EmptyClass specializes the Xmodeler class XCore::Object and provides a single constructor
for creating instances: EmptyClass(). If we perform the following expression:

EmptyClass().isKindOf(EmptyClass)

then the result is true since the newly created instance is directly an instance of EmptyClasss. In addition, the
expression:

EmptyClass().isKindOf(Object) and EmptyClass().isKindOf(Element)

returns true since EmptyClass inherits (by default) from Object and Object inherits from Element (the class
Element does not inherit from anywhere). The class EmptyClass is itself a value:

EmptyClass.isKindOf(Class) and
EmptyClass.isKindOf(Classifier) and
EmptyClass.isKindOf(NamedElement) and
EmptyClass.isKindOf(Object) and
EmptyClass.isKindOf(Element)

Attributes

A class typically defines some attributes that correspond to slots in the instances of the class. Each attribute has a
name and a type and may optionally have some modifiers and an initial value. The following is a simple example of
a class with attributes:

context Root
 @Class Point
 @Attribute x : Integer end
 @Attribute y : Integer end
 @Constructor(x,y) ! end
 end

A new point is creates using the constructor defined by Point. A class may define any number of constructors; each
constructor must have a different number of arguments. Each constructor argument corresponds to one of the
attributes in the class. The optional modifier ! declares that the printed representation for a point is defined by that
constructor.

A new Point is constructed:

Point(100,200)

where 100 is the value of the slot x and 200 is the value of the slot y. Accessor and updater operations are
automatically produced by including attribute modifiers:

context Root
 @Class Point
 @Attribute x : Integer (?,!) end
 @Attribute y : Integer (?,!) end
 @Constructor(x,y) ! end
 end

The modifier ? defines that operations getX and getY are automatically provided; modifier ! defines that operations
setX and setY are automatically provided:

let p = Point(100,200)
in p.setX(p.getX() - 1);
 p.setY(p.getY() - 1)
end

Operations

Object-oriented execution proceeds by message passing; a message consists of a name and some argument
values. When a message is sent to an object, the name is looked up in the class of the object (and its parents); if
an operation is found then it is invoked otherwise an error is reported. Operations may be defined as part of a class
or a package definition or added to existing classes and packages via a context defintion.

The following defines a class of stacks and adds the definition to a package named Stacks. The example shows
the complete contents of a file containing the definition. Xmodeler can be used in a file-based mode where files
contain source code that is compiled using the Xmodeler compiler. The compiled binary is then loaded into
Xmodeler.

parserImport XOCL;

context Stacks

 @Class Stack

 @Attribute elements : Seq(Element) end
 @Attribute index : Integer end

 @Operation isEmpty():Boolean
 self.elements->isEmpty
 end

 @Operation pop()
 if self.isEmpty()
 then throw StackUnderflow(self)
 else
 let head = elements->head
 in self.elements := elements->tail;
 head
 end
 end
 end

 @Operation push(e:Element)
 self.elements := Seq{e | elements}
 end

 @Operation top()
 if self.isEmpty()
 then throw StackUnderflow(self)
 else elements->head
 end
 end

Constraints

Inheritance

All classes are specializations or sub-classes of at least one other class. By default a class is a sub-class of
XCore::Object. A class inherits constructors, attributes, operations and constraints from its parent. For example the
following class specializes Point with a z co-ordinate:

context Root
 @Class Point3D extends Point
 @Attribute z : Integer (?,!) end
 @Constructor(x,y,z) ! end
 end

An instance of Point3D may be constructed using a two-place constructor or a three-place constructor (the
three-place is probably more useful). An instance of the class Point3D is also an instance of the parent class Point:

let p = Point3D(1,2,3)
in p.isKindOf(Point)
end

returns true.

Multiple

A class may inherit from more than one super-class in which case the sequence of parents is given by comma
separated paths after the extends keyword. The order of the parents is used to determine the lookup order for
operations, although it is considered bad practice to rely on the ordering when handling messages.

Multiple inheritance is most useful when inheriting orthogonal behaviour and structure that is then extended in the
new sub-class.

Run-Super

When a sub-class extends a super-class it may shadow an existing operation by defining a new operation in the
sub-class with the same name and arity as an inherited class. Sending a message to an instance of the sub-class
will cause the shadowing operation definition to be performed.

Sometimes it is useful to be able to reference a shadowed operation from a shadowing operation body. This occurs
when the shadowing class extends the behaviour of the shadowed class. Xmodeler provides the keyword super
that is used to invoke the shadowed operation from the shadowing operation.

This section provides a simple example of how super is used.

3.1.4. Packages

3.1.5. Metaclasses

Xmodeler is an environment for language design and deployment. Languages control the structure and behaviour
of the values that they denote. In this sense, language design is a meta-activity and requires a meta-language that
represents the structure and behaviour of the language components.

Xmodeler provides a meta-circular object-oriented kernel language called XOCL. The meta-circular property
means that XOCL is defined completely in itself. This property validates XOCL as a meta-language. Object-
orientation provides a basis for application extension and reuse through inheritance and modularity through
encapsulation.

XOCL is both meta-circular and object-oriented, it is suitable for language definition where languages can be easily
constructed as modular extensions of the basic XOCL language. Instantiations of XOCL are languages and
extensions of XOCL are meta-languages.

All languages have key semantic features that can be represented as an interface in the definition of the language.
Consider a language with an operational semantics. In this case programs written in the language may be viewed
as controlling a machine that contains the state of the execution at any given snapshot in time. The key semantic
features of the language form the API of the machine.

Given a language L, we would like to construct a new language that is L-like. If L is defined using object-oriented
principles then it is attractive to construct the new language as an extension of L using inheritance. Syntax
structures and values of the new language can be defined by extending the appropriate features of L. We would
like to construct the semantics of the new language using the same approach. If we have constructed the
semantics of L by encapsulating the key features as an implementation of the API as described above, then the
new language semantics can be defined by inheriting and extending these operations as appropriate.

Where the semantics of a language has been constructed using object-oriented principles, the resulting collection
of classes and operations is referred to as a meta-object-protocol. This section describes the XOCL MOP.

Message Passing

XOCL performs computation in terms of messages between elements. A message consists of a name andsome
data. A message is sent from a source element to a target element. The target element receives themessage,
performs appropriate computation and returns a result. Messages between elements aresynchronous: the source
element halts computation and waits the return value from the target element.

Message passing occurs when the source element performs an expression of the form: o.m(x,y,z,...) where o is the
target element, m is the message name and x, y, z etc. is the data, or parameters, of the message.

Message passing is defined by the MOP component referred to as the massage passing protocol.The protocol is
defined by the meta-class of the target element and is called sendInstance:

context Element
 @Operation send(message,args):Element
 self.of().sendInstance(self,message,args)
 end

A default protocol is provided by the Kernel meta-class Classifier:

context Classifier
 @Operation sendInstance(element,name,args)
 // Get all the operations of element with the
 // correct name and arity. Select the most
 // specific and invoke it.
 let arity = args->size then
 operations = element.of().allOperations()
 ->asSeq
 ->select(o | o.name = name and o.arity() = arity)
 in if operations->isEmpty
 then

 element.error("Cannot handle "+message+"/"+arity)
 else operations->head.invoke(element,args)
 end
 end
 end

Since Class is a sub-class of Classifier, any sub-class of Class that defines a new sendInstance operation will
provide a specialized message passing protocol for the instances of its instances. This can be used to implement
specialized operation lookup mechanisms, to facilitiate debugging information and to change the basic message
passing mechanisms (for example by defining a class of objects with message queues).

Object Creation

Objects are created by sending a new message to a class together with some initialization data. The preferred way
of invoking the new operation of a class is to apply the class as an operator to the initialization arguments. This is
preferred because it is succinct and because the compiler and Xmodeler VM can handle class instantiation more
efficiently in this form:

context Classifier
 @Operation invoke(target:Element,args:Seq(Element)):Element
 self.new(args)
 end

The new operation is defined by the meta-class of the receiving class. It constitutes the instantiation procotol for a
collection of classes. The class Classifier defines the default instantiation protocol:

context Classifier
 @Operation new(args:Seq(Element)):Element
 self.new().init(args)
 end

where the operation new creates an empty new instance of the receiver and init initializes the new instance.

Sub-classes of Classifier can define their own instantiation protocol. Typically this will use super to create an
instance using the default protocol and then perform some extra computation to initialize the new instance;
however, in principle the instantiation protocol can by-pass the default protocol altogether. To create a raw instance
of a class C and add a single slot named "x" with initial value 10 you can do the following:

let o = Kernel_mkObj()
in Kernel_setOf(o,C);
 Kernel_addAtt(o,Symbol("x",100));
 o
end

Using the kernel-level operations, you can create a completely bespoke instantiation protocol.

Slot Access

Objects have internal storage in the form of named slots. Access to a slot value is via the object and the name of
the slot. Slots are named using symbols. Access is defined by the object's slot access protocol. The slot access
protocol is used when an expression of the form o.a is performed. Access involves checking that the slot exists and
then accessing the value of the slot.

The existence of a slot can be checked using the hasSlot operation defined by Object:

context Object
 @Operation hasSlot(name):Boolean
 self.of().hasInstanceSlot(self,name)
 end

The hasSlot operation invokes the hasInstanceSlot operation of the object's class. hasInstanceSlot forms part of
the slot access protocol for the object; the operation is defined by the object's meta-class. The default definition is
provided by Class and uses the kernel operation Kernel_hasSlot to directly check whether there is a machine-level
slot:

context Class
 @Operation hasInstanceSlot(object,name)
 Kernel_hasSlot(object,name)
 end

Access to a slot's value is provided by the operation get defined by Object:

context Object
 @Operation get(name:String):Element
 self.of().getInstanceSlot(self,name)
 end

The operation getInstanceSlot is defined by an object's meta-class and describes how to access the storage
associated with an object and a slot name. The default protocol is provided by Class and uses the kernel operation
Kernel_getSlotValue to access the machine-level slot (as added using Kernel_addAtt):

context Class
 @Operation getInstanceSlot(object,name)
 Kernel_getSlotValue(object,name)
 end

Typically a new slot access protocol is required because a collection of classes implement object storage in a
non-standard way (for example using a table, in a data base or distributed over a network).

Slot Update

The value of an object's slot can be updated using the object's slot update protocol. A slot is updated when an
expression of the form o.a := e is performed. The class Object provides an operation used to set the value of a slot:

context Object
 @Operation set(name:String,value:Element):Element
 self.of().setInstanceSlot(self,name,value);
 self
 end

The object's meta-class defines an operation setInstanceSlot that forms the update protocol. The default update
protocol is defined by Class and uses the kernel-level operation Kernel_setSlotValue to update the machine-level
slot and to invoke any daemons that are defined on the object:

context Class
 @Operation setInstanceSlot(object,name,value)
 Kernel_setSlotValue(object,name,value)
 end

A new slot update protocol is used to circumvent the default storage. For example the storage for a slot may be in
a database or accessed over a network.

Default Parents

A class is created as an instance of a meta-class. When a class is created it must have some parents. The
meta-class defines an operation defaultParents that produces a set of classes that are the default parents for its
instances. The basic definition for defaultParents is provided by Classifier:

context Classifier
 @Operation defaultParents():Set(Classifier)

 Set{Element}
 end

Most classes are instances of the class Class, that overrides the definition as follows:

context Class
 @Operation defaultParents():Set(Classifier)
 Set{Object}
 end

Example

Suppose that we want to define a class of objects that can have standard attribute defined slots in addition to
dynamic slots. Attribute defined slots are defined at the class level. Dynamic slots are defined at the object level
and can be added and removed dynamically. Both types of slot can be accessed and updated via the standard
protocols using o.a and o.a := e expressions.

In order to implement these objects we require a new slot access and update protocol. The protocol is defined at
the meta-level and is to be called the Elastic protocol. We require two new classes: ElasticObject that is the
super-class of all user-defined elastic classes; and, ElasticClass that defines the elastic protocol.

The class ElasticObject uses a table to contain the dynamic slots:

context Root
 @Class ElasticObject
 @Attribute slots : Table = Table(100) end
 end

An elastic object provides operations to add and remove the dynamic slots:

context ElasticObject
 @Operation addSlot(name:String,value)
 slots.put(Symbol(name),value)
 end

context ElasticObject
 @Operation removeSlot(name)
 slots.remove(Symbol(name))
 end

An elastic object can remove all the dynamic slots:

context ElasticObject
 @Operation removeAll()
 @For key inTableKeys slots do
 self.removeSlot(key.toString())
 end
 end

An elastic object can increment the values of all the dynamic slots. Note that incAll uses the slot access and
update protocol for the object to change the value of the dynamic slots:

context ElasticObject
 @Operation incAll()
 @For key inTableKeys slots do
 self.set(key,self.get(key) + 1)
 end
 end

The class ElasticClass defines the elastic MOP:

context Root
 @Class ElasticClass extends Class
 end

ElasticObject must be a parent of any elastic class:

context ElasticClass
 @Operation defaultParents()
 Set{ElasticObject}
 end

The elastic slot access protocol inspects the slots table to see if the required slot is defined there. If not then the
protocol uses super to revert to the default protocol inherited from Class:

context ElasticClass
 @Operation getInstanceSlot(object,name)
 if Kernel_getSlotValue(object,Symbol("slots")).hasKey(name)
 then Kernel_getSlotValue(object,Symbol("slots")).get(name)
 else super(object,name)
 end
 end

context ElasticClass
 @Operation setInstanceSlot(object,name,value)
 if Kernel_getSlotValue(object,Symbol("slots")).hasKey(name)
 then Kernel_getSlotValue(object,Symbol("slots")).put(name,value)
 else super(object,name,value)
 end
 end

context ElasticClass
 @Operation hasInstanceSlot(object,name)
 if Kernel_getSlotValue(object,Symbol("slots")).hasKey(name)
 then true
 else super(object,name)
 end
 end

There is no specific need for sendInstance in the elastic protocol, however it is defined for completeness and
simply prints a message before reverting to the default protocol:

context ElasticClass
 @Operation sendInstance(element,message,args)
 format(stdout,"Sending message ~S(~{,~;~S~})~%",Seq{message,args});
 super(element,message,args)
 end

There is no specific need for new in the elastic protocol, however it is defined for completeness and simply prints a
message before reverting to the default protocol:

context ElasticClass
 @Operation new(args)
 format(stdout,"Creating a new instance of an elastic class~%");
 super(args)
 end

The following is an example class definition that specifies its meta-class as ElasticClass:

context Root

 @Class C metaclass ElasticClass
 @Attribute s : Element end
 @Operation test()
 self.addSlot("x",100);
 self.addSlot("y",200);
 self.addSlot("z",300);
 self.x := self.x + 1;
 self.y := self.y + 1;
 self.z := self.z + 1;
 self.incAll();
 self.s := self.x + self.y + self.z;
 self.removeAll();
 s
 end
 end

3.2. Working with Syntax

3.2.1. Introduction

This chapter describes Xmodeler's powerful facilities for capturing and parsing textual syntaxes. This is important
when you wish to develop using a specialised textual programming language, or create parsers for existing
programming languages.

This document describes how to use Xmodeler to parse textual languages and consequently synthesize elements.
A textual language is parsed when it is consumed character-by-character and checked against rules (a grammar)
governing legal sequences of characters. As text is parsed, the grammar rules can perform actions that construct
(or synthesize) new elements.

A textual language can synthesize anything. For example, if we define a domain model representing
two-dimensional tables then a textual language can be defined that, when parsed, synthesizes instances of the
class Table2D.

All textual interaction with Xmodeler (for example file based or console based) is governed using a parser based
on a grammar for XOCL. In this case the parser synthesizes XOCL program code that is subsequently passed to
the XOCL compiler or the command interpreter.

XOCL provides a powerful mechanism that allows the XOCL grammar to be arbitrarily extended with new language
features (becoming an extensible language). User defined grammars can be added incrementally as modules to
the XOCL grammar. Providing the new extension synthesizes valid program code then the new language construct
is assimilated into XOCL.

Working with grammars that synthesize program code occurs frequently when defining textual languages. The
synthesizing actions are often required to produce large amounts of program code from a small amount of text
(after all this is the point of defining a language). Xmodeler provides technology that vastly reduces the amount of
work necessary to define the synthesizing actions; the technology is called quasi-quotes.

Quasi-quotes are used to define code templates. A code template is a mapping from code fragments to a program
by inserting the code fragments into a code pattern. The result of applying a template can be supplied as an
argument to subsequent templates. Very large programs can be synthesized from humble beginnings.

3.2.2. Grammar and Text Processing

Introduction

A Simple language Grammar

To construct a minimal textual language we must define a domain model and decide how instances of the model
will look when rendered in text. We must then define how to produce the textual representation from an instance
and how to synthesize an instance from a textual representation.

This section shows how all aspects of this process are achieved in Xmodeler. We will assume that we are defining
a language from a domain model rather than reverse engineering a domain model from a textual language. All
aspects apply to both of these activities.

Our domain model is that for two-dimensional tables of integers. A table consists of a collection of rows; each row
is a sequence of column values. The model is shown below:

Once we have decided on a domain model we can define a textual representation for instances of the model.
There may be more than one representation (when dealing with legacy languages this is likely to be the case). If
instances can be synthesized from more than one textual representation then this can easily be accommodated by
defining more than one grammar. In this example we will keep it simple by defining a single representation as
follows:

The task is now to define how to translate from instances of the model to the text and back again. The rest of this
section steps through the complete definition of the model, its mapping to text and its synthesis from text. The
example is given as a complete XOCL program that can be compiled and loaded.

The header of the file must import all the name spaces necessary to define the mappings:

Lines 1 and 2 import grammars that define parsing rules used in the rest of the file. Line 1 imports the XOCL
grammar that allows us to write XOCL code. Virtually all program files start with this line. Line 2 imports the
grammar that defines the textual languages for writing grammars (the parsing and synthesis rules for writing
grammars are written in themselves).

Lines 4 and 5 import name spaces that define names referenced in the rest of the file. Line 4 imports the Xmodeler
parsing machinery that allows us to create a parse machine state and set it running. Line 5 imports the IO package
that allows us to open files, read and write channels.

We have already seen the domain model. It was originally defined in a text file and then displayed as a diagram.
The structure of tables is defined below:

We would like to be able to store tables in files. The following operation opens an output file channel and supplies it
to the write operation for the table. By separating out the file name and the output operation we allow tales to be
sent to other types of output channel (such as stdout):

The output operation write is defined below. It formats the table to the output channel and sends each row a write
message.

We want to be able to read formatted tables from text files. We do this to create a table and are unlikely to read a
table by sending an existing table a message. Xmodeler allows operations to be defined in classes and called via

the class (much like static methods in Java). Of course the value of self is not defined in operations that are used
this way.

Note that in line 36 we reference the operation read via the containing class Table2D.

The read operation must parse the text from the supplied input channel and synthesize a table (assuming that the
input is syntactically correct). To parse an input source we must create an instance of a parsing machine initialised
with a grammar and the input source. The package Parser::Machine defines the class State that is an initial
parsing machine state:

A parsing machine state provides an operation run that is supplied with a starting non-terminal name. The machine
will use the rule with the supplied name to start the parse. If the parse is successful then the synthesized value is
returned, otherwise an exception is raised describing the parse error.

We can take advantage of the operation that writes a table to an output channel to produce a convenient string
representation for a table. The Xmodeler command interpreter always uses the toString operation to display values
at the console. The following operation uses a string output channel to capture the string representation of a table:

The class Row is defined simply as follows:

The language is complete except for the definition of a grammar. A grammar definition can occur within a class
definition or can be added to a class using a context definition. It is somewhat a matter of taste; in general it is
better to organise Xmodeler source code as a collection of small files that are composed using a manifest file. We
have separated out the grammar definition in this example to keep things simple:

A grammar consists of rules or clauses that define how to parse and synthesize individual syntax groups. In the
example above we have the group of rows (lines 88 – 90) and the group of tables (lines 84 – 86).

A table is defined to be the keyword table followed by a sequence of rows, followed by the keyword end. If this is
successfully recognized then the action (contained within { and }) synthesizes an instance of the class Table2D (a
restriction on grammars is that absolute paths should be used to reference named elements). The variable rows is
bound to the sequence of rows recognized in line 84. Variables bound in this way can be referenced in actions;
rows is used to initialize the new instance of the table in line 85.

A row is defined to be the keyword row followed by a sequence of integers, followed by the keyword end. The
name Int is built in to Xmodeler grammars and defines the syntax of integers.

Debugging

When parsing input it is possible that there is a bug in the grammar. This can lead to incorrectly parsed input or an
erroneously reported parse error. Xmodeler provides a trace mechanism that allows you to see the steps of the
parsing machine as it proceeds. Each grammar has a boolean slot called debug that can be used to toggle the
trace information. The following example shows par of the trace output for the table language:

As the parse proceeds the trace shows the names of the clauses that are tried. At each step the parse state has a
stack that maintains the values synthesized by parse actions. The top value on this stack is displayed in the trace
(TOS =). The trace displays when terminals are successfully matched. The trace also displays when expectations
are not matched by the input (not necessarily indicating an error). For example, the grammar entry Int* is
terminated when an integer is expected but the terminating keyword end is encountered.

The following tool snapshot shows a very simple language definition for performing arithmetic calculations. The
example shows that grammars can be defined as a stand-alone global variable (Calculator), although they are
more often used in conjunction with classes. The console shows the result after compiling and loading the file and
invoking the calculator operation:

The following tool snapshot shows a grammar for a tree language (based on XML). The language synthesizes a
nested collection of sequences. It is interesting because it shows the use of predicates in the grammar (line 15)
where values bound in from actions in a clause are used to perform checks during the parse. The start and end tag
of a composite element must be the same for the parse to succeed.

XBNF Grammar

Xmodeler grammars are written in a textual language called XBNF. This language is very like extended BNF with
actions written in XOCL. XBNF itself can be considered a language that supports language definition; it has a
domain model and a grammar.

The Grammar Domain Model

An instance of the following model is synthesized when you define an XBNF grammar:

The rest of this section provides an overview of the components of the XBNF model.

Grammar: A grammar defines a number of clauses that are used to parse input and synthesize elements. A
grammar may have a collection of parent grammars from which it inherits clauses. If a grammar inherits
multiple clauses with the same name then they are merged using disjunction.
Clause: A clause is a parse rule. The name of the clause is a non-terminal of the grammar and can be called
from other clauses in the grammar. The body of a clause is a recognizer which defines how to parse input
and synthesize elements.
Recognizer
Action: An action consumes no input and cannot cause the parse to succeed or fail. When an action is
encountered in the parse it is evaluated to synthesize a value. The value produced by the action is pushed
onto the parse stack.
And: A conjunction of recognizers is used to sequence the left then the right components when encountered
during a parse. This succeeds when the left then the right components succeed and synthesizes the value
produced by the right component.
At: A meta-character used to define how to escape from the current grammar and switch to another
grammar.
Bind: A bind has a name and a component recognizer. It succeeds when the component succeeds and
binds the name to the synthesized value.
Call: A call references a clause by name. Control switches to the named clause and succeeds when the
named clause succeeds. The value synthesized by the parse is that produced by the called clause.
EOF: Succeeds when the end of input is encountered.
Int : Succeeds when the next input token is an integer; synthesizes the integer.
Name : Succeeds when the next input token is a name; synthesizes a string.
Not : Succeeds when the component recognizer fails. Note that this does not synthesize anything and
bindings occurring within the component recognizer are not available after the negation succeeds.
Opt : An optional recognizer succeeds and will consume input if the component recognizer matches the
input. No value is synthesized.
Or : A disjunction succeeds when either of the component recognizers succeed. Bindings established within
the components are not available outside the disjunction. No value is synthesized. When a disjunction is
encountered, the left recognizer is tried and the right recognizer is recorded as a choice point. If the parse
subsequently fails then the parser backtracks to the most recently established choice point and tries the

alternative.
ParseError : Exception raised when an error occurs during parsing. An error occurs when the input cannot
match the current recognizer and there are no alternative recognizers (arising from disjunctions) left to try.
Plus : Succeeds when the component recognizer has been applied at least once to the input. Synthesizes a
sequence of values produced by each application of the component.
Predicate : Succeeds when the evaluation of the predicate returns true otherwise causes the parse to fail.
Star : Succeeds when the component recognizer has been applied 0 or more times to the input. Synthesizes
a sequence of values produced by each application of the component.
Str : Succeeds when the next input token is a string; synthesizes the string.
Terminal : Succeeds when the next input token is a named terminal string. No value is synthsized.
Token : The parser uses a tokenizer to process the raw stream of input characters into a stream of input
tokens.
TypeCheck : The value synthesized by the component recognizer is checked against a type referenced as a
path. If the value is of the specified type then the parse proceeds otherwise it fails.

The XBNF Grammar

Tokens

3.2.3. Xmodeler Execution Architecture

Introduction

Execution of XOCL programs or console commands conforms to a standard execution architecture. This
architecture is extensible; new language constructs can be added dynamically. This section describes the basic
features of the Xmodeler execution architecture and how the extension mechanism works so that new languages
can be embedded within XOCL.

The basic execution process parses an input source and synthesizes a performable element. Xmodeler provides a
large number of performable elements in XOCL and its various language extensions. You can easily define your
own type of performable elements in terms of how they are parsed and executed.

Performable Elements

An Xmodeler performable element implements an interface that supports its evaluation. Evaluation can occur in
one of two ways:

Interpretation. This occurs via the element’s eval operation and invokes an interpreter that inspects the
structure of the element and returns its value. The eval operation takes arguments that define the context of
the interpretation. The context defines the value of self, the value of any variables and the name spaces that
are imported at the point of evaluation.
Compilation. This occurs via the element’s compile operation and invokes a compiler that translates the
receiver into a sequence of Xmodeler-VM instructions. The compilation operation takes a number of
arguments that define the compilation context.

In both cases, as far as the user of Xmodeler is concerned, the key factor is that the target of evaluation is an
instance of XCore::Performable. Therefore, any user interface that executes interpretation or compilation must
translate from input to a performable element.

The majority of user interfaces to this process accept text as input. The text is parsed using a grammar and a
performable instance is synthesized. Therefore, to hook into the evaluation process of Xmodeler you need to
understand how to write grammars that recognize new language constructs and synthesize performable elements.
Fortunately, there are a number of Xmodeler technologies that ease this activity.

The following example shows how a grammar that synthesizes performable elements is linked into the Xmodeler
evaluation architecture. The example is a simplified version of the Xmodeler top level command interpreter:

The eval operation accepts a grammar argument in line 8. The grammar should synthesize a performable instance
that is subsequently evaluated in line 26. If OCL::OCL.grammar is supplied to eval then the operation behaves like
the Xmodeler top level command interpreter.

Compilation of performable elements occurs when you compile an Xmodeler source file. The compiler reads the
input source, synthesizes a performable element, compiles the element to a sequence of machine instructions and
then writes the instructions to a binary file.

Instead of writing to a binary file, the instructions can be transformed to a compiled operation using the operation
Compiler::compileToFun as shown below:

The free variables of the element are calculates in line 18 and used as the argument names for the operation
constructed in line 25.

The key feature of operations eval and compile is that the XML evaluation architecture reads sources of Xmodeler
program code, parses the input using a grammar, synthesizes an instance of XCore::Performable and then
interprets or compiles the element.

XOCL allows new language constructs to be added as describes in the following section. The new constructs are
defined as grammars that are integrated into the XOCL grammar. Language extensions that are added in this way
should therefore synthesize performable elements.

Syntax Extensions

3.2.4. Synthesising Syntax

Introduction

Language definitions in Xmodeler are defined as grammars that synthesize performable elements. The package
OCL defines a complete language of performable classes. A convenient way of defining a new language feature is
to define a grammar that synthesizes instances of OCL classes. This section describes the classes in the OCL

package and how to use them to define new language features.

The OCL Package

The OCL package defines a language whose elements are extensions of XCore::Performable. The language has a
concrete syntax that is defined by the grammar OCL::OCL.grammar. This grammar synthesizes instances of the
OCL classes. All of Xmodeler is written in this language.

Each class in the OCL package has one or more constructors. These constructors can be used to synthesize
performable elements when defining new language constructs. This section defines the OCL class constructors.

The table below lists all of the main OCL class constructors. The constructors are defined in the first column and
the second column describes what the class implements and the types of the arguments. When specifying the
types of the arguments we refer to performable elements as ‘exps’.

Table 1.

Addp(left,right)

Creates an add pattern. An example
is the argument pattern in the
following operation: @Operation(l + r)
l end.

Apply(operator,args)
The operator expression is applied to
the sequence of argument
expressions, for example f(1,2,3).

BinExp(left,binOp,right)
A binary expression. The binary
operator is a string. An example is: x
+ 1.

BoolExp(value)
A boolean value. The value argument
should be either true or false.

CollExp(collection,collOp,args)

A collection expression. The collOp is
a string naming a standard collection
expression. For example
S->including(x).

Condp(pattern,condition)

A condition pattern. The condition is a
boolean values expression. For
example the following pattern in a
case statement: @Case c of
Class(name) when name <> “C” do
name end end

ConsExp(head,tail)
A pair constructing expression. For
example Seq{1 | s}.

Consp(head,tail)
A pair pattern. For example in the
following operation argument pattern:
@Operation(Seq{h | t}) h end.

Constp(const)

A constant pattern. The value of the
constant should be an integer, string,
boolean or float. For example in the
following case statement: @Case x of
10 do “10” end end

ContextDef(path,element)

A context definition as occurring at
the top level of a source file. Both the
path and the element are
expressions. It is equivalent to
path.add(element).

ContextDef(path,element,isForward)

As for ContextDef except that the
isForward boolean argument controls
whether or not the element is
initialised after it is added to the
container. This is useful when loading
multiple definitions from files where
the definition contain mutual
dependencies.

Dot(target,name)
A slot reference. The target is an
expression and the name is a string.

FloatExp(prePoint,postPoint)

A slot expression. The pre and post
points are string representations of
the numbers before and after the
decimal point.

HeadUpdate(seq,value)
Update the head of a sequence as in
S->head := e.

If(test,conseq,alt)
An if expression. Each of the
arguments are expressions.

ImportIn(nameSpace,body)

A local import. Both arguments are
expressions. For example: import
namespace in
MyClass(YourClass(1,2,3)) end

Includingp(set,element)

An including pattern. Both the set and
element are patterns. For example
the element selection pattern
occurring as the argument in the
following operation:
@Operation(S->including(x)) x end

Instantiate(class,args)

A keyword instantiation expression.
The class is an expression and the
arguments are key args. For
example: Class[name=”C”].

IntExp(value)
An integer constant expression. The
value is an integer.

IterExp(collection,iterOp,name,body)

An iteration expression where the
collection and body are expressions
and the iterOp and name are strings.
The iterOp should be one of the
strings: “select”, “collect”, “reject”. For
example: S->collect(x | x + 1).

Iterate(collection,name,accumulator,value,body)

An iterate expression where the
collection, value and body are all
expressions and the name and
accumulator are strings. For example:
S->iterate(x y = 100 | x + y)

KeyArg(name,value)
A key arg is a value used in an
Instantiate expression.

Keyp(name,pattern)
A keyword pattern occurring in an
instance of the Keywordp pattern.
The name is a string.

Keywordp(class,names,keys)

A keyword constructor pattern. The
class is a string and the names are a
sequence of strings. To represent the
class P::Q::C the class arg is “P” and
the names are Seq{“Q”,”C”}. The keys
are a sequence of Keyp instances.

Let(bindings,body)

A let expression. The bindings
argument is a sequence of instances
of ValueBinding and the body is an
expression. For example: let x = 10; y
= 20 in x + y end

NamedType()
A type expression. With no arguments
the type represents XCore::Element.

NamedType(path)

A type expression where the
argument is a sequence of strings
determining the path (relative to
current imports) of the type.

Negate(exp) A not expression.

Objectp(class,names,slots)

A positional constructor pattern. The
class is a string and the names are a
sequence of strings. To represent the
class P::Q::C the class arg is “P” and
the names are Seq{“Q”,”C”}. The slots
is a sequence of patterns. For
example the argument pattern in the
following operation:
@Operation(C(x,10)) x end

OpType(domains,range)

The type of an operation. The
domains are a sequence of type
expressions and the range is a type
expression. For example the type of
the argument in the following
operation: @Operation(f:
(Integer,Integer)->Integer):Integer
f(1,2) end

Operation(name,parameters,type)

An operation expression. The name is
a string, the parameters are a
sequence of patterns, the type is a
type expression.

Operation(name,parameters,type,performable)
As above where the performable
argument is an expression which is
the body of the operation.

Operation(name,parameters,type,performable,documentation)
As above where the documentation is
a string.

Operation(name,parameters,type,performable,documentation,isMultiArgs)

As above where the isMultiArgs is a
boolean that determines whether the
operation can accept a variable
number of arguments.

Order(first,second)
A sequenced expression where the
arguments are expressions. For
example: x.m(1); y.n(2)

ParametricType(constructor,args) A type expression of the form C(T).

Parentheses(exp)

Parentheses in source code are
recorded in the abstract syntax using
an instance of Parentheses. For
evaluation purposes this behaves
exactly like the expression argument.

ParserImport(names,exp) Not supported.

Path(root,names)

A path expression consists of an
expression root and a sequence of
names. For example
Root::XCore::Class.

PathUpdate(path,value)

The update of a name in a name
space. The path is a an instance of
the class Path and the value is an
expression. For example: P::Q::X :=
100

Self()
A reference to the current value of
self.

Send(target,message,args)

Send a message to an element. The
target is an expression. The message
is a string and the args is a sequence
of expressions. For example:
o.m(a,b,c)

SetExp(collType,elements)

A set expression constructs sets and
sequences. The collType argument is
either “Set” or “Seq” and the elements
is a sequence of expressions. For
example Set{1,2,3} or Seq{1,2,3}.

SlotUpdate(target,name,value)

Update the slot of an object. The
target and value are expressions and
the name is a string. For example: o.n
:= 100

StrExp(value)
A string constant. The value argument
is a string.

Syntaxp(exp) A syntax pattern.

TailUpdate(seq,value)
Update the tail of a sequence as in
S->tail := e.

Throw(exp)
Throw the value of the expression as
in: throw Error(“no handler”)

Try(body,name,handler)

A try expression. The body and
handler are expressions and the
name is a string. For example: try
body catch(e) handler end

ValueBinding(name,value)

A value binding is used in let
expressions to bind names to values.
The name is a string and the value is
an expression.

Var(name)
A variable reference. The name is a
string.

Var(name,lineCount,charCount)

A variable reference where the
occurrence of the variable in source
code has been recorded. The line and
char count are both integers.

VarUpdate(name,value)
Update the value of a local variable.
The name is a string and the value is
an expression. For example: x := 10

Varp(name)

A variable pattern. The name is a
string. Arguments to operations are
patterns. An argument that is just a
name is represented as a variable
pattern.

Varp(name,pattern,type)

A variable pattern which binds a value
to name providing it matches pattern.
The type is a type expression
recording the declared type of the
variable. For example: @Operation(x
= C(10) : P::C) x.m(100) end

Varp(name,type)
A variable pattern declaring just the
name and the type.

XOCL::While(test,body)

A while loop. Defined in the package
XOCL. The test argument is a
boolean values expression and the
body is an expression. For example:
@While x > 10 do y := y + x; x := x –
1 end

Examples

Suppose that we want to write operations together with their specifications. The specification of an operation
consists of a pre-condition and a post-condition. A pre-condition states what must be true on entry to the operation
and a post-condition states what must be true on exit from the operation. The context for the conditions includes
the arguments of the operation.

A specification serves two important purposes: firstly we can specify an operation without knowing how the
operation is to be implemented. The pre-condition and post-condition are used to restrict the possible legal
implementations.

Secondly, the conditions can be performed when the operation is called. The conditions provide a form of dynamic
run-time checking.

This section shows how a simple specification construct can be defined. A grammar for the new construct is
defined that synthesizes an operation definition.

A specification will be defined as follows:

@Spec incx(dx:Integer)
 pre dx > 0
 self.x := x + dx
 post x = preSelf.x + dx
end

The specification above requires that the value of dx is greater than 0 before it is used to increase the value of the
slot x. The post condition specifies that the state of the x slot must have changed appropriately. The state of the
receiver is accessible in the post-condition via the variable preSelf. The class definition for the Spec construct is
shown below:

Checking Conditions

Suppose that we wish to implement a new language construct that checks a condition and raises an error if the
condition does not hold. Essentially this is just an if-expression used in a particular pattern. The pattern is captured
as a class with a grammar that synthesizes a performable instance:

The following example shows how the new language construct is used:

Specification

Suppose that we want to write operations together with their specifications. The specification of an operation
consists of a pre-condition and a post-condition. A pre-condition states what must be true on entry to the operation
and a post-condition states what must be true on exit from the operation. The context for the conditions includes
the arguments of the operation.

A specification serves two important purposes: firstly we can specify an operation without knowing how the
operation is to be implemented. The pre-condition and post-condition are used to restrict the possible legal
implementations.

Secondly, the conditions can be performed when the operation is called. The conditions provide a form of dynamic
run-time checking.

This section shows how a simple specification construct can be defined. A grammar for the new construct is

defined that synthesizes an operation definition.

A specification will be defined as follows:

@Spec incx(dx:Integer)
 pre dx > 0
 self.x := x + dx
 post x = preSelf.x + dx
end

The specification above requires that the value of dx is greater than 0 before it is used to increase the value of the
slot x. The post condition specifies that the state of the x slot must have changed appropriately. The state of the
receiver is accessible in the post-condition via the variable preSelf.

The class definition for the Spec construct is shown below:

A For Loop

3.2.5. Quasi-Quotes

Introduction

When designing languages and language constructs it is usual to construct grammars that synthesize syntax
elements. As we have seen in earlier sections, grammars can perform any commands in their actions; in particular
they can construct and return instances of classes. If the classes inherit from XCore::Performable then the
grammar synthesizes syntax.

One of the characterising features of grammars that synthesize syntax is that they map from relatively simple
constructs to relatively complex syntax trees (after all this is the key reason for defining new language features –
they are simpler to use than the corresponding expanded form).

Syntax comes in two key formats: abstract syntax and concrete syntax. Abstract syntax is oriented towards
machines and is essentially the data structure that the machine represents when supplied with syntax. Concrete
syntax is oriented towards humans and is character based. For example, the following is concrete syntax:

X + 1

and equivalently in abstract syntax:

BinExp(Var(“x”),”+”,IntExp(1))

Working with abstract syntax in the actions of grammars that synthesize syntax can be cumbersome. The size of
the instantiation expressions can become large and you must remember all of the arguments to the constructors.
Fortunately, Xmodeler provides a key technology that allows you to work with concrete syntax when constructing
instances of performable classes. This technology is called quasi-quotes.

Quasi-quotes allow you to write concrete syntax that constructs a performable element. In addition, quasi-quote
expressions can be used to construct syntax templates by leaving holes where syntax can be dropped in to a
surrounding expression. Quasi-quotes with holes can be used to capture syntax patterns.

This section describes how quasi-quotes work and how to construct syntax templates.

Literal Syntax

Syntax is constructed in Xmodeler by instantiating a sub-class of XCore::Performable. A performable class is one
that implements the API for evaluation, in terms of eval, compile and operations that they need to do their tasks.
You will rarely need to implement the evaluation operations yourself since you can implement virtually all new
constructs, however complex, in terms of new syntax constructs that expand into configurations of existing syntax
classes.

Syntax Templates

Splicing

Patterns

3.2.6. New Performable Elements

Introduction

Sugar

Introduction

It is usually the case that new syntax constructs can be implemented by translating to existing syntax constructs.
The translation is often referred to as desugaring. It is convenient to create an instance of a new syntax class and
then to desugar when the construct when Xmodeler performs an evaluation or compilation request on the instance.
By leaving the desugaring step to the last possible moment, the structure of the original syntax construct is
retained for as long as possible.

Grammars that synthesize instances of new syntax classes can then use operations defined on the classes to
implement the desugaring step. The classes can be as complex or as simple as required. In the limit, a sugared
syntax class can implement a complete compiler for a complex new syntax construct, where the compiler produces
performable elements.

Xmodeler provides a sub-class of XCore::Performable called XOCL::Sugar that implements evaluation and
compilation in terms of a call to an operation desugar. The desugaring operation performs a mapping from the
receiver to a new performable object that already implements the evaluation or compilation. This section describes
how to use XOCL::Sugar.

Guarded Statements

Consider a new language feature that implements a guarded statement. A guarded statement is to be implemented
as an if expression with no else clause. The following is an example of its use:

@When passengers > 63 do
 format(stdout,”Too many people on the bus.~%”)
end

The conditional statement is implemented as a sugared syntax class whose desugar operation produces the
equivalent if expression:

The grammar for a when-statement synthesizes an instance of the When class:

The desugar operation produces an instance of performable for a lower-level construct. In this case we produce an
if expression and lose the fact that the then-part was guarded and the else-part was inserted.

By providing a pprint operation in the syntax class for When we will see the original statement in any source code
that is saved by the Xmodeler compiler:

Conditional Expressions

Suppose we are developing a system that involves testing a large number of conditions. The conditions can be
tested using nested if-expressions, however this gets difficult to read as the number of nested expressions
increases. Suppose that Xmodeler did not provide an elseif keyword as part of an if-expression and that, therefore,
there is a requirement for a tabular conditional expression of the following form:

@Cond
 self.inRange(x,0,m) do
 self.tooLow(x)
 end
 self.inRange(x,m,n) do
 self.justRight(x)
 end
 self.inRange(x,n,infinity) do
 self.tooHigh(x)
 end
end

where each clause is tried in turn until a test evaluates to true whereupon the corresponding action is performed.

We can implement the conditional expression above using sugar as follows:

Notice that the cond-expression synthesizes instances of CondClause in line 41 as part of the overall synthesis of
a Cond. This is typical of a sugared construct which needs to represent internal structure prior to the desugaring
process. The instances of CondClause are transient and exist only long enough to process the containing Cond. In
general, many such transient objects may be created when processing sophisticated sugared constructs.

A cond-expression is desugared into a nested if-expression:

Syntax

Exp

Introduction

State Machines

State machines are ubiquitous in Software Engineering. Whilst the basic notion of a state machine is very simple
(the idea that components have a number of states and execution occurs when the component changes from one
state to another) there are a huge number of ways in which state machines are implemented and deployed.

Fortunately, Xmodeler makes it very easy to construct a state machine model and to define its semantics. This
section shows how XCore::Class can be extended to provide states and transitions. The example shows a number
of technologies:

A new language for defining state machines. The language provides constructs for state machines; states;
initial states and transitions. Transitions have guards and actions both of which are implemented using the
XOCL::Exp.
Meta-classes. The class StateMachine is an extension of XCore::Class and as such supports class-contents
such as attributes and operations. The new meta-class defines attributes for states and transitions and a
number of meta-operations for running the state machine against objects with state.
Daemons. An instance of a state machine class is an object with state. A state machine monitors changes in
the state of its instances by placing a daemon on each instance. When the daemon fires, the state machine
determines whether any of its transitions are enabled and performs any enabled actions.

The following model shows the classes in the state machine language:

The key features of the model are as follows:

Instances of StateMachine are classes with states and transitions. Therefore we can have instances of state
machines.
The class ObjectWithState is defines to be a parent of any state machine. This class defines an attribute
state that records the current state of the state machine instance.
Transitions have predicates and actions that are implemented as expressions. The expressions will be run
against an object with state when it changes.

The model above defines a domain specific language for representing state machines. In addition to defining the
structure of state machines, the model defines the executable semantics for state machines. Before showing how
the semantics is defined, we give two examples of how state machines are used to implement simple applications.
The first example shows traffic lights and the second example shows a vending machine.

The following state machine implements a simple traffic light system:

Line 6 introduces a state machine and names it. State machines may contain the same elements as classes and
line 12 and 13 define the state that is manipulated by the state machine. The event attribute is monitored by the
state machine and corresponds to events received from an external source such as a timer.

Lines 17 – 20 define the states for the machine. At any time an instance of TrafficLight must be in one of the states:
Red, RedAmber, Green or Amber. The transitions that control how a traffic light changes between these states are
defined below:

A transition has a name, a source and target state name, a guard and an action. For example the transition defined
in line 24 is named t1, changes between state Red and RedAmber, occurs when the traffic light state changes so
that event is true and updates the value of the event slot to be false.

A traffic light is defined to change state when it receives an event (the value of the event slot changes to be true).
The state is changed and the event flag is reset.

A vending machine dispenses cans of drink. Each can has a price; a customer enters coins into the machine until
the value of the coins exceeds the price of a can. A can is dispensed and the machine waits for any change to be
withdrawn before waiting for the next customer.

A vending machine is either idle (waiting for a customer), vending (accepting coins up to the price of a can), or
waiting for change to be removed. The vending machine state machine is defined below:

As a textual definition:

The transitions for a vending machine are defined below:

The semantics of state machines is defined as a package below:

The class ObjectWithState is typical of a pattern occurring when defining new meta-classes. The new meta-class
StateMachine (below) requires that its instances have a support system. In this case the support system is the
attribute state and associated operations. When instances of StateMachine are created, the class ObjectWithState
is added as a parent of the resulting class. This ensures that instances of instance of StateMachine have the
correct basic slots and supporting operations.

When an Xmodeler object is created via a constructor, the init operation is called with the constructor arguments.
An object with state needs to install a daemon that monitors state changes (any slot modification). The daemon
inspects the state machine controlling the object and fires any enabled state transition. In addition an object with
state must initialise the state slot.

The init operation for ObjectWithState is defined below:

The daemon added to an object with state uses a handler slotChanged. This handler is called whenever a slot of
the object monitored by the daemon changes. A daemon may be added to more than one object (here the daemon
is created on a per-object basis). The type of the daemon determines which slot it monitors. In this case the type
Daemon::ANY defines that the handler is called when any slot of a monitored object changes.

The handler used by the daemon is defined by the class ObjectWithState. A daemon handler is passed four
arguments:

The object whose state has changed.
The name of the slot that has changed.
The new value of the slot.
The old value of the slot.

In the following we check that the slot is not the state slot and then calculate the transitions that are enabled. If any
transitions are enabled then one is selected at random and its action is performed. Both the predicate and the
action are expressions. An expression has an operation perform that is used to evaluate the expression. The
perform operation is supplied with a value for self in the expression and a sequence of local variable values. The
target argument is used in the same way as that to Operation::invoke where unqualified slot references are
resolved with respect to the supplied target object.

The class StateMachine is defined as a meta-class that creates sub-classes of ObjectWithState:

A state machine is a new language feature. The grammar is defined on lines 72 – 79 and is a simple example of
how to define a new syntax feature for a new type of meta-class. The syntax definition for Class (as in @Class X

… end) expands to a collection of calls to add for each contained definition (for example attributes and operations).
A class knows how to add the supplied elements. This is exploited above, by just allowing state machines to
contain arbitrary expressions each of which will be evaluated and the resulting element supplied as an argument to
add on the state machine. We then leave it to an extended definition of add in StateMachine to handle any new
types of element that we wish to add to a state machine, leaving the definition of Class::add to handle the rest:

When a new state machine is created we must arrange for it to inherit from ObjectWithState so that its instances
get the state slot and associated initialisation support. All name spaces must be initialised via the init() operation
prior to use. Normally this occurs automatically and you are not aware of the call to init (for example defining
context P @Class C … end automatically calls init when C is added to P). We extend the initialisation below to add
in the required super-class:

Operations used via ObjectWithState:

In this example of state machines, a state is just a name. We define a new syntax construct for defining a state. A
more sophisticated implementation of state machines might, for example, introduce enter and exit actions for
states or allow nested state machines:

An initial state is just a state. We use the type of an initial state to select the initial state of a state machine:

A transition is implemented as a new syntax construct as follows. The guard and action on a transition are
implemented as an expression (XOCL::Exp) that is performed in order to check whether the transition is enabled
and when the transition fires respectively:

3.3. XCore

3.3.1. Introduction

Xmodeler provides a collection of classes that form the basis of all Xmodeler defined tools. These classes form the
kernel of Xmodeler and are collectively called XCore. The classes are self-describing: all XCore classes are
instances of XCore classes. This feature is called meta-circularity and is the key to modularity, uniformity and
reusability throughout all system and user defined Xmodeler tools.

XCore includes class definitions for the basic types including Integer, Boolean and String and collection types for
sets and sequences of values. XCore is object-oriented, it provides basic notions of Object and Class. XCore is
executable; it provides definitions for Performable entities and Operations. All system defined tools in Xmodeler are
instances of XCore; therefore tools that are defined to work on instances of XCore can be used on any Xmodeler
data. For example, general-purpose editors and mappings are provided by Xmodeler that are guaranteed to work

across all system and user defined data.

3.3.2. The XCore Package

The contents of the XCore package is shown in the following diagram:

The following sections provide a brief summary of each class. Note, the XCore model can be explored by clicking
on Kernel > XCore in the Xmodeler browser.

Attribute

An attribute is a structural feature of a class. It defines the name and type of a slot of the instances of the class.
When the class is instantiated, a new object is created and a slot is added for each attribute defined and inherited
by the class. Each slot is initialised to contain the default value for the type of the corresponding attribute.
Constructor: Attribute(name,type) The name is a string and the type is a classifier.

Behavioural Feature

A behavioural feature is a typed element that can be invoked. Typically a behavioural feature is an operation.

Bind

A binding associates a name with a value. Constructor: Bind(name,value) Constructs a binding, the name is a
string and the value is any element.

Classifier

A classifier is a name space for operations and constraints. A classifier is generalizable and has parents from
which it inherits operations and constraints. A classifier can be instantiated via new/0 and new/1. In both cases the
default behaviour is to return a default value as an instance. If the classifier is a datatype then the basic value for
the datatype is returned otherwise null is returned as the default value. A classifier can also be applied to
arguments (0 or more) in order to instantiate it. Typically you will not create a Classifier directly, but create a class
or an instance of a sub-class of Class.

Class

Xmodeler is a class-based system. Tools are defined as collections of classes whose instances have state and
behaviour. The XCore class Class defines the essential features of a class. Inheritance is used to extend class
features in Xmodeler. Since Class is available; user defined tools can extend what it means to be a class. This
ability is the basis for meta-programming. For example, Class may be extended with the ability to keep track of all
instances or to access instance data from an external database.

CodeBox

A CodeBox contains compiled code that can be executed on the Xmodeler VM.

Collection

The root class for all collection types.

Compiled Operation

A CompiledOperation is the type of all Xmodeler compiled operations. A compiled operation can be invoked using
invoke/2 or by applying it to its arguments. A compiled operation consists of machine code instructions. A compiled
operation may be associated with its source code to aid debugging.

Constraint

A constraint is a named Boolean expression owned by a classifier. Constraints are defined by classifiers to be
performed with respect to their instances and as such any occurrences of self in a constraint will refer to the
instance that is being checked.

Constraint Report

A constraint report is produced by sending a classify message to an element or a check constraints message to a
classifier. A report is a tree structured element describing the constraints that were performed and their outcomes.
Note that internal nodes of the tree may have dummy constraint reports used as containers of sub-constraint
reports. Such dummies have a null constraint and an empty reason, but the satisfied Boolean is the conjunction of
the sub-reports.

Constructor

A constructor contains a code body that is invoked on instantiation of a classifier.

Contained

A contained element has an owner. The owner is set when the contained element is added to a container.
Removing an owned element from a container and adding it to another container will change the value of owner in
the contained element.

Container

A container has a slot contents that is a table. The table maintains the contained elements indexed by keys. By
default the leys for the elements in the table are the elements themselves, but sub-classes of container will modify
this feature accordingly. Container provides operations for accessing and managing its contents.

Daemon

Daemons monitor the state of objects and perform actions when the object changes state. Daemon technology is
the key to implementing a variety of modular reusable tool architectures such as the observer pattern. Xmodeler
uses daemons extensively to synchronize data across multiple tools. User defined tools can use daemons to make
tools reactive and to ensure data is always consistent.

Data Type

Instances of this meta-class are Xmodeler types for basic data values. Xmodeler types include Integer, String,
Boolean and Float.

Dependency

A dependency occurs between a source and a target model element. When a dependency is created, the attach
operation is performed and when it is removed the detach operation is performed. These operations allow
sub-classes of Dependency to have semantics.

Doc

A class used to represent documentation.

DocumentedElement

A documented element has an attribute doc:Doc, which is used to store documentation relating to the element. Any
class that can be documented should specialize this class.

Element

All classes in Xmodeler are extensions of the XCore class Element. Element defines the essential behaviour of all
Xmodeler data. For example Element defines features such as being able to produce a printed representation and
the ability to handle messages. Xmodeler is a dynamically extensible system; this means that new behaviour can
be added to existing classes. This is sometimes referred to as aspect oriented programming. Since Element is
available, user defined tools can add system-wide aspects. For example this can be used to add the ability to
export any Xmodeler data in any required format (binary encoded, XML, text etc).

Enum

The enumerated type.

Exception

Xmodeler provides exception handling for dealing with exceptional circumstances in running code. The XCore
class Exception is the basis for a hierarchy of classes that implement specific types of errors. Exceptions are raise
at the point at which they occur and encapsulate data that describes exactly the source of the problem.

ForeignOperation

Provides an interface to operations written in external programming languages, such as Java.

IndexedContainer

An indexed container is a class that manages a hashtable associating keys with values. The Container::add/1
operation is implemented by IndexedContainer to add the argument as both an index and a value. The class
IndexedContainer provides a 2-place operation for 'add' that allows the index to be different from the value. Note
that 'remove/1’ expects to be supplied with the index.

InterpretedOperation

An interpreted operation is created when we evaluate an operation definition.

Namespace

A name space is a container of named elements. A name space defines two operations getElement/1 and
hasElement/1 that are used to get an element by name and check for an element by name. Typically a name
space will contain different categories of elements in which case the name space will place the contained elements
in its contents table and in a type specific collection. For example, a class is a container for operations, attributes
and constraints. Each of these elements are placed in the contents table for the class and in a slot containing a
collection with the names operations, attributes; and constraints respectively. The special syntax :: is used to
invoke the getElement/1 operation on a name space.

NamedElement

A named element is an owned element with a name. The name may be a string or a symbol. typically we use
symbols where the lookup of the name needs to be efficient.

Object

Object is the super-class of all classes with structural features in Xmodeler. Object provides access to slots via the
get/1 and set/2 operations. Object is the default super-class for a class definition - if you do not specify a
super-class then Object is assumed.

Operation

The basis for all Xmodeler execution is the XCore class Operation. An operation has parameters and a body and is
equivalent to a standard programming language procedure or function. A significant difference to conventional
procedures is that operations are Xmodeler objects that can be created and stored just like any other object. This
makes Xmodeler very flexible since behaviour can be encapsulated at the appropriate point in models and data.

OrderedCollection

A container that wraps a collections of ordered elements.

Package

Xmodeler supports name spaces that contain collections of named elements. The XCore class Package is used to
structure collections of class and sub-package definitions. Xmodeler is structured as a tree of packages containing
definitions of all aspects of the system (including XCore). The root name space is called Root; all Xmodeler classes
can be referenced via Root. Unlike UML and MOF, XCore packages are subclasses of Class. They can therefore
be instantiated and can have operations, attributes and constraints.

Parameter

A parameter is a typed element that occurs in operations.

Performable

Xmodeler provides an environment in which executable languages can be conveniently developed. An executable
language implements the interface defined by the abstract XCore class Performable. XOCL is an example of a
language that implements this interface.

XCore is an example of a language that can be performed by XVM. XVM may be initialised with different kernel
language definitions although in practice, XVM relies on a small sub-set of XCore being present. This feature
allows Xmodeler to deploy embedded systems that run application code without requiring the tools that were used
in Xmodeler to develop the application.

Resource

A resource records where the resource originated via a resource name. For example a definition is a resource that
records the file where it was loaded from.

Seq

Seq is a sub-class of DataType. All sequence data types are an instance of Seq. Seq defines an attribute
elementType that is used to record the type of the elements in a sequence data type.

Set

Set is a sub-class of DataType. All set data types are an instance of Set. Set defines an attribute elementType that
is used to record the type of the elements in a set data type.

Snapshot

A snapshot is collection of objects. A snapshot is an instanceOf another element (typically a package), which
contains elements which classify the contents of the snapshot.

StructuralFeature

This is an abstract class that is the super-class of all classes that describe structural features. For example
Attribute is a sub-class of StructuralFeature. Other types of structural feature are possible by managing the internal
structure of objects via a MOP.

Table

A table associates keys with values. Any element can be used as a key. A table has an initial size and can support
any number of values. Use hasKey/1 to determine whether a table contains a key. Use get/1 to access a table via a
key and put/2 to update a table given a key and a value. Use keys/0 to access the set of keys for a table.

Thread

A thread is a unit of concurrent execution. When a thread is created, it continues processing on the XVM until
either it performs a read operation that blocks on input or when it explicitly calls yield. All XOCL values implement
the yield operation. In both cases the thread is said to yield control. When a thread yields control, the XOS
schedules another thread that is waiting. The scheduling algorithm aims to ensure that all waiting threads get
scheduled providing that they yield.

TypedElement

A typed element is a named element with an associated type. The type is a classifier. This is an abstract class and
is used (for example) to define Attribute.

Unordered Collection

A container that wraps a collections of unordered elements.

Vector

A vector is a fixed length array of elements. They are created using the constructor Vector(). Vectors provide very
efficient insert (put/2) and lookup operations (ref/1).

3.4. XMap

3.4.1. Introduction

This document provides a definitive guide to the XMap language. XMap is a language for constructing mappings
between models. Using XMap you can define mappings in a highly declarative way, enabling the essence of what
the mapping does to be captured succinctly and precisely (as opposed to having to describe how the mapping is
performed).

Here are some other benefits of XMap:

It enables system designers to realise a strong separation of concerns between mappings and the models
that they relate. Aspects such as pretty printing do not need to be mixed with the detail of the mapping itself.
XMap can also make use of XOCL expressions to provide the extra expressiveness required to capture
complex mappings
The XMap language is fully modelled. This means that mappings expressed in XMap can be easily
transformed into other data formats.

3.4.2. Language Basics

XMap provides both a textual and diagrammatical language for expressing mappings. The model below contains a
simple example of the XMap diagram language:

The example contains a mapping called Person2Cust, which takes a Person object and generates a Customer
object.

Mappings contain rules, known as clauses. These state how one or more objects (the domain) are mapped to a
target object (the range). Here is an example of a clause belonging to the Person2Cust mapping:

A clause has a name, followed by a pattern declaration, a when expression and a do action. Provided that the
value supplied to the clause matches the pattern declaration, and the when expression is true, then the do action
will execute. In this example, provided that a Person object is supplied whose age is < 16, a Junior customer object

will be created with the same name as the Person.

A mapping may contain more than one clause. In this example, a clause named Adult is also defined. It maps a
Person who is older than 16 to a Standard customer object.

The rest of this document will dig deeper into the XMap language, starting with its syntax.

3.4.3. Syntax

Diagrammatical Syntax

A mapping is diagrammatically shown as an arrow with one or more domains (the source types of the mapping)
and a single range (the target type of the mapping):

The domain and range of a mapping can be any (instantiable) Classifier type, including data types, packages and
other mappings.

Because Xmodeler provides full access to its own definition, mappings can be defined between meta-classes. This
is crucial to being able to construct language-to-language mappings.

Textual Syntax

A mapping also has a textual syntax of the form:

 @Map <MapName>(<DomainType>,...) -> <RangeType>

 @Clause <ClauseName>
 end
 ...
 end

Clause Syntax

A Clause has the following syntax:

@Clause <ClauseName>
 <V1> = <PatternDecl>,
 ...
 when <BooleanExpression>
 do <XOCLExpression>
 where <X1> = <XOCLExpression>;
 ...
end

A clause consists of a comma-separated list of pattern declarations, which may optionally be equated with a
variable. This is followed by an optional when part, containing a Boolean expression, and a do action, which
contains an XOCL expression. The optional where clause contains a list of semicolon separated variable
introductions, where each variable is equated with an XOCL expression.

Pattern Syntax

Full details of the pattern declaration syntax can be found in the XOCL manual, but there are some specific forms
that are most generally used in XMap:

A keyword constructor: <ClassName>[<att1> = <x1>, ...]

Here, the variable/s att refer to named attributes of the class, and x is the variable/s they are matched against.

A normal constructor : <ClassName>(<v1>, ...)

Where v1is a constructor variable.

A set pattern: <X>->including(<PatternDecl>)

Where X represents a collection of values, which include an element that matches the pattern declaration.

3.4.4. Execution

XMap is fully executable. The execution of an XMap mapping is as follows:

Iterate through each clause, in order of definition.
Attempt to match the input values of the mapping with a clause. A clause matches if:
The input to the clause matches the pattern declarations.
The when condition is true.
If a clause matches, the body of the do action is executed (substituting any variables values bound in the
pattern declarations and where part). The mapping terminates.
If no clauses match the input values, the mapping terminates and generates an exception.

3.4.5. Constructing Mappings

Mappings can be constructed using Xmodeler’s modelling interface and via the programming interface as follows.

Creating Mappings via the Modelling Interface

Let’s create a simple mapping from one class to another class. First, create a project Example1 containing the
classes that we want to map between: Alternatively, we could import classes from other packages into the model.

Next, a mapping is added to the model. Select the Mapping from the icons in the diagram editor and place it on the
diagram and give it a name.

A mapping must have at least one domain and a single range. Select these from the icons underneath the mapping
icon.

The domain is the source class or classes of the mapping and the range is the target class. Although compulsory, it
is important to think of the domain and range as indicating a dependency between a mapping and its constituents.
In practice, the actual values passed to the mapping need not necessarily be instances of the domain class.

To add a clause to a mapping, right click on the mapping in the diagram editor or browser and choosing New >
Clause.

Now, edit the clause by double clicking on it in the browser.

A clause editor will be displayed.

To enter the clause, enter the text and right click > Commit.

Other clauses can be created in exactly the same way.

Creating Mappings via the Programming Interface

Creating a mapping via the programming interface is straightforward. Just create a file (select File Browser from
the File menu) and create a new File. Provided that XOCL has been imported, a model (along with mappings) can
be entered as normal. For example, the following text is equivalent to the above model:

parserImport XOCL;

context Root

 @Package Example1

 @Class Person
 @Attribute name : String end
 @Attribute age : Integer end
 end

 @Class Customer
 @Attribute name : String end
 end

 @Class Junior extends Customer
 end

 @Class Standard extends Customer
 end

 @Map Person2Cust(Person) -> Customer

 @Clause Child
 Person[name = N, age = A]
 when A < 16
 do
 Junior[name = N]
 end
 @Clause Parent
 Person[name = N, age = A]
 when A >= 16
 do
 Standard[name = N]

 end
 end
 end

Save, compile and load the file to compile and load the model and the mapping.

3.4.6. Running Mappings

Mappings are run by instantiating the mapping and passing it the appropriate object/s to be mapped. Thes syntax
of a call is as follows:

<Mapping>()(<Value>)

Note that if there is more than one domain, this must be reflected by the list of values passed to the mapping, e.g.

<Mapping>()(<Value1>,<Value2>,..,ValueN)

The following example shows a mapping being executed in the console. Of course, a mapping can be run by
calling it from within another mapping or operation.

First, an instance of a person, p, whose name is “Bob” and whose age is 15 is created.

The mapping is run by calling the mapping and passing it the person, p.

The result of the mapping is a Junior customer whose name is “Bob” as we would expect.

3.4.7. Example

Class Model to Database

This example defines a mapping between a class model and a model of a database. In doing so, it exercises a
number of key XMap features, including pattern nesting, variable passing and multiple domain inputs to mappings.

Class Model

The following model describes the concepts in the class model. It includes most of the concepts that are typically
found in a class model, including classes, packages, associations and generalization.

Database Model

The database model contains a collection of typical relational database concepts. A relational database contains a
collection of tables, which have names. Each table contains a collection of columns, which are named. A Column
has a type. A table always contains a Key, which is a pointer to the Column that uniquely identifies an instance of a
Table. A table may also contain ForeignKey’s. These relate a Column to the Column in another table that it is the
foreign key for.

There will be a significant number of constraints on this model. For example, it must never be the case that a
foreign key refers to a column in the same table as the foreign key column:

As an example of a database model that could be represented by this model, consider the tables Account and
Customer. The table Account has three columns, customerId, accountNo and balance. The column customerId is a
foreign key – it ties each instance of an account to a specific customer. The column accountNo is a key, as it
uniquely identifies the account. The column ‘balance’ just represents some information about the account.
Similarly, the table customer has three columns, one of which, customerId, is its key.

The following diagram shows the same information as it would be represented by an instance of the Database
model:

Database Mapping

The following model describes how class models are transformed into database models:

A package is mapped to an instance of Tables. This contains the results of mapping each Class in the package into

a Table. Each Table contains a collection of columns, each of which is the result of mapping the attributes of the
Class into a Column. In the case of an Attribute that is marked as a key, a Key is created which points to the
corresponding Column.

Let’s take each mapping in turn and explain how it works:

PackageToTables

The PackageToTables mapping contains the following clause:

Here, the input to the mapping requires a Package containing some classes C and some associations A. If there is
a match then the action after the ‘do’ part is executed. In this case, it creates an instance of the class Tables, and
sets its tables to be T. T is defined in the ‘where’ part. T is calculated as the result of mapping each class in C to a
table.

Note Associations will be dealt with in future versions of this example.

ClassToTable

The first part of the ClassToTable mapping is as follows:

@Clause Clause0
 ClassModels::Class[
 name = className,
 attributes =
 A->including(
 ClassModels::Attribute[
 name = attName,
 isPrimary = true,
 type =
 ClassModels::DataType[
 name = typeName
]
])
]

This pattern expects a Class, and matches the name of the Class with the variable className.

In addition, this pattern illustrates the use of a collection pattern to match with an element in a collection. In this
case, it matches if the attributes of the class bind with a collection of attributes A provided that it includes a primary
attribute. This matches provided that the attribute is a primary Attribute, and binds the name of the attribute to the
variable attName.

A similar type of pattern is used to return the name of the type of the attribute. Here the attribute type is matched
against a DataType, whose name is then bound to the variable typeName.

Provided there is a match, the following action is invoked:

do
 DatabaseModels::Table[
 name = className,
 key = DatabaseModels::Key[
 column = c],
 columns = C->including(c)].setOwnership()
 where
 c = DatabaseModels::Column[
 name = attName,
 type = typeName];
 C = Attribute2Column()(A)
end

This creates an instance of a Table, whose name is the class name, and which has a Key that points to a Column
that has the same name and type as the primary Attribute.

In addition, the columns of the Table are calculated by mapping each of the remaining attributes in A to columns
and including the key column.

Finally, the operation setOwnership is called on the generated table. This sets the owner attribute of all the
columns of the table, its foreign keys and key to be the table. It is defined as follows:

@Operation setOwnership():Element
 @For c in columns do
 c.owner := self
 end;
 @For f in foreignKeys do
 f.owner := self
 end;
 key.owner := self;
 self
end

The modified table is returned by the final self.

Attribute2Column

The attribute to column mapping takes a collection of attributes and maps them to columns. There are three
clauses in this mapping.

The first one just returns the empty set if there are no attributes:

@Clause Clause1
 Set{}
do
 Set{}
end

The second clause matches if the attributes match the collection A that includes a attribute whose type is a
datatype. If so, it creates a collection of columns, C, which includes a new column whose name and type is equal
to the name and type of the attribute. However, C is calculated by passing the remaining attributes A to self, which
in this case is the Attribute2Column mapping. Thus, it recurses through all the attributes applying the appropriate
Attribute2Column clauses until they are consumed.

@Clause Clause0
 A->including(ClassModels::Attribute[
 name = attName,
 type = ClassModels::DataType[
 name = typeName]])

 do
 C->including(DatabaseModels::Column[
 name = attName,
 type = typeName])
 where
 C = self(A)
end

The third clause perfoms a similar function to the above, but in this case it only matches if the type of the attribute
is a class. In this case, it runs through the attributes in the type applying the Attribute2Column mapping to those
elements and adding them to the collection. Once this is complete it modifies the resulting column names so that
they reflect the name of the type.

@Clause Clause2
 A->including(ClassModels::Attribute[
 name = attName,
 type = class])
 when class.isKindOf(ClassModels::Class)
 do
 C->union(self(class.attributes)->collect(col |
 col.name := class.name + "_" + attName + "_" + col.name))
 where C = self(A)
end

Running the Mapping

As an example, the following snapshot shows an instance of the class model.

This corresponds to the following model (with customerId tagged as a primary attribute):

This can be run through the mapping as follows:

And returns the following snapshot (run toSnapshot() and then showDiagram()) on the result of the mapping:

Individual snapshots for specific objects can be shown, again by running toSnapshot() and showDiagram() on the
object. For instance, here is the snapshot for the Customer table:

As expected, a new Key has been created for the customerId column, and a column resulting from turning the
associated Account attributes into columns has also been created.

3.4.8. Other Aspects of Mappings

Operations

XMap mappings can have operations. As an example, let’s add an operation to the Attribute2Column mapping that
updates the name of a column.

An operation is added as usual by right clicking on the mapping (in the browser or the diagram) and selecting New
> Operation. An operation is added to the mapping. Let’s call this setColumnName():

The body of the operation is as follows:

The Attribute to Column mapping can be modified to use this operation:

Note self is required as it is referring to the instance of the mapping.

Attributes

Just like classes, mappings may have attributes. These are a useful way of recording information about a mapping.
To add an attribute, right click on the mapping and select New > Attribute (for a primitive typed attribute) or draw an
attribute line form the mapping to the class. The following example shows how an Integer attribute can be used to
store a count of the classes that where mapped by a specific mapping:

@Clause Clause0
 p = ClassModels::Package[
 classes = C,
 associations = A]
 do
 self.count := classes.size;
 DatabaseModels::Tables[
 tables = T]
 where

Variable Passing

Variables can be bound with patterns as follows:

@Clause Clause0
 p = ClassModels::Package[
 classes = C,
 associations = A]
 do
 DatabaseModels::Tables[
 tables = T]

 where
 T = C->collect(c |
 ClassToTable()(p,c))
end

The variable p is bound to the Package that is passed to the mapping. This can be used to pass the package to
any other part of the mapping. In this case, it is passed to the ClassToTable mapping as a second argument. As
this example shows, variable passing is useful when values have to be passed through mappings. For instance,
the following ClassToTable mapping could utilize the passed package to prefix the name of the generated Table:
Note that the clause now expects two patterns as input, a Package and a Class, and that these must have a
comma to separate them.

@Clause Clause0
 ClassModels::Package[name = N],
 ClassModels::Class[
 name = className,
 attributes =
 ...
 do
 DatabaseModels::Table[
 name = P.name + “::” + className,
 key = DatabaseModels::Key[
 column = c],
 columns = C->including(c)].setOwnership()
 where
 c = DatabaseModels::Column[
 name = attName,
 type = "Integer"];
 C = Attribute2Column()(A)
end

3.5. XML

3.5.1. Introduction

XML is a standard data format and as such is an essential tool for saving Xmodeler data and allowing Xmodeler to
interact with other tools. Xmodeler provides extensive support for working with XML and in particular provides a
declarative parser for reading sources of XML and synthesizing Xmodeler data.

This document describes how to work with XML in Xmodeler. A number of standard formats exist for XML (such as
XMI for models). This document does not describe these formats.

3.5.2. XML

XML is a markup language for character based information. An XML document consists of a hierarchically
organised collection of elements. Each element has a tag, some named attributes and a body. The body of an
element is either text or is a sequence of child elements. The following model shows the basic structure of XML:

3.5.3. Parsing XML

Introduction

Xmodeler provides a number of technologies for reading sources of XML. In most cases, an application is required
to translate the XML input into Xmodeler data elements. This can be achieved by reading the XML source
character by character, but fortunately Xmodeler provides XML parsing technology that interprets declarative rules
specifying how to match XML input and synthesize Xmodeler elements.

An Xmodeler parser reads an XML input source and interprets an XML grammar. And XML grammar consists of a
collection of clauses. Each clause defines how to match a portion of the input and how to translate it into Xmodeler
data. An XML grammar can be viewed as the type of an XML document in the same way as a DTD. Unlike DTDs,
grammar components are associated with actions that are performed when the appropriate portion of the input has
been successfully consumed.

This section shows how to define XML grammars and how to run XML parsers. It starts with a number of examples
that contain key technology features. Finally the XML grammar model is defined in full with a complete definition of
the components.

Example

Two Dimensional Tables

This section gives an example of how to read the XML representation of a simple domain model and synthesize an
instance of the model. The following model represents two dimensional integer tables:

Suppose that we have been supplied with an XML document that contains a two-dimensional integer table. We
want to read the XML and produce an instance of the domain model. This situation occurs frequently in system
development when we are supplied with data that has been exported from a third party tool and we want to
process the information using Xmodeler. Alternatively, it may occur when we have used XML as the format for
storing data from a previous use of Xmodeler.

The following screen shot shows how the data could be expressed in XML:

The XML is to be parsed using a grammar that defines how to match tables, rows and columns. An XML grammar
consists of a collection of clauses each of which defines how to match elements, their attributes and their children.

An XML source (such as a file) is read and each element is matched against the clauses in the grammar. When a
clause matches against the current XML input element, its action is performed causing an Xmodeler element to be
synthesized.

Matching an element involves matching its tag, attributes and its children. All of these components must match in
order for the match to be successful. Attribute values can be extracted as part of the matching process and passed
to the synthesizing actions. Values synthesized by matching children can be used in the actions of a parent. This
way information can be extracted from the XML elements as they are consumed and synthesized elements can be
passed up the tree as it is consumed. Eventually the result of the parse is the value synthesized by the root
element of the XML document. The following tool screenshot shows the content of a source file that defines an
XML grammar for parsing two-dimensional tables. The file imports the XML::Parser package in line 1 so that the
grammar for parsing XML grammars is available in the rest of the file. Line 4 imports the same package so that
names can be referenced in code (for example ParserChannel in line 40).

In order to use an XML grammar to parse and synthesize an XML source, the grammar must be compiled.
Compilation processes the grammar, checks it for any errors and then translates it into an efficient parsing table.
The table is then used as the input to a general XML parsing engine. Compilation checks for a number of errors. In
particular it checks that the grammar is LL(1). An LL(1) grammar allows the parser to proceed based on one token
lookahead. In this case, tokens are XML elements. Fortunately, LL(1) grammars can be easily checked and this is
done automatically for you. If you specify a non-LL(1) grammar, Xmodeler will report a warning and indicate where
you have gone wrong.

To use a compiled grammar, you create an instance of XML::Parser::ParserChannel. The constructor for this class
accepts an XML grammar and an XML input source. A parser channel has an operation parse that is used to
consume input from the XML source, to run the parser and return the synthesized result:

Dealing with References

XML data is tree-structured. This means that data elements cannot be shared by multiple paths from the root
element. This is not true of Xmodeler data elements, and computer data structures in general. General data
elements are graphs where individual elements may be shared (or pointed to) by multiple parents.

This restriction on XML data representation is usually handled using data identifiers and references. Any element
that can be referenced by multiple sources is allocated a unique identifier. One of the occurrences of the element is
translated into an XML tree and all other occurrences are encoded in the reference source using the identifier. It is
then up to the interpretation of the XML data to faithfully interpret the identifiers and their references. Xmodeler
manages identifiers and references automatically providing they are appropriately declared in the XML grammar.
This section shows how this is achieved using a simple example of encoding graphs using XML.

The following model is used to represent graphs:

A graph can be represented in XML as follows. A node can be accessed by the containing graph through a number
of routes: via the nodes attribute or via the source or target attributes of edges. Sharing of a node through multiple

routes is encoded in the XML by allocating a unique identifier to each node. Nodes are represented using an XML
element with the unique tag within the graph element and referenced using their identifier via edges:

We will synthesize an instance of the graph model using an XML grammar. The grammar is defined as a named
element in a package as shown below:

An XML element representing a node is parsed and an instance of the class Graph::Node is synthesized by the
clause defined below. A node has attributes id and data which are matched and bound to clause variables in line
31. The clause synthesizes a node which is associated with the identifier bound to the variable id:

Edges are parsed and synthesized by the clause defined below. Instances of the class Graph::Edge refer to the
graph nodes; but, nodes are not available at this point in the parse since the XML elements refer to the source and
target nodes via their ids. An XML parser can indicate that an identifier reference should be replaced with the
associated value that is synthesized elsewhere by including a reference in the result of the clause as shown below:

The following operation shows how the Graph grammar is used to parse a file containing a graph encoded in XML.

Representing Models in XML

Most modelling tools allow you to encode models using XML; often this is the only way of saving and loading
models to persistent storage. The various versions of XMI for UML is an example of this kind of model encoding.
Xmodeler allows models to be encoded in a variety of ways and in particular allows you to develop your own
encoding that suits the domain with which you are modelling. This section provides an overview of how models can
be encoded using an XMI-style XML format.

The following XML document shows a simple model encoding:

Models are just top-level packages containing standard elements such as classes and sub-packages. Each model
element is allocated a unique identifier to facilitate cross model references. An example of a reference occurs in
the attributes of the model where the type of the attribute is encoded as a reference to a class that is represented
in full elsewhere in the document.

The result of loading the XML model is shown below:

The model is synthesized by parsing an XML grammar. The grammar is shown below. Each identifier is registered
against the associated model element during the parse using :=:

You should be careful when using references (instances of XML::Parser::Ref) as initialization arguments in class
instantiation because class instantiation may process the arguments and expect them to be data values of the
referenced type rather than the reference itself. In the following construction of a class we use a keyword
constructor since the parents may be references (in which case addParent will fail since it expects a classifier
rather than a reference).

The definition of Attribute below shows a typical scenario where XML attributes encode information that must be
processed in order to synthesize the model element. In this case the multiplicity of the attribute (whether it is
atomic, a set type or a sequence type) is encoded as an enumerated type that is processed in order to decide what
the type of the attribute will be.

The following ClassRef definition shows how references are synthesized:

Finally, the following operation can be used to read a file containing a model that is encoded in XML:

Debugging XML Grammars

An XML parser channel has an attribute debug that can be used to provide a trace of execution. If the flag is set:

then output is produced that shows the XML input as it is consumed, shows the result of actions as they are
performed and shows the clause variables as they are bound. The following is a partial trace produced by reading
a graph with debug set:

3.5.4. The XML Parsing Grammar

3.5.5. DOM Input Channel

The XML parser provided by Xmodeler does not give direct access to the XML elements in a document. The parser
matches against the XML as it is read and the parser actions are used to synthesize any Xmodeler element.

Certain applications require access to the XML representation of the data. For example, the XML model may be the
domain model. In this case you can write an XML parser that synthesizes an instance of the XML model. This use
case is supported directly in Xmodeler by DOMInputChannel. The use of this class is equivalent to writing a
bespoke parser that synthesizes XML; however, it is much more efficient because general parsing machinery is not
required to recognize the XML elements as they are encountered.

This section shows how DOMInputChannel works by providing a simple example of its use.

Consider the management of some hierarchical data such as classification trees, component descriptions, and
organisation structures. The data can be maintained as a database in XML format. Database queries and update
can be implemented as operations that work directly on the XML data. The following Tree package defines
operations that partially implement such a database:

The readDB operation uses a DOM input channel to read the contents of a standard XML file. The result of
performing the parse operation is an XML document whose root element is the database. The constructor for the
class DOMInputChannel accepts an input channel that produces XML characters when read.

The following operation uses the print operation of XML::Document to write the database to a text file:

Once the database has been read (or constructed by directly creating instances of the XMLmodel). It can be
manipulated using XOCL. The following operation adds a child to an element in the database:

The following query operation uses pattern matching to select an element:

3.5.6. SAX Input Channel

XML input can be processed using an XML grammar or using a DOM input channel. The former provides a
convenient way of declaring XML patterns and synthesizing Xmodeler data. The latter provides a convenient way
of translating an XML input source into an instance of the XML model. Occasionally, the XML instance is not
required and the overhead of using general parsing machinery seems unnecessary. For example, if we wanted to
count the number of elements in the input or check whether an element with a given tag exists in the input.

For occasions where parsing is unnecessary and DOM is not required, Xmodeler provides a SAX input channel. A
SAX input channel processes the XML input by generating events each time an XML node is encountered in the
input. The channel has handlers that are called when the events are fired. Xmodeler works hard to ensure that the
input is processed as efficiently as possible and therefore, SAX input channels are appropriate for processing very
large XML data sources.

The key operations called on an instance of SAXInputChannel are as follows:

startElement(tag:Buffer,attributes:Buffer)

This operation is called when each element is encountered in the input. The tag of the element is supplied as a
string buffer and the attributes are supplied as a buffer containing instances of XML::IO::SAXAttribute with
attributes name and value both of type string buffer. All buffers are reused in order to ensure the input is processed
as efficiently as possible. Therefore if you wish to retain the tag, or the attribute names or attribute values then the
buffers should be transformed into the equivalent strings using toString.

endElement(tag:Buffer)

This operation is called when the end tag of each element is encountered in the input. The tag is a string buffer that
is subsequently reused as above.

characters(text:Buffer)

This operation is called when text is encountered in the input. The text is supplied as a string buffer that is
subsequently reused as above.

parse()

Call this operation to start processing the input. No value is returned by default. Extend this operation in
sub-classes of SAXInputChannel to construct and return values based on the operations defined above.

SAXInputChannel(inch:InputChanel)

A constructor for SAX input channels. The argument is an input channel that produces XML text.

This section shows how SAX input channels work in Xmodeler by implementing a DOM input channel in terms of a
SAX input channel. The following tool screenshot shows the class uses a stack to manage the XML nodes as they
are read and synthesized by the operations defined above:

When the input source is parsed, the intermediate XML nodes are pushed and popped on the stack. Child nodes
are popped when the end element event occurs and added to the currently open element on the stack. Eventually,
the root node is left as the single stack element. The parse just pops the root node, creates and returns an XML

document:

When the characters operation is called, a Text node is created and pushed on the stack. Note how toString is
used to copy the text on the string buffer:

When a new element node is encountered in the input we create a new XML element object and push it on the
stack. Between the start element event and the associated end element event there will be any number of events
that create the children nodes. The children nodes will be pushed on the stack. When the end element event
occurs it is straightforward to pop the child elements from the stack up to the parent element and modify the parent
by inserting the children:

The end element event causes all the children that have been pushed since the corresponding parent element
node to be popped and inserted:

3.5.7. XML Output

Introduction

When developing Xmodeler applications it is likely that you will want to generate XML from Xmodeler data. This
can be achieved in a number of ways depending on the level of control and the amount of reuse that you want to
have over the output. This section describes approaches to XML output. The most direct way of producing an XML
document is to print the characters, for example:

format(out,”<Class name=’~S’ id=’~S’/>”,Seq{c.name(),c.path()})

This approach to output provides complete control over the text that is produced, but suffers from a lack of XML
semantics – the format command does not know it is processing an XML element.

There are two strategies for producing XML output that are more attractive than directly writing characters:

Generating instances of the XML model and then sending the instance a print message.
Using the XML::PrintXML::XML construct to specify output patterns.

The rest of this section describe the second of these approaches.

XML Output Patterns

Consider the task of translating a model to an XML document. The model consists of packages, classes, attributes
and operations. The XML tags reflect the type of model elements. Models contain multiple references to the same
model elements, this is encoded in the XML document using attributes whose values are unique identifiers.

The following operation defines a mapping that writes a model element to an XML document. It uses the
XML::PrintXML::XML pattern language:

Line 12 starts a case analysis on the supplied element. The CaseObj construct matches the supplied value
(element) against patterns consisting of the path to the direct classifier of the value followed by a number of slot
names defined by the classifier. If the value is a direct instance of the classifier (i.e. its of operation returns the
named classifier) then the body of the matching CaseObj clause is performed with the named slots bound to the
corresponding slot values.

The first pattern in line 13 matches against a package. The XML pattern starting in line 14 specifies some XML to
be sent to the supplied output channel (out).

Line 15 defines some XML output. The output pattern is specified in the same format as an XML element
containing a tag and some attributes. The tag name and the attribute names are all literal names (you can also use
strings or expressions in parentheses). The values of attributes are expressions. When a pattern is evaluated, the
character are written to the supplied output channel; any expressions are evaluated and the corresponding values
are transformed to strings.

The body of the element pattern ranges over lines 16 – 21. Element bodies can be nested elements or program
code. In 16 – 21 there is program code that loops through the packages and classes bound in line 13 and calls
writeXML to produce the appropriate output.

The package pattern is complete at line 22 where the terminating tag is output.

Classes are output as follows:

The example above shows that XML pattern directed output can be nested. Line 33 uses a pattern to produce a
classifier reference for the parents of a class; this is nested inside the pattern started in line 30.

Attributes are represented in XML as an element with a nested class reference for the type. The multiplicity of the
attribute type is encoded in the attribute:

XML Output Channels

Introduction

Basic XML Output

Object Formatters

Name Space Formatters

Saving Models as XML

3.5.8. Raising Events

3.5.9. Deploying Java

Introduction

Deploying Models

Deploying Parsers

Deploying Factories

3.6. XOCL

3.6.1. Introduction

The basic technology that underpins Xmodeler is a programming language called XOCL. The programming
language is very similar to standard object-oriented languages such as Java or C#. In addition, XOCL is a
meta-programming language meaning that it provides facilities for inspecting and controlling its own behaviour.
This is the key to supporting flexible tool development. Tools defined in XOCL can inspect and interpret other tools
defined in XOCL. Tools defined in XOCL can generate other tools defined in XOCL, and can generate tools defined
in other languages such as Java.

This document is a technical description of XOCL. It defines all aspects of the language and provides a complete
definition of the programming constructs and what they do. This document is not a description of how to use
XOCL. For that you should read the example Walkthroughs in the Bluebook.

The document is structured as follows: the basic architecture of XOCL is describes in terms of what it does and
how programs are represented at the lowest level; the basic data types provided by XOCL are defined; XOCL
program structure is defined including conditional constructs, binding constructs, errors and looping. Finally, the
interface of each basic data type is defined.

Purpose

XOCL is a programming language that is intended to support powerful programming over meta-data. In achieving
this aim, the following objectives have been addressed:

Efficiency. XOCL provides a programming language that is used on primarily data intensive applications (as
opposed to real-time applications, safety critical applications or applications that require intensive numeric
processing). XOCL will process large data sets (several tens of thousands of objects) using average
memory and average processor resources.
Extensibility. XOCL is designed to be highly extensible. New language features can be added to XOCL by
defining an XBNF grammar for the new feature and the rule to process the new syntax structures. In many
cases, new syntax structures can be translated to basic XOCL; this provides a powerful macro-facility for
defining declarative language constructs.
Dynamic. XOCL is designed to be highly configurable and easy to modify at run-time. Although XOCL is a
compiled language, new definitions can be introduced at any time during execution and existing definitions
can be modified at run-time.
Meta-circularity. XOCL is designed to allow existing language features to be extended and modified. XOCL
understands its own rules of execution. New tools can introduce modification to these rules. XOCL can
process its own syntax; the XOCL compiler and interpreter is written in XOCL.
Standards. Xmodeler aims to make standards available wherever these are appropriate. The environment

provides a MOF-like meta-modelling language and a UML-like modeling language. The XML facilities of
Xmodeler can be used to import and export XMI encoded data. The language XOCL is based on the UML
Object Constraint Language.
Conventional. XOCL aims to provide a language that is as familiar to users as possible whilst achieving the
aim of being a powerful basis for tool generation. The basic language features of XOCL will be familiar to
users of standard object-oriented programming languages such as Java.
Complete. XOCL provides a complete solution to tool construction. XOCL is not a scripting language (i.e. a
lightweight language used as glue for programs written in other languages). XOCL provides features that
support the implementation of industrial strength tools, including sophisticated data structures, error
handling and a variety of input/output mechanisms.

Language Basics

XOCL programs consist of a collection of units (text files). Each unit can be compiled and loaded separately;
however, there are restrictions on the order of compilation and loading multiple units that must be followed; these
are explained in this section. A unit is processed by loading and then evaluating it. Loading involves syntax
analysis.

A unit has entries in the following order:

Parser declarations. A parser declaration is processed by the syntax analysis phase. Typically a declaration
imports a collection of grammars that define new language constructs. Each language construct in the rest
of the unit must be declared before it is used. Basic XOCL is imported by default.
NameSpace imports. Global variables must be imported before they can be used. Each global variable is
defined in a name space. Importing the name space makes all the names it defines available in the rest of
the unit. The names in Root and XCore are imported by default.
Commands and definitions. The rest of the unit is a sequence of any valid XOCL syntax as defined in terms
of the parser declarations and imports that precede it. Definitions take the form of the keyword context
followed by a name and then an expression whose value is a named element. The name must reference a
name space. The effect of a definition is to add the named element to the named name space. Commands
take the form of XOCL syntax followed by a semi-colon (;).
A typical unit has the form shown on the right. All components are optional but, if present, must occur in the
order shown.

// Comments at the head of the file….

parserImport <PATH>;
// More parser imports…

// Comments here….

import <PATH>;
// More imports….

// Comments here….

context <PATH>
 <NAMEDELEMENT>

// More defs….

<COMMAND>
// More commands….

When a unit is loaded, its syntax is analysed with respect to the parser declarations. If the syntax is legal then the
unit is evaluated. Evaluation processes each name space import in turn. Each import is performed in the context of
all preceding imports. If the imports are successful then the rest of the unit is evaluated in the context of the
imported names. Definitions are evaluated by constructing the named element, referencing the name space and
adding the named element to the name space. Commands are evaluated; any result produced by the commands is

discarded.

The effect of evaluating a unit is the result of adding all definitions to their name spaces and any side-effects
produced by the commands.

Note that although the basic unit of execution is the text file, XOCL is a meta-language and can be used to process
definitions and expressions at run-time. This makes XOCL ideal for handling expressions typed at a command
interpreter and definitions typed in forms as part of a user interface.

Overview of Syntax

XOCL is a textual language. When a unit is loaded its syntax is processed prior to evaluation. The first stage of
syntax analysis if to recognize lexical tokens. A lexical token is a sequence of characters read from the input
starting with a non-whitespace character. This section provides an overview of the token types:

Integer tokens start with a numeric character and continue up to, but not including, the first non-numeric
character.
Parentheses (and).
Braces { and }.
Dot .
At @.
Comma ,.
Special tokens are those that do not consist of an alpha-numeric character and are not listed elsewhere.
Examples of special tokens are infix operators such as * and +, arrow -> and quasi-quotes [| and |].
Name tokens start with an alpha-character and continue up to, but not including, the first non-alpha-numeric
character.
Symbol tokens start with a ‘ and end with the following ‘.
String tokens start with a “ and end with the following “. Within strings the following escape characters are
useful:

Newline \n
Tab \t
Return \r
String quote \”

3.6.2. Basic Data Types

XOCL is an object-oriented language that runs on the Xmodeler Virtual Machine (XVM) and uses a library of class
definitions (written in XOCL) called XCore. Most data types in Xmodeler are represented as instances of XCore
classes; however, there is a sub-set of XCore, that is fundamental to XOCL and its execution on XVM. These
classes are the basic data types necessary to run XOCL. They are listed here. Their interface definitions are given
in subsequent sections of this document.

Booleans. A boolean value is either true or false. Booleans are used to control branches in execution.
Clients. Xmodeler can act as a client that connects to and communicates with an external server. The
connection is constructed and maintained through a client value.
Channels. XOCL performs input and output through channels. StandardInputChannel and
StandardOutputChannel define interfaces that are implemented by a wide variety of concrete classes that
support different forms of input and output; for example: file i/o.
Daemons. A daemon is a value that can be attached to an object in XOCL that monitors the state of the
object. A daemon is activated when the object changes state.
Integers. Positive and negative integers in the range -24^2 to +24^2.
Floats. 64 bit floating point numbers.
Null. The undefined value.
Objects. An object is a data value with slots. Each slot has a name and a value. All data in Xmodeler is
represented in on the formats in this list. Most data in Xmodeler is represented as objects. All types
(classes) in Xmodeler are objects and all types have their own types.

Operations. An operation has a name, arguments and a body. The body of the operation is XOCL program
code. When the operation is invoked, it is supplied with values for the arguments and it performs its body.
An operation invocation returns the value produced by the body. Operations are the basis for all execution in
XOCL. Operations are proper values in the seinse that they can be passed as argument values and stored
in slots.
Sequences. XOCL provides lisp-like lists which it calls sequences. A sequence is either a cons pair with a
head and a tail or is the empty sequence. Cons pairs have state such that the head and the tail may be
updated. Sequences provide a very flexible and efficient way of organising collections of data that change
over time.
Sets. XOCL provides a data type for representing sets. A set is like a sequence except that it has no state,
its elements are unordered and it cannot contain duplicates. Although sets can be defined in terms of
objects and sequences, they are provided as a basic data type for efficiency reasons (on the rare occasions
that very large sets are necessary).
Strings. A string is a sequence of character codes. Two strings are equal when they have the same
sequence of character codes. A string has no state.
Symbols. A symbol is a string with state. Two symbols are equal when they are the same data value in
computer memory. Symbols are very similar to strings except they facilitate efficient name lookup in
dictionaries. Named elements in XCore use symbols.
Tables. A table associates keys with values. Keys have hash codes that make lookup and update efficient in
tables.
Threads. XOCL is multi-threaded. Each thread is a separate unit of computation that can share global data
with other threads. XOCL multi-threading is provided to allow Xmodeler to monitor interactions with multiple
clients (although could be used for a variety of tasks). It is not expected that there would be more than 10 –
20 threads active at any given time.
Vectors. Vectors are fixed size, indexable sequences of values.

3.6.3. Program Constructs

As described above, XOCL programs consist of units. Each unit contains parser declarations followed by name
space imports and then a sequence of commands and definitions. Both commands and definitions contain general
XOCL expressions; an expression is the basic component of an XOCL language construct. All XOCL language
features are evaluated to produce a value; in addition some features produce a side effect as a result of evaluation.
Expressions fall into a small number of different categories depending on how they are evaluated. This section
provides an overview of XOCL program features and their evaluation mechanisms.

Self Evaluating Expressions

The simplest type of XOCL expression is self evaluating, these are often referred to as constants and include
integer, string, Boolean and float literals. In addition, the empty sequence Seq{} and the empty set Set{} are self
evaluating.

Variables and Update

A name is an XOCL expression that evaluates to a value depending on the association that the name has in the
current context. In general, names refer to variable locations that contain values and are often referred to as
variables. XOCL supports three types of variable: local, global and slot. Examples of local variables are operation
parameters and let-introduced names. Examples of global variables are names that have been imported from
name spaces. Slot variables refer to the state of the currently executing object.

Slot variables may be qualified or unqualified. A qualified reference includes the object that contains the slot
followed by dot (.) and the name of the slot. An unqualified reference is just the name of the slot: such a reference
assumes the object containing the slot to be self.

Global variable references occur may be qualified or unqualified. A qualified reference references the global
variable via some or all of its containing name spaces; this is similar to a path in a file system. For example P::Q::V

refers to the variable V in the name space Q which itself is contained in the name space P. The name space P is
assumed to be available at the point of reference because it is imported. An unqualified reference to a global
variable does not include any containing name spaces: they must be imported at the point of reference.

Variables may be updated using the := operator. The left hand operand must be a variable and the right hand
operator must be an expression. The expression is evaluated and the resulting value is placed in the variable
location. Slot updates must use qualified slot variables. Global updates must use qualified global variables.

The following class definition contains examples of all types of variable reference and update:

context P
 @Class C extends D, Q::E
 @Attribute v : Element end
 @Operation getV():Element
 v
 end
 @Operation setV(newV:Element)
 P::lastGoodV := self.v;
 self.v := newV
 end
 @Operation lastGoodV():Element
 import P
 in lastGoodV
 end
 end
 end

Line 1 is an unqualified global reference to the name space P. Line 2 contains an unqualified global reference to D
and a qualified global reference to E. Line 5 is an unqualified slot reference to v. Line 8 contains a qualified global
update for lastGoodV and a qualified slot reference to v. Line 9 contains a qualified slot update for v and a local
reference to newV. Line 13 contains an unqualified global reference to P and line 14 contains an unqualified global
reference (since it has been imported) to lastGoodV.

Local variables are typically created when values are supplied as arguments to an operation or when local
definitions are executed. The association between the Local variable name and the value persist for the duration of
the operation definition or the execution of the body of the local block. In both cases, as the name suggests,
variable values can change by side effect.

Local variables are established when arguments are passed to an operation or using a let expression. In both
cases the variable can be referenced in the body of the expression, but not outside the body. In both cases the
variables can be updated using v := e. Suppose we require an operation that takes two integers and returns a pair
where the head is the smallest integer and the tail is the other integer:

context Root
 @Operation orderedPair(x,y)
 let min = 0;
 max = 0
 in if x < y then min := x else min := y end;
 if x > y then max := x else max := y end;
 Seq{min | max}
 end
 end

The definition of orderedPair shows how a let expression can introduce a number of variables (in this case min and
max). If the let - bindings are separated using ; then the bindings are established in-parallel meaning that the
variables cannot affect each other (i.e. the value for max cannot refer to min and vice versa). If the bindings are
separated using then they are established in-series meaning that values in subsequent bindings can refer to
variables in earlier bindings, for example:

context Root

 @Operation orderedPair(x,y)
 let min = if x < y then x else y end then
 max = if min = x then y else x end
 in Seq{min | max}
 end
 end

Calling Operations

An operation is invoked by directly invoking it on some argument values or by sending an object a message for
which the operation has been defined as the handler. The two types of invocation use the same underlying
evaluation machinery, but are syntactically very different. In both cases there is only one parameter passing
mechanism: values are passed into the operation and values with state can be modified by the operation. Variables
cannot be modified in the sense of Pascal or Ada out parameters. The parameter passing mechanism is directly
equivalent to that of Java.

Operations are applied to arguments using the conventional procedure call notation:

p(arg1,arg2,…,argn)

where p is an XOCL expression that evaluates to an operator and each argi is an XOCL expression that evaluates
to produce an argument value.

Messages are sent to a value using the conventional method invocation notation:

o.m(arg1,arg2,…,argn)

where o is an XOCL expression that evaluates to produce a value (the receiver), m is a name and argi are the
operation parameter expressions. To calculate the operation that is invoked, XOCL finds the type of o, and
calculates its operator precedence list (OPL). The OPL contains all the operators defined by the type of o with the
name m in order of most recently defined (with respect to inheritance) first. The first operation in the OPL is
invoked.

The receiver of a message defines the value of self in the body of the operation invocation. In the case of direct
operator application, the value of self is that which was in scope when the operator was defined. The value of self
can be changed by sending the operation an invoke message:

p.invoke(o,Seq{arg1,arg2,…,argn})

Infix Operators

XOCL supports infix notation for the usual arithmetic and boolean operators. In most cases the evaluation of an
infix expression will evaluate both sub-expressions in left to right order and then perform the appropriate function
on the results. The exceptions are:

p andthen q evaluates p, if p is false then q is not evaluated, otherwise this behaves as p and q.
p orelse q evaluates p, if p is true then q is not evaluated otherwise this behaves as p or q.

Prefix Operators

XOCL supports one prefix operator – not. Note that prefix – for negative numbers is not supported (use infix – as
in: 0-n).

Sequencing

XOCL expressions may produce side effects, either by changing the state of values, producing output or
consuming input. Expression evaluation is controlled using the semi-colon (;) operator that sequences evaluation:
e1; e2 is evaluated by evaluating e1 and then evaluating e2. The result of the sequenced expression is the value of
e2. This operator associates to the right.

Special Forms

An XOCL special form is an expression that has its own evaluation rules that do not necessarily follow the usual
rules of sub-expression evaluation followed by operator call. This section lists the special forms and defines their
evaluation rules.

Conditional expressions are defined using standard if…then…else…end notation. The test following the if is
evaluated, if it is true then the consequent expression is evaluated otherwise the alternative expression is
evaluated.
A definition occurs in a program unit as the keyword context followed by a name space and a n expression
whose value is a named element. The definition causes the named element to be added to thename space
when it is performed. The only place this type of definition can occur is at the top level of an evaluation unit.
Local variables are introduced using a let expression: let bindings in body end. The bindings introduce local
variable names and their initial values. The body is an XOCL expression whose evaluation may reference
the local variables. The variables are discarded when the evaluation is complete and the value of the let
expression is the value of its body.
A set or sequence is constructed using the form Set{exp1,exp2,…,expn} and Seq{exp1,exp2,…,expn}. The
sub-expressions are evaluated and the result is a set or sequence containing the values.
XOCL is based on OCL which provides a number of convenient types of iteration expression. These have
the form: s->iterOp(v | body) where s is an expression whose value is a set or sequence, iterOp is one of
forAll, exists, select, collect or reject, v is a variable name and body is an expression. Depending on the
iteration operation the body expression is evaluated in a context where v is bound to successive elements
selected from s. A special form of iteration expression is also provided: s->iterate(v w = e | body) where w is
initialized to e and body is evaluated with v bound to successive elements of s; at each evaluation w is
rebound to the value produced by body.
OCL provides a notation for invoking sequence and set operations: s->collOp and
s->collOp(arg1,arg2,…,argn). These are retained in XOCL for compatibility with OCL, but are unnecessary
since method calling notation works just as well.
A name space is imported for the scope of an expression e by import n in e end. All of the names defined in
n are available in the expression e.
XOCL provides an exception mechanism for handling errors and other exceptional circumstances during
execution. An exception is created and thrown from the point of error using a throw e command (an example
of an XOCL construct that does not behave like a standard expression). The expression e is evaluated and
can produce any value. XCore provides a collection of exception classes that can be used and extended.
The exception is caught by the most recently established try … catch(x) … end expression. The exception
can be handled in by the catch or may be re-thrown to the next try expression.

Quasi-Quotes

XOCL is a language that provides features for meta-programming. A key feature of meta-programming is language
processing: the ability to construct, transform and manipulate programs. XOCL provides quasi-quotes [| and |] for
this purpose. Quasi-quotes can be placed around any XOCL expression e (including XOCL language extensions),
the value of the resulting expression [| e |] is the syntax structure for e (as opposed to the value of e). For example:
the value of [| x + 1 |] is not an integer, but a syntax structure representing an addition expression whose operator
is + and whose left operand is a variable with name x and whose right operand is the constant 1.

Within quasi-quotes any expression surrounded by drop braces < and > is expected to produce syntax that is
inserted into the syntax structure constructed by the quotes. For example:

let e = [| x + 1 |]
in [| y * <x> |]
end

line 1 creates a syntax structure called e that is then inserted into the syntax structure as the right operand of the
multiplication expression in line 2. The resulting structure is equivalent to:

[| y * (x + 1) |]

Quasi quotes and drop braces are very important when meta-programming with languages. They make
constructing code templates very easy. Code templates are used to construct XOCL language extensions and to
facilitate mappings that translate from one language to another.

The Meta Character @

XOCL is an extensible language. New language features are easy to add to XOCL to provide new expression
types, new command and new declarative definitions. A big problem of current programming languages is that they
cannot be extended very easily. Thus, it is not possible to construct abstraction mechanisms that capture the key
features of the application domain. This results in large amounts of program code that is difficult to maintain.
Examples of such patterns are: new types of looping construct; a state machine definition; the observer pattern;
new types of interface definition; coding standards; specific types of classes such as containers.

XOCL provides a novel feature that allows new language constructs to be conveniently added to the language.
Once they are added, the new features are seamlessly integrated with all other language constructs. The language
feature that supports this is the meta-character @.

When an XOCL unit is processed it is syntactically analysed and then evaluated. During the syntax analysis phase,
if an expression starts with the character @ then the analyzer is informed that the characters up to and including
the corresponding end are to be processed by a language extension. A language extension is defined by providing
a grammar that parses the characters from the @ to the end; the grammar is expected to synthesize and return a
syntax construct. Grammars can be attached to classes and the name following the @ should be a class that
defines a grammar. A syntax construct is required to implement the Performable interface that allows the second
phase of XOCL unit processing. These two features: grammars and Performable are all that is necessary to allow
XOCL to be arbitrarily extended with new constructs.

Typically, syntax classes implement the Performable interface by translating to existing XOCL syntax classes (that
already implement the Performable interface). This form of language extension is termed sugar and the processif
translation is called desugaring.

XOCL makes extensive use of the @ feature. Looping constructs such as While, Find and For are all implemented
as extensions of the basic XOCL language. Definitions for classes, packages, constraints and operations are
defined using @.

3.6.4. Documentation

Comments can be inserted into XOCL in two ways. The first way is using the standard // <line of text> line
comment and /* <para> */ paragraph comments. These can only be used in text files and are ignored by the
parser.

The second way is using the @Doc <some text> end syntax. The text within an @Doc is ignored for the purposes
of executing the statement. However, the comment is parsed and is stored as part of the XOCL statement. This
means that documentation attached to an XOCL expression can be processed as part of a model. Note a
semicolon is not required if the documentation is placed at the head of the code body (otherwise it is). Here is an
example of its use:

context Float
 @Operation max(other:Integer):Integer
 @Doc
 Compares a float with other and returns
 the maximum value.
 end
 if self > other
 then self
 else other
 end
 end

Note, there are currently some limitations to the characters that can be used in an @Doc expression. In particular,
the string end must not occur in a @Doc body, even if it is embedded in a word. To resolve this, a separator can be
used, e.g. send becomes sen-d.

3.6.5. Error Handling

When an error occurs in XOCL, the source of the error throws an exception. The exception is a value that, in
general, contains a description of the problem and any data that might help explain the reason why the problem
occurred. An exception is thrown to the most recently established handler; intermediate code is discarded. If no
handler exists then the Xmodeler VM will terminate. In most cases, the exception is caught by a user-defined
handler or, for example in the case of the Xmodeler console, a handler established by the command interpreter.

When an exception is caught, the handler can inspect the contents of the exception and decide what to do. For
example it may be necessary to re-throw the exception to the next-most recently established handler, since it
cannot be dealt with. On the other hand, it is usual to catch the exception, print a message, patch up the problem,
or just give up on the requested action.

Exception handling is performed by a try catch expression with the following form:

try
 normal
catch(x)
 abnormal
end

The try expression evaluates the normal sub-expression that may perform an arbitrary amount of computation. If
the normal expression completes without throwing an exception then its value is returned as the value of the try
expression. Alternatively, an exception is thrown at some point during the execution of normal:

throw e

where e is an expression that produces the exception. An exception can be any value, but is typically an instance
of the class Exception or one of its sub-classes. An exception is handled by the most recently established try
expression. The evaluation of normal is terminated and execution passes to line 3. The variable x is bound to the
thrown exception and abnormal is evaluated. If abnormal evaluates without throwing an exception then the value of
abnormal is the value returned by the try expression. Otherwise, abnormal throws an exception (perhaps x) that is
handled by the next most recently established try expression.

3.6.6. Control Statements

Flow of control in XOCL is controlled by the constructs defined in this section. All the basic control statements are
supported, including If, Case, While and For. In addition, XOCL supports convenient notations for iterating over
collections.

If

An if expression if used to choose between alternative expressions based on the outcome of a boolean expression.
The different forms of if expression are outlined as follows:

1 if test
2 then consequent
3 end
4
5 if test
6 then consequent
7 else alternative
8 end
9

10 if test1
11 then consequent1
12 elseif test2
13 then consequent2
14 elseif test3
15 then …
16 else alternative
17 end

Lines 1-3 show that an if can be used to construct a guarded expression. If the test in line 1 produces true then the
consequent in line 2 is evaluated and produces the value fo the if expression otherwise nothing is evaluated and
the value of the if expression is undefined.

Lines 5 – 8 show how a n if expression is used to choose between two different expressions. If the expression at
line 5 produces true then the expression at line 6 is evaluated and produces the value of the if expression.
Otherwise the expression at line 7 is evaluated and produces the value of the if expression.

Lines 10 – 17 show how the elseif keyword can be used to avoid deeply nested if expressions.

Case

A case expression is used to dispatch on a sequence of values. The simplest form of a case expression is shown
as follows:

@Case e of
 p1 do
 e1
 end
 p2 do
 e2
 end
 …
 pn do
 en
 end
 else x
end

The case expression is evaluated as follows. The expression e at line 1 is evaluated to produce a value v. If v
matches pattern p1 then e1 is evaluated and produces the value of the case expression. Otherwise if value v
matches p2 then e2 is evaluated and produces the value of the case expression. Matching continues sequentially
until a pattern pi matches and the corresponding expression ei produces the value of the case or the else-clause is
reached. If the else-clause is reached then x is evaluated and produces the value of the case expression. Note that
the else-clause is optional.

Note that the semantics of pattern matching is covered elsewhere in this document. The simplest form of pattern
matching is against basic values:

@Case x of
 1 do
 // The value of x is 1…
 end
 2 do
 // The value of x is 2…
 end
 …
 100 do
 // The value of x is 100…
 end
 else self.error(“Illegal value for x: “ + x.toString())

end

In general a case statement can match over a sequence of values:

@Case e1,e2,…,en of
 p11,p12,…,p1n do
 b1
 end
 p21,p22,…,p2n do
 b2
 end
 …
 pm1,pm2,…,pmn do
 bm
 end
 else x
end

CaseInt

An integer case expression dispatches on the value of an integer. An integer case expression is much more
efficient that a case expression because it compiles to a simple indexed dispatch in XVM. The following is an
example that returns true when the value of char is an alpha-numeric character code:

 @CaseInt[256] char of
 " "->at(0) do false end
 "\n"->at(0) do false end
 "\t"->at(0) do false end
 "\r"->at(0) do false end
 "("->at(0) do false end
 ")"->at(0) do false end
 "\""->at(0) do false end
 "0"->at(0) to "9"->at(0) do true end
 "A"->at(0) to "z"->at(0) do true end
 else false
 end

Line 1 states that the range of values for char is 0 to 255. Each case arm uses s->at(0) to include a literal character
code. Note that the values in case arms may be any XOCL expression but that the expression must have a value
at compile time. A case arm has values to be matched before the keyword do. The values can take the following
forms:

A constant integer valued expression.
A range x to y where x and y are constant integer valued expressions.
A sequence of integer case values separated with comma (,).

TypeCase

In a pure OO program it should not be necessary to test the type of a value, all computation should be performed
using message passing. However, few if any applications are pure and testing the type of a value at run-time is
occasionally necessary. All values in XOCL can respond to an isKindOf message whose single argument is an
XCore classifier. The return is a Boolean value determining whether or not the value is considered, with respect to
inheritance, to be an instance of the classifier. Where there are many such tests on a value it is more declarative
and potentially more efficient to use the TypeCase special form:

@TypeCase(x)
 type1 do
 exp1
 end

 type2 do
 exp2
 end
 ….
 typen do
 expn
 end
 else d
 end

The expression x is evaluated in line 1 to produce a value. Each type (lines 2,5 etc) is a name or path referencing a
classifier. If the value of x is of type type1 then exp1 is evaluated and produces the value of the case expression.
Otherwise, checking proceeds case by case until the optional default case us evaluated. A value v is of type t when
it is a direct instance of t or when the direct type of v inherits from t.

While

A While loop performs an action until a condition is satisfied (note a named element may use a symbol for its name
so we ensure the name is a string using the toString operation):

context Root
 @Operation findElement(N:Set(NamedElement),name:String)
 let found = null
 in @While not N->isEmpty do
 let n = N->sel
 in if n.name().toString() = name
 then found := n
 else N := N->excluding(n)
 end
 end
 end;
 found
 end
 end

For

It is often the case that While loops are used to iterate through a collection. This pattern is captured by a For loop:

context Root
 @Operation findElement(N:Set(NamedElement),name:String)
 let found = null
 in @For n in N do
 if n.name().toString() = name
 then found := n
 end
 end;
 found
 end
 end

In general a For loop @For x in S do e end is equivalent to the following While loop:

let forColl = S;
 isFirst = true
in @While not forColl->isEmpty do
 let x = forColl->sel
 in forColl := forColl->excluding(x);
 let isLast = forColl->isEmpty

 in e;
 isFirst := false
 end
 end
 end
end

Where the variables forColl, isFirst and isLast are scoped over the body of the loop e. These can be useful if we
want the body action to depend on whether this is the first or last iteration, for example turning a sequence into a
string:

context Seq(Operation)
 @Operation toString()
 let s = "Seq{"
 in @For e in self do
 s := s + e.toString();
 if not isLast then s := s + "," end
 end;
 s + "}"
 end
 end

A For loop may return a result. The keyword do states that the body of the For loop is an action and that the result
of performing the entire loop will be ignored when the loop exits. Alternatively, the keyword produce states that the
loop will return a sequence of values. The values are the results returned by the loop body each time it is
performed. For example, suppose we want to calculate the sequence of names from a sequence of people:

context Root
 @Operation getNames(people:Seq(Person)):Seq(String)
 @For person in people produce
 person.name
 end
 end

The keyword in is a For-loop directive. After in the loop expects one or more collections. The in directive supports
multiple variables. This feature is useful when stepping through multiple collections in sync, as in:

context Root
 @Operation createTable(names:Seq(String),addresses:Seq(String),telNos:Seq(String))
 @For name,address,telNo in names,addresses,telNos produce
 Seq{name,address,telNo}
 end
 end

A For-loop also has a where option. This allows the elements to be filtered. The following only iterates over names
of persons that are not excluded.

context Root
 @Operation getNames(people:Seq(Person),excluded:Seq(Person)):Seq(String)
 @For person in people where not excluded->includes(person) do
 person.name
 end
 end

Find

The Find construct is used to perform an action in terms of an element of a collection. Typically we want to find the
first element in a collection that satisfies a given predicate and to perform an action. If no value exists that satisfies
the predicate then we optionally want to perform some other action. This construct captures that pattern.

As an example, imagine we want find a transition in a statemachine whose targetName is equal to the name of a
state, and that when we do, we want to return the State object with that name, or if one does not exist, return the
initial state. The following operation getTarget() implements this using Find.

@Operation getTarget(name: String):XCore::Element
 let next = null
 in @Find(t,transition)
 when t.targetName = name
 do next := states->select(s |
 s.name = name)->sel
 else next := states->select(s |
 s.name = startName)->sel
 end;
 next
 end
 end

Iterators

There are number of important collection operations that can be used to iterate over elements in a collection to
produce a result. Each iterator operation has an iterator variable, which is matched with each element of the
collection in turn. An iterator expression is then evaluated against the variable to produce a result.

There are four main iterator operations: select, collect, reject and iterate.

Select

C->select(c | <expression with c>)

Select filters the elements in the collection. The element c is added to the result if and only if the <Expr> is true.
The following example will return only those values of the set that are greater than 5:

Set{1,2,3,4,5,6,7,8,9,10}->select(i | i > 5)

In the context of a class model, select statements are very useful for filtering collections of objects subject to some
property. For instance, this operation returns all states of a StateMachine that match the name x and which are not
an initial state of the StateMachine (see Part 2 of this Reference Manual):

context StateMachine
@Operation statesForName(x):Set(Element)
 states->select(s | s.name = x and not startName = x)
end

Reject

C->reject(c | <expression with c>)

Reject is the converse of select. It rejects any elements where <Expr> returns true.

As an example, the following rejects all the values of the sequence of characters that are alphabetically greater
than the character "a":

Seq{"a","b"}->reject(x | x > "a")

Collect

C->collect(c | <expression with c>)

Collect iterates over the elements in the collection and collects together the result of evaluating the expression.

The following collect expression add 1 to each element in the set:

Set{1,2,3,4,5,6,7,8,9}->collect(x | x+1)

Here is an example that collects together the names of the states in a state machine: context StateMachine

@Operation allStateNames()
 states->collect(s | s.name)
end

Iterate

C->iterate(c acc = <expression> | <expression with c and acc>)

The iterate operation is the most fundamental and general of the iterator operations. All other loop operations can
be described as a special case of this operation. Like select and collect, an iterate has a iterator variable. In
addition, it has an accumulator variable, which is given an initial value. The result of the iterate operation is the
result of iterating over all the elements in the collection. For each successive element, the body expression is
evaluated using the previous result of the accumulator. Here is an example of using iterate to add together a
collection of numbers:

Seq{1,2,3,4,5,6,7,8,9,10}->iterate(e s=0 | s + e)

This sum() operation makes use of an iterate to sum a collection of integers:

context Seq(Element)
@Operation sum()
 self->iterate(e sum=0 | sum + e)
end

3.6.7. Assignment

In XOCL, values may be assigned to variables. The assignment keyword is “:=”. This should not confused with “=”
which returns a Boolean value.

The following code shows an assignment being used to set the name of a State by setting name to be x:

Context Java
 @Operation createState (n:String):State
 let s = State() in
 s.name := n;
 s
 end
 end

An assignment can be used to set global variables or local variables. When setting the value of a local attribute of
a class, self.attname must be used as the target of the assignment. For instance, the following operation will set
the name of the State to be x.

context State
 @Operation setName(n)
 self.name := n
 end

However, the following code will not be legal:

context State

 @Operation setName(n)
 name := n
 end

3.6.8. Pattern Matching

XOCL provides a powerful pattern matching language. This greatly simplifies the writing of pattern matching
operations that would otherwise require a very imperative style of programming.

Patterns and Pattern Matching

A pattern is matched against a value. The pattern match may succeed or fail in a given matching context. A
matching context keeps track of any variable bindings generated by the match and maintains choice points for
backtracking if the current match fails.

Pattern matching can be viewed as being performed by a pattern matching engine that maintains the current
pattern matching context as its state. The engine state consists of a stack of patterns to be matched against a
stack of values, a collection of variable bindings and a stack of choice points. A choice point is a machine state. At
any given time there is a pattern at the head of the pattern stack and a value at the head of the value stack. The
machine executes by performing state transitions driven by the head of the pattern stack: if the outer structure of
the pattern matches that of the value at the head of the value stack then:

0 or more values are bound.
0 or more choice points are added to the choice point stack.
0 or more component patterns are pushed onto the pattern stack.
0 or more component values are pushed onto the value stack.
If the machine fails to match the pattern and value at the head of the respective stacks then the most
recently created choice point is popped and becomes the new machine state. Execution continues until
either the pattern stack is exhausted or the machine fails when the choice stack is empty.

Pattern Categories

This section describes the different categories of pattern. The semantics of matching are defined informally in
terms of a general description and example definitions involving the pattern.

Variables

A variable pattern consists of a name, optionally another pattern and optionally a type. The simplest form of
variable pattern is just a name, for example, the formal parameter x is a variable pattern:

let add1 = @Operation(x) x + 1 end in ...

Matching a simple variable pattern such as that shown above always succeeds and causes the name to be bound
to the corresponding value. A variable may be qualified with a type declaration:

let add1 = @Operation(x:Integer) x + 1 end in ...

which has no effect on pattern matching. A variable may be qualified with a pattern as in x = <Pattern> where the
pattern must occur before any type declaration. Such a qualified variable matches a value when the pattern also
matches the value. Any variables in the pattern and x are bound in the process.

Constants

A constant pattern is either a string, an integer, a boolean or an expression (in the case of an expression the
pattern consists of [followed by an expression followed by]). A constant pattern matches a value when the values
is equal to the constant (in the case of an expression the matching process evaluates the expression each time the

match occurs). For example:

let fourArgs = @Operation(1,true,"three",x = [2 + 2]) x end in ...

is an operation that succeeds in the case:

fourArgs(1,true,"three",4)

and returns 4.

Sequences

A sequence pattern consists of either a pair of patterns or a sequence of patterns. In the case of a pair:

let head = @Operation(Seq{head | tail}) head end in ...

the pattern matches a non-empty sequence whose head must match the head pattern and whose tail must match
the tail pattern. In the case of a sequence of patterns:

let add3 = @Operation(Seq{x,y,z}) x + y + z end in ...

the pattern matches a sequence of exactly the same size where each element matches the corresponding pattern.

Constructors

A constructor pattern matches an object. A constructor pattern may be either a by-order-of-arguments constructor
pattern (or BOA-constructor pattern) or a keyword constructor pattern. A BOA-constructor pattern is linked with the
constructors of a class. It has the form:

let flatten = @Operation(C(x,y,z)) Seq{x,y,z} end in ...

where the class {\tt C} must define a 3-argument constructor. A BOA-constructor pattern matches an object when
the object is an instance of the class (here {\tt C} but in general defined using a path) and when the object's slot
values identified by the constructor of the class with the appropriate arity match the corresponding sub-patterns
(here xy and z). A keyword constructor pattern has the form:

let flatten = @Operation(C[name=y,age=x,address=y]) Seq{x,y,z} end in ...

where the names of the slots are explicitly defined in any order (and may be repeated) .Such a pattern matches an
object when it is an instance of the given class and when the values of the named slots match the appropriate
sub-patterns.

Conditions

A conditional pattern consists of a pattern and a predicate expression. It matches a value when the value matches
the sub-pattern and when the expression evaluates to true in the resulting variable context. For example:

let repeat = @Operation(Seq{x,y} when x = y) Seq{x} end in ...

Note that the above example will fail (and probably throw an error depending on the context) if it is supplied with a
pair whose values are different.

Sets

Set patterns consist of an element pattern and a residual pattern. A set matches a pattern when an element can be
chosen that matches the element pattern and where the rest of the set matches the residual pattern. For example:

let choose = @Operation(S->including(x)) x end in ...

which matches any non-empty set and selects a value from it at random. Set patterns introduce choice into the

current context because often there is more than one way to choose a value from the set that matches the element
pattern. For example:

let chooseBigger = @Operation(S->including(x),y where x > y) x end in ...

Pattern matching in chooseBigger, for example:

chooseBigger(Set{1,2,3},2)

starts by selecting an element and binding it to x and binding S to the rest. In this case suppose that x = 1 and S =
Set{2,3}. The pattern y matches and binds 2 and then the condition is applied. At this point, in general, there may
be choices left in the context due to there being more than one element in the set supplied as the first parameter. If
the condition x > y fails then the matching process jumps to the most recent choice point (which in this cases
causes the next element in the set to be chosen and bound to x). Suppose that 3 is chosen this time; the condition
is satisfied and the call returns3. The following is an example that sorts a set of integers into descending order:

context Root
 @Operation sort(S)
 @Case S of
 Set{} do Seq{} end
 S->including(x)
 when S->forAll(y | y <= x)
 do Seq{x | Q} where Q = sort(S)
 end
 end
 end

Sequences

Sequence patterns use the infix + operator to combine two patterns that match against two sub-sequences. For
example the following operation removes a sequence of 0's occurring in a sequence:

context Root
 @Operation remove0s(x)
 @Case x of
 (S1 when S1->forAll(x | x <> 0)) +
 (S2 when S2->forAll(x | x = 0)) +
 (S3 when S3->forAll(x | x <> 0))
 do S1 + S3
 end
 end
 end

Syntax

Syntax patterns consist of expressions within quasi-quotes [| and |]. The quotes are a short-hand for writing out the
equivalent constructor patterns. Syntax patterns provide a powerful way of constructing syntax mappings where
the pattern is defined in terms of concrete syntax rather than the equivalent abstract syntax structures. Consider an
operation that extracts the body of a letexpression:

context Root
 @Operation getBody([| let x = value in body end |])
 body
 end

Unfortunately, this will not work as you may expect since the syntax pattern states that the operation expects to be
supplied with a let expression that consists of exactly one binding and where the body of the expression is the
variable whose name is body. We wish to place patterns within the syntax construct that match against specific

elements of the abstract syntax structure. To do this we use pattern-unquotes:

context Root
 @Operation getBody([| let <| bindings |> in <| body |> end |])
 body
 end

Within a syntax pattern the unquotes <| and |> are used to surround patterns that are to be matched against the
abstract syntax structures occurring at that point in the supplied expression. In the example above, bindings is
bound to the sequence of bindings in the let and body is bound to the body. The following example shows an
operation that calculates the free variables occurring in an expression. The expression is limited to a small number
of XOCL expressions:

context Root
 @Operation FV(e)
 @Case e of
 [| let <| Seq{} |> in <| e |> end |] do
 FV(e)
 end
 [| let <| Seq{ ValueBinding(v,e1) | bs } |>
 in <| e2 |>
 end
 |] do
 FV([| let <bs> in <e2> end|])->excluding(v)
 end
 [| if <| e1 |>
 then <| e2 |>
 else <| e3 |>
 end
 |] do
 FV(e1) + FV(e2) + FV(e3)
 end
 [| <| e1 |> = <| e2 |> |] do
 FV(e1) + FV(e2)
 end
 Var[name=n] do
 Set{n}
 end
 end
 end

The following call:

FV[| let x = 10; y = 20 in if x = y then z else a end end |])

produces the set

Set{a,z}

Pattern Contexts

Patterns may be used in the following contexts:

Operation Parameters. Each parameter in an operation definition is a pattern. Parameter patterns are useful when
defining an operation that must deconstruct one or more values passed as arguments. Note that if the pattern
match fails then the operation invocation will raise an error. Operations defined in the same class and with the
same name are merged into a single operation in which each operation is tried in turn when the operation is called
via an instance of the class. Therefore in the following example:

@Class P
 @Operation f(Seq{}) 0 end
 @Operation f(Seq{x | t}) x + self.f(t) end
end

an instance of P has a single operation f that adds up all the elements of a sequence.

Case Arms. A case expression consists of a number of arms each of which has a sequence of patterns and an
expression. A case expression dispatches on a sequence of values and attempts to match them against the
corresponding patterns in each arm in turn. For example, suppose we want to calculate the set of duplicated
elements in a pair of sets:

context Root
 @Operation dups(s1,s2)
 @Case s1,s2 of
 s1->including(x),s2->including(y) when x = y do
 Set{x} + dups(s1,s2)
 end
 s1->including(x),s2 do
 dups(s1,s2)
 end
 s1,s2->including(y) do
 dups(s1,s2)
 end
 Set{},Set{} do
 Set{}
 end
 end
 end

In XMap transformations, as described in the XMap manual.

3.6.9. Data Type Operations

Boolean

A value of the Boolean type can either be true or false.

Operators

All the usual Boolean operators are provided.

Table 1.

Operators Syntax Result Type

Or a or b Boolean

And a and b Boolean

negation not b Boolean

equals a = b Boolean

not equals a <> b Boolean

implies a implies b Boolean

Examples

not true
balance > 0 or balance < 100
x <> y implies x.name <> y.name

The following example shows the definition of the logical operator and. It uses an if statement to test whether other
is a Boolean value and if it is returns the conjunct of self and other. An error is reported if the type is incorrect.

context Boolean
@Operation booland(other)
 if other.isKindOf(Boolean)
 then
 self and other
 else
 self.error("Boolean::booland expects a boolean " + other.toString())
 end
 end

Channels

XOCL provides channels to perform input and output. The channel classes are defined in the IO package and are
defined in a separate document. This section provides a very brief overview of input and output using channels.

Standard Input and Output

XOCL provides two channels as global variables defined in the name space Root. The output channel stdout is
used to send characters to the standard output. The input channel stdin reads characters from the standard input.
In both cases characters are represented as integer character codes in the range 0 to 255. Characters are written
on output channels by outch.write(c) and read from input channels by inch.read().

Formatting Output

XOCL provides a convenient means for formatting output to channels. The global variable format is bound to a
character formatter that is used as an operation by applying it to arguments that control the output of characters.
The general form is:

format(outch,formatString,args)

where the format string is a string of characters controlling how the sequence of argument values is formatted as
output to the output channel. A format string is a sequence of characters and format directives. Each character
occurring in a format string is written to the output channel in sequence. A format directive starts with the tilde (~)
character and controls how the output is written and how the fomat arguments are consumed and written to the
output channel. A typical use of format will print a message followed by a newline. A newline is produced using the
format directive ~% as in:

format(outch,”hello world~%”,Seq{})

Note that there are no format arguments in the example above. Where there are no format args, they can be
omitted:

format(outch,”hello world~%”)

The directive ~S consumes the next format argument, translates it to a string and prints it to the output channel.
For example, if we want to print out the source and target of an edge with an arrow between them:

format(outch,”~S -> ~S~%”,Seq{edge.source,edge.target})

Format defines many other directives that are defined in the Xmodeler guide to IO.

File Based Input and Output

The IO package of Xmodeler provides file channels for accessing and updating files. These channels are defined
in the Xmodeler guide to IO. A useful special form is provided that hides the details of file IO:

@WithOpenFile(inch <- filename)
 // Use inch.read() to read characters from the file.
 // inch.read() returns -1 when EOF is reached.
end

@WithOpenFile(outch -> filename)
 // Use outch in format expressions to write characters to the file.
end

In both of the examples above the filename is specified as an expression whose value is a string. The channels
used to perform the input and output are automatically closed when the WithOpenFile expression completes. If an
IO error occurs during the evaluation of the WithOpenFile then XOCL guarantees that the channels are closed
before the error is reported.

Clients

XOCL provides clients that can be used to connect to external servers on ports and then communicate via input
output channels with the server.

Daemons

An XOCL daemon is an operation that is attached to an object’s slot such that whenever the slot changes state the
operation is invoked. The invocation is referred to as firing the daemon. There are several different types of
daemon depending on the required firing mode: whether the operation is invoked when any change occurs, when a
new value is added to the slot or when a value is removed from the slot.

A new daemon is created using the Daemon constructor:

Daemon(id,type,slot,action,persistent,traced,target)

Where id is any XOCL value and is used to identify the daemon in a given context; type is an integer determining
the firing mode of the daemon; slot is a symbol that names the slot that is being monitored by the daemon (or null if
this is not appropriate); action is an operation to be invoked when the daemon fires; persistent is a boolean value
determining whether or not the daemon will be saved when an object containing the daemon is saved to a XAR
file; traced is a boolean value that determines whether or not tracing information is printed when the daemon fires;
target is any XOCL value and provides a means of associating state with a daemon.

The type of the daemon is supplied as an integer value. The types are defined by an enumerated type defined in
the class Daemon; the type determines the number of arguments that the action should have. The following table
lists the types and provides skeleton operations of the appropriate form for the daemon type:

Table 2.

Type Description Action Skeleton

XCore::Daemon::ANY

Any change to the object will fire the
daemon. The action is supplied with
the object, the name of the slot that
changes, the new value and the old
value of the slot. The value of slot in
the construction of the daemon is null.

@Operation(object,slot,newValue,oldValue)
… end

XCore::Daemon::VALUE
Any change to the named slot will fire
the daemon.

@Operation(object,slot,newValue,oldValue)
… end

XCore::Daemon::ADD

The slot must contain a set or
sequence. When a new value is added
to the set or sequence the daemon will

@Operation(object,slot,value) … end

fire. The action is supplied with the
added value.

XCore::Daemon::REMOVE

The slot must contain a set or
sequence. When a value is removed
from the set or sequence the daemon
will fire. The action is supplied with the
removed value.

@Operation(object,slot,value) … end

Elements

All XOCL values are instances of the XCore class named Element. The operations defined by this class are
available for all values in Xmodeler. The following table shows the essential operations defined by this class. Note
that XOCl is a dynamic language and new operations can be added to a class at any time. Adding operations to
Element will cause these to be available for all values.

Table 3.

copy():Element
Returns a copy of the receiver. By default this returns the
receiver. Sub-classes o Element may redefine this
appropriately.

equals(other:Element):Boolean

Returns true when the receiver is equal to the argument. By
default this is defined to be true when the identify (memory
location) of elements with state are the same. Strings are
compared character by character. Sets are equal when all
elements are equal.

error(reason:String) A convenient way of raising an error exception.

hashCode():Integer Returns the code used to index into hash tables.

init(args:Seq(Element)):Element
All elements can be initialised with respect to arguments. See
Object for more specific information.

isKindOf(c:Classifier):Boolean
Returns true when the receiver is an instance (dorect or
otherwise) of the argument. Note that null is considered an
instance of everything.

isReallyKindOf(classifier:Classifier):Boolean True when isKindOf is true and the receiver is not null.

of():Classifier Returns the direct classifier of the receiver.

send(message:String,args:Seq(Element)):Element
Sends the supplied message with the given arguments to the
receiver. Returns the result.

toString():String

Produces a string representation of the receiver. The system
uses toString to display XOCL values in all circumstances. It
is usual to provide an appropriate definition of toString in all
class definitions. This aids debugging systems.

yield() Halt the current thread and reschedule it.

Integers

This is the data type for integer values The default value is 0.

Operators

All the usual operators on Integer types are provided.

Table 4.

Operator Syntax Result Type

equals a = b Boolean

not equals a <> b Boolean

less than a < b Boolean

more than a > b Boolean

less or equal a <= b Boolean

more or equal a >= b Boolean

plus a + b Integer or Float

minus a - b Integer or Float

multiplication a * b Integer or Float

divison a / b Integer or Float

operation a.op() Element

Operations

A variety of integer operations are also provided.

Table 5.

abs():Integer Returns the absolute value of an integer.

add(other:Element):Element Adds an integer to another integer of a float.

asSeq():Seq(Integer) Turns an integer into a 24 bit sequence of binary values.

bit(index:Element):Element
Returns the ith bit after converting an integer into a 24 bit sequence of binary
values.

byte(index:Integer):Integer
Returns the byte of an indexed by index. Bytes are indexed from 1 (low) to 4
(high).

div(other:Integer):Integer
Integer division returns the number of times an integer can be divided by other a
whole number of times.

floor():Integer Rounds a float down to an integer.

greater(other:Integer):Element Returns true if an integer is greater than other.

isAlphaChar():Boolean Returns true if an integer is a valid alphanumeric value.

isLowerCaseChar():Boolean Returns true if an integer is a valid lower case alphanumeric value.

isNewLineChar():Boolean Returns true if an integer is the new line alphanumeric value.

isNumericChar():Boolean Returns true if an integer is a valid numeric alphanumeric value.

isUpperCaseChar():Boolean Returns true if an integer is a valid upper case alphanumeric value.

isWhiteSpaceChar():Boolean Returns true if an integer is the white space alphanumeric value.

less(other:Element):Element Returns true if the integer is lower than other.

lsh(n:Integer):Integer Left shift bit operation.

max(other:Integer):Integer Compares an integer with other and returns the maximum value.

min(other:Integer):Integer Compares an integer with other and returns the minimum value.

mod(other:Integer):Integer Returns the remainder when an integer is divided by other.

mul(other:Element):Element Multiples an integer by other.

round():Integer Rounds a float to the nearest whole integer.

rsh(n:Integer):Integer Right shift bit operation.

slash(other:Element):Element Divides an integer by other.

sqrt():Element Returns the square root of an integer.

sub(other:Element):Element Substracts other from an integer.

to(n:Integer):Seq(Integer) Generates a sequence of integers from self to n.

toString():String Converts an integer to a string.

Examples

13 * 42 = 546
12 > 10 = false
12.max(11) = 12
12.min(11) = 11
12.mod(5) = 2
1.to(3) = Seq{1,2,3}

The following example shows an operator definition for factorial. The operator is named fact, takes a single
argument n and is defined in the global context Root which means that the name fact is available everywhere:

context Root
 @Operation fact(n)
 if n = 0
 then 1
 else n * fact(n - 1)
 end
 end

Another example of a global operation definition is gcd below that computes the greatest common divisor for a pair
of positive integers. The example shows that operations can optionally have argument and return types:

context Root
 @Operation gcd(m:Integer,n:Integer):Integer
 if m = n
 then n
 else
 if m > n
 then gcd(m-n,n)
 else gcd(m,n-m)
 end
 end
 end

Floats

The data type for real values. The default value is 0.0.

Operators

Table 6.

Operator Syntax Result Type

equals a = b Boolean

not equals a <> b Boolean

less than a < b Boolean

more than a > b Boolean

less or equal a <= b Boolean

more or equal a >= Boolean

plus a + b Integer or Float

minus a - b Integer or Float

multiplication a * b Integer or Float

division a/b Integer or Float

operation a.op() Element

Operations

Table 7.

abs():Float Returns the absolute value of a float.

add(other:Element):Element Adds a float to other.

cos():Element Returns the cosine of a float.

div(other:Element):Element Divides a rounded float by the result of rounding other.

floor():Element Rounds a float down to an integer.

greater(other:Element):Element Returns true if a float is greater than other.

init(args:Element):Element No Documentation Specified

less(other:Element):Element Returns true if a float is less than other.

max(other:Integer):Integer Compares a float with other and returns the maximum value.

min(other:Integer):Integer Compares a float with other and returns the minimum value.

mod(other:Element):Element Returns a float modulo other after rounding down to integers.

mul(other:Element):Element Multiply a float by other.

round():Element Returns the result of rounding a float down.

sin():Element Returns the sin() of a float.

slash(other:Element):Element Divided a float by other.

sqrt():Element Returns the square root of a float.

sub(other:Element):Element Subtracts an integer from a float.

toString():String Converts and integer to a string.

Examples

1.1 > 1.01 = true
3.5.round() = 4
3.2.floor() = 3
13.sqrt() = 3.6055512

The following operation defines the operation abs(). If the float is a negative number it is subtracted from 0,
otherwise the value of the float is returned.

@Operation abs():Float
 if self < 0
 then
 0 - self
 else
 self
 end
 end

Objects

XOCL objects are XCore elements with slots. A slot is an association between a name (symbol) and a value. A slot
has state and can be updated. All objects in Xmodeler are instances of classes that inherit from the XCore class
Object. The essential operations supported by Object are defined below:

Table 8.

addDaemon(d:Daemon)
All objects have a collection of daemons. A daemon is an operation
that is invoked whenever a slot of the object is updated

daemons():Seq(Daemon)
Returns the currently defined daemons for the receiver. Daemons are
fired when the object changes state and when the objects daemons
are active.

daemonsActive():Boolean
Returns whether or not the daemons of this object will be fired when an
update takes place.

get(name:String)
Returns the value of the named slot of the receiver. The name may be
a string or a symbol. An exception is raised if the receiver has no slot
with the given name.

getStructuralFeatureNames():Set(String) Returns the slot names of the object.

hasDaemonWithId(id:Element):Boolean Returns true when the receiver has a daemon with the supplied id.

hasSlot(name:Element):Boolean
Returns true when the receiver has a slot with the given name. The
name may be a string or a symbol.

init(args:Element)

When an object is initialised, by default we look for a constructor that
has the same arity as the supplied arguments. If we find one then it is
invoked. This operation causes constructors to be invoked when they
are defined for the class of the receiver. If this operation is redefined
then you should use super(args) in the sub-class to invoke this
operation.

removeDaemon(d:Daemon) Removes the supplied daemon.

set(name:String,value:Element)
Sets the named slot to the supplied value in the receiver. Raises an
exception if the receiver has no slot with the supplied name. The name
may be a symbol or a string.

setDaemons(daemons:Seq(Daemon)) Updates the daemons of the receiver to be the supplied sequence.

setDaemonsActive(active:Boolean)
Sets whether or not the daemons of this receiver will be fired when an
update takes place

Null

The value null is an instance of the XCore class Null and is considered special in the sense that it can be viewed
as the undefined value. It is an instance of all classes in Xmodeler and is the default value of all slots whose type is
not a basic type (such as String) or a set or sequence. There is only one null value and it is only equal to itself.

Operations

XOCL operations are used to implement both procedures and functions (queries). An operation has an optional
name, some parameters, a return type and a body. Operations are objects with internal state; part of the internal
state is the name, parameter information, type and body. Operations also have property lists that can be used to
attach information to the operation for use by XOCL programs.

Operations can be created and stored in Xmodeler data items. In particular, operations can be added to name
spaces and then referenced via the name space (either where the name space is imported or directly by giving the
path to the operation). We have seen many examples of adding operations to the name space called Root in
earlier parts of this primer. The syntax:

context Root
 @Operation add(x,y) x + y end

can occur at the top-level of an Xmodeler source file, compiled and loaded. It is equivalent to the following
expression:

Root.add(@Operation add(x,y) x + y end);

Unlike the context expression, the call to add may occur anywhere in Xmodeler code.

Operations are performed by sending them a message invoke with two arguments: the value of self (or target) to
be used in the body of the operation and a sequence of argument values. The target of the invocation is important
because it provides the value of self in the body of the operation and supplies the values of the slot-bound
variables. The add operation can be invoked by:

add.invoke(null,Seq{1,2})

It produces the value 3. Note that in this case there is no reference to selfor slot-bound variables in the body and
therefore the target of the invocation is null. A shorthand for invocation is provided: add(1,2)

However, note that no target can be supplied with the shorthand. In this case the target will default to the value of
self that was in scope when the operation was created.

Locally bound variables that are scoped over an operation are available within the body of the operation event
though the operation is returned from the lexical context. This is often referred to as closing the local variable into
the operation (or closure). This feature is very useful when generating behaviour that differs only in terms of
context. Suppose that transition machine states have an action that is implemented as an operation and that the
action is to be performed when the state is entered:

context StateMachines
 @Class State
 @Attribute name : String end
 @Attribute action : Operation end
 @Constructor(name,action) end
 @Operation enter()
 action()
 end
 end

Compiled operations have the following slots:

Table 9.

arity Integer The number of arguments required by the operation.

codeBox Element The XVM instructions.

dynamics Seq(element) The global variables available via imports.

globals Seq(Element) The global variables available via imports.

isVarArgs Boolean Whether this operation can take a variable number of arguments.

properties Seq(Element) A sequence of name value pairs.

sig Seq(Element) A type signature for the operation.

supers Seq(Operation)
A sequence of operations headed by the owner of the slot. Used when invoking
super.

target Element Value used as self within the operation.

traced Operation An operation used as a proxy when the operation is traced. (null is not traced).

Operations

Compiled operation defines the following operations:

Table 10.

addDaemon(daemon:Element) Operations have daemons that monitor their slots.

addNameChangedDaemon(d:Element,actionSource:Element)

Use this operation to add a daemon that monitors
the name of a compiled operation for changes.
The args for the daemon are the new name and
the old name.

arity():Integer
The number of arguments expected by the
operation. Use this rather than reference the slot.

daemons():Seq(Operation)
Returns the daemons currently monitoring the
operation.

disassemble():String Displays the XVM instructions to stdout.

disassemble(out:Element) Displays the XVM instructions to out.

doc():Element Any documentation defined for the receiver.

get(name:String):Element Reference a named slot of the receiver.

getStructuralFeatureNames():Set(String) Get the slots defined for the receiver.

hasProperty(property:Element):Boolean
Returns true when the receiver has the supplied
property.

hasSlot(name:String):Boolean
Returns true when the receiver has the supplied
name.

importNameSpace(n:NameSpace)

Imports the supplied name space and its contents
to the receiver. If the name space is already
imported then no change is made. Otherwise the
name space is added as the most specific
imported name space.

importNameSpaces(N:Seq(NameSpace))
Imports the sequence of name spaces in the
order that they are supplied.

imports(n:NameSpace):Boolean
Returns true when the receiver imports the
supplied name space.

imports():Seq(NameSpace) Returns the sequence of imported name spaces.

isVarArgs():Boolean
returns true when the receiver can be supplied
with a variable number of arguments. Use this in
preference to referencing the slot.

name():Symbol
Returns the name of the receiver. Use this in
preference to referencing the slot.

owner():Element
Returns the owner of the receiver. Use this in
preference to referencing the slot.

paramNames():Seq(String) Returns the sequence of parameter names.

paramTypes():Seq(Classifier) Returns the sequence of parameter types.

properties():Element Returns the receivers property list.

property(property:Element):Element Returns the value of the supplied property.

removeDaemon(daemon:Element) Removes the supplied daemon.

set(name:String,value:Element) Sets the supplied slot.

setArity(arity:Element) Changes the arity (don’t use).

setDaemons(daemons:Element) Sets the daemons.

setDoc(doc:Element) Sets the documentation.

setName(name:Element) Sets the name.

setOwner(owner:Element) Sets the owner.

setProperties(properties:Element) Sets the properties.

setProperty(property:Element,value:Element) Sets the property.

setSig(sig:Element) Sets the type signature.

setSource(source:String) Sets the source code string.

setSupers(supers:Element) Sets the supers list.

setTarget(target:Element) Sets the target.

sig():Seq(Element) Returns the type signature.

source():String Returns the source code string.

supers():Seq(Operation) Returns the supers list.

target():Element Returns the target.

trace():Operation Returns the trace operation.

traced():Boolean True when the receiver is traced.

type():Classifier Returns the return type.

untrace()
Stops printing trace information when the receiver
is invoked.

update(newOp:Element)
Replaces the receiver with the argument. The
update is performed in place so that all
references to the receiver are also updated.

Strings

A string is a sequence of characters. Literal strings are written in enclosing double string quotes, such as “fred” and
“fido”.

Operators

Strings can be compared using equals (=) and can be concatenated.

Table 11.

Operator Syntax Result Type

equals a = b Boolean

not equals a <> b Boolean

concatenate a + b String

operation a.op() Element

Strings can also be compared using <, <=, > and >= in which case the usual lexicographic ordering applies.

Operations

A large number of string operations are provided for manipulating strings. These are given below.

Table 12.

asBool():Boolean
Converts a string into a Boolean provided it has the
string value true or false. String can be lower or upper

case. An exception is raised if the string is invalid.

asFloat():Float

Converts a string into a Float. It splits the string on its
decimal point, converts the two strings into integers
and passes them to the Float constructor. An exception
is raised if the result is not a Float.

asHTML():String
Transforms a string literal to HTML replacing any illegal
HTML characters so that the string is faithfully printed.

asInt():Integer
Converts a string into an Integer. Raises an exception
if it cannot be converted.

asSeq():Seq(Integer) Converts a string into a sequence of character codes.

asSet():Set(Integer) Converts a string into a set of character codes

asSymbol():Symbol
Converts a string into a Symbol. In general, symbols
can be processed more efficiently than strings, e.g. as
indexes in table lookups.

at(i:Integer):Integer
Returns the ith character in a string starting from
position 0.

default():Element Returns the default value for a string: the empty string

deleteFile():Boolean
Deletes the file given by a string path. Raises an
exception if the file does not exist or cannot be deleted.

drop(n:Integer):Element Removes the first i elements from a string.

edit():Element Launches an editor for a string.

escapeCharsToNewLines():Element Substitutes escape characters in a string for new lines.

exec(args:Seq(String)):Element Currently not supported.

fileExists():Boolean
Returns true if the file given by a string path exists,
otherwise false.

fileSize():Integer Returns the size of a file given by a string path.

greater(other:String):Boolean
Returns true if a string is greater than the supplied
string. The strings are compared alphabetically.

hasPrefix(prefix:String):Boolean Returns true if a string is prefixed by the string, prefix.

hasSuffix(suffix:String):Boolean Returns true if a string has a suffix, suffix.

indexOf(char:String):Integer Returns the index of a character, char in a string.

isOlder(file:String):Boolean
Compares the last modified date of the file referenced
by a string path with file. Returns true if file is older.

less(other:String):Boolean
Returns true if a string is less than the supplied string.
The strings are compared alphabetically.

loadBin(verbose:Boolean):Element
Load the binary for the file referenced by a string path.
Displays loading information if verbose is true. Raises
an exception if it does not exist.

lookup():Element
Returns the value of the dynamic variable with the
name defined by self or raises an error otherwise.

lowerCaseInitialLetter():String Makes the first letter of a string lower case.

mkDir():Boolean
Creates a directory. Returns true when the directory
already exists or is successfully created. Returns false
when the directory cannot be created.

newLinesToEscapeChars():Element Substitutes new lines in a string for escape characters.

padFrom(width:Integer,char:Integer):String
Pads ups to a string with additional character codes up
to width

padTo(width:Integer,char:Integer):String
Pads after a string with additional character codes up
to width.

parentDir():String
Returns the parent directory of the file referenced by a
string path. Returns an exception if it cannot be found.

readFile():String
Reads the file referenced by a string path, provided
that it exists.

renameFile(newName:String):Boolean
Renames a file referenced by a string path. A rename
is only performed if the file exists and there doesnt
exist a file with the new name.

repeat(n:Integer):Element Duplicates a string the given number of times.

reverse():String Reverses the characters in a string.

size():Integer Returns the size of a string.

splitBy(chars:String,start:Integer,last:Integer):Seq(String)

Splits a string into a sequence of strings around some
characters. The variables start and last can be used to
filter the returned string by returning the characters
from start to last. Setting start and last to 0 will return
the whole string.

stripNonAlphaChars():String Strips all non-alphanumeric characters from a string.

stripWhiteSpace():String Strips any whitespaces from a string.

subString(firstChar:String,pastLastChar:String):String
Uses indices to chop up a string. The first index is the
starting character and the second index is 1+ the final
character.

subst(new:String,old:String,all:Boolean):Element
Substitutes the string old in a string with new. If all is
set to false, just replaces the first occurence. If true
replaces them all.

toLower():String Converts all characters in a string to lower case.

toString():String Prints a string.

toUpper():String Converts all characters in a string to upper case.

truncate(width:Integer):String Truncates a string by width characters.

upperCaseInitialLetter():String Makes the first letter of a string upper case.

Examples

"to" + "day" = "today"
"tomorrow".size() = 8
"UPPER".toLower() = "upper"
"lower".toUpper() = "LOWER"
"Ceteva".subString(0,4) = "Xact"
"lower" <> "LOWER" = true
"123.456".splitBy(".",0,0) = Seq{"123","456"}

Characters are represented as integer ASCII codes. The following operation checks whether a string starts with an
upper case character:

context Root
@Operation startsUpperCase(s:String):Boolean
 if s->size > 0
 then

 let c = s->at(0)
 in "A"->at(0) <= c and c <= "Z"->at(0)
 end
 else false
 end
end

Sequences

A sequence is a list of values that may have duplicates. A sequence literal is denoted by enumerating the elements
in a Seq{}. For example, a sequence of numbers: Seq{1,2,3}. Sequences can be nested, for example:
Seq{Seq{“a”,”b”},1}.

The default value of a sequence is the empty sequence, Seq{}. A Seq(Element) is an instance of the Sequence
type. It contains the elements in the sequence.

Operators

Two sequences can be tested for equality and inequality. Two sequences are equal provides that they contain the
same elements in the same order. Sequences can be concatenated.

Table 13.

Operator Syntax Result Type

equals a = b Boolean

not equals a <> b Boolean

concatenation a + b Sequence(Element)

Operations

XOCL provides a large number of sequence operations, including all those support by standard OCL.

Table 14.

append(s:Seq(Element)):Seq(Element) Append two sequences.

asProperSeq():Seq(Element) No Documentation Specified

asSeq():Seq(Element) Turns a sequence into a sequence.

asSet():Set(Element) Turn a sequence into a set.

asString():String Turns a sequence of integers into a string.

asVector():Vector Turns a sequence into a vector.

at(n:Integer):Element
Returns the nth element of a sequence starting
from 0.

bind(key:Element,value:Element):Seq(Element)
Binds a key with a value and adds it to the head of
the sequence.

binds(key:Element):Boolean
Returns true of a sequence contains a binding that
matches the key/

butLast():Seq(Element) Returns all elements but the last element.

contains(element:Element):Boolean Returns true if the sequence contains the element.

default():Seq(Element)
Returns the default sequence: an empty
sequence.

dot(name:String):Seq(Element)
Returns the result of iterating over a sequence
and performing dot on each element.

drop(n:Integer):Seq(Element) Drops the first n elements from a sequence.

equals(other:Element):Boolean

Returns true if a sequence equals another
sequence. To be equal they must both be
sequences and their elements should be equal
and in the same order.

excluding(element:Element):Element
Returns all elements in the sequence excluding
element.

exists(pred:Element):Boolean
Returns true when one element of the sequence
satisfies the predicate otherwise it returns false.

flatten():Seq(Element)
Turns a sequence of sequences of X into a
sequence of X.

forAll(pred:Element):Boolean
Returns true if all elements of the sequence satisfy
the predicate otherwise returns false.

hasPrefix(prefix:Seq(Element)):Boolean
Returns true if a sequence is prefixed by the
sequence prefix.

hasSuffix(suffix:Seq(Element)):Boolean
Returns true if a sequence is suffixed by the
sequence suffix

head():Element Returns the head of a sequence.

includes(element:Element):Boolean Returns true if a sequence contains element.

includesAll(c:Collection(Element)):Boolean
Returns true if a sequence includes all the
elements in the collection c.

including(e:Element):Seq(Element)
Returns the result of including the element e in a
sequence. The element is added to the head of
the sequence.

indexOf(element:Element):Integer
Returns the first index of the element in a
sequence. If it is not found, returns -1.

insertAt(e:Element,i:Integer):Seq(Element) Inserts an element e at position i in a sequence.

inspectDialog(level:Element):Element No Documentation Specified

isEmpty():Boolean Returns true if a sequence is empty.

isKindOf(type:Classifier):Boolean
Returns true if all elements in a sequence are
instances of type.

isProperSequence():Boolean Returns true if the last tail is a valid sequence.

iter(iterator:Element,value:Element):Seq(Element)
Iterates through a sequence, returning a
sequence.

last():Element
Returns the last element of a non-empty
sequence.

linkAt(element:Element,index:Integer):Seq(Element)
Returns the last element of a non-empty
sequence.

lookup(key:Element):Element
Looks up a pair in a sequence using the key.
Returns an error if the key cannot be found.

max():Integer
Returns the maximum valued element in the
sequence.

mul(s:Seq(Element)):Seq(Element)
Generates a sequence containing all combinations
of elements in the two sequences.

prefixes():Seq(Element)
Returns all possible prefixes of a sequence
including the empty sequence.

prepend(e:Element):Seq(Element)
Prepend adds an element to the head of a
sequence and returns a new sequence.

qsort(pred:Operation):Seq(Element)

Quicksorts the elements in the sequence. Is
supplied with an operation of the form
@Operation(x,y) predicate en-d where x and y will
be elements in the sequence. An example
predicate might be x < y.

ref(nameSpaces:Element):Element

ooks up a namespace path represented as a
sequence of strings to the element found at the
path. The operation takes a sequence of
namespaces as an argument; the namespace
arguments are used as the basis for the lookup.

reverse():Seq(Element) Reverses a sequence.

sel():Element Returns one element from a sequence.

select(predicate:Element):Seq(Element) Applies a filter to a sequence of elements.

separateWith(sep:String):String
Constructs a string by concatenating the elements
of a sequence together, separated by sep.

set(key:Element,value:Element):Seq(Element)
Sets the value of a binding in a sequence indexed
by key. Creates a binding if one does not exist.

size():Integer Returns the size of a sequence.

sort(pred:Element):Seq(Element)

Sorts a sequence using a comparison predicate of
the form @Operation(x,y) predicate end. The
predicate must be a comparison expression, e.g. x
< y.

sortByString():Seq(Element) Sorts by string value.

sortNamedElements():Seq(NamedElement)
Sorts a sequence of named elements. This
operation is implemented in the kernel as is
therefore very fast.

sortNamedElements_CaseIndependent():Seq(Element) Sorts named elements by names ignoring case.

sortNames():Seq(String) Sorts a sequence of names.

subSequence(starting:Element,terminating:Element):Element

Produces a subsequence given two indices. The
first index is inclusive and is the starting index.
The second index is exclusive and is the
terminating index.

subst(new:Element,old:Element,all:Boolean):Seq(Element)
Substitutes old for new in a sequence. If all is true,
it will replace all elements, otherwise it will replace
the first element.

tail():Seq(Element) Returns the tail of a sequence.

take(n:Integer):Element Takes n elements from the tail of a sequence.

toString():String Produces a printed representation of a sequence.

zip(s:Seq(Element)):Seq(Element)
Produces a sequences of pairs by matching the
first element of a sequence with the first element
of s, and so on...

Examples

Seq{"red"}+Seq{"green"} = Seq{"red","green"}
Seq{"red"}->at(0) = "red"
Seq{"red","green"}->last() = "green"

Seq{"red"}->insertAt(0,"green") = Seq{"red","green"}
Seq{"red","green"}->indexOf("green") = 1
Seq{"red","green","amber"}->subSequence(1,2) = Seq{"green"}
Seq{"red","green","amber"}->tail() = Seq{"green","amber"}

The operation butLast returns all elements in a sequence but the last element. It could have been defined as
follows, note the use of Seq{head | tail} to construct a sequence with the given head and tail:

context Seq(Element)
 @Operation butLast():Seq(Element)
 if self->size = 0
 then self.error("Seq(Element)::butLast: empty sequence.")
 else if self->size = 1
 then Seq{}
 else Seq{self->head | self->tail->butLast}
 end
 end
 end

Sets

A set is a list of values that may not have duplicates. A set literal is denoted by enumerating the elements in a
Set{}. For example, a set of numbers: Set{1,2,3}. Sets can be nested, for example: Set{Set{“a”,”b”},1}. The default
value of a set is the empty set, Set{}. A Set(Element) is an instance of the Set type. It contains the elements in the
set.

Operators

Two sets can be tested for equality and inequality. Two sets are equal provided they contain the same elements
irrespective of order.

Table 15.

Operator Syntax Result Type

equals a = b Boolean

not equals a <> b Boolean

Operations

Table 16.

asSeq():Seq(Element) Turns a set into a sequence.

asSet():Set(Element) Turns a set into a set.

collect(filter:Element):Set(Element)
Returns the set of elements that result from evaluating filter over a
set.

contains(element:Element):Boolean Returns true if a set contains an element.

default():Set(Element) Returns the default value of a set: the empty set.

dot(name:String):Set(Element)
Returns the result of iterating over a set and applying dot to the slot
named name.

edit():Element Launches a browser for a set.

excluding(element:Element):Set(Element) The set excluding the element.

exists(pred:Element):Element Returns true if an element satisfying the predicate exists in a set.

flatten():Set(Element) Turns a set of sets into a set.

includes(element:Element):Boolean Returns true if a set includes element.

includesAll(c:Collection(Element)):Boolean Returns true if a set includes all elements from another collection.

including(element:Element):Set(Element) The result of the set including element.

intersection(set:Set(Element)):Set(Element) Returns the intersection of two sets.

isEmpty():Boolean Returns true if the set is empty.

isKindOf(type:Classifier):Boolean Returns true if all elements in a set are of the type.

iter(iterator:Element,value:Element):Element Iterates over the elements in the set

max():Integer Find the element with the maximum value in the set.

power():Set(Element)
Returns the powerset of elements in a set, i.e. all possible subsets
of a set including the empty set.

reject(pred:Element):Set(Element) Rejects any elements in the set that satisfy the predicate.

sel():Element Selects a single element from a set.

select(predicate:Element):Set(Element) Selects any elements in the set that satisfy the predicate.

size():Integer Returns the size of the set.

toString():String Prints the set as a string/

union(set:Set(Element)):Set(Element) Returns the union of the two sets.

Examples

Set{1,2,3}->includes(1) = true
Set{1,2,3}->includesAll(1,2) = true
Set{1,2,3}->including(4) = Set{1,2,3,4}
Set{1,2,3}->excludes(1) = false
Set{1,2,3}->excludesAll(Set{4,5}) = true
Set{1,2,3}->excluding(1) = Set{2,3}
Set{1,2}->union(Set{2,3}) = Set{1,2,3}
Set{1,2,3} - Set{1,2,3} = Set{}
Set{1,2}->intersection(Set{2,3}) = Set{2}
Set{}->isEmpty() = true
Set{1,2,3}->size() = 3
Set{1}->sel() = 1
Set{Set{1},Set{2}}->flatten() = Set{1,2}

Suppose that the set operation includes was not provided as part of XOCL. It could be defined by:

context Set(Element)
 @Operation includes(e:Element):Boolean
 if self->isEmpty
 then false
 else
 let x = self->sel
 in if x = e
 then true
 else self->excluding(x)->includes(e)
 end
 end
 end
end

Symbols

Symbol is a sub-class of String. Whereas there may be two different strings with the same sequence of characters,

there can only be one symbol with the same sequence of characters. This is useful when using names as the basis
for lookup (in tables). For example Xmodeler ensures that classes, packages, operations, slots are named using
symbols so that the lookup of these features by name is as efficient as possible. If strings were used the lookup
would necessarily involve a character-by-character comparison. Using symbols the lookup can use the symbols
identity as the comparison operator. You can reference a symbol by constructing an instance: Symbol(name).

Operations

Table 17.

Operator Syntax ResultType

equals a = b Boolean

not equals a <> b Boolean

greater a > b Boolean

less than a < b Boolean

Symbols can be compared for equality, non-equality, greater than and less than, in which case the usual
lexicographic ordering applies.

Tables

A table associates keys with values. Any element can be used as a key. A table has an initial size and can support
any number of values. Use 'hasKey/1' to determine whether a table contains a key. Use 'get/1' to access a table via
a key and 'put/2' to update a table given a key and a value. Use 'keys/0' to access the set of keys for a table.

Operations

Table 18.

get(key:Element):Element
Return the value of the supplied key in the table. If the key does not
exist then an exception is raised. Use 'hasKey/1' to check if the key
exists.

hasKey(key:Element):Boolean Tests whether the table has a key or not.

keys():Seq(Element) Returns all the keys in the table.

pprint():String This operation prints out all the entries in a table.

put(key:Element,value:Element):Element
Add an association between the supplied key and value. Any existing
association for the key is removed.

ref(index:Integer):Element No Documentation Specified

remove(key:Element):Element
Remove the supplied key from the table. This succeeds whether the
key exists in the tabel or not. Any daemons defined for the table are
performed. The table is returned.

set(index:Integer,value:Element):Element No Documentation Specified

size():Integer Returns the size of a table.

toString():String Returns a string representation of a table.

values():Set(Element) Returns all elements in the tables as a set.

Examples

The following example adds and retrieves elements from a table:

context Root
 @Class Fill

 @Attribute table : Table(1000) end
 @Operation add(key,element)
 self.table.put(key,element)
 end
 @Operation retrieve(key)
 self.table.get(key)
 end
 end

Threads

XOCL provides threads for concurrent processing. A new thread of control is created using the special form:

@Fork(n)
 body
end

where n is a name used to identify the thread and body is an XOCL expression that is run when the thread starts.
At any time the XVM is executing a single thread of control. The thread continues on the XVM until either it
performs a read operation that blocks on input or when it explicitly calls yield. All XOCL values implement the yield
operation. In both cases the thread is said to yield control. When a thread yields control, the XOS schedules
another thread that is waiting. The scheduling algorithm aims to ensure that all waiting threads get scheduled
providing that they yield.

Note that Xmodeler is not intended to be a heavy-weight concurrent programming environment. Threads are
provided for light-weight use, primarily for handling multiple connections from processes that communicate with
Xmodeler via input and output channels. There is nothing to stop threads being used to implement a variety of
concurrent process architectures, however there are no facilities in Xmodeler for controlling concurrent access to
resource (such as locks, monitors etc).

Vectors

Vectors provide an efficient way of maintaining and accessing an array of values. Vectors are created using the
constructor Vector(<vector length>), where size is the length of the vector. A vector is indexed starting at position 0.

Operations

A vector is a fixed length array of elements. They are created using the constructor Vector(). Vectors provide very
efficient insert (put/2) and lookup operations (ref/1).

Table 19.

asSeq():Seq(Element) Converts a vector into a sequence.

asString():String Converts a vector to a string.

copyInto(vector:Element):Element Copies the elements of vector into self starting at position 0.

put(index:Element,value:Element):Element Put the element value into a vector at position index.

ref(index:Element):Element Returns the value at position index in a vector.

size():Integer Returns the size of a vector.

toString():String Returns a string representation of a vector.

Examples

The following operation creates a vector and populates it with element.

context Vector
 @Operation fill(element:Element)

 @For e in 0.to(self.size()) do
 self.put(e,element)
 end
 end

Debugging

XOCL operation invocation can be traced to check whether the operator is being called correctly. To trace an
operation send it a trace message with no arguments. To stop the trace, send it an untrace message with no
arguments. A traced operation will print out its arguments when it is called and its return value when it returns. All
the operations defined in a name space N can be traced and untraced by N.traceAll() and N.untraceAll().

3.6.10. Relationship to OCL and ASL

XOCL is intended to be a superset of OCL, providing many additional operations and data types over standard
OCL. There are a few places where XOCL differs from standard OCL however. These include the following
features:

Table 20.

XOCL Standard OCL

OCL tags, e.g. inv: and pre:
are not supported

These tags are defined by the grammar declaration, e.g. @OCL or by the context of
the form it is being typed into.

isKindOf oclIsKindOf

collect
Standard OCL collect always flattens the resulting collection. In XOCL flattening is
not automatic, so the flatten operation must be applied where required.

iterate
Does not currently support types in accumulator declaration, e.g: ->iterate(a x :
Integer = 0 | ...)

XOCL currently does not
support Bags

Standard OCL supports Bags

ASL (the Action Semantics Language) is the OMG’s standard language for expressing dynamic behaviour. It is
particularly oriented towards capturing concurrent and real-time behaviour. Although XOCL incorporates some of
the features of ASL, XOCL is intended to fill a different gap: that of a general-purpose metaprogramming language.
It therefore does not incorporate many of the complex features provided by ASL.

3.6.11. XOCL Grammar

 AName ::= Name | Drop.

 Apply ::= PathExp Args | KeyArgs .

 ArithExp ::= UpdateExp [ArithOp ArithExp].

 ArithOp ::= '+' | '-' | '*' | '/'.

 Args ::= '(' (')' | Exp (',' Exp)* ')'.

 AtExp ::= '@' AtPath @ 'end'.

 AtPath ::= Name ('::' Name)*.

 Atom ::= VarExp | 'self' | Str | Int | IfExp | Bool | LetExp |
 CollExp | AtExp | Drop | Lift | '(' Exp ')' | Throw | Try |
 ImportIn | Float.

 AtomicPattern ::= Varp | Constp | Objectp | Consp | Keywordp.

 Binding ::= AName '=' LogicalExp.

 Bindings ::= Binding (';' Binding)*.

 Bool ::= 'true' | 'false'.

 CollExp ::= SetExp | SeqExp.

 CompareExp ::= ArithExp [CompareOp CompareExp].

 CompareOp ::= '='| '<' | '>' | '<>' | '>=' | '<='.

 CompilationUnit ::= ParserImport* Import* (Def | TopLevelExp)* EOF.

 Consp ::= Pairp | Seqp | Emptyp.

 Constp ::= Int | Str | Bool | Expp.

 Def ::= 'context' PathExp Exp.

 Drop ::= '<' Exp '>'.

 EmptyColl ::= Name '{' '}'.

 Emptyp ::= Name '{' '}'.

 Exp ::= OrderedExp.

 Expp ::= '[' Exp ']'.

 Float ::= Int '.' Int.

 Import ::= 'import' TopLevelExp.

 ImportIn ::= 'import' Exp 'in' Exp 'end'.

 ParserImport ::= 'parserImport' Name ('::' Name)* ';' ImportAt.

 IfExp ::= 'if'Exp 'then'Exp IfTail.

 IfTail ::= 'else' Exp 'end' | 'elseif' Exp 'then' Exp IfTail | 'end'.

 KeyArgs ::= '[' (']' | KeyArg (',' KeyArg)* ']'.

 KeyArg ::= Name '=' Exp.

 Keywordp ::= Name ('::' Name)* '[' Keyps ']'.

 Keyps ::= Keyp (',' Keyp)* | .

 Keyp ::= Name '=' Pattern.

 Lift ::= '[|' Exp '|]'.

 LetBody ::= 'in'Exp| 'then' Bindings LetBody.

 LetExp ::= 'let'Bindings LetBody 'end'.

 LogicalExp ::= NotExp [LogicalOp LogicalExp].

 LogicalOp ::= 'and' | 'or' | 'implies'.

 NonEmptySeq ::= Name '{' Exp ((',' Exp)* '}' | '|' Exp '}').

 NonEmptyColl ::= Name '{' Exp (',' Exp)* '}'.

 NotExp ::= CompareExp | 'not' CompareExp.

 Objectp ::= Name ('::' Name)* '(' Patterns ')'.

 OrderedExp ::= LogicalExp [';' OrderedExp].

 OptionallyArgs ::= Args | .

 Pairp ::= Name '{' Pattern '|' Pattern '}'.

 PathExp ::= Atom ['::' AName ('::' AName)*].

 Pattern ::= AtomicPattern ('->' Name '(' Pattern ')')* ('when' Exp |).

 Patterns ::= Pattern (',' Pattern)* | .

 RefExp ::= Apply
 (
 '->'
 (
 'iterate' '(' AName AName '=' Exp '|' Exp ')'
 |
 AName
 (
 OptionallyArgs
 |
 '(' AName '|' Exp ')'
 |

)
)

 |
 '.' AName
 (
 Args
 |

)
)*.

 Seqp ::= Name '{' Pattern SeqpTail.

 SeqpTail ::= ',' Pattern SeqpTail | '}'.

 SeqExp ::= EmptyColl | NonEmptySeq.

 SetExp ::= EmptyColl | NonEmptyColl.

 Throw ::= 'throw' LogicalExp.

 TopLevelExp ::= LogicalExp ';'.

 Try ::= 'try' Exp 'catch' '(' Name ')' Exp 'end'.

 UpdateExp ::= RefExp (':=' ! LogicalExp |).

 VarExp ::= Name Token.

 Varp ::= AName ('=' Pattern |) (':' Exp |).

3.6.12. Pattern Grammar

Pattern ::= Add ('->including(' Pattern ')')* ['when' Exp].

Add ::= Atom ['+' Add].

Atom ::= Varp | Constp | Cnstrp | Seqp | Setp | Syntaxp | '(' Pattern ')'.

Varp ::= Name ['=' Pattern] [':' Type]

Constp ::= Integer | String | Boolean | '[' Exp ']'

Cnstrp ::= BOAp | Keyp

BOAp ::= Path '(' [Pattern (',' Pattern)*] ')'

Keyp ::= Path '[' [Name '=' Pattern (',' Name '=' Pattern] ']'

Seqp ::= 'Seq{' [Pattern (',' Pattern)*] '}' | 'Seq{' Pattern '|' Pattern '}'

Setp ::= 'Set{}'

Syntaxp ::= '[|' Exp '|]'.

Path ::= Name ('::' Name)*.

3.7. XTools

3.7.1. Introduction

The XTools package is used to construct and deploy tools. An Xtool is some data together with interfaces for both

user and inter-tool interaction. Since all aspects of tools are modeled, Xtools can be analysed, transformed and
deployed. This document describes the XTools approach to tool definition and is a reference manual for Xtool
definition mechanisms.

3.7.2. The XTools Architecture

Introduction

An Xtool is an instance of a domain model together with an exposed interface for constructing and manipulating
the instance. An Xtool is modelled and is expressed in an XTools modelling language. The language hides away
much of the implementation detail that is necessary to construct tools and ensures that multiple tools over a variety
of domain models have a consistent look and feel. In addition, since an Xtool is modelled, it can be mechanically
processed. In particular an Xtool can be transformed into different formats, for example exporting the definition as
XML or as programming language source code.

Xtools manage changes in domain model instances by raising and handling events. Each Xtool contains a monitor
for all the events that can be raised on the user interface and by external agents that change the domain model
instance. By raising and handling events, multiple Xtools can be seamlessly composed without having to know
anything about each other.

All Xtools conform to a basic architecture that ensures consistent look and feel across all generated tools and
allows Xtools to work together to form tool federations. This section describes the components of the architecture.

Tool Component

The basic features of an Xtool are defined in the package Clients::Tools::Basic:

A tool consists of:

A tool type that defines how the tool’s user interface should be constructed and managed. A tool type is like a class
in that a single tool type can be the type of many tools. A tool type defines named attributes of the tool; the value of

each attribute depends on the type of tool we are constructing: for example, a diagram tool can have text attributes
and image attributes whereas a form tool can have tree attributes and text box attributes. The tool type also
defines the events that are generated when the user interacts with the interface. For example, if the tool type
defines a text field called name then an event name_Changed will be raised whenever the user types in the text
field.

An element manager that defines how the tool responds to events. Events are generated either by user interaction
with the interface or by modifications to the underlying element managed by the tool. An element manager contains
a collection of event handlers.

A domain element that is managed by the tool. Change events from the user interface cause the element manager
to modify the managed element. Change events from the managed element cause the element manager to modify
the user interface associated with the tool.

Note that the user interface is not a prescribed part of a tool definition since the details of the user interface will
depend on the type of tool.

Tool Event

Tool execution occurs in the form of events. An event occurs due to a change arising in the user interface (such as
a diagram edit); or due to a change in the element managed by the tool. Events are handled by a tool’s element
manager. The element manager contains a collection of event handlers; each handler listens for events of a
particular type. The event handler runs some code that handles the event when it occurs. Typically the code
propagates a change from the user interface to the managed element and vice versa. The following diagram
shows how events are handled when a change occurs to a user interface:

The user performs a modification to the interface via the mouse. This causes a state change in the interface object
which is detected by a monitor and translated into an event of the appropriate type. The event is sent from the
interface to the tool and then to the element manager. The element manager selects an event handler by matching
against the type of the event. When a suitable event handler has been selected, it is executed. The body of the
event handler performs appropriate updates to the managed element.

Conversely, the following diagram shows how changes to the managed element update the user interface. An

external agent changes the managed element. If changes to the managed element are being monitored by the tool
(sometimes this is not required) then the changes gives rise to an event in the tool which, like changes to the user
interface, give rise to an event in the element manager. An appropriate handler is selected which uses lookup
mechanisms in the element manager to associate the changed element with a user interface component; the
component is then updated.

The following model shows the basic architecture of the XTools event mechanism:

An event manager is a name space that defines event handlers. Each event handler has an operation that
implements the code for handling the event. An event handler has a pattern that matches against the type of the
event that the handler monitors. An element manager inherits handlers from its parents.

Creation events are typically propagated from user interface to managed element and vice versa. Once created,
elements must be managed so that subsequent modification events can be propagated. An element manager has
a table that is used to record associations between user interface elements and managed elements when they are
created. Subsequent modification events can then look up the modified element in the table and propagate the
change.

XTools provides a range of tool types. Each tool type provides a different collection of events. All XTool events
inherit from the basic Event class that requires the event to record the tool that raised the event. The tool is
particularly useful when implementing event handlers since it provides access to the managed element and the
element manager with its table of associations.

Tool Definition

XTools provides a number of technologies for tool definition. The essential representation is using the XTools
textual language to construct the tool components. The XTools classes define a number of grammars that must be
imported using parserImport in order to use the textual format. The essential components of a tool definition are
the tool type and the element manager. If the tool is to be defined in a single file then the following Xmodeler code
skeleton shows the key definitions:

parserImport Tools::DiagramTools::Types;
parserImport Tools::Events;

context MyPackage

@Package NewTool

 @ToolType NewToolType

 // Type component definitions...

 end

 @ElementManager NewToolManager

 @EventHandler EventName()

 // Handler body...

 end

 // Event handler definitions...

 end

end

The tool type, element manager and event handlers need not be defined inside their container’s textual definition.
You may use context definitions to define these elements in isolation, for example:

context MyPackage

 @ToolType NewTool

 // Type component definitions...

 end

context MyPackage

 @ElementManager NewToolManager

 end

context MyPackage::NewToolManager

 @EventHandler EventName()

 // Handler body...

 end

Different context definitions may exist in different files (probably composed using a manifest). Of course, definitions
must exist before they can be referenced, in the build order.

Once the tool type and the element manager have been defined a new tool is created by instantiating the
appropriate XTools tool class. For example, if we are defining an diagram tool then we create an instance of the
tool class Tools::DiagramTools::Structure::Tool:

import Tools::DiagramTools::Structure;
import MyPackage::NewTool;

...

let tool = Tool(toolName,NewToolType,NewToolManager,element)
in tool.showDiagram()
end

...

A tool constructor takes four arguments: the name of the tool, the tool type, the tool manager and the managed
element. The managed element can be any value: it is up to the event handlers to interpret this value appropriately.
It is likely that new types of tool (based on diagram or form tools) will be required. It is easy to define your own
extensions to these types of tool by sub-classing the appropriate Tool class.

Once a tool has been created, it is displayed and ready for use after a call of showDiagram. This call will create the
user interface for the tool and display it. Subsequent calls to showDiagram will switch the tool focus back to this
tool.

Tool Deployment

Tools can only be deployed into Xmodeler in version 1.0 of XTools.

3.7.3. Diagram Tools

XTools supports a number of tool types. Diagram tools manage elements based on diagram editors. A diagram
consists of nodes and edges with various display elements attached to the diagram components. A user interacts
with the diagram by creating nodes and edges and editing the display elements. Each interaction gives rise to an
event that is handled by the diagram tool’s element manager. This section defines the features of diagram tools
and provides a number of examples to show you how to go about creating and deploying a rich collection of
domain specific tools.

Introduction

A diagram tool extends the basic notion of an Xtool with a diagram. Xmodeler provides a model of diagrams in
Clients::Diagrams; this is the basis for diagram tools.

Typically you will define a domain model and then decide how you want to construct elements of the model and
interact with them. This design is the basis for a domain specific user interface (you may have more than one for
any given domain model). The user interface is defined as an Xtool in terms of a diagram type and an element
manager.

The following model shows a simple extension of basic XTools Tool to support diagrams:

Diagram Tool Components

A diagram tool manages a diagram. The diagram is modelled and consists of a graph of nodes and edges. Each
node contains a collection of display elements that describe how the node is to be rendered. A node has a number
of ports that are used as places on the node to connect edges. A node without any ports cannot be connected via
edges (but may be useful as a diagram element nonetheless).

An edge has a source and target port, has a line style, end arrows and a number of labels. The line style defines
how the edge will be drawn (for example a dashed line). The end arrows defined the decoration, if any, that occurs
on either end of the edge (for example an arrow head or a diamond). The labels of an edge are text fields that are
attached to one of the start, end or middle of the edge. Labels may be readonly in which case they cannot be
modified.

Node display elements may be one of the following:

Boxes. A box acts as a container of display elements. The edges of a box may be hidden or drawn. Boxes
are useful when managing a collection of sub-elements on a node.
Ellipse. An ellipse has a outline that may be hidden.
Image. An image is a bitmap that is defined in an external file.
Text. A text field may be readonly.

All display elements have a position relative to (0,0) which is the top left hand corner of its container (y increases
down the screen). You do not have to worry about positions because XTools provides layout managers that deal
with all the hard work of placing display elements.

All display elements have a width and height. In most cases these values are handled by the layout manager so
you don’t have to worry about positioning or size, you can focus on what the information is rather than how it is
presented.

Both nodes and node display elements may be associated with ports. A port is a place on a node that acts as a
receptor for edge connection. Whilst ports have position and size, associating a port with a diagram element in
XTools automatically arranges for the port to be at the same location and size as the associated element. Typically
you will associate a port with each node type you define. The node can therefore act as the source or target of an
edge and XTools manages the resizing of the ports automatically when the node changes shape. Occasionally you
may have a strange shaped node where various parts of the node can be connected differently; in this case you
will associate ports with node display components.

The following model provides an overview of diagrams used in diagram tools. As noted above, you probably will
not need to know about the detail of this model, just acquaint yourself with the logical relationships between the
classes:

Nodes and Edges

A diagram consists of nodes and edges. For example, the diagram shown in the previous section consists of nodes
of type ClassNode and edges of types InheritanceEdge and AttributeEdge. When defining a domain specific
language editor, you need to list the node and edge types that you wish to display on the diagram. These may
correspond directly to the classes in your domain model and the associations between them (node and edge types
respectively). Of course the relationship between model classes and diagram types need not be so direct. This
section describes how you define node and edge types in the XTools textual language.

A node type has the following format:

@NodeType name(properties) extends parents
 display elements
 menu
end

A node type has a name followed by a collection of comma separated properties in parentheses. Optionally you
may define that a node type is an extension of a comma separated list of node type names. This allows node type
hierarchies to be constructed and can be important when defining edge types as described below.

Display elements are defined next followed by the menu for the node type. A node type may have the following
properties:

HORIZONTAL, VERTICAL or OVERLAY layout directives for the display elements. This directive defines how the

contained display elements will be arranged when a node of this type is created. These are defined in more detail
in the section on layout later in this document.

hasport. This property defines that each instance of this node type has a port associated with the entire node. The
port will automatically be resized when the node is resized.

An edge type has the following format:

@EdgeType name source -> target optSource optTarget optStyle
 labels
 menu
end

An edge type has a name followed by the name of the source and target node types. An edge of the defined type
may only be added to a diagram between nodes of the declared types. Note that node types are arranged in an
inheritance hierarchy so that edge instances may be drawn between any sub-types of the declared source and
target.

The source and target arrows are optional. If they are specified then they must both be specified and must be an
integer that specifies the display element at the appropriate end. The integer values are as follows: noArrow, arrow,
blackDiamond, whiteDiamond, blackArrow, whiteArrow. The optional style defines the way in which the edge will be
drawn. The values are as follows: solidLine, dashLine, dottedLine, dashDottedLine, dashDotDotLine.

A label has the following format:

@Label name(position,dx,dy) string end

A label has a name. The name is used to navigate to the label in an instance of the enclosing edge type. The
position of the label defines where it will be drawn relative to the edge. The position may be start, end or middle.
The dx and dy values are integers that specify co-ordinates relative to the position of the label. The initial text of the
label is given as a string in the body of the label type definition.

Toolbar

A toolbar is drawn at the left hand side of a diagram tool and contains tool groups and buttons. Groups are named
collections of buttons. A toolbar is used to create instances of node and edge types. The following model shows
the structure of toolbars:

The textual language for defining tool groups is as follows:

@ToolBar
 groups
end

Each group is defined as follows:

@ToolGroup name
 buttons
end

The name of the group appears in the tool bar. Each button is defined as follows:

@ToolButton name optIsEdge
 icon = filename
end

The name of the button defines the text that appears on the diagram. The name of the button should be the name
of a node type or an edge type. If it is the name of a node type then it defines a node creation button and will not
contain isEdge. If it is an edge creation button then it must contain isEdge. The icon for the button is specified by
giving the file containing the bitmap as a string.

Menus

Menus may be added to a large number of diagram tool elements. A menu definition specifies the functionality that
is associated with the diagram element. When the element is selected on the diagram using a mouse right click,
the menu appears offering menu actions. Menus can be defined for diagram tool types, node types, display types
and edge types. The following model shows the structure of a menu:

A menu is specified as follows:

@Menu
 items
end

A menu item is either a named sequence of menu items or a single menu action. A sequence of menu items
produces a sub-menu and is used to group related menu actions. A menu action has an operation that is used to
implement the action when it is selected.

@MenuItems name
 items
end

The body of a menu action is just XOCL code:

@MenuAction name
 body
end

A menu is displayed when you right click on an instance of the containing element type. You may then select one of
the actions (possibly by navigating down sub-menus). The body of the selected action is performed. Within the
body you may refer to the containing instance as self, and refer to the containing tool as tool. The action that is
being performed can be referred to as action (this is useful in the rare circumstance that you want to remove the
action from the menu).

Diagram Events

You perform operations on a diagram tool using the mouse. You may add a new node or re-attach an edge. When
these changes take place, an event of an appropriate type is raised in the containing Xtool. The event contains

references to the tool and to any elements that are involved in the diagram operation.

Events are raised and then handled by the event handlers defined by the tool’s element manager. A handler is
selected by calculating the event’s raised name. Generally this name is composed of a path identifying the diagram
component that changes and the type of the event. The path is a sequence of attribute names starting with the
name of the type of the root diagram element (for example a node or edge) . For example, if we have the following
node type:

When the text is modified on the diagram, the path component of the raised name is N_B_T and the event type (as
we see below) is _Changed, therefore the raised name is N_B_T_Changed. The raised name is the name used in
the event handler that will be used to handle the event.

Diagram events fall into one of three general categories:

Change events. These occur when an existing diagram element is modified, for example by editing some text or by
re-attaching an edge end. These also occur when an existing container is modified by adding or removing a new
element.

Creation events. These occur when a new node or edge is created.

Deletion events. These occur when a node or edge is removed.

The following model shows the various types of change event:

The rest of this section describes each of the diagram event types and how their raised name is calculated.

AttributeChanged. This event is raised when text is modified. The changed text element is the value of the
event, the node containing the display element is the root of the event. The attribute value before and after
the change is supplied via old and new in the event. The raised name is the path followed by _Changed.
EdgeAttributeChanged. The same as AttributeChanged except that the text on an edge label is modified.

AttributeValueAdded. When a container has a *-type (see later in the document), new instances of the *-ed
type can be added. When a new instance is added this event is raised. The path identifies the attribute that
has been added and the value of the event is the new display element. The raised name is the path followed
by _Added.
SourceChanged. When the source of an edge is moved from one node to another this event is raised. The
source before and after the change is recorded in the old and new of the event. The raised name is the type
of the modified edge followed by _Source_Changed.
TargetChanged. As for source changed but the target of the edge has changed.
ChangeTo

An Example Domain Specific XTool

This section provides a complete example of an Xtool. The tool manages a graph where the nodes and edges are
labelled with text. The graph is updated by events occurring on a diagram interface and the diagram is updated by
events occurring to the graph. The example is deliberately simple, but contains examples of most Xtool definition
features.

A Domain Model

The first step in defining a DSL-tool is to define the domain model and its semantics. An Xtool exposes an interface
over the domain model to the user and other tools. Our example domain model is one that it provided as standard
with Xmodeler: Graphs. The interface that we expose to the user is the creation and deletion of graph nodes and
edges. In addition we label the nodes and edges with strings and expose the setData operations via the diagram
tool. The following model shows the domain model:

Design of the User Interface

Once we have defined the domain model and chosen the interface we want to expose, the next step is to
informally sketch out the look and feel of the Xtool. In this case we will define a diagram tool to expose the chosen
interface. The creation operations will be exposed via toolbar operations, node and edge deletion will be exposed
via menu operations on the respective diagram elements. Data modification will be exposed via text modification
on the diagram labels and edge source and target changes will be exposed by retargeting the edges on the
diagram. The following screenshot shows an example usage of the tool we want to build:

The left hand part of the tool shows a tool bar with a single tool group called Operations with a node creation
button Node and an edge creation button Edge. The diagram canvas shows a graph diagram consisting of nodes
(created by selecting the Node button and then clicking on the canvas) and edges (created by selecting the Edge
button and linking two nodes). Each node and edge has a label that can be edited by selecting and modifying the
text.

When we create and edit a graph diagram an underlying element is created and modified. In this case we will
create and modify a graph from the package Graphs. This makes the example easy because the element and the
diagram are in one-to-one correspondence. The graph consists of nodes and edges whose data components are
the labels on the diagram. The following property editor shows the underlying graph element after constructing the
diagram shown above:

The following snapshot shows the graph as a snapshot diagram:

The rest of this section provides a step-by-step analysis of the graph editing tool definition.

Defining the Tool Type

The first step is to define the tool type. The tool type defines the nodes types, the edge types and the tool bar type.
Each node and edge type defines named attributes. Node types have named attributes that are display elements;
each display element contributes to how a node is drawn and to the events raised when a node is created and
modified. Edge types have named attributes for the labels on the edge. Node, edge and display types can have
menu types. The following tool snapshot shows the source code for the graph editor tool; the code includes
comments that describe each of the type components:

Defining the Element Manager

Once the tool type has been defined it is possible to define the element manager for the tool. The element
manager defines an event handler for each of the events that the tool must handle. Events are raised in two ways:
either by modifications to the diagram (such as creating a new node or editing a label); or, by modifying the
underlying data element that the tool is managing (such as adding a node to the graph managed by the graph
editor). In the case of events raised by the data element, event handlers are only necessary of the tool is observing
the data element. In some cases a tool is used to construct the underlying data element that is then exported or
exclusively manipulated by the tool. In this case the tool is in full control of the underlying element and does not
need to observe it for externally generated changes. Our graph editor will observe the underlying graph in order for
the example to cover as many tool definition issues as possible.

An element manager must define a creation event handler for each diagram node and edge type. A creation event
is raised whenever a new node or edge is created on the diagram. An event handler has a name that corresponds
to the event that it is designed to handle. The event handler has an argument list (which will be empty for the
purposes of this example) and a body. The body is supplied with the raised event as the value of the variable
event. The state of the event is accessed using a collection of accessor operations; the names of the operations
correspond to the attributes of the particular event type. All events have an operation tool() that returns the tool that
raised the event.

The event handler body may also reference two special operations: register and find. Register is used to associate
a key with a value in the element handler table. Typically this is used to as associate tool elements with domain
elements so that when events are raised, the handlers can map from a tool element to the appropriate domain
element and vice versa. The graph editor example contains many examples of the use of these operations.

Handling Diagram Events

In the case of a node creation event, the new tool node is the value of node(). The following tool snapshot shows
the source code for the node creation handler:

Line 49 creates a new graph node corresponding to the tool node whose creation raised the event. Once created,
the two nodes are associated using the register operation in lines 50 and 51. Registration is necessary so that
modifications to either node can map to, and therefore modify, the other node. Finally, the domain element is
modified by adding the new node to the graph.

A new edge raises an event that is handled by the following definition:

An edge creation event contains the new edge and its source and target nodes. Since the source and target nodes
must have been created previously, they must have been registered by a node creation event handler. Therefore,
the find operation can be used in line 59 to map from tool nodes to graph nodes when creating a graph edge. Once
created, the edges are registered against one another in lines 60 and 61. The domain element is modified in line
62.

The tool type for a graph editor allows the nodes and edges to be removed via a menu action. When a tool element
is deleted, an appropriate event is raised. The following handlers deal with node and edge deletion:

The find operation is used to map from the tool node to the graph node in lines 68 and 73. The graph elements are
then removed from the graph.

The tool type for a graph editor specifies that a node and an edge both have labels. In the case of a node, the label
is defined as a text attribute named label. Since we did not specify that these are read only, they can be modified
on the diagram. When modifications take place, an appropriate event is raised.

In both cases the diagram components are tool attributes named label. Events that are raised in response to
modifications to contained tool elements (such as a text component of a node or an edge label) have names that
are based on the path from the root container of the element. For example, a modification to a node label gives rise
to an event named Node_label_Changed where the path from the root container to the modified element is
Node_label. This rule applies no matter how deeply nested the modified element is.

The handlers for label modifications are given below.

A node change event has an operation root() that returns the root container of the modified element. This is used in

line 78 to find the graph node to modify. A change event also contains a value() operation that returns the modified
tool element; this operation is not required for this example. A change event returns the value before the change as
old() and the value after the change as new(). Line79 changes the data on the graph node to be the modified label
text.

This concludes the event handlers for events arising as a result of changes to the diagram.

Handling Managed Element Events

When a node is added to the graph we must modify the diagram on the tool to keep it in sync. Each event handler
for managed element modifications has a name consisting of the type of the changed element, the word Object the
name of the slot that is modified and the word Changed. The event has operations to access to the new and old
values of the slot.

The following handler deals with changes to the nodes of the graph:

When designing event handlers for Xtools that process events from both the user interface and the managed
element it is necessary to decide on a policy for preventing the same change being propagated back and forth.
Consider the case of adding a new node on the diagram. This raises a New_Node event causing the managed
graph to be updated with a new node. When this occurs, a Graph_Object_nodes_Added event is raised; since this
event may have been caused by some external agent adding a new node to the graph, a reasonable
implementation for this handler is to modify the diagram interface to add a new node. If we do this, we cause an
infinite ping-pong between the user interface and the managed element.

To address this issue it is sensible to take each pair of dependent handlers and to ensure that events bottom out.
This can be achieved by preventing events occurring in one of the handlers and by checking that actions have not
already occurred as shown above in lines 108 and 110. When a new node is added to the managed graph in the
handler for New_Node, a Graph_Object_nodes_Added event is raised; when this event is handled no New_Node
event is raised (although the diagram will be updated as we will see). This ensures that diagram changes update
the graph and graph changes update the diagram but that this does not lead to infinite regress. Note that it is
possible to suppress events in both handlers, but this is not necessary; if you do suppress events in both then it is
not necessary to include a registration check as in line 110 since neither handler will cause the other to be invoked.

Line 112 shows the creation of a new instance of the diagram node type Node. Xtools allow new node types to be
instantiated at a given position on the diagram using the newNode operation. Once the new node is created, it is
registered in lines 113 and 114. The label on the new node is updated to contain the graph node label in line 116.

The following shows how the removal of nodes from the managed graph is handled:

The nodes that have been removed are supplied as the old part of the event. We should only remove nodes if they
are currently registered (line 127). All display elements implement a delete operation (line 129) that removes the
element from the diagram (and fires events if they are enabled). Finally the elements are deregistered from the tool
(lines 130 and 131).

When an edge is added to the graph we must create an edge on the diagram. Diagram edges are attached to ports
that are contained in nodes. A node may have more than one port (some may be associated with display
components of the node), but providing that the node has at least one port, a port is produced by calling the port

operation of the diagram node (lines 143 and 144).

A diagram tool provides a newEdge operation that draws a new edge between ports on the diagram (line 145). In
order to register when the ends of an edge change we must observe the edge (line 148). The text in labels on
edges are changed using the textChanged operation (line 149).

When an edge is removed from a graph that is monitored by a tool, the following event is raised. The handler,
deletes the diagram element and deregisters the appropriate elements:

When the data on a monitored graph node or edge changes the following events are raised. The handlers just
update the appropriate diagram elements:

Finally, the source and target of a monitored graph edge may change. A diagram edge provides operations
sourceReconnected and targetReconnected that are used to change the corresponding port that the edge

connects to.

Creating a Tool from a Domain Model Instance

It is often the case that we have an instance of the domain model and wish to create a tool that displays the current
state of the instance and is then used to extend and modify the instance. Using XTools this is quite straightforward.
We map from the domain instance to a tool and create instances of the appropriate tool types. This section shows
how this is achieved for our graph editor tool.

To generate a tool from a graph we must create the new tool with the appropriate tool type and element manager
and then map the nodes and edges of the graph to instances of the appropriate tool types. The following operation
definition adds a new operation to Graph that implements the mapping. The source code contains comments
explaining each of the steps in the mapping:

The definition of Graph::toTool is a typical example of how to define a mapping from a domain instance to an Xtool.
We create a tool in line 209. The constructor arguments for a tool are the type, an id string, the manager and the
domain instance. Since a graph is a container of nodes and edges, we use auxiliary definitions of toTool to map
these elements passing the new tool as an argument. Finally, in line 230 if we want changes in the domain
instance to be reflected in the tool we must register the tool as an observer.

The following operation shows how a graph node is mapped to a diagram node:

Node and edges types can be referenced in a tool type:

Display Elements

Introduction

XTool node types consist of a collection of display element types. Each display element type is a named attribute of
the node. When a node is created, the display type is instantiated and its instance can be referred to by giving the

path from the node (the root) to the named display element.

Each display element type has a textual syntax that is used to define it. This section shows you how to define
display element types by showing each one in the context of the type Node in our graph editor example. The
general form for the textual definition of a display element is:

@ElementType name(properties)
 attributes
 display components
 menu
end

The properties of the element type are names and values enclosed in parentheses. If no properties are defined
then the parentheses should be omitted. The attributes of a display element are name/value pairs of the form name
= value. Typically, the attributes specify the maximum and minimum dimensions of the element and features such
as color. The display components of an element are the contained elements; only boxes may contain
sub-components. Each element may have a menu.

All elements can be associated with a port in the element’s root node. By specifying the property hasport, you
associate the instances of the element type with a port such that the port will move and resize with the instance
relative to the containing node.

Most elements can have a colors. The value of a color attribute should be one of the predefined colors: red, green,
blue, or should be a string “r,g,b” where the three components are integers in the range 0 to 255 specifying the red,
green and blue color contributions respectively.

Many types can be specified with minimum and maximum dimensions. By stating these attributes you are placing
bounds on the amount that instances of the type can be resized. Specifying the same value for the minimum and
maximum dimensions requires that instances of the type are of a fixes size.

Many types can be padded. A padding attribute specifies the amount of space that should be left surrounding
instances of the type when placing the instance in a display container (such as a box or a node). Padding can be
specified to the left, right, on top and below elements. If the padding attributes are omitted then it is assumed that
no space need be left between adjacent elements and between elements and the borders of their containers.

All types may specify a layout property. The layout defines how instances of the type will be placed within their
container. Elements may be aligned with their container in which case they stretch to fit the size of their container;
elements may be left and right justified, and centered within a container. Interpretation of the layout property
depends on the content layout property of the container.

Box

A box is a container of display elements. A box may have a border and may be filled or empty. A box specifies the
layout format of its contained elements (layout is the subject of a later section). Suppose we want to have the label
of a node contained within a box:

The corresponding node type definition is as follows:

The syntax for boxes is as follows:

@Box name(hasport,hide,contentLayout,layout,nofill)
 minWidth = integer
 minHeight = integer
 maxWidth = integer
 maxHeight = integer
 cornerCurve = integer
 padLeft = integer
 padRight = integer
 padTop = integer
 padBottom = integer
 fillColor = color

 lineColor = color
end

All components of a box definition are optional except for the name. If hasport is present then the box defines the
location of a port in the root node. A hide directive is one of the following hideLeft, hideRight, hideTop or
hideBottom and may be repeated. A content layout directive is one of the following HORIZONTAL, VERTICAL or
OVERLAY. A layout directive is one of the following: LEFT, RIGHT, ALIGN. If nofill is present then the box is not
filled. The minimum and maximum dimension attributes specify the sized below and above which the box cannot
be resized. The padding attributes specify the white space that is left between the box and its container and
adjacent elements.

Ellipse

Ellipses are used to draw ovals and circles. Ellipses are not containers of elements, but can be placed in boxes
with overlay layout to give the impression that they contain element that are displayed over them. For example,
suppose that we want to have nodes with circles around the labels:

The node type is defined as follows:

Note that the node type has content layout OVERLAY meaning that all the contents will be drawn over each other
in the order that they appear in the type definition. The contained ellipse type has ALIGN layout so that instances
grow and shrink with their container. Each ellipse is left unfilled.

The syntax for ellipses is as follows:

@Ellipse name(hasport,noOutline,layout,nofill)
 minWidth = integer
 minHeight = integer
 maxWidth = integer
 maxHeight = integer
 padLeft = integer
 padRight = integer
 padTop = integer
 padBottom = integer
 fillColor = color
 lineColor = color
end

All properties and attributes are optional.

Image

Text

Diagram Layout

Element Layout

Container Layout

Example Tool: Class Diagrams

A typical example of a modelling tool is a class diagram editor. The domain model is shown below:

The interface that we wish to expose over the domain model is the ability to create classes and attributes in a
single package. The names of the classes and attributes can be changed and the types of the attributes can be
modified. We will make a distinction between builtin classes used as attribute types (for example
NamedElement::name : String) and other classes. Attributes of classes with builtin types will be shown inside the
class box whereas all other attribute will be attached to classes via an edge (such as Attribute::type).

The domain model is an example of a meta-model in that it describes itself and the model has been constructed
using the Xtool for package editing. Another example, (showing a non-meta model) is a standard information
model for a Library as follows:

The tool type for a package editor is shown below. It contains an example of the use of Star to define that part of a
class node that contains a sequence of attribute definitions. Initially bodyBox will be emptyInstances of the display
type attribute may be added to, and deleted from, bodyBox.

3.7.4. Form Tools

Introduction

Form Components

Menus on Forms

Form Events

Example: Airports

Domain Model

Property Editor

Browser

3.8. Clients

3.8.1. Introduction

Xmodeler is a standalone kernel that in its vanilla form has no means of interacting with the environment outside of
its own world. There are numerous ways of providing this interaction including file based IO and XML based IO. A
further way of providing this interaction which is particularly well suited, but not limited, to user interfaces is to write
a client which sits between the user interface and the Xmodeler kernel. This is the approach taken to implementing
the Mosaic components of Xmodeler and Xmodeler (specifically its underlying operating system XOS) provides a
number of mechanisms to support this activity. These mechanisms are discussed and illustrated in this document.

3.8.2. Introduction

Xmodeler supports three different types of clients.

Message : A message based client communicates by passing structured messages to and from the kernel.
Currently message based clients must be written in Java as Eclipse plugins so that they are able to utilise external
Java libraries provided by Xmodeler.

Internal : An Internal client is written in Java and communicates over stream based data. Unlike Message based
clients, internal clients have no inherent messaging architecture although one could be easily built on this
foundation. Message based clients must be written in Java and are run in the same process as the Xmodeler
kernel.

External : An external client are like internal clients and communicate over stream based data. However external
clients connect to the Xmodeler kernel (via XOS) using socket based communication. This means that external
clients can be written in any language that supports socket communication and such clients can also be run using
a distributed architecture.

Message Based Client

This section describes how to construct both the Java (Eclipse) and Xmodeler implementation for a message
based client. This is done by way of a traffic light example. Such a style of tool might be used as a tool to simulate
a model using an external GUI. The implementation of this client assumes a certain level of Eclipse knowledge,
further information about Eclipse can be found in Eclipse's help system or at http://www.eclipse.org.

Eclipse Implementation

Dependencies

A message based client is constructed as an Eclipse plugin. Since it is necessary to use libraries provided by
Xmodeler, the new client needs to declare this dependencies. The simplest way of doing this is to import the
Xmodeler plugins com.ceteva.client and com.ceteva.Xmodeler into an Eclipse workspace, and then in the newly
created plugin declare the dependencies as illustrated below.

Generally speaking, message based clients should connect to XOS prior to the machine being started. Therefore
the plugin must connect as soon as it is started. This is achieved by way of the Eclipse early startup interface
which must be declared in the as illustrated below. We will show later in this document how this facilitates the early
connection of the client.

Basic structure

The figure below illustrates a basic structure of message client is shown below. A message client must extend
com.ceteva.client.Client and implement a number of abstract methods. The constructor for the client must pass as
an argument the name that this client is going to identify itself as, in this case org.myproject.trafficlights. A method
must be implemented to process messages passed to the client, a boolean return value indicates whether or not
the passed message was successfully processed. Finally the setEventHandler method is called by XOS to set the
handler for events, the general pattern is to record the handler so that it can be usefully referenced in the future. In
this case the handler is scoped over the class.

Handling Messages

A message consists of a name and a number of arguments. The client we are building can potentially receive three
messages: setRed, setAmber and setGreen; each message has a single boolean argument. In the figure below the
incoming message is tested against the three possible messages the client can handle. In addition to checking the
messages name, the messages arity is also checked. The ability to check a message's arity enables the same
message name to be handled in different ways depending on the number of parameters passed.

In the case of this example the state of the message is simply printed to standard output and true is returned to
indicate to XOS that the message has been successfully processed. If none of the message handlers match then
the false value is returned.

Handling Calls

Sometimes it is necessary for a client to be asked a question to which it returns an answer. For example Xmodeler
may ask its traffic light client the current value of the red light. This scenario is provided by the call mechanism
which is like a message but rather than the return value indicating successful processing, it is an actual value that
Xmodeler requires. When an Xmodeler call is made then it switches to synchronous communication rather than the
aysynchronous communication of regular message processing.

The figure below illustrates the pattern for implementing call handlers. The method processCall is overridden to
provide handlers for the call. Return values must be of type Value and are formed by passing primitive types into
the constructor of Value. In this case a null value is returned to indicate failure to handle the call.

Raising Events

A client can send information to Xmodeler by sending messages on the event handler. In the example below a java
method is implemented which sends an event reporting the number of cars in a queue. An event is constructed by
asking the handler for a new event when supplied with the event's and arity. The parameter values are then
assigned to the newly constructed event, in this case this is a single parameter denotating the length of the queue.
Finally the event is raised on the handler.

Registering the Client

As discussed at the beginning of this section, a message client should generally connect to Xmodeler prior to the
machine being started. The pattern for doing this is illustrated below in the context of the traffic light example, the
early startup method is called as a result of the plugin's class implementing the IStartup interface (and the
declarative extension shown earlier in the plugin.xml file). This method creates a new instance of the client and
informs XOS of this client by passing both the client's name and the client itself.

Xmodeler Implementation

Architecture

In this section we will show how a client can be modelled in Xmodeler that interfaces to the Eclipse client described
in the previous section.

The first step is to create a package to put the Xmodeler client.

The general architecture for an Xmodeler message based client is shown below. An event handler is defined which
specialises the abstract class Root::Clients::EventHandler, this describes how events are received by the Xmodeler
client. Similarly a command interpreter is defined which specialises the abstract class
Root::Clients::CommandInterpreter, this describes how both messages (commands) and calls are sent to the Java
client and how. A client is then defined which specialises Root::Clients::Clients, this acts as a wrapper to both the
event handler and the command interpreter. The next sections will examine each of these components in detail in
the context of the traffic light example.

Sending Messages and Making Calls

Messages are sent, and calls are made, in the command interpreter. Generally speaking each message is
wrapped in an operation and the body of the operation contains a send command of the form illustrated in the
following example:

@Operation setRed(state:Boolean)
 @SendCommand(self)
 setRed(state)
 end
end

The body of the send command contains the command named and the parameter values to bind to the command
enclosed in brackets (and separated by commas where there are more than one). In the above example, when the

setRed/1 operation is called then the setRed(..) message is sent to the client. The figure below shows the
command interpreter implementing each of the different message types supported by the Java client.

The above figure also gives an example of a call command which is exactly the same for as a send command but
is wrapped as a call command. It is important to note that when a send command is made, the message is sent
and code execution continues regardless of whether the message was successfully processed. By contrast when a
call command is made, code execution halts and waits for the return value of the call command prior to continuing
execution. The getRed() operation will return the value of the result of the getRed() call command (a boolean
value).

Handling Events

Events are processed in an event handler, the standard pattern for writing these is shown below. When the event
handler receives an event, it passes the event and its parameters to the operation dispatchEvent. This operation
should be overridden to perform client specific event handling. In the figure below the incoming event is tested to
see whether it has the name reportCarQueue, if so it is passed to the readCarQueue method and simply printed to
standard output.

As we we will demonstrate in the next section, the event handler is run in its own thread. This allows the event
handler to process events regardless of what is happening in the main thread of execution.

Putting it Together

The figure below shows the standard approach to defining an Xmodeler client using the command interpreter and
event handler. The constructor for the client sets the clients name, this must match the name defined in the Java
client which in this case is org.myproject.trafficLights. As shown below, the constructor then creates an instance of
both the command interpreter and the event handler (note that if communication is uni-directional either the
command interpreter or event handler may be omitted as appropriate).

In addition to constructing the client, the above example defines a futher operation runLights/0 which simply tests
that the command interpreter works by sending a number of messages.

Starting the Communication

In order to start the communication between Xmodeler and the Java client it is necessary to take two steps. The
first step involves informing XOS about the new Java client by adding details to its startup.txt file which can be
found in the directory Xmodeler_INSTALL/XmodelerMosaic/plugins/com.ceteva.Xmodeler_x.x.x/Server (replacing
the x.x.x with the current version number of Xmodeler, if there are multiple versions then consider the largest
number to be the most recent). In this file you will see details of the existing Mosaic clients, simply append the new
client to this list as illustrated below:

-message :com.ceteva.mosaic:wait
...
-message :org.myproject.trafficlights:wait
...

The final step is to create an instance of the Xmodeler client and add it to Xmodeler's client manager as shown
below. If the client has an event handler as in the traffic light example, then it is necessary to start the event
handler in its own independent thread so that it can handle events independently of the main thread of execution.
This can be done using the pattern demonstrated below where a call to Client::start/0 is wrapped in a fork. The
code below also runs the example operation defined in the previous section.

3.8.3. Internal Clients

3.8.4. External (Socket Based) Clients

