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1 1
Overview

1.1  INTRODUCTION

This document contains a response to the Object Management Group’s UML 2.0 OCL RFP (document reference
ad/2000-09-03) for an updated specification of the Object Constraint Language, version 2.0. This version is based
on the OCL definition as described in the UML 1.4 specification.

1.2  GOALS OF THE SUBMISSION

Obviously, the major goals of this submission are to meet the requirements outlined in the RFP mentioned above.
However no such undertaking is done without some additional goals in the area of improvement either in func-
tionality, clarity of definition or ease of use. This section then attempts to capture all of these goals as the team
itself defined them.

1.2.1 OCL 2.0 Metamodel
Today, OCL (up to, and including UML 1.4) has no metamodel, which makes it difficult to formally define the
integration with the UML metamodel. As a response to a direct RFP requirement the OCL 2.0 submission will
focus on the following.

• Define a MOF-compliant metamodel for OCL. This metamodel should define the concepts and semantics of
OCL and act as an abstract syntax for the language.

• (Re)define the OCL 1.4 syntactical definition, that is done by means of a grammar, as a concrete syntax
expressing the abstract syntax defined above.

• The separation between the metamodel and the concrete syntax allows for alternative concrete syntaxes (e.g.
visual constraint diagrams).

1.2.2 OCL Expressibility and Usability
OCL lacks expressibility in several areas. In the issues list of the UML 1.4 RTF a number of these issues have
been delayed until UML 2.0. The OCL 2.0 submission will review these issues and define a solution when appro-
priate.

• OCL is currently defined as a language for describing constraints. OCL 2.0 will specify the Object Constraint
Languages as a general object query language that can be used wherever expressions over UML models are
required.
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• Additional concepts will be added to OCL to allow for a more complete specification of components.

• Additional concepts will be added to OCL to allow the specification of behavioral constraints. This will allow,
e.g. to specify stimulus response rules.

• All concepts defined in OCL, whether they are already in UML 1.4 or newly added to OCL 2.0 will be con-
sistent with the concepts defined in the other two UML 2.0 submissions. This ensures that the three parts of
UML 2.0 will seamlessly fit together.

• The simplicity and usability requirements that the OCL 1.4 definition is built upon are the major guideline for
the OCL 2.0.

1.2.3 OCL Semantics
Precise semantics of OCL should be defined as much as feasible.

• The submission includes a normative mathematical based semantics for the abstract syntax. In the appendix a
non-normative description of this semantics is expressed, using UML itself.

The semantics of OCL not only defines semantics for boolean expressions, as required for using OCL as con-
straint language. It also defines semantics for the use of OCL as a general UML expression and query language.

1.3  DESIGN RATIONALE

This section describes design decisions that have been made during the development of the OCL 2.0 specification
according to the goals outlined above. These decisions usually reflect a change or major clarification with respect
to OCL 1.4. Therefore they are given here to guide the OCL user through the major differences between OCL 1.4
and 2.0.

1.3.1 Abstract syntax

1. Collections can be nested. This is different from OCL 1.4 where collections were always implicitly flattened.
Flattening was only applied to the collect and iterate operations in OCL. For the collect we now distinguish
two different operations:

• collectNested() which is identical to the OCL 1.4 collect without flattening applied.

• flatten(), which flattens a nested collection.

• collect(), which is identical to collectNested()->flatten()

The current syntax should retain the meaning of automatic flattening, because most OCL is currently written
in paper form only and this needs to be backward compatible.

2. The type OclExpression is removed. This is not a real type and doesn’t fit well in the type system.

3. OclType (OclMetaType in the abstract syntax) is removed. If the UML 2.0 Infrastructure will include a reflec-
tion mechanism, OCL 2.0 will borrow the same mechanism to get access to the metalevel.

4. Although proposed, function types are not added to OCL. It will make the language more general, but this is
(at least) one bridge too far for OCL 2.0.

5. The OCL type model follows the UML kernel type model as close as possible. Therefore the base type for
OCL has become Classifier from the UML kernel.

6. OCL should be extendible. We plan to (re)use any extension mechanism as described in the UML infrastruc-
ture submission.

7. We want to enable full use of OCL as a query language. Therefore the concept of Tuple is added to OCL.
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1.3.2 Concrete syntax

1. The concrete syntax of OCL 2.0 is backwards compatible with OCL 1.4. This means at least that any OCL 1.4
expression that is also valid in OCL 2.0 will have the same meaning.

2. The Abstract Syntax does not depend on Concrete Syntax.

3. The OCL 2.0 grammar looks very different from the OCL grammar in UML 1.4, but describes the same con-
crete syntax. The grammar has been derived directly from the abstract syntax. To understand how this gram-
mar was developed this section describes the rules that have been used. The reason for this approach is that we
wanted a concrete syntax that was easily mappable to the abstract syntax.

• Each metaclass becomes a non-terminal in the grammar. Every other grammar rule/symbol must be reach-
able from these.

• A superclass becomes a choice rule with all of its subclasses as a choice.

• For any leaf class the rules 2 - 5 apply

• If a superclass can have instances itself, a special "concrete" Superclass non-terminal is added to the choice
as described at 1.

• Each type of each attribute becomes a token/symbol in the grammar.

• Each attribute becomes a non-terminal in the grammar with the type of the attribute as the production.

• Each association in the abstract syntax metamodel will get a specified direction.

• Each association-end at the target side of the association as specified by the direction becomes a non-termi-
nal in the grammar

• If an associated class is ’just a reference’, but not being defined in the grammar, some other symbolic non-
terminal will be used. This rule is when the associated metaclass is not defined at the specified location in
the grammar, but only referenced. E.g. the association from VariableEpr to VariableDeclaration and the
associations from the different ModelPropertyCallExp to their referredFeatures. In these cases a special
’lookup’ function needs to find the instance of the referred metaclass.

• Multiplicity in the abstract syntax metamodel are reflected directly in the grammar

1.3.3 Semantics

1. The semantic description is based on a formal mathematical model.

2. A description of the semantics in UML is be used to clarify the mathematical semantics for readers familiar
with UML, but not with the mathematical formalism. It is placed in an appendix.

Thne equivalance of the two semantic descriptions has not been formally established. Wherever they are conflict-
ing, the description in section 5 (“Semantics”) is normative.

1.3.4 OCL Standard Library
The so-called predefined types and operations in UML 1.4 are now defined as the OCL Standard Library. This
also includes all the standard instances of the metaclass IteratorExp. Note that the iterator operations are not nor-
mal operations in the abstract syntax, but a specialized construct.

1.4  COMPLIANCE TO THE RFP REQUIREMENTS

This section outlines the items in the RFP to be addressed and should act as a guide to the reader in understanding
how this submission meets the requirements of the RFP.
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1.4.1 General Requirements

5.1.2; This specification of OCL includes detailed semantics and a normative formalism defining it’s operational
behavior, sequencing and side-effects.

5.1.3; The inclusion of a normative formalism and the separation of abstract from concrete syntax does provide
both a complete and precise specification.

5.1.4; Although this specification does not provide any interfaces it does expect that the implementation of the
abstract syntax is mandatory and that the support for the canonical concrete syntax is mandatory in the absence of
any alternative substitutable implementation.

5.1.6; no known changes to any existing OMG specification.

5.1.10, 5.1.11; the separation of abstract and concrete syntax allows the flexibility for independent implementa-
tions of the concrete syntax to be substitutable for the canonical concrete syntax defined herein.

The following requirements are deemed irrelevant to the activity of defining the UML 2.0 OCL; 5.1.1, 5.1.5,
5.1.7, 5.1.8, 5.1.9, 5.1.12, 5.1.13, 5.1.14.

The considerations outlined in section 5.2 (excepting 5.2.5) where not expressly accounted for in the develop-
ment of this specification.

1.4.2 Specific Requirements - Mandatory
6.5.1; This submission clearly separates the abstract from concrete syntax and defines a metamodel and formal-
ism for the abstract syntax. This specification also provides a bi-directional mapping from the abstract syntax to
the defined canonical concrete syntax.

This submission attempts to provide backwards compatibility to the OCL defined in the UML 1.x family; how-
ever as there was no metamodel for OCL defined in those specifications this is only accomplished at the concrete
syntax level.

This submission does retire a minor language feature from the UML 1.x OCL specifications.

• The type OclType and the type ExpressionType have been removed. The operations that use the OclType are
still available to the OCL user, but mapped to a special construct inb the abstract syntax. Therefore the OCL
user will not notice this change.

An XMI DTD for the OCL metamodel is provided as a normative appendix.

6.5.2; This submission, at it’s very heart, provides a complete and formal metamodel (the abstract syntax) for the
OCL language.

1.4.3 Specific Requirements - Optional
6.6.2; This submission does provide a mathematically based, formalism for the abstract syntax.

This submission does provide certain additional features to the OCL language to improve it’s expressive power,
these are clearly defined in the body of the document.
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1.4.4 Issues to be Discussed
6.7; The exchange of existing, and future, models that are annotated with constraints represented as strings is not
affected by this specification.

In the area of compliance, this initial submission does not cover the requirements for, or the approach to compli-
ance testing of OCL implementations.

1.5  STRUCTURE OF THIS SUBMISSION

The document is divided into several sections.

Section 2 (“OCL Language Description”) gives an informal description of OCL in the style that has been used in
the UML 1.1 through 1.4. This section is not normative, but meant to be explanatory.

Section 3 (“Abstract Syntax”) describes the abstract syntax of OCL using a MOF compliant metamodel. This is
the same approach as used in the UML 1.4 and other UML 2.0 submissions. The metamodel is MOF compliant in
the sense that it only uses constructs that are defined in the MOF.

Section 4 (“Concrete Syntax”) describes the canonical concrete syntax using an attributed EBNF grammar. This
syntax is mapped onto the abstract syntax, achieving a complete separation between concrete and abstract syntax.

Section 5 (“Semantics”) describes the underlying semantics of OCL. This is done using a mathematical formal-
ism.

In section 6 (“The OCL Standard Library”) the OCL Standard Library is described. This defines type like Integer,
Boolean, etc. and all the collection types. OCL is not a stand-alone language, but an integral part of the UML. An
OCL expression needs to be placed within the context of a UML model.

Section 7 (“The Use of Ocl Expressions in the UML”) describes a number of places within the UML where OCL
expressions can be used. Appendix B (“Interchange Format”) is currently a place holder for an interchange for-
mat, which can be defined along the same lines as XMI. Appendix A (“Semantics Described using UML”)
describes an informal semantics for OCL. This appendix, however is not normative, but given to the readers who
need a non-mathematics description for the semantics of OCL.

1.6  EXPECTED CHANGES FOR THE FINAL SUBMISSION 
Due to different reasons the specification of OCL, as described in this document, is not fully complete yet. This
section describes the major changes that we expect to make before the final submission. Apart from these, we
also expect to make minor changes to enhance the consistency and correctness of the specification.

We also expect to get feedback from the OMG Analysis and Design task force (ADTF) which will be taken
into account. Furthermore we are open to additional features, when we have the opportunity to add them properly.

Alignment with UML 2.0 Infrastructure
The specification in this document is fully based on the UML 1.4 definition. As such, this specification could
replace the OCL definition in UML 1.4. The integration with the UML metamodel takes place through a set of
metaclasses from the UML 1.4 that are referenced in the OCL abstract syntax metamodel.

In the final submission the references to UML 1.4 metaclasses should all be changed into references to UML
2.0 metaclasses.
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Pairs of Pre and Postconditions
Presently, the proposed use of OCL in UML considers pre- and post-conditions separately, while the OCL seman-
tics definition uses operation specifications (i.e., *pairs* of pre- and post-conditions). This needs to be unified,
including a clarification of how multiple pre- and/or post-conditions are merged into one operation specification.

References to Pre-values in Postconditions
Free mixing of references to pre and post state in post-condition navigation expressions may be difficult to imple-
ment for tool builders. A warning for tool builders shall be included.

Frame Conditions
A syntax and/or semantics might be defined to allow users of OCL to specify what is sometimes called "expres-
sion closure" or "frame condition". This means that it should be possible to state that a specification of an opera-
tion is complete and everything which is not explicitly mentioned by the postconditions has to stay unchanged.
Without such a mechanism, it is difficult to exclude that unexpected side effects of operations. As this is not a
property of an OCL expression, but of the context where it is being used, this should be part of the (postcondi-
tion) context in section 7 (“The Use of Ocl Expressions in the UML”).

Concrete Syntax for Tuples
There is no concrete syntax yet for dealing with tuples. This needs to be added.

Flattening of Collections
The automatic flattening of collections in UML 1.4 is a deep flatten. We need to check whether the new "flat-
ten()" operation should be a shallow (which it currently is) or a deep flatten, or whether we need both.

Undefined
The undefined value should be handled properly. In the UML 1.4 OCL specification this is too shallow. A literal
"Undefined" and/or an operation "isUndefined()" will probably be needed.

Collection Constructors
Collection constructors are not handles in the abstract and the concrete syntax. This needs to be added.

Collection Operations
The collection operations in the standard library need to be checked for completeness. Additional operations
might be added.

Concrete Syntax for Context Declarations
The concrete syntax for context declarations from UML 1.4 OCL are not defined in this initial submission. This
concrete syntax needs to be added. It is expected to look identical to that of the UML 1.4 OCL specification.

OCL Language Description
Section 2 (“OCL Language Description”) is not complete with respect to newly added features as e.g. the action
clause, non-flattened collections, and tuples. This section needs to be updated to describe all OCL features.

Classifier Scoped Operations/Attributes
Features with Classifier scope are currently not supported in the abstract syntax. Theirsource is not an expression,
but a Classifier. They need to be added to the abstract syntax.
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Formal Semantics of Action Expression
The formal semantics of the Action expression is not covered yet. In the UML description of the semantics in sec-
tion A.3.4 (“Action Expression Evaluations”) a definition can be found.

Formal Semantics of Qualified Associations
The semantics of qualified association sis not defined yet. This needs to be done.

Overlap in Chapters 5 (“Semantics”) and 6 (“The OCL Standard Library”)
Several of the operations defined in the OCL Standard Library are also defined in the semantics chapter. This
overlap will be resolved by removing these operations from the semantics section.

Index
The index is incomplete.
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1 2
OCL Language Description

This chapter introduces the Object Constraint Language (OCL), a formal language used to express constraints.
These typically specify invariant conditions that must hold for the system being modeled. Note that when the
OCL expressions are evaluated, they do not have side effects; i.e., their evaluation cannot alter the state of the cor-
responding executing system. UML modelers can use OCL to specify application-specific constraints in their
models.

2.1  WHY OCL?
A UML diagram, such as a class diagram, is typically not refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to describe additional constraints about the objects in the
model. Such constraints are often described in natural language. Practice has shown that this will always result in
ambiguities. In order to write unambiguous constraints, so-called formal languages have been developed. The
disadvantage of traditional formal languages is that they are usable to persons with a string mathematical back-
ground, but difficult for the average business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to read and write. It has been
developed as a business modeling language within the IBM Insurance division, and has its roots in the Syntropy
method.

OCL is a pure expression language; therefore, an OCL expression is guaranteed to be without side effect.
When an OCL expression is evaluated, it simply returns a value. It cannot change anything in the model. This
means that the state of the system will never change because of the evaluation of an OCL expression, even though
an OCL expression can be used to specify a state change (e.g., in a post-condition).

OCL is not a programming language; therefore, it is not possible to write program logic or flow control in
OCL. You cannot invoke processes or activate non-query operations within OCL. Because OCL is a modeling
language in the first place, not everything in it is promised to be directly executable.

OCL is a typed language, so that each OCL expression has a type. To be well formed, an OCL expression must
conform to the type conformance rules of the language. For example, you cannot compare an Integer with a
String. Each Classifier defined within a UML model represents a distinct OCL type. In addition, OCL includes a
set of supplementary predefined types (these are described in section “The OCL Standard Library” on page 1).

As a specification language, all implementation issues are out of scope and cannot be expressed in OCL.
The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model cannot

change during evaluation.

2.1.1 Where to Use OCL
OCL can be used for a number of different purposes:

• As a query language
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• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes

• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• To specify constraints on operations

• for any expression over a UML model

2.2  INTRODUCTION

2.2.1 Legend
Text written in the courier typeface as shown below is an OCL expression.

'This is an OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre and post denote the stereo-
types, respectively «invariant», «precondition», and «postcondition», of the constraint. The actual OCL expres-
sion comes after the colon.

context TypeName inv:
'this is an OCL expression with stereotype <<invariant>> in the
context of TypeName' = 'another string'

In the examples. the keywords of OCL are written in boldface in this document. The boldface has no formal
meaning, but is used to make the expressions more readable in this document. OCL expressions are written using
ASCII characters only.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

2.2.2 Example Class Diagram
The diagram below is used in the examples in this chapter.
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2.3  RELATION TO THE UML METAMODEL

2.3.1 Self
Each OCL expression is written in the context of an instance of a specific type. In an OCL expression, the
reserved word self is used to refer to the contextual instance. For instance, if the context is Company, then self
refers to an instance of Company.

2.3.2 Specifying the UML context
The context of an OCL expression within a UML model can be specified through a so-called context declaration
at the beginning of an OCL expression. The context declaration of the constraints in the following sections is
shown.

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : Sex

income(Date) : Integer

accountNumber:Integer

Bank

0..1

customer

Company

name : String
numberOfEmployees : Integer

stockPrice() : Real

manager 0..*

managedCompanies

employee employer

wife

husband 0..1

0..1

0..*0..*

Job

title : String
startDate : Date
salary : Integer

Marriage

place : String
date : Date

male
female

«enumeration»
Sex

Figure 2-1 Class Diagram Example
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If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to connect it to its con-
textual element, there is no need for an explicit context declaration in the test of the constraint. The context decla-
ration is optional.

2.3.3 Invariants
The OCL expression can be part of an Invariant which is a Constraint stereotyped as an «invariant». When the
invariant is associated with a Classifier, the latter is referred to as a “type” in this chapter. An OCL expression is
an invariant of the type and must be true for all instances of that type at any time. (Note that all OCL expressions
that express invariants are of the type Boolean.)

For example, if in the context of the Company type in Figure 2-1 , the following expression would specify an
invariant that the number of employees must always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we start the expression.)
This invariant holds for every instance of the Company type.

The type of the contextual instance of an OCL expression, which is part of an invariant, is written with the con-
text keyword, followed by the name of the type as follows. The label inv: declares the constraint to be an «invari-
ant» constraint.

context Company inv:
self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the above examples. As an alter-
native for self, a different name can be defined playing the part of self:

context c : Company inv:
c.numberOfEmployees > 50

This invariant is equivalent to the previous one.
Optionally, the name of the constraint may be written after the inv keyword, allowing the constraint to be refer-

enced by name. In the following example the name of the constraint is enoughEmployees. In the UML meta-
model, this name is an attribute of the metaclass Constraint that is inherited from ModelElement.

context c : Company inv enoughEmployees:
c.numberOfEmployees > 50

2.3.4 Pre- and Postconditions
The OCL expression can be part of a Precondition or Postcondition, corresponding to «precondition» and «post-
condition» stereotypes of Constraint associated with an Operation or Method. The contextual instance self then is
an instance of the type which owns the operation or method as a feature. The context declaration in OCL uses the
context keyword, followed by the type and operation declaration. The stereotype of constraint is shown by putting
the labels ‘pre:’ and ‘post:’ before the actual Preconditions and Postconditions

context Typename::operationName(param1 : Type1, ... ): ReturnType
pre :  param1 > ...
post:  result = ...

The name self can be used in the expression referring to the object on which the operation was called. The reser-
ved word result denotes the result of the operation, if there is one. The names of the parameters (param1) can also
be used in the OCL expression. In the example diagram, we can write:

context Person::income(d : Date) : Integer
post:  result = 5000

Optionally, the name of the precondiation or postcondition may be written after the pre or post keyword, allowing
the constraint to be referenced by name. In the following example the name of the precondition is parameterOk
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and the name of the postcondition is resultOk. In the UML metamodel, these names are attributes of the meta-
class Constraint that is inherited from ModelElement.

context Typename::operationName(param1 : Type1, ... ): ReturnType
pre parameterOk:  param1 > ...
post resultOk:  result = ...

2.3.5 Package context
The above context declaration is precise enough when the package in which the Classifier belongs is clear from
the environment. To specify explicitly in which package invariant, pre or postcondition Constraints belong, these
constraints can be enclosed between 'package' and 'endpackage' statements. The package statements have the syn-
tax:

package Package::SubPackage

context X inv:
... some invariant ...
context X::operationName(..)
pre: ... some precondition ...

endpackage

An OCL file (or stream) may conatin any number package statements, thus allowing all invariant, preconitions
and postconditions to be written down and stored in one file. This file may co-exist with a UML model as a sepa-
rate entity.

2.3.6 General Expressions
Any OCL expression can be used as the value for an attribute of the UML metaclass Expression or one of its sub-
types. In that case, the semantics section describes the meaning of the expression.

2.4  BASIC VALUES AND TYPES

In OCL, a number of basic types are predefined and available to the modeler at all time. These predefined value
types are independent of any object model and part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. Some basic types used in the examples in this
document, with corresponding examples of their values, are shown in Table 1.

OCL defines a number of operations on the predefined types. Table 2. gives some examples of the operations on
the predefined types. See 6.3 (“Primitive Types”) for a complete list of all operations.

The complete list of operations provided for each type is described at the end of this chapter. Collection, Set, Bag
and Sequence are basic types as well. Their specifics will be described in the upcoming sections.

type  values
Boolea
n

true, false

Intege
r

1, -5, 2, 34, 26524, ...

Real 1.5, 3.14, ...

String 'To be or not to be...'

Table 1. Basic Types
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2.4.1 Types from the UML Model
Each OCL expression is written in the context of a UML model, a number of classifiers (types/classes, ...), their
features and associations, and their generalizations. All classifiers from the UML model are types in the OCL
expressions that are attached to the model.

2.4.2 Enumeration Types
Enumerations are Datatypes in UML and have a name, just like any other Classifier. An enumeration defines a
number of enumeration literals, that are the possible values of the enumeration. Within OCL one can refer to the
value of an enumeration. When we have Datatype named Sex with values 'female' or 'male' they can be used as
follows:

context Person inv: sex = Sex::male

2.4.3 Let Expressions and «definition» Constraints
Sometimes a sub-expression is used more than once in a constraint. The let expression allows one to define an
attribute or operation which can be used in the constraint.

context Person inv:
let income : Integer = self.job.salary->sum() 
let hasTitle(t : String) : Boolean =

self.job->exists(title = t) in
if isUnemployed then

self.income < 100
else

self.income >= 100 and self.hasTitle(‘manager’)
endif

A let expression may be included in an invariant or pre- or postcondition. It is then only known within this speci-
fic constraint. To enable reuse of let variables/operations one can use a Constraint with the stereotype «defini-
tion», in which let variables/operations are defined. This «definition» Constraint must be attached to a Classifier
and may only contain let definitions. All variables and operations defined in the «definition» constraint are
known in the same context as where any property of the Classifier can be used. In essence, such variables and
operations are psuedo-attributes and psuedo-operations of the classifier. They are used in an OCL expression in
exactly the same way as attributes or operations are used. The textual notation for a «definition» Constraint uses
the keyword ‘def’ as shown below:

context Person def:
let income : Integer = self.job.salary->sum() 
let hasTitle(t : String) : Boolean =

self.job->exists(title = t) 

The names of the attributes / operations in a let expression may not conflict with the names of respective attribu-
tes/associationEnds and operations of the Classifier. Also, the names of all let variables and operations connected
with a Classifier must be unique.

type operations
Integer *, +, -, /, abs()

Real *, +, -, /, floor()

Boolean and, or, xor, not, implies, if-then-else

String toUpper(), concat()

Table 2. Operations on predefined types
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2.4.4 Type Conformance
OCL is a typed language and the basic value types are organized in a type hierarchy. This hierarchy determines
conformance of the different types to each other. You cannot, for example, compare an Integer with a Boolean or
a String.

An OCL expression in which all the types conform is a valid expression. An OCL expression in which the
types don’t conform is an invalid expression. It contains a type conformance error. A type type1 conforms to a
type type2 when an instance of type1 can be substituted at each place where an instance of type2 is expected. The
type conformance rules for types in the class diagrams are simple.

• Each type conforms to each of its supertypes.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3, then type1 conforms
to type3.

The effect of this is that a type conforms to its supertype, and all the supertypes above. The type conformance
rules for the value types are listed in table 3.

The conformance relation between the collection types only holds if they are collections of element types that
conform to each other. See “Collection Type Hierarchy and Type Conformance Rules” on page -16 for the com-
plete conformance rules for collections.

Table 0-1 provides examples of valid and invalid expressions.

Table 0-1 Valid expressions

2.4.5 Re-typing or Casting
In some circumstances, it is desirable to use a property of an object that is defined on a subtype of the current
known type of the object. Because the property is not defined on the current known type, this results in a type
conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-typed using the opera-
tion oclAsType(OclType). This operation results in the same object, but the known type is the argument OclType.
When there is an object object of type Type1 and Type2 is another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtypes; therefore, in the example, Type2 must be a subtype of
Type1.

If the actual type of the object is not a subtype of the type to which it is re-typed, the expression is undefined
(see “Undefined Values” on page -9).

Type Conforms to/Is a subtype of
Set(T) Collection(T)

Sequence(T) Collection(T)

Bag(T) Collection(T)

Integer Real

Table 3. Type conformance rules

OCL expression valid explanation

1 + 2 * 34 yes

1 + 'motorcycle' no type String does not conform to type Integer

23 * false no type Boolean does not conform to Integer

12 + 13.5 yes
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2.4.6 Precedence Rules
The precedence order for the operations, starting with highest precedence, in OCL is:

• @pre

• dot and arrow operations: ‘.’ and ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parentheses ‘(’ and ‘)’ can be used to change precedence.

2.4.7 Use of Infix Operators
The use of infix operators is allowed in OCL. The operators ‘+’, ‘-’, ‘*’. ‘/’, ‘<‘, ‘>’, ‘<>’ ‘<=’ ‘>=’ are used as
infix operators. If a type defines one of those operators with the correct signature, they will be used as infix oper-
ators. The expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the ‘+’ operation on a with b as the parameter to the operation.
The infix operators defined for a type must have exactly one parameter. For the infix operators ‘<‘, ‘>’, ‘<=’,

‘>=’, ‘<>’, ‘and’, ‘or’, and ‘xor’ the return type must be Boolean.

2.4.8 Keywords
Keywords in OCL are reserved words. That means that the keywords cannot occur anywhere in an OCL exopres-
sion as the name of a package, a type or a property. The list of keywords is shown below:

if
then
else
endif
not
let
or
and
xor
implies
endpackage
package
context
def
inv
pre
post
in
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2.4.9 Comment
Comments in OCL are written following two successive dashes (minus signs). Everything immediately following
the two dashes up to and including the end of line is part of the comment. For example:

-- this is a comment

2.4.10 Undefined Values

Comment – Needs to be changed to OCL 2.0

Whenever an OCL expression is being evaluated, there is a possibility that one or more of the queries in the
expression are undefined. If this is the case, then the complete expression will be undefined.

There are two exceptions to this for the Boolean operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above rules are valid whether or
not the value of the other sub-expression is known.

2.5  OBJECTS AND PROPERTIES

OCL expressions can refer to Classifiers, e.g. types, classes, interfaces, associations (acting as types) and
datatypes. Also all attributes, association-ends, methods, and operations without side-effects that are defined on
these types, etc. can be used. In a class model, an operation or method is defined to be side-effect-free if the
isQuery attribute of the operations is true. For the purpose of this document, we will refer to attributes, associa-
tion-ends, and side-effect-free methods and operations as being properties. A property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

2.5.1 Properties
The value of a property on an object that is defined in a class diagram is specified by a dot followed by the name
of the property.

context AType inv: 
self.property

If self is a reference to an object, then self.property is the value of the property property on self.

2.5.2 Properties: Attributes
For example, the age of a Person is written as self.age:

context Person inv:
self.age > 0

The value of the subexpression self.age is the value of the age attribute on the particular instance of Person iden-
tified by self. The type of this subexpression is the type of the attribute age, which is the basic type Integer.
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Using attributes, and operations defined on the basic value types, we can express calculations etc. over the
class model. For example, a business rule might be “the age of a Person is always greater than zero.” This can be
stated as shown in the invariant above.

2.5.3 Properties: Operations
Operations may have parameters. For example, as shown earlier, a Person object has an income expressed as a
function of the date. This operation would be accessed as follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The operation itself could be defined by a postcondition constraint. This is a constraint that is stereotyped as
«postcondition». The object that is returned by the operation can be referred to by result. It takes the following
form:

context Person::income (d: Date) : Integer
post: result = age * 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the definition may be recur-
sive) as long as the recursion is not infinite. The type of result is the return type of the operation, which is Integer
in the above example.

To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty argument list are
mandatory:

context Company inv:
self.stockPrice() > 0

2.5.4 Properties: Association Ends and Navigation
Starting from a specific object, we can navigate an association on the class diagram to refer to other objects and
their properties. To do so, we navigate the association by using the opposite association-end:

object.rolename

The value of this expression is the set of objects on the other side of the rolename association. If the multiplicity
of the association-end has a maximum of one (“0..1” or “1”), then the value of this expression is an object. In the
example class diagram, when we start in the context of a Company (i.e., self is an instance of Company), we can
write:

context Company 
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty() 

In the first invariant self.manager is a Person, because the multiplicity of the association is one. In the second
invariant self.employee will evaluate in a Set of Persons. By default, navigation will result in a Set. When the
association on the Class Diagram is adorned with {ordered}, the navigation results in a Sequence.

Collections, like Sets, Bags, and Sequences are predefined types in OCL. They have a large number of prede-
fined operations on them. A property of the collection itself is accessed by using an arrow ‘->’ followed by the
name of the property. The following example is in the context of a person:

context Person inv:
self.employer->size() < 3

This applies the size property on the Set self.employer, which results in the number of employers of the Person
self.

context Person inv:
self.employer->isEmpty()

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of employers is empty
and false otherwise.
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Missing Rolenames
When a rolename is missing at one of the ends of an association, the name of the type at the association end, start-
ing with a lowercase character, is used as the rolename. If this results in an ambiguity, the rolename is mandatory.
This is the case with unnamed rolenames in reflexive associations. If the rolename is ambiguous, then it cannot
be used in OCL.

Navigation over Associations with Multiplicity Zero or One
Because the multiplicity of the role manager is one, self.manager is an object of type Person. Such a single object
can be used as a Set as well. It then behaves as if it is a Set containing the single object. The usage as a set is done
through the arrow followed by a property of Set. This is shown in the following example:

context Company inv:
self.manager->size() = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access the size property on Set.
This expression evaluates to true.

The following example shows how a property of a collection can be used.

context Company inv:
self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set.
This expression is incorrect, because foo is not a defined property of Set.

context Company inv:
self.manager.age> 40

The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person.
In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether there is an

object or not when navigating the association. In the example we can write:

context Person inv: 
self.wife->notEmpty() implies self.wife.sex = Sex::female

Combining Properties
Properties can be combined to make more complicated expressions. An important rule is that an OCL expression
always evaluates to a specific object of a specific type. After obtaining a result, one can always apply another
property to the result to get a new result value. Therefore, each OCL expression can be read and evaluated left-to-
right.

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18

context Person inv:
self.wife->notEmpty() implies self.wife.age >= 18 and
self.husband->notEmpty() implies self.husband.age >= 18

[2] a company has at most 50 employees

context Company inv:
self.employee->size() <= 50

2.5.5 Navigation to Association Classes
To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot and the name of
the association class starting with a lowercase character:

context Person inv:
self.job 
OCL 2.0 INITIAL SUBMISSION VERSION    1.0 ,AUGUST 20, 2001                                                                       2-11



OCL LANGUAGE DESCRIPTION
The sub-expression self.job evaluates to a Set of all the jobs a person has with the companies that are his/her
employer. In the case of an association class, there is no explicit rolename in the class diagram. The name job
used in this navigation is the name of the association class starting with a lowercase character, similar to the way
described in the section “Missing Rolenames” above.

In case of a recursive association, that is an association of a class with itself, the name of the association class
alone is not enough. We need to distinguish the direction in which the association is navigated as well as the name
of the association class. Take the following model as an example.

When navigating to an association class such as employeeRanking there are two possibilities depending on the
direction. For instance, in the above example, we may navigate towards the employees end, or the bosses end. By
using the name of the association class alone, these two options cannot be distinguished. To make the distinction,
the rolename of the direction in which we want to navigate is added to the association class name, enclosed in
square brackets. In the expression

context Person inv:
self.employeeRanking[bosses]->sum() > 0

the self.employeeRanking[bosses] evaluates to the set of EmployeeRankings belonging to the collection of bos-
ses. And in the expression

context Person inv:
self.employeeRanking[employees]->sum() > 0

the self.employeeRanking[employees] evaluates to the set of EmployeeRankings belonging to the collection of
employees. The unqualified use of the association class name is not allowed in such a recursive situation. Thus,
the following example is invalid:

context Person inv:
self.employeeRanking->sum() > 0 -- INVALID!

In a non-recursive situation, the association class name alone is enough, although the qualified version is allowed
as well. Therefore, the examples at the start of this section could also be written as:

context Person inv:
self.job[employer] 

2.5.6 Navigation from Association Classes
We can navigate from the association class itself to the objects that participate in the association. This is done
using the dot-notation and the role-names at the association-ends.

context Job
inv: self.employer.numberOfEmployees >= 1
inv: self.employee.age > 21

Navigation from an association class to one of the objects on the association will always deliver exactly one
object. This is a result of the definition of AssociationClass. Therefore, the result of this navigation is exactly one
object, although it can be used as a Set using the arrow (->).

EmployeeRanking

Person
age

bosses

employees * score

*

Figure 2-2 Navigating recursive association classes
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2.5.7 Navigation through Qualified Associations
Qualified associations use one or more qualifier attributes to select the objects at the other end of the association.
To navigate them, we can add the values for the qualifiers to the navigation. This is done using square brackets,
following the role-name. It is permissible to leave out the qualifier values, in which case the result will be all
objects at the other end of the association.

context Bank inv: 
self.customer

This results in a Set(Person) containing all customers of the Bank.

context Bank inv:
self.customer[8764423]

This results in one Person, having accountnumber 8764423.
If there is more than one qualifier attribute, the values are separated by commas, in the order which is specified

in the UML class model. It is not permissible to partially specify the qualifier attribute values.

2.5.8 Using Pathnames for Packages
Within UML, different types are organized in packages. OCL provides a way of explicitly referring to types in
other packages by using a package-pathname prefix. The syntax is a package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within packages:

Packagename1::Packagename2::Typename

2.5.9 Accessing overridden properties of supertypes
Whenever properties are redefined within a type, the property of the supertypes can be accessed using the
oclAsType() operation. Whenever we have a class B as a subtype of class A, and a property p1 of both A and B,
we can write:

context B inv: 
self.oclAsType(A).p1  -- accesses the p1 property defined in A 
self.p1  -- accesses the p1 property defined in B 

Figure 0-1 shows an example where such a construct is needed.

Figure 0-1 Accessing Overridden Properties Example

....

Dependency

target

source
*

*

ModelElement

Note
value: Uninterpreted
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In this model fragment there is an ambiguity with the OCL expression on Dependency:

context Dependency inv: 
self.source <> self

This can either mean normal association navigation, which is inherited from ModelElement, or it might also
mean navigation through the dotted line as an association class. Both possible navigations use the same role-
name, so this is always ambiguous. Using oclAsType() we can distinguish between them with:

context Dependency 
inv: self.oclAsType(Dependency).source
inv: self.oclAsType(ModelElement).source

2.5.10 Predefined properties on All Objects
There are several properties that apply to all objects, and are predefined in OCL. These are:

oclIsTypeOf(t : OclType)  : Boolean
oclIsKindOf(t : OclType)  : Boolean
oclInState(s : OclState)  : Boolean
oclIsNew()      : Boolean
oclAsType(t : OclType) : instance of OclType

The operation is oclTypeOf results in true if the type of self and t are the same. For example:

context Person
inv: self.oclIsTypeOf( Person )      -- is true 
inv: self.oclIsTypeOf( Company)      -- is false

The above property deals with the direct type of an object. The oclIsKindOf property determines whether t is
either the direct type or one of the supertypes of an object.

The operation oclInState(s) results in true if the object is in the state s. Values for s are the names of the states
in the statemachine(s) attached to the Classifier of object. For nested states the statenames can be combined using
the double colon ‘::’ .

In the example statemachine above, values for s can be On, Off, Off::Standby, Off::NoPower. If the classifier of
object has the above associated statemachine valid OCL expressions are:

object.oclInState(On)
object.oclInState(Off)
object.oclInstate(Off::Standby)
object.oclInState(Off:NoPower)

If there are multiple statemachines attached to the object’s classifier, then the statename can be prefixed with the
name of the statemachine containing the state and the double semicolon ::, as with nested states.

The operation oclIsNew evaluates to true if, used in a postcondition, the object is created during performing the
operation. i.e., it didn’t exist at precondition time.

On Off

Standby NoPower
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2.5.11 Features on Classes Themselves
All properties discussed until now in OCL are properties on instances of classes. The types are either predefined
in OCL or defined in the class model. In OCL, it is also possible to use features defined on the types/classes
themselves. These are, for example, the class-scoped features defined in the class model. Furthermore, several
features are predefined on each type.

A predefined feature on each type is allInstances, which results in the Set of all instances of the type in exist-
ence at the specific time when the expression is evaluated. If we want to make sure that all instances of Person
have unique names, we can write:

context Person inv:
Person.allInstances()->forAll(p1, p2 |
                              p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances() is the set of all persons and is of type Set(Person). It is the set of all persons that exist at
the snapshot in time that the expression is evaluated.

NB: The use of allInstances has some problems and its use is discouraged in most cases. The first problem is
best explained by looking at the types like Integer, Real and String. For these types the meaning of allInstances is
undefined. What does it mean for an Integer to exist? The evaluation of the expression Integer.allInstances()
results in an infinite set and is therefore undefined within OCL. The second problem with allInstances is that the
existence of objects must be considered within some overall context, like a system or a model. This overall con-
text must be defined, which is not done within OCL. A recommended style is to model the overall contextual sys-
tem explicitly as an object within the system and navigate from that object to its containing instances without
using allInstances.

2.5.12 Collections
Single navigation results in a Set, combined navigations in a Bag, and navigation over associations adorned with
{ordered} results in a Sequence. Therefore, the collection types play an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of predefined operations
to enable the OCL expression author (the modeler) to manipulate collections. Consistent with the definition of
OCL as an expression language, collection operations never change collections; isQuery is always true. They
may result in a collection, but rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL distinguishes three dif-
ferent collection types: Set, Sequence, and Bag. A Set is the mathematical set. It does not contain duplicate ele-
ments. A Bag is like a set, which may contain duplicates (i.e., the same element may be in a bag twice or more).
A Sequence is like a Bag in which the elements are ordered. Both Bags and Sets have no order defined on them.
Sets, Sequences, and Bags can be specified by a literal in OCL. Curly brackets surround the elements of the col-
lection, elements in the collection are written within, separated by commas. The type of the collection is written
before the curly brackets:

Set { 1 , 2 , 5 , 88 }
Set { 'apple' , 'orange', 'strawberry' }

A Sequence:

Sequence { 1, 3, 45, 2, 3 }
Sequence { 'ape', 'nut' }

A bag:

Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to create them. The ele-
ments inside the curly brackets can be replaced by an interval specification, which consists of two expressions of
type Integer, Int-expr1 and Int-expr2, separated by ‘..’. This denotes all the Integers between the values of Int-
expr1 and Int-expr2, including the values of Int-expr1 and Int-expr2 themselves:
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Sequence{ 1..(6 + 4) }  
Sequence{ 1..10 }
-- are both identical to
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described at the end of this chapter.
Collections can be specified by a literal, as described above. The only other way to get a collection is by navi-

gation. To be more precise, the only way to get a Set, Sequence, or Bag is:

1. a literal, this will result in a Set, Sequence, or Bag:

 Set      {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
 Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
 Bag      {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

 context Company inv:
 self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)

2.5.13 Collections of Collections

Comment – Needs to be changed to OCL 2.0

Within OCL, all Collections of Collections are flattened automatically; therefore, the following two expressions
have the same value:

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }
Set{ 1, 2, 3, 4, 5, 6 }

2.5.14 Collection Type Hierarchy and Type Conformance Rules
In addition to the type conformance rules in “Type Conformance” on page -7, the following rules hold for all
types, including the collection types:

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2.

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3, then Type1 con-
forms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle)  conforms to  Set(Transport)
Set(Bicycle)  conforms to  Collection(Bicycle)
Set(Bicycle)  conforms to  Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are both subtypes of
Collection(Bicycle) at the same level in the hierarchy.
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2.5.15 Previous Values in Postconditions
As stated in “Pre- and Postconditions” on page -4, OCL can be used to specify pre- and post-conditions on oper-
ations and methods in UML. In a postcondition, the expression can refer to two sets of values for each property of
an object:

• the value of a property at the start of the operation or method

• the value of a property upon completion of the operation or method

The value of a property in a postcondition is the value upon completion of the operation. To refer to the value of a
property at the start of the operation, one has to postfix the property name with the keyword ‘@pre’:

context Person::birthdayHappens()
post: age = age@pre + 1

The property age refers to the property of the instance of Person on which executes the operation. The property
age@pre refers to the value of the property age of the Person that executes the operation, at the start of the opera-
tion.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the parameters.

context Company::hireEmployee(p : Person)
post: employees = employees@pre->including(p) and

stockprice() = stockprice@pre() + 10

The above operation can also be specified by a postcondition and a precondition together:

context Company::hireEmployee(p : Person)
pre : not employee->includes(p)
post: employees->includes(p) and
         stockprice() = stockprice@pre() + 10

When the pre-value of a property evaluates to an object, all further properties that are accessed of this object are
the new values (upon completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x
    -- and then the new value of c of x.
a.b@pre.c@pre-- takes the old value of property b of a, say x
    -- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition. Asking for a current pro-
perty of an object that has been destroyed during execution of the operation results in Undefined. Also, referring
to the previous value of an object that has been created during execution of the operation results in Undefined.

2.6  COLLECTION OPERATIONS

OCL defines many operations on the collection types. These operations are specifically meant to enable a flexible
and powerful way of projecting new collections from existing ones. The different constructs are described in the
following sections.

2.6.1 Select and Reject Operations
Sometimes an expression using operations and navigations delivers a collection, while we are interested only in a
special subset of the collection. OCL has special constructs to specify a selection from a specific collection.
These are the select and reject operations. The select specifies a subset of a collection. A select is an operation on
a collection and is specified using the arrow-syntax:
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collection->select( ... )

The parameter of select has a special syntax that enables one to specify which elements of the collection we want
to select. There are three different forms, of which the simplest one is:

collection->select( boolean-expression )

This results in a collection that contains all the elements from collection for which the boolean-expression eva-
luates to true. To find the result of this expression, for each element in collection the expression boolean-expres-
sion is evaluated. If this evaluates to true, the element is included in the result collection, otherwise not. As an
example, the following OCL expression specifies that the collection of all the employees older than 50 years is
not empty:

context Company inv: 
self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person from self.employee and evaluates age > 50
for this person. If this results in true, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument is the element of the
collection on which the select is invoked. Thus the age property is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you can only refer to prop-
erties of them. To enable to refer to the persons themselves, there is a more general syntax for the select expres-
sion:

collection->select( v | boolean-expression-with-v )

The variable v is called the iterator. When the select is evaluated, v iterates over the collection and the boolean-
expression-with-v is evaluated for each v. The v is a reference to the object from the collection and can be used to
refer to the objects themselves from the collection. The two examples below are identical:

context Company inv: 
self.employee->select(age > 50)->notEmpty()

context Company inv: 
self.employee->select(p | p.age > 50)->notEmpty()

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates to True. This
amounts to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be given. The select now is
written as:

collection->select( v : Type | boolean-expression-with-v )

The meaning of this is that the objects in collection must be of type Type. The next example is identical to the pre-
vious examples:

context Company inv: 
self.employee.select(p : Person | p.age > 50)->notEmpty()

The compete select syntax now looks like one of:

collection->select( v : Type | boolean-expression-with-v )
collection->select( v | boolean-expression-with-v )
collection->select( boolean-expression )

The reject operation is identical to the select operation, but with reject we get the subset of all the elements of the
collection for which the expression evaluates to False. The reject syntax is identical to the select syntax:

collection->reject( v : Type | boolean-expression-with-v )
collection->reject( v | boolean-expression-with-v )
collection->reject( boolean-expression )

As an example, specify that the collection of all the employees who are not married is empty:

context Company inv: 
self.employee->reject( isMarried )->isEmpty()
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The reject operation is available in OCL for convenience, because each reject can be restated as a select with the
negated expression. Therefore, the following two expressions are identical:

collection->reject( v : Type | boolean-expression-with-v )
collection->select( v : Type  | not (boolean-expression-with-v) )

2.6.2 Collect Operation
As shown in the previous section, the select and reject operations always result in a sub-collection of the original
collection. When we want to specify a collection which is derived from some other collection, but which contains
different objects from the original collection (i.e., it is not a sub-collection), we can use a collect operation. The
collect operation uses the same syntax as the select and reject and is written as one of:

collection->collect( v : Type | expression-with-v )
collection->collect( v | expression-with-v )
collection->collect( expression )

The value of the reject operation is the collection of the results of all the evaluations of expression-with-v.
An example: specify the collection of birthDates for all employees in the context of a company. This can be

written in the context of a Company object as one of:

self.employee->collect( birthDate )
self.employee->collect( person | person.birthDate )
self.employee->collect( person : Person | person.birthDate )

An important issue here is that the resulting collection is not a Set, but a Bag. When more than one employee has
the same value for birthDate, this value will be an element of the resulting Bag more than once. The Bag resul-
ting from the collect operation always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following expression
results in the Set of different birthDates from all employees of a Company:

self.employee->collect( birthDate )->asSet()

Shorthand for Collect
Because navigation through many objects is very common, there is a shorthand notation for the collect that makes
the OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will automatically be interpreted as a col-
lect over the members of the collection with the specified property.

For any propertyname that is defined as a property on the objects in a collection, the following two expressions
are identical:

collection.propertyname
collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname(par1, par2, ...)
collection->collect(propertyname(par1, par2, ...) 

2.6.3 ForAll Operation
Many times a constraint is needed on all elements of a collection. The forAll operation in OCL allows specifying
a Boolean expression, which must hold for all objects in a collection:
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collection->forAll( v : Type | boolean-expression-with-v )
collection->forAll( v | boolean-expression-with-v )
collection->forAll( boolean-expression )

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is true for all ele-
ments of collection. If the boolean-expression-with-v is false for one or more v in collection, then the complete
expression evaluates to false. For example, in the context of a company:

context Company 
inv: self.employee->forAll( forename = 'Jack' )
inv: self.employee->forAll( p | p.forename = 'Jack' )
inv: self.employee->forAll( p : Person | p.forename = 'Jack' )

These invariants evaluate to true if the forename feature of each employee is equal to ‘Jack.’
The forAll operation has an extended variant in which more then one iterator is used. Both iterators will iterate

over the complete collection. Effectively this is a forAll on the Cartesian product of the collection with itself.

context Company inv: 
self.employee->forAll( e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

context Company inv: 
self.employee->forAll( e1, e2 : Person |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is semantically equivalent to:

context Company inv: 
self.employee->forAll(e1 | self.employee->forAll (e2 |
                     e1 <> e2 implies e1.forename <> e2.forename)))

2.6.4 Exists Operation
Many times one needs to know whether there is at least one element in a collection for which a constraint holds.
The exists operation in OCL allows you to specify a Boolean expression which must hold for at least one object
in a collection:

collection->exists( v : Type | boolean-expression-with-v )
collection->exists( v | boolean-expression-with-v )
collection->exists( boolean-expression )

This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is true for at least
one element of collection. If the boolean-expression-with-v is false for all v in collection, then the complete
expression evaluates to false. For example, in the context of a company:

context Company inv: 
self.employee->exists( forename = 'Jack' )

context Company inv: 
self.employee->exists( p | p.forename = 'Jack' )

context Company inv: 
self.employee->exists( p : Person | p.forename = 'Jack' )

These expressions evaluate to true if the forename feature of at least one employee is equal to ‘Jack.’

2.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject, select, forAll, exists,
collect, can all be described in terms of iterate.

An accumulation builds one value by iterating over a collection.
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collection->iterate( elem : Type; acc : Type = <expression> |
expression-with-elem-and-acc )

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumulator. The
accumulator gets an initial value <expression>.

When the iterate is evaluated, elem iterates over the collection and the expression-with-elem-and-acc is evalu-
ated for each elem. After each evaluation of expression-with-elem-and-acc, its value is assigned to acc. In this
way, the value of acc is built up during the iteration of the collection. The collect operation described in terms of
iterate will look like:

collection->collect(x : T | x.property)
-- is identical to:
collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)
{
   acc = value;
   for(Enumeration e = collection.elements() ; e.hasMoreElements(); ){
       elem = e.nextElement();
       acc  = <expression-with-elem-and-acc>
   }
}

Although the Java pseudo code uses a ‘next element’, the iterate operation is defined for each collection type and
the order of the iteration through the elements in the collection is not defined for Set and Bag. For a Sequence the
order is the order of the elements in the sequence.

2.6.6 Iterators in Collection Operations
The collection operations that take an OclExpression as parameter may all have an optional iterator declaration.
For any operation name op, the syntax options are:

collection->op( iter : Type | OclExpression )
collection->op( iter | OclExpression )
collection->op( OclExpression )

2.6.7 Resolving Properties
For any property (attribute, operation, or navigation), the full notation includes the object of which the property is
taken. As seen in Section 2.3.3, self can be left implicit, and so can the iterator variables in collection operations.
At any place in an expression, when an iterator is left out, an implicit iterator-variable is introduced. For example
in:

context Person inv:
employer->forAll( employee->exists( lastName = name) )

three implicit variables are introduced. The first is self, which is always the instance from which the constraint
starts. Secondly an implicit iterator is introduced by the forAll and third by the exists. The implicit iterator varia-
bles are unnamed. The properties employer, employee, lastName and name all have the object on which they are
applied left out. resolving these goes as follows:

• at the place of employer there is one implicit variable: self : Person. Therefore employer must be a property of
self.

• at the place of employee there are two implicit variables: self : Person and iter1 : Company. Therefore
employer must be a property of either self or iter1. If employee is a property of both self and iter1 then it is
defined to belong to the variable in the most inner scope, which is iter1.
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• at the place of lastName and name there are three implicit variables: self : Person , iter1 : Company and iter2
: Person. Therefore lastName and name must both be a property of either self or iter1 or iter2. Propoerty name
is a property of iter1. However, lastName is a property of both self and iter2. This is ambiguous and therefore
the lastNAme refers to the variable in the most inner scope, which is iter2.

Both of the following invariant constraint are correct:

context Person
inv: employer->forAll( employee->exists( p | p.lastName = name) ) 
inv: employer->forAll( employee->exists( self.lastName = name) ) 
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1 3
Abstract Syntax

This section describes the abstract syntax of the OCL. In this abstract syntax a number of metaclasse from the
UML metamodel are imported. These metaclasses are shown in the models with the annotation ’(from core)’ and
shown with a transparant fill color. All metaclasses defined as part of the OCL abstract syntax are shows with a
light gray background.

3.1  INTRODUCTION

The abstract syntax as described below defines the concepts that are part of the OCL using a MOF compliant
metamodel. The abstract syntax is divided into several packages.

• The Types package describes the concepts that define the type system of OCL. It shows which types are prede-
fined in OCL and which types are deduced from the UML models.

• The Expressions package describes the structure of OCL expressions.

3.2  THE TYPES PACKAGE

OCL is a typed language. Each expression has a type which is either explicitly declared or can be statically
derived. Evaluation of the expression yields a value of this type. Therefore, before we can define expressions, we
have to provide a model for the concept of type. A metamodel for OCL types is shown in this section. Note that
instances of the classes in the metamodel are the types themselves (e.g. Integer) not instances of the domain they
represent (e.g. -15, 0, 2, 3).

The model in figure 3-1 shows the types that can occur in an OCL expression. The basic type is the UML Clas-
sifier, which includes all subtypes of Classifier from the UML infrastructure.

In the model the CollectionType and its subclasses and the TupleType are special. One can never instantiate all
collection types, because there is an infinite number, especially when nested collections are taken in account.
Users will never instantiate these types explicitly. Conceptually all these types do exist, but such a type should be
(lazily) instantiated by a tool, whenever it is needed in an expression.

The type OclType has been removed from the type hierarchy. This means that a Classifier is not a valid OCL
expression any more.
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BagType
A bag type is a collection type which describes a multiset of elements where each element may occur multiple
times in the bag. The elements are unordered. Part of a bag type is the declaration of the type of its elements. In
the metamodel, this is shown as an association from CollectionType (a generalization of BagType) to Classifier.

CollectionType
A collection type describes a list of elements of a particular given type. Collection types are Set, Sequence and
Bag types. Part of every collection type is the declaration of the type of its elements, i.e. a collection type is
parameterized with an element type. In the metamodel, this is shown as an association from CollectionType to
Classifier. Note that there is no restriction on the element type of a collection type. This means in particular that a
collection type may be parameterized with other collection types allowing collections which may be nested arbi-
trarily deep.

Associations
elementType The type of the elements in a collection. All elements in a collection must con-

form to this type.

SequenceType
A sequence type is a collection type which describes a list of elements where each element may occur multiple
times in the sequence. The elements are ordered by their position in the sequence. Part of a sequence type is the

Figure 3-1 Abstract syntax kernel metamodel for OCL Types
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declaration of the type of its elements. In the metamodel, this is shown as an association from CollectionType (a
generalization of SequenceType) to Classifier.

SetType
A set type is a collection type which describes a set of elements where each distinct element occurs only once in
the set. The elements are not ordered. Part of a set type is the declaration of the type of its elements. In the meta-
model, this is shown as an association from CollectionType (a generalization of SetType) to Classifier.

TupleType
A tuple type (also known as record type) combines different types into a single aggregate type. The components
of a tuple type are described by tuple parts each having a name and a type. There is no restriction on the kind of
types that can be used as part of a tuple. In particular, a tuple type may contain other tuple types and collection
types.

TuplePart
A tuple part represents a single component of a tuple type. A part has a name and a type. The purpose of the name
is to uniquely identify each component.

3.2.1 Type Conformance
The type conformance rules are formally underpinned in the Semantics section of the specification. To ensure
that the rules are accessible to UML modellers they are specified using OCL.

BagType

[1] Different bag types conform to each other if there elements conform to each other.

context BagType 
inv: BagType.allInstances()->forAll(b | 
            self.elementType.conformsTo(b.elementType) implies self.conformsTo(b)) 

Classifier

[1] Conformance is a transitive relationship.

Context Classifier
inv Transitivity: Classifier.allInstances()->forAll(x|Classifier.allInstances()
                  ->forAll(y| 
                      (self.conformsTo(x) and x.conformsTo(y)) implies self.conformsTo(y)))

[2] All classifiers except collections conform to OclAny.

context Classifier 
inv: (not self.oclIsKindOf (CollectionType)) implies 
      Primitive.allInstances()->forAll(p | (p.name = 'OclAny') implies self.conformsTo(p))

[3] Classes conform to superclasses and interfaces that they realize.

context Class 
inv : self.generalization.parent->forAll (p | 
          (p.oclIsKindOf(Class) or p.oclIsKindOf(Interface)) implies 
                                                self.conformsTo(p.oclAsType(Classifier)))

[4] Interfaces conforms to super interfaces.

context Interface 
inv : self.generalization.parent->forAll (p | 
              p.oclIsKindOf(Interface) implies self.conformsTo(p.oclAsType(Interface)))
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[5] The Conforms operation between Types is reflexive, a Classifier always conform to itself.

context Classifier
inv: self.conformsTo(self)

[6] The Conforms operation between Types is anti-symmetric.

context Classifier
inv: Classifier.allInstances()->forAll(t1, t2 |
           (t1.conformsTo(t2) and t2.conformsTo(t1)) implies t1 = t2)

CollectionType

[1] Specific collection types conform to collection type.

context CollectionType 
inv: -- all instances of SetType, SequenceType, BagType conform to a 
     -- CollectionType if the elementTypes conform 
        CollectionType.allInstances()->forAll (c | 
                c.oclIsTypeOf(CollectionType) and 
                self.elementType.conformsTo(c.elementType) implies 
                          self.conformsTo(c))

[2] Collections do not conform to any primitive type

context CollectionType 
inv: Primitive.allInstances()->forAll (p | not self.conformsTo(p))

[3] Collections of non-conforming types do not conform

context CollectionType 
inv: CollectionType.allInstances()->forAll (c |
    (not self.elementType.conformsTo (c.elementType)) implies (not self.conformsTo (c)))

Primitive

[1] Integer conforms to real

context Primitive 
inv: (self.name = 'Integer') implies 
         Primitive.allInstances()->forAll (p | (p.name = 'Real') implies 
                                                         (self.conformsTo(p))))

SequenceType

[1] Different sequence types conform to each other if there elements conform to each other.

context SequenceType 
inv: SequenceType.allInstances()->forAll(s | 
               self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

SetType

[1] Different set types conform to each other if there elements conform to each other.

context SetType 
inv: SetType.allInstances()->forAll(s | 
                  self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

TupleType

[1] Tuple types conform to each other when their names and types conform to each other.
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context TupleType 
inv: TupleType.allInstances()->forAll (t | 
       ( t.part->forAll (tp | 
          -- make sure at least one tuplepart has the same name 
          -- (uniqueness of tuplepart names will ensure that not two 
          -- tupleparts have the same name) 
          self.part->exists(stp|stp.name = tp.name) and 
          -- make sure that all tupleparts with the same name conforms. 
          self.part->forAll(stp | (stp.name = tp.name) and stp.type.conformsTo(tp.type)) 
       ) 
       implies 
            self.conformsTo(t) 
     ) ) 

3.2.2 Well-formedness rules for the Types Package

BagType

[1] The name of a bag type is “Bag” followed by the element type’s name in parentheses.

context BagType
inv: self.oclIsTypeOf(BagType) implies
         self.name = ’Bag(’ + self.elementType.name + ’)’

CollectionType

[1] The name of a collection type is “Collection” followed by the element type’s name in parentheses.

context CollectionType
inv: self.oclIsTypeOf(CollectionType) implies
         self.name = ’Collection(’ + self.elementType.name + ’)’

Classifier

[1] For each classifier at most one of each of the different collection types exist.

context Classifier
inv: collectionTypes->select(oclIsTypeOf(CollectionType))->size() <= 1
inv: collectionTypes->select(oclIsTypeOf(BagType       ))->size() <= 1
inv: collectionTypes->select(oclIsTypeOf(SequenceType  ))->size() <= 1
inv: collectionTypes->select(oclIsTypeOf(SetType       ))->size() <= 1

SequenceType

[1] The name of a sequence type is “Sequence” followed by the element type’s name in parentheses.

inv: self.oclIsTypeOf(SequenceType) implies
         self.name = ’Sequence(’ + self.elementType.name + ’)’

SetType

[1] The name of a set type is “Set” followed by the element type’s name in parentheses.

context SetType
inv: self.oclIsTypeOf(SetType) implies
         self.name = ’Set(’ + self.elementType.name + ’)’

Tuple

[1] All parts belonging to a tuple type have unique names.
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context Tuple
inv: self.part->isUnique(tp : TuplePart | tp.name)

TuplePart
No additional well-formedness rule.

3.3  THE EXPRESSIONS PACKAGE

This section defined the abstract syntax of the expressions package. This defines the structure that OCL expres-
sions can have.

3.3.1 Expressions Core
Figure 3-2 on page 6 shows the core part of the Expressions package. The basic structure in the package con-

sists of the classes OclExpression, PropertyCallExp and VariableExp. An OclExpression always has a type,
which is usually not explicitly modeled, but derived. Each PropertyCallExp has exactly one source object. In this

Figure 3-2 The basic structure of the abstract syntax kernel metamodel for Expressions
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section we use the term ’property’, which is a generalization of Feature, AssociationEnd and predefined iterating
OCL collection operations.

A model propertycall expression generalizes all propertycalls that refer to Features or associations or associa-
tionends in the UML metamodel. In figure 3-3 on page 9 the various subtypes of model propertycall expression
are defined.

Most of the remainder of the expressions package consists of a specification of the diffrent subclasses of Prop-
ertyCallExp and their specific structure. The model shows that an OCl expression always starts with a variable,
on which a property is recusively applied.

ActionExpression
An action expression is defined in section (“ActionExpression”), but included in this diagram for completeness.

ConstantExp
A constant expression is an operation with no arguments producing a value. In general the result value is identical
with the operation symbol. This includes things like the integer 1 or literal strings like ’this is a ConstantExp’.

IterateExp
An IterateExp is an expression which evaluates its body expression for each element of a collection. It acts as a
loop construct that iterates over the elements of its source collection and results in a value. An iterate expression
evaluates its body expression for each element of its source collection. The evaluated value of the body expression
in each iteration-step becomes the new value for the result variable for the succeding iteration-step. The result can
be of any type and is defined by the result association. The IterateExp is the most fundamental collection expres-
sion defined in the OCL Expressions package. All other collection expressions are defined in terms of the iterate
expression.

Associations
result The VariableDeclaration that represents the result variable.

IteratorExp
An IteratorExp is an expression which evaluates its body expression for each element of a collection. It acts as a
loop construct that iterates over the elements of its source collection and results in a value. The type of the iterator
expression depends on the name of the expression, and sometimes on the type of the associated source expres-
sion. The IteratorExp represents all other predefined collection operations that use an iterator. This includes
select, collect, reject, forAll, exists, etc.

Associations
iterator The VariableDeclaration that represents the iterator variable. This variable is

bound to each element value of the source collection while evaluating the body
expression.

body The oclExpression that is evaluated for each element in the source collection.

ModelPropertyCallExp
A model property call expression is an expression that refers to a property that is defined for a Classifier in the
UML model to which this expression is attached. Its result value is the evaluation of the corresponding property.
In 3-3 on page 9 the various subclasses of ModelPropertyCallExp are shown.

OclExpression
An OCL expression is an expression that can be evaluated in a given environment. OclExpression is the abstract
superclass of all other expressions in the metamodel. It is the top-level element of the OCL Expressions package.
Every OCL expression has a type that can be statically determined by analyzing the expression and its context.
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Evaluation of an expression results in a value. Expressions with boolean result can be used as constraints, e.g. to
specify an invariant of a class. Expressions of any type can be used to specify queries.

The environment of an OclExpression defines what model elements are visible and can be referred to in an
expression. At the topmost level the environment will be defined by the modelelement to which the OCL expres-
sion is attached, for example by a Classifier if the OCL expression is used as an invariant. On a lower level, each
iterator expression can also introduce one or more iterator variable into the environment. the environment is not
modeled as a separate metaclass, because it can be completely derived using derivation rules. Instead the addi-
tional operation environment() is defined which result in all visible modelelements.

Associations
appliedProperty The property that is applied to the instance that results from evaluating this

OclExpression.
type The type of the value that is the result of evaluating the OclExpression.
parentOperation The OperationCallExp where this OclExpression is an argument of. See 3-3 on

page 9.
initializedVariable The variable of which the result of this expression is the initial value.

PropertyCallExp
A property call expression is an expression that refers to a property (i.e. operation, attribute, association end, pre-
defined iterator for collections, ...). Its result value is the evaluation of the corresponding property.

Associations
source The result value of the source expression is the instance that performs the prop-

erty call.

VariableDeclaration
An VariableDeclaration declares a variable name and binds it to a type. The variable can be used in expressions
where the variable is in scope. This metaclass represents amongst others the variables self and result and the var-
aibles defined using the Let expression.

Associations
initExpression The OclExpression that represents the initial value of the variable. depending on

the role that a variable declaration plays, the init expression might be mandatory.
type The Classifier which represents the type of the variable.

Attributes
varName The String that is the name of the variable.

VariableExp
A variable expression is an expression which consists of a reference to a variable. References to the variables self
and result or to variables defined by Let espressions are examples of such variable expressions.

Associations
referredVariable The variable declaration to which this variable expression refers. In the case of a

self expression the variable declaration is the definition of the self variable.
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3.3.2 Model PropertyCall Expressions
A ModelPropertyCallExp can refer to any of the subtypes of Feature as defined in the UML kernel. This is shown
by the three different subtypes, each of which is associated with its own type of ModelElement.

AssociationEndCallExp
A AssociationEndCallExp is a reference to an AssociationEnd defined in a UML model. It is used to determine
objects linked to a target object by an association. The expression refers to these target objects by the role name of
the association end connected to the target class.

Associations
referredAssociationEnd The AssociationEnd to which this AssociationEndCallExp is a reference This

refers to an AssociationEnd of an Association that is defined in the UML model.

Figure 3-3 Abstract syntax metamodel for ModelPropertyCallExp in the Expressios package
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AssociationClassCallExp
A AssociationClassCallExp is a reference to an AssociationClass defined in a UML model. It is used to deter-
mine objects linked to a target object by an association. The expression refers to these target objects by the name
of the ctarget associationclass.

Associations
referredAssociationClass The AssociationClass to which this AssociationClassCallExp is a reference This

refers to an AssociationClass that is defined in the UML model.

AttributeCallExp
An attribute call expression is a reference to an attribute of a classifier defined in a UML model. It evaluates to
the value of the attribute.

Associations
referredAttribute The Attribute to which this AttributeCallExp is a reference.

NavigationCallExp
A NavigationCallExp is a reference to an AssociationEnd or an AssociationClass defined in a UML model. It is
used to determine objects linked to a target object by an association. If there is a qualifier attached to the source
end of the association then additional qualifiers expressions may be used to specify the values of the qualifying
attributes.

Associations
qualifiers The values for the qualifier attributes if applicable.
navigationSource The source denotes the AssociationEnd at the end of the object itself. This is

used to resolve ambiguities when the same Classifier participates in more than
one AssociationEnd in the same association. In other cases it can be derived.

OperationCallExp
A OperationCallExp refers to an operation defined in a Classifier. The expression may contain a list of argument
expressions if the operation is defined to have parameters. In this case, the number and types of the arguments
must match the parameters.

Associations
arguments The arguments denote the arguments to the operation call. This is only useful

when the operation call is related to an Operation that takes parameters.
referredOperation The Operation to which this OperationCallExp is a reference This is an Opera-

tion of a Classifier that is defined in the UML model.

3.3.3 If Expressions
This section describes the if expression in detail.
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IfExpression
An if expression results in one of two alternative expressions depending on the evaulated value of a condition.
Note that both the then and the else are mandatory. The reason behind this is that an if expression should always
result in a value, which cannot be guaranteed if the else part would be left our.

Associations
condition The OclExpression that represents the boolean condition. If this condition evalu-

ates to true, the result of the if expression is identical to the result of the thenEx-
pression. If this condition evaluates to false, the result of the if expression is
identical to the result of the elseExpression

thenExpression The OclExpression that represents the then part of the if expression.
elseExpression The OclExpression that represents the else part of the if expression.

3.3.4 Action Expressions
Action expressions are used to specify the fact that an object has will perform some action at a some moment in
time.

ActionExpression

An action expression refers to an Action as defined in the Common Behavior section of the UML semantics.
Whenever the condition evaluates to true, the object performs the associated action. If the action is a SendAction,
then the Operation associated with the CallAction is called on all the target objects. This CallAction can both be
synchronous and asynchronous, as described in the UML Semantics. If the action is a SendAction, then an
instance of the Signal associated with the SendAction is sent to all target instances.

The moment at which the condition is evaluated depends on the place in the UML model where the action
caluse is used. If the action clause is attached to a Classifier the meaning is that whenever the condition changes
from false to true for an instance of the Clasifier, the action will be performed by that instance. If the action clause
is attached to an operation, the condition is evaluated at postcondition time. If it evaluates to true, the action is
performed by the object somewhere between precondition and postcondtion time. See [Kleppe2000] for a com-
plete description and motivation of the action clause.

Associations
condition The OclExpression that represents the boolean condition under which the actions

are performed by the object.

Figure 3-4 Abstract syntax metamodel for action expression
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target The OclExpression that represents the target instance or instances on which the
action is perfomed. If the action is a SendAction, the target may be undefined.
The signal is then send to instances, as is defined in the UML semantics under
SendAction.

arguments The OclExpression that represents the actual parameters to the Operation or Sig-
nal. The number and type of arguments should conform to those defined in the
Operation or Signal. The order of the arguments isthe same as the order of the
parameters of the Operation or the attributes of a Signal.

action The Action that is performed by the object when the condition is true. The action
can be a CallAction, denoting that an Operation has been called, or a SendAc-
tion, denoting that a Signal has been sent.

3.3.5 Constant Expressions
This section defines the different types of constant expressions OCL. It also refers to enumeration types and enu-
meration literals.

EnumConstantExp
An enumerationconstant expression represents a reference to an enumeration literal.

Associations
referredEnumLiteral The EnumLiteral to which the enum expression refers.

IntegerConstantExp
A integer constant denotes a value of the type Integer.

NumericConstantExp
A numeric constant denotes a value of either the type Integer or the type Real.

RealConstantExp
A real constant denotes a value of typeReal.

Figure 3-5 Abstract syntax metamodel for action expression
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StringConstantExp
A string denotes a value of the predefined type String.

3.3.6 Let expressions
This section defines the abstract syntax metamodel for Let expressions. The only addition to the abstract syntax is
the metaclass LetExpression. The other metaclasses are re-used from the previous diagrams.

Note that Let expressions that take arguments are no longer allowed in OCL 2.0. This feature is redundant.
Instead, a modeler can defined an additional operation in the UML Classifier, potentially with a special sterotype
to denote that this operation is only ment to be used as a helper operation in OCL expressions. The postcondition
of such an additional operation can then define its result value. Removal of Let functions will therefore not affect
the expressibility of the modeler.

Figure 3-6 Abstract syntax metamodel for constant expression
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Figure 3-7 Abstract syntax metamodel for let expression
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LetExpression
An Let expression is a special expression that defined a new variable with an initial value. A variable defined by
a Let expression cannot change its value. The value is always the evaluated value of the initial expression. The
variable is visible in the in expression.

Associations
variable The VariableDeclaration that defined the variable.
in The expression in whose environment the defined variable is visible.

3.3.7 Operations with special source or argument
This section defines operations that have either as their source, or as their argment a ModelElement that is not an
OclExpression. The reason for this is that a Classifier or a State do not inherit from OclExpression in the meta-
model. .

OclOperationWithTypeSource
An OclOperationWithTypeSource is a special operation that does not have an Ocl expression as a source, but a
Classifier. This metaclass is used to model predefined operations like allInstances(), but also to represent classi-
fier scoped attributes and operations.

Associations
source The source is the Classifier that ’performs’ this operation.

OclOperationWithTypeArgument
An OclOperationWithTypeArgument is a special operation that does not have an Ocl expression as a parameter,
but a Classifier. This metaclass is used to model predefined operations like oclIsTypeOf() and oclIsKindOf().

Figure 3-8 Abstract syntax for operations that have non OclExpressions as their source or argument
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Associations
argument The argument is the Classifier that is the argument of this operation.

OclOperationWithStateArgument
An OclOperationWithStateArgument is a special operation that does not have an Ocl expression as a parameter,
but a State. This metaclass is used to model the predefined operation oclInState().

Associations
argument The argument is the State that is the argument for this operation.

3.3.8 Well-formedness Rules of the Expressions package
The metaclasses defined in the abstract syntax have the following well-formednes rules:

ActionExpression

[1] The type of the condition must be Boolean.

context ActionExpression
inv: condition.type.isKindOf(Primitive) and condition.type.name = ’Boolean’

[2] The action must be a send action or a call action.

context ActionExpression
inv: action.oclIsTypeOf(CallAction) or action.oclIsTypeOf(SendAction)

[3] If the action is a call action, the arguments must conform to the parameters of the operation.

context ActionExpression
inv: -- TBD see OperationCallExp for an identical constraint.

[4] If the action is a send action, the arguments must conform to the attributes of the signal.

context ActionExpression
inv: -- TBD see OperationCallExp for an identical constraint

[5] If the action is a call action, the operation must be an operation of the type of the target.

context ActionExpression
inv: action.oclIsTypeOf(CallAction) implies
       target.type.allOperations->includes(action.operation)

AttributeCallExp

[1] The type of the Attribute call expression is the type of the referred attribute.

context AttrubuteCallExp
inv: type = referredAttribute.type

BooleanConstantExp

[1] The type of a boolean constant expression is the type Boolean.

context BooleanConstantExp
inv: self.type.name = ’Boolean’

Classifier

Additional Operations

The operation conformsTo(c : Classifier) : Boolean defines whether the self Classifier conforms to the
argument c. The conformsTo() operation is defined in the section 3.2.1 (“Type Conformance”).
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ConstantExpression
No additional well-formedness rules.

EnumConstantExp

[1] The type of an enum constant expression is the type of the referred literal.

context EnumConstantExp
inv: self.type = referredEnumLiteral.enumeration

IfExpression

[1] The type of the condition of an if expression must be Boolean.

context IfExpression
inv: self.condition.type.oclIsKindOf(Primitive) and self.condition.type.name = ’Boolean’

IntegerConstantExp

[1] The type of an integer constant expression is the type Integer.

context IntegerConstantExp
inv: self.type.name = ’Integer’

IteratorExp

[1] The type of the source expression must be a collection.

context IteratorExp
inv: source.type.oclIsKindOf(CollectionType)

[2] The loop variable of an iterator expression has no init expression

context IteratorExp
inv: self.iterator.initExpression->isEmpty()

[3] The type of the iterator variable must be the type of the elements of the source collection.

context IteratorExp
inv: source.type.oclAsType(CollectionType).elementType.conformsTo(iterator.type)

[4] If the iterator is ’forAll’, ’isUnique’, or ’exists’ the type of the iterator must be Boolean.

context IteratorExp
inv: name = ’exists’ or name = ’forAll’ or name = ’isUnique’
     implies type.oclIsKindOf(Primitive) and type.name = ’Boolean’

[5] The result type of the collect operation on a sequqnce type is q sequence, the result type of ’collect’ on any
other collection type is a Bag. The type of the body is always the type of the elements in the return collection.

context IteratorExp
inv: name = ’collect’ implies
     if source.type.oclIsKindOf(SequenceType) then
       type = expression.type.collectionType->select(oclIsTypeOf(SequenceType))->first()
     else
       type = expression.type.collectionType->select(oclIsTypeOf(BagType))->first()
     endif

[6] The ’select’ iterator has the same type as its source

context IteratorExp
inv: name = ’select’ or name = ’reject’ implies type = source.type

[7] The type of the body of the select, exists and forAll must be boolean.

context IteratorExp
inv: name = ’exists’ or name = ’forAll’ or name = ’select’
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     implies body.type.name = ’Boolean’

IterateExp

[1] The type of the iterate is the type of the result variable.

context IterateExp
inv: type = result.type

[2] The type of the body expression must conform to the declared type of the result variable.

context IterateExp
body.type.conformsTo(result.type)

[3] A result variable must have an init expression

context IterateExp
inv: self.result.initExpression->size() = 1

LetExpression
No additional well-formedness rules.

LoopExp
No additional well-formedness rules.

ModelPropertyCallExp
No additional well-formedness rules.

NumericConstantExp
No additional well-formedness rules.

OclExpression
No additional well-formedness rules.

OclOperationWithStateArgument
No additional well-formedness rules.

OclOperationWithTypeArgument
No additional well-formedness rules.

OclOperationWithTypeSource
No additional well-formedness rules.

OperationCallExp

[1] All the arguments must conform to the parameters of the referred operation

context OperationCallExp
inv: arguments->forall(a|a.type.conformsTo(
                         referredOperation.parameters->at(arguments->indexOf(a)).type)

Alternative specification of the same constraint:

context OperationCallExp
inv: Sequence{1..arguments->size()}->forAll( i |
                     arguments->at(i).conformsTo(referredOperation.parameters->at(i).type)
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PropertyCallExp
No additional well-formedness rules.

RealConstantExp

[1] The type of a real constant expression is the type Real.

context RealConstantExp
inv: self.type.name = ’Real’

StringConstantExp

[1] The type of a string constant expression is the type String.

context StringConstantExp
inv: self.type.name = ’String’

VariableDeclaration
No additional well-formedness rule.

VariableExpression

[1] The type of a VariableExpression is the type of the variable to which it refers.

context VariableExp
inv: type = referredVariable.type
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1 4
Concrete Syntax

This section describes the concrete syntax of the OCL. This allows modelers to write down OCL expressions in a
standardized way. An formal mapping from the concrete syntax to the abstract syntax from chapter 3 is also
given. Although not required by the UML 2.0 for OCL RfP, section 4.4 describes a mapping from the abstract
syntax to the concrete syntax. This allows one to produce a standard human readable version of any OCL expres-
sion that is represented as an instance of the abstract syntax.

Section 1.3.2 (“Concrete syntax”) describes how we have developed the grammar and the motivation for this
approach.

4.1  STRUCTURE OF THE CONCRETE SYNTAX

The concrete syntax of OCL is described using the EBNF formalism. This grammar is annotated with both syn-
thesised and inherited attributes. It forms a full attribute grammar. For each metaclass in the abstract syntax met-
amodel there is a production rule. For some elements there might be a choice of multiple rules. The structure of
the grammar and the naming of these nonterminals in the EBNF grammar is then easily mapped to the abstract
syntax.

Some of the production rules are syntactically ambiguous. For such productions disambiguating rules have
been defined. Using these rules, each production and thus the complete grammar becomes nonambiguous. For
example in parsing a.b(), there are at least three possible parsing solutions:

1. a is a VariableExpr (a reference to a Let or an iterator variable)

2. a is an AttributeCallExp (self is implicit)

3. a is a NavigationCallExp (self is implicit)

A decision on which grammar production to use can only be made when the environment of the expression is
taken into account. The disambiguating rules describe these choices based on the environment and allow an
unambiguous parsing of a.b(). In this case the rules (in plain English) would be:

• if a is a defined variable in the current scope, a is a VariableExp.

• if not, check self and all iterator variables in scope. There must be exactly one of those whose type (a Classi-
fier) has either:

• an attribute with the name a, resulting in an AttributeCallExp

• or an opposite association-end with the name a, resulting in an NavigationCallExp

• if neither of the above is true, the expression is illegal / incorrect and cannot be parsed

Disambiguating rules may be based on the UML model to which the OCL expresion is attached (e.g does an
attribute exist or not). Because of this, the UML model must be available when an OCL expression is parsed. Oth-
erwise it cannot be validated as a correct expression.The grammar is structured in such a way that at most one of
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the production rules will fullfil all the disambiguating rules, thus ensuring that the grammar as a whole is unam-
biguous.

4.1.1 A Note to Tool Builders
The grammar in this chapter might not prove to be the most efficient way to directly construct a tool. Of course, a
tool-builder is free to use a different parsing mechnism. He can e.g. first parse an OCL expression using a special
concrete syntax tree, and do the semantic validation against a UML model in a second pass. Also, error correction
or syntax directed editing might need hand-optimized grammars. This document does not prescribe any specific
parsing approach. The only restriction is that at the end of all processing a tool should be able to produce a well-
formed instance of the abstract syntax.

4.2  CONCRETE SYNTAX

The concrete syntax is described using a EBNF attribute grammar. Attribute derivations are described using
OCL. There are three special annotations for each grammar production:

Synthesised attributes. Each production may have synthesised attributes attached to it. The value for these
attributes is derived from other values and described using OCL. Synthesized attributes are attributes that are
derived from the right hand side of the production and belong to the element at the left hand side. The ’type’
attribute holds the type of an expression and is used for many productions.

Inherited attributes. Each production may have inherited attributes attached to it. The value for these attributes
is derived from other values and described using OCL. Inherited attributes are attributes that are derived from the
left hand side of the production and belong to elements at the right hand side. The main inherited attribute use is
the ’env’ attribute that defined the environment of each part of an expression.

Disambiguating rules. Each production has zero or more disambiguating rules. If one of the disambiguating
rules is not met, the corresponding production rule in the grammar is invalid. The disambiguating rules are writ-
ten in OCL, and use some definitions from the UML 1.4 semantics.

Start
The Start symbol has been added to setup the initial environment of an expression.

Start              ::= OclExpression
Synthesized attributes
type = OclExpression.type

Inherited attributes
The environment of the OCL expression must be defined. below the self variable is added, and all the
contents of the type of self. This defintion needs carefull consideration.
OclExpression.env = new Environment()
     ->including( new VariableDeclaration(’self’, TYPE) )
     ->union    ( type.allContents->collect(el |new NameBinding(el.name, el.type)) )
     --    if pre/post: add parameters to scope
     --    add anything else from the UML model ...
     -- TBD

OclExpression
An OclExpression has several production rules, one for each subclass of OclExpression.
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[A] OclExpression ::= PropertyCallExp
[B] OclExpression ::= VariableExp
[C] OclExpression ::= ConstantExp
[D] OclExpression ::= LetExpression
[E] OclExpression ::= ActionExpression
[F] OclExpression ::= IfExpression
[G] OclExpression ::= OclOperationWithTypeSource

Synthesized attributes
[A] self.type = PropertyCallExp.type
[B] self.type = VariableExp.type
[C] self.type = ConstantExp.type
[D] self.type = LetExpression.type
[E] self.type = ActionExpression.type
[F] self.type = IfExpression.type
[G] self.type = OclOperationWithTypeSource.type

Inherited attributes
[A] PropertyCallExpr.env              = self.env
[B] VariableExpr.env                  = self.env
[C] ConstantExp.env                   = self.env
[D] LetExpression.env                 = self.env
[E] ActionExpression.env              = self.env
[F] IfExpression.env                  = self.env
[G] OclOperationWithTypeSource.env    = self.env

Disambiguating rules
The disambiguating rules are defined in the children.

VariableExpression
A variable expression is just a name.

VariableExpression ::= name
Synthesized attributes
self.referredVariable = env.lookup(name.value, VariableDeclaration)
self.type = referredVariable.type

Inherited attributes
-- none

Disambiguating rule
name must be a name of a visible VariableDeclaration in the current environment.
env->exists(el | el.name = name.value and el.oclIsKindOf(VariableDeclaration))

name
This rule results in an instance of String.

name               ::= <String>
Synthesized attributes
A name results in a String. No special rules are applicable. The exact syntax of a String is undefined in
UML 1.4, and remains undefined in OCL 2.0. The reasons for this is internationalization.
self.value = String

Inherited attributes
-- none

Disambiguating rules
-- none
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ConstantExpression
Constant expressions are probably a special case that needs to be done explicitly for each type of constant we can
have.

ConstantExpression ::= EnumConstantExp
Synthesized attributes
self.type = EnumConstantExp.type

Inherited attributes
EnumConstantExp.env = self.env

Disambiguating rules
-- none

EnumConstantExpression
Enumeration Constant expressions.

EnumConstantExp ::= name ’::’ name
Synthesized attributes
self.type = env.lookup(name[1].value, Classifier)
self.referredEnumLiteral = self.type.literal->select(l | l.name = name[2].value)->any()

Inherited attributes
-- none

Disambiguating rules
-- none

PropertyCallExpr

[A] PropertyCallExpr ::= ModelPropertyCallExp
[B] PropertyCallExpr ::= IteratorExp
[C] PropertyCallExpr ::= IterateExp
[D] PropertyCallExpr ::= OclOperationWithTypeArgument
[E] PropertyCallExpr ::= OclOperationWithStateArgument

Synthesized attributes
[A] self.type = ModelPropertyCall.type
[B] self.type = IteratorExp.type
[C] self.type = IterateExp.type
[D] self.type = OclOperationWithTypeArgument.type
[E] self.type = OclOperationWithStateArgument.type

Inherited attributes
[A] ModelPropertyCall.env             = self.env
[B] IteratorExp.env                   = self.env
[C] IterateExp.env                    = self.env
[D] OclOperationWithTypeArgument.env  = self.env
[E] OclOperationWithStateArgument.env = self.env

Disambiguating rules
The disambiguating rules are defined in the children.

IteratorExp

IteratorExp ::= source "->" name "(" iterator "|" body ")"
Synthesized attributes
The type of the iterator expression depends on its name.
OCL 2.0 INITIAL SUBMISSION VERSION    1.0 ,AUGUST 20, 2001                                                                       4-4



CONCRETE SYNTAX
self.type = if name.value = ’forAll’        then Boolean
            else if name.value = ’exists’   then Boolean
            else if name.value = ’select’   then source.type
            else if name.value = ’collect’  then source.collectionType()(body.type)
            else if name.value = ’isUnique’ then Boolean
            else if name.value = ’sortedBy’ then SequenceType(source.type.elementType)
            endif endif endif endif endif endif

Inherited attributes
Inside an iterator expression the body is evaluated with a new environment that includes the iterator
variable. The calculation of the new environment needs to take into account the fact that both the name
and the type of the iterator variable may be implicit.
body.env = self.env->including( new VariableDeclaration(  
               if iterator.name->notEmpty then iterator.name else <<noname>> endif, 
               if iterator.type->notEmpty then iterator.type else source.elementType 
               endif)) 
iterator.env = env

Disambiguating rules
-- none

IterateExp

IterateExp ::= source "->" "iterate" "(" iterator ";" result "|" body ")"
Synthesized attributes
self.type = result.type

Inherited attributes
Inside an iterate expression the body is evaluated with a new environment that includes the iterator
variable and the result variable. The calculation of the new environment needs to take into account the
fact that both the name and the type of the iterator variable may be implicit.
body.env = self.env->including( new VariableDeclaration(  
               if iterator.name->notEmpty then iterator.name else <<noname>> endif, 
               if iterator.type->notEmpty then iterator.type else source.elementType 
               endif)) 
iterator.env = env
result.env   = env

Source

source ::= OclExpression
Synthesized attributes
self.type = OclExpression.type

Inherited attributes
OclExpression.env = self.env

Body

body ::= OclExpression
Synthesized attributes
self.type = OclExpression.type

Inherited attributes
OclExpression.env = self.env
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Iterator

iterator ::= VariableDeclaration?
Synthesized attributes
self.type = VariableDeclaration.type
self.name = VariableDeclaration.name

Inherited attributes
VariableDeclaration.env = self.env

Disambiguating rules
An iterator may not have an initExpression
self.initExpression->isEmpty()

Result

result ::= VariableDeclaration
Synthesized attributes
self.type = VariableDeclaration.type
self.name = VariableDeclaration.name

Inherited attributes
VariableDeclaration.env = self.env

Disambiguating rules
A result variable declaration must have a name and an initial value
self.type->notEmpty() and self.initExpression->notEmpty()

VariableDeclaration
In the variable declaration, the type and init expression are optional. When these are requeired, this is defined in
the production rule where the variable declaration is used.

VariableDeclaration::= varName (":" type)? ( "=" initExpression )?
Synthesised attributes
self.name = varName.name

Inherited attributes
initExpression.env = self.env
type.env           = self.env

Disambiguating rules
If the type and the initExpression are present, the type of the initExpression must conform to the decla-
red type of the variable.
type->notEmpty() and initExpression->notEmpty()
                implies initExpression.type.conformsTo(type.type)

varName

varName ::= name
Synthesised attributes
self.name = name.value

Inherited attributes
-- none

Disambiguating rules
-- none
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Type

type ::= name 
Synthesised attributes
The value of this production the Classifier named ’name’.
self.type = env.lookup(name.value, Classifier)

Inherited attributes
-- none

Disambiguating rules
name must be a name of a Classifier in current environment
env->exists(el | el.name = name.value and el.oclIsKindOf(Classifier) )

initExpression

initExpression     ::= OclExpression
Synthesised attributes
self.type = OclExpression.type

Inherited attributes
OclExpression.env = self.env

Disambiguating rules
-- none

ModelPropertyExp
A ModelPropertCall expression may have three different productions. Which one is chosen depends on the dis-
ambiguating rules defined in each of the alternatives.

[A] ModelPropertyExp ::= OperationCallExp
[B] ModelPropertyExp ::= AttributeCallExp
[C] ModelPropertyExp ::= NavigationCallExp

Synthesised attributes
The value of this production is the value of its child production.
[A] self.type = OperationCallExp.type
[B] self.type = AttributeCallExp.type
[C] self.type = NavigationCallExp.type

Inherited attributes
[A] OperationCallExp.env  = self.env
[B] AttributeCallExp.env  = self.env
[C] NavigationCallExp.env = self.env

Disambiguating rules
These are defined in the alternatives

OperationCallExp
An operation call has three different forms. Syntax A is used if the operation is an infox operator. The source
object cannot be implicit. Syntax B and C are used for collection operations and other operations respectively.

[A] OperationCallExp  ::= source name arguments
[B] OperationCallExp  ::= (source "->") name isMarkedPre? "(" arguments? ")"
[C] OperationCallExp  ::= (source ".")? name isMarkedPre? "(" arguments? ")"

Synthesised attributes
self.referredOperation = -- TBD
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self.type = referredOperation.parameters>select(kind=ParameterDirectionKind::return).type

NB : This assumes exactly one return parameter, otherwise we get a tuple type !!
self.isMarkedPre = if isMarkedPre->notEmpty() then isMarkedPre.value else false endif

Inherited attributes
source.env    = self.env
arguments.env = self.env

Disambiguating rules
[A] The name of the referred Operation must be an operator
Set{’+’,’-’,’*’,’/’,’and’,’or’,’xor’,’=’,’<=’,’>=’,’<’,’>’}->includes(name.value)

[B] The name of the referred Operation must be one of the names of the predefined collection opera-
tions.
Set{’select’,’collect’,’reject’,’forAll’,’exists’,’isUnque’,’size’,’isEmpty’,
         ’notEmpty’,’count’,’union’,’difference’}->includes(name.value)

[B] The source must be a collection.
source.type.isCollectionType()

[C] The name of the referred Operation cannot be an operator.
Set{’+’,’-’,’*’,’/’,’and’,’or’,’xor’,’=’,’<=’,’>=’,’<’,’>’}->excludes(name.value)

[C] The source must not be a collection.
source->notEmpty() implies source.type.notCollectionType()

[C] The referred opperation name is the name of an Operation of the type of ’source’ or if source is
empty the name of an operation of self or any of the iterator variables in (nested) environment
-- TBD

[C] The type of arguments must match (see hasSameSignature() in UML semantics) The OCL has been
written for Attribute and Navigation, Operation needs TBD.
-- TBD

AttributeCallExp

AttributeCallExp   ::= (source ".")? name isMarkedPre? 
Synthesised attributes
The variable matchingNavigations is the set of all association ends that have the name ’name’ and are
defined in either self or an iterator variable in scope. Note that allAttributes is defined as an additional
operation on Classifier in the UML 1.4 semantics.
def: Let matchingAttributes : Set(Attribute) =
     env.allIterators->select(it|it.type.allAttributes->includes(at|at.name = name.value))
                ->union( env.lookup(’self’,VariableDeclaration).type.allAttributes
                                      ->includes(a | a.name = name.value))
self.referredAttribute = if source->notEmpty() then
                           source.type.allAttributes->select(a | a.name = name.value)
                        else
                           matchingAttributes.any()
                        endif
self.type = referredAttribute.type
self.isMarkedPre = if isMarkedPre->notEmpty() then isMarkedPre.value else false endif

Inherited attributes
source.env = self.env

Disambiguating rules
’name’ is name of an Attribute of the type of source or if source is empty the name of exactly one attri-
bute of ’self’ or any of the iterator variables in (nested) scope. In OCL:
if source->notEmpty() then
   source.type.allAttributes->includes(a | a.name = name.value)
else
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   matchingAttributes->size() = 1
endif

NavigationCallExp

NavigationCallExp  ::= (source ".")? name isMarkedPre? 
Synthesised attributes
The variable matchingNavigations is the set of all association ends that have the name ’name’ and are
defined in either self or an iterator variable in scope. Note that allOppositeAssociationEnds is defined as
an additional operation on Classifier in the UML 1.4 semantics.
def: Let matchingNavigations : Set(AssociationEnd) =
                env.allIterators->select(it | 
                   it.type.allOppositeAssociationEnds->includes(at | at.name = name.value))
                  ->union(
                    env.lookup(’self’, VariableDeclaration).type.allOppositeAssociationEnds
                              ->includes(a | a.name = name.value))
self.referredAssociationEnd =
               if source->notEmpty() then
                  source.type.allOppositeAssociationEnds->select(a|a.name = name.value)
               else
                  matchingNavigations.any()
               endif
self.type = Set(referredAssociationEnd.participant) or referredAssociationEnd.participant
            -- (The type depends on multiplicity)
self.isMarkedPre = if isMarkedPre->notEmpty() then isMarkedPre.value else false endif

Inherited attributes
source.env = self.env

Disambiguating rules
’name’ is name of AssociationEnd of the type of source or if source is empty the name of exactly one
AssociationEnd of ’self’ or any of the iterator variables in (nested) scope
if source->notEmpty() then
   source.type.allOppositeAssociationEnds->includes(a | a.name= name.value)
else
   matchingNavigations->size() = 1
endif

isMarkedPre

isMarkedPre ::= "@" "pre"
Synthesised attributes
This production returns a boolean value, which is always equal to true.
self.value = true

Inherited attributes
-- none

Disambiguating rules
-- none

Arguments

arguments ::= OclExpression ( "," OclExpression )* 
Synthesised attributes
The attribute ’types’ is a sequence that includes all types of the OclExpressions in the production in the
order in which they appear.
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self.types : Sequence(Classifier) = Set(OclExpression.type)

Inherited attributes
OclExpression.env = self.env

Disambiguating rules
-- none

OclOperationWithTypeArgument

OclOperationWithTypeArgument ::= source "." name "(" typeName ")"
Synthesised attributes
The type of the operation depends on its name.
self.type = if      name.value = ’oclIsTypeOf’ then Boolean
            else if name.value = ’oclIsKindOf’ then Boolean
            else if name.value = ’oclAsType’   then typeName.classifier
            endif endif enfif
self.argument = typeName.classifier

Inherited attributes
source.env   = self.env
typeName.env = self.env

Disambiguating rules
-- none

typeName
This is the argument for OclOperationWithTypeArguments operation. The name refers to a Clasifier.

typeName ::= name
Synthesised attributes
The type is the classifier named ’name’ inm the current environment.
self.classifier = env->select(el | 
                              el.name = name.value and el.oclIsKindOf(Classifier))->any()

Inherited attributes
-- none

Disambiguating rules
’name’ must be the name of exactly one Classifier in scope
env->select(el | el.name = name.value and el.oclIsKindOf(Classifier) )->size() = 1

OclOperationWithStateArgument

OclOperationWithStateArgument ::= source "." name "(" stateName ")"
Synthesised attributes
The type of the operation depends on its name.
self.type = Boolean
self.argument = -- TBD the state in the statemachine attached to the ’type’ of ’source’ 
                -- with the name stateName.name.

Inherited attributes
source.env = self.env

Disambiguating rules
-- none
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stateName
This is the argument for OclOperationWithStateArgument operation. The name refers to a State.

stateName ::= name
Synthesised attributes
self.name = name.value

Inherited attributes
-- none

Disambiguating rules
-- none

LetExpression

LetExpression      ::= "Let" variable "in" in
Synthesised attributes
self.type = in.type

Inherited attributes
in.env = self.env->including(variable)
variable.env = self.env

Disambiguating rules
The variable name must bne unique in the current scope
env->forAll(el | el.name <> variable.name)

variable

variable           ::= VariableDeclaration
Synthesised attributes
self.type = VariableDeclaration.type
self.name = VariableDeclaration.name

Inherited attributes
VariableDeclaration.env = self.env

Disambiguating rules
A variable declaration inside a Let must have a declared type and an initial value.
self.type->notEmpty() and self.initExpression->notEmpty()

in

in                 ::= OclExpression
Synthesised attributes
self.type := OclExpression.type

Inherited attributes
OclExpression.env = self.env

Disambiguating rules
-- none

ActionExpression
The actionName must either be the name of a Signal, or the name of an Operation belonging to the target
object(s).
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ActionExpression ::= "when" condition "to" target "send" 
                      actionName "(" arguments ")"

Synthesised attributes
-- Act

Inherited attributes
-- TBD

Disambiguating rules
-- none

IfExpression

IfExpression ::= "if" condition "then" thenExpression 
                                "else" elseExpression "endif"

Synthesised attributes
self.type := thenExpression.type

Inherited attributes
condition.env      = self.env
thenExpression.env = self.env
elseExpression.env = self.env

Disambiguating rules
-- none

condition

condition ::= OclExpression
Synthesised attributes
self.type := OclExpression.type

Inherited attributes
OclExpression.env = self.env

Disambiguating rules
-- none

thenExpression

thenExpression ::= OclExpression
Synthesised attributes
self.type := OclExpression.type

Inherited attributes
OclExpression.env = self.env

Disambiguating rules
-- none

elseExpression

elseExpression ::= OclExpression
Synthesised attributes
self.type := OclExpression.type

Inherited attributes
OclExpression.env = self.env
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Disambiguating rules
-- none

target

target ::= OclExpression
Synthesised attributes
self.type := OclExpression.type

Inherited attributes
OclExpression.env = self.env

Disambiguating rules
-- none

actionName

actionName ::= Name
Synthesised attributes
self.name = name.value

Inherited attributes
-- none

Disambiguating rules
-- none

4.2.1 Operator Precedence
In the grammar, the precedence of the operators from highest to lowest is as follows:

• @pre

• dot and arrow operations: ‘.’ and ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parentheses ‘(’ and ‘)’ can be used to change precedence.

4.2.2 Environment definition
The Enviroment is defined (informally) with the following operations.

context Environment::lookup(name, type : Classifier) : ModelElement
pre : 
post: result = self->select(el|el.name=name and el.oclIsKindOf(type)).any()

context Environment::add(name, type : Classifier)
pre : not self->exists(el|el.name=name and el.oclIsKindOf(type))
post: self->exists(el|el.name=name and el.oclIsKindOf(type))
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4.3  CONCRETE TO ABSTRACT SYNTAX MAPPING

The mapping from concrete to abstract syntax is described as part of the grammar. It is governed by the following
rules:

• A production for a nonterminal with the name of a metaclass from the abstract syntax maps to an instance of
this metaclass. In the grammar these nonterminals (when appearing at the left-hand side of a production rule)
are marked with the color magenta.

• A production for a nonterminal that represents an association-end from the abstract syntax results in an
instance of the corresponding metaclass. In the grammar these nonterminals (when appearing at the left-hand
side of a production rule) are marked with the color green

• For any other nonterminal the resulting instance is explicitly mentioned in the grammar.

• A production for a nonterminal with the name of a metaclass (magenta) contains at the righthandside all the
attributes and all the associationEnds [exception: next bullet] that are defined in the abstract syntax. The value
of these attributes and association-ends become the value resulting from the productions (in green) for these
attribute and association-end production rules.

• Exception to the previous rule: for each association, only one of the association-ends will appear in the gram-
mar. The other end is defined as its reverse, by definition.

NOTE: This mapping can be described by adding a synthesized attribute to each production which gets the corre-
sponding metaclass as its type. This has not been done yet, but allows the mapping to be fully formaized within
the attribute grammar formalism.

4.4  ABSTRACT SYNTAX TO CONCRETE SYNTAX MAPPING

Comment – This section needs to be done

Basically use the grammar rules as production rules to produce the concrete syntax.
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5 SEMANTICS

This section formally defines the syntax and semantics of OCL. Most of the material in this section is bas
work presented in [Ric01]. This section is organized as follows. Section 5.1 defines the concept of object m
Object models provide information used as context for OCL expressions and constraints. Section 5.2 defi
type system of OCL and the set of standard operations. Finally, Section 5.3 defines the syntax and sema
OCL expressions.

5.1 OBJECT MODELS

In this section, the notion of anobject modelis formally defined. An object model provides the context for OC
expressions and constraints. A precise understanding of object models is required before a formal defin
OCL expressions can be given. Section 5.1.1 proceeds with a formal definition of the syntax of object m
The semantics of object models is defined in Section 5.1.2. This section also defines the notion of system s
snapshots of a running system.

5.1.1 SYNTAX OF OBJECT MODELS

In this section, we formally define the syntax of object models. Such a model has the following components

• a set of classes,

• a set of attributes for each class,

• a set of operations for each class,

• a set of associations with role names and multiplicities,

• a generalization hierarchy over classes.

Additionally, types such asInteger, String, Set(Real) are available for describing types of attributes and operat
parameters. In the following, each of the model components is considered in detail. The following definitio
combined in Section 5.1.1.7 to give a complete definition of the syntax of object models. For naming mode
ponents, we assume in this section an alphabetA and a set of finite, non-empty namesN ⊆ A+ over alphabetA
to be given.

5.1.1.1 TYPES

Types are considered in depth in Section 5.2. For now, we assume that there is a signatureΣ = (T,Ω) with T
being a set of type names, andΩ being a set of operations over types inT . The setT includes the basic types
Integer, Real, Boolean, andString. These are the predefined basic types of OCL. All type domains include
undefined value that allows to operate with unknown or “null” values. Operations inΩ include, for example, the
usual arithmetic operations+,−, ∗, /, etc. for integers. Furthermore, collection types are available for describ
collections of values, for example,Set(String), Bag(Integer), andSequence(Real). Structured values are describe
by tuple types with named components, for example,Tuple(name:String, age:Integer).
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5.1.1.2 CLASSES

The central concept of UML for modeling entities of the problem domain is the class. A class provides a co
description for a set of objects sharing the same properties.

DEFINITION 5.1 (CLASSES)
The set of classes is a finite set of names CLASS⊆ N . �

Each classc ∈ CLASS induces anobject typetc ∈ T having the same name as the class. A value of an object t
refers to an object of the corresponding class. The main difference between classes and object types is
interpretation of the latter includes a special undefined value.

5.1.1.3 ATTRIBUTES

Attributes are part of a class declaration in UML. Objects are associated with attribute values describing pro
of the object. An attribute has a name and a type specifying the domain of attribute values.

DEFINITION 5.2 (ATTRIBUTES )
Let t ∈ T be a type. The attributes of a classc ∈ CLASS are defined as a set ATTc of signaturesa : tc → t where
the attribute namea is an element ofN , andtc ∈ T is the type of classc. �

All attributes of a class have distinct names. In particular, an attribute name may not be used again to define
attribute with a different type.

∀t, t′ ∈ T : (a : tc → t ∈ ATTc anda : tc → t′ ∈ ATTc) =⇒ t = t′

Attributes with the same name may, however, appear in different classes that are not related by genera
Details are given in Section 5.1.1.6 where we discuss generalization. The set of attribute names and clas
need not be disjoint.

5.1.1.4 OPERATIONS

Operations are part of a class definition. They are used to describe behavioral properties of objects. The effe
operation may be specified in a declarative way with OCL pre- and postconditions. Section 5.3 discusses p
postconditions in detail. Furthermore, operations performing computations without side effects can be sp
with OCL. In this case, the computation is determined by an explicit OCL expression. This is also discus
Section 5.3. Here, we focus on the syntax of operation signatures declaring the interface of user-defined ope
In contrast, other kinds of operations which are not explicitly defined by a modeler are, for example, navi
operations derived from associations. These are discussed in the next section and in Section 5.2.

DEFINITION 5.3 (OPERATIONS)
Let t andt1, . . . , tn be types inT . Operations of a classc ∈ CLASS with typetc ∈ T are defined by a set OPc of
signaturesω : tc × t1 × · · · × tn → t with operation symbolsω being elements ofN . �

The name of an operation is determined by the symbolω. The first parametertc denotes the type of the class
instance to which the operation is applied. An operation may have any number of parameters but only a
return type. In general, UML allows multiple return values. We currently do not support this feature in OCL.
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5.1.1.5 ASSOCIATIONS

Associations describe structural relationships between classes. Generally, classes may participate in any
of associations, and associations may connect two or more classes.

DEFINITION 5.4 (ASSOCIATIONS)
The set of associations is given by

i. a finite set of names ASSOC⊆ N ,

ii. a functionassociates :

{
ASSOC→ CLASS+

as 7→ 〈c1, . . . , cn〉 with (n ≥ 2)
.

�

The functionassociates maps each association nameas ∈ ASSOCto a finite list〈c1, . . . , cn〉 of classes participat-
ing in the association. The numbern of participating classes is also called thedegreeof an association; association
with degreen are calledn-ary associations. For many problems the use of binary associations is often suffi
A self-association(or recursive association)sa is a binary association where both ends of the association are
tached to the same classc such thatassociates(sa) = 〈c, c〉. The functionassociates does not have to be injective
Multiple associations over the same set of classes are possible.

ROLE NAMES

Classes may appear more than once in an association each time playing a different role. For example, in
association PhoneCall on a classPersonwe need to distinguish between the person having the role of a caller
another person being the callee. Therefore we assign each class participating in an association a unique ro
Role names are also important for OCL navigation expressions. A role name of a class is used to determ
navigation path in this kind of expressions.

DEFINITION 5.5 (ROLE NAMES )
Let as ∈ ASSOCbe an association withassociates(as) = 〈c1, . . . , cn〉. Role names for an association are define
by a function

roles :

{
ASSOC→ N+

as 7→ 〈r1, . . . , rn〉 with (n ≥ 2)

where all role names must be distinct, i.e.,

∀i, j ∈ {1, . . . , n} : i 6= j =⇒ ri 6= rj .

�

The functionroles(as) = 〈r1, . . . , rn〉 assigns each classci for 1 ≤ i ≤ n participating in the association a uniqu
role nameri. If role names are omitted in a class diagram, implicit names are constructed in UML by usin
name of the class at the target end and changing its first letter to lower case. As mentioned above, expl
names are mandatory for self-associations.
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Additional syntactical constraints are required for ensuring the uniqueness of role names when a class is
many associations. We first define a functionparticipating that gives the set of associations a class participa
in.

participating :


CLASS→ P(ASSOC)
c 7→ {as | as ∈ ASSOC∧ associates(as) = 〈c1, . . . , cn〉

∧ ∃i ∈ {1, . . . , n} : ci = c}

The following functionnavends gives the set of all role names reachable (ornavigable) from a class over a given
association.

navends :


CLASS× ASSOC→ P(N )
(c, as) 7→ {r | associates(as) = 〈c1, . . . , cn〉

∧ roles(as) = 〈r1, . . . , rn〉
∧ ∃i, j ∈ {1, . . . , n} : (i 6= j ∧ ci = c ∧ rj = r)}

The set of role names that are reachable from a class along all associations the class participates in can
determined by the following function.

navends(c) :

{
CLASS→ P(N )
c 7→

⋃
as∈participating(c) navends(c, as)

MULTIPLICITIES

An association specifies the possible existence of links between objects of associated classes. The numbe
that an object can be part of is specified withmultiplicities. A multiplicity specification in UML can be represented
by a set of natural numbers.

DEFINITION 5.6 (MULTIPLICITIES )
Let as ∈ ASSOC be an association withassociates(as) = 〈c1, . . . , cn〉. The functionmultiplicities(as) =
〈M1, . . . ,Mn〉 assigns each classci participating in the association a non-empty setMi ⊆ N0 with Mi 6= {0} for
all 1 ≤ i ≤ n. �

The precise meaning of multiplicities is defined as part of the interpretation of object models in Section 5.1

REMARK : AGGREGATION AND COMPOSITION

Special forms of associations are aggregation and composition. In general, aggregations and compositions
additional restrictions on relationships. An aggregation is a special kind of binary association representingpart-
of relationship. The aggregate is marked with a hollow diamond at the association end in class diagram
aggregation implies the constraint that an object cannot be part of itself. Therefore, a link of an aggregatio
not connect the same object. In case of chained aggregations, the chain may not contain cycles.

An even stronger form of aggregation is composition. The composite is marked with a filled diamond
association end in class diagrams. In addition to the requirements for aggregations, a part may only belo
most one composite.

These seemingly simple concepts can have quite complex semantic issues [AFGP96, Mot96, Pri97, GR99,
BHS99, BHSOG01]. Here, we are concerned only with syntax. The syntax of aggregations and composi
very similar to associations. Therefore, we do not add an extra concept to our formalism. As a conve
we always use the first component in an association for a class playing the role of an aggregate or com
The semantic restrictions then have to be expressed as an explicit constraint. A systematic way for m

aggregations and compositions to simple associations plus OCL constraints is presented in [GR99].
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5.1.1.6 GENERALIZATION

A generalization is a taxonomic relationship between two classes. This relationship specializes a general cl
a more specific class. Specialization and generalization are different views of the same concept. Genera
relationships form a hierarchy over the set of classes.

DEFINITION 5.7 (GENERALIZATION HIERARCHY )
A generalization hierarchy≺ is a partial order on the set of classes CLASS. �

Pairs in≺ describe generalization relationships between two classes. For classesc1, c2 ∈ CLASS with c1 ≺ c2,
the classc1 is called achild classof c2, andc2 is called aparent classof c1.

FULL DESCRIPTOR OF A CLASS

A child class implicitly inherits attributes, operations and associations of its parent classes. The set of pro
defined in a class together with its inherited properties is called afull descriptor in UML. We can formalize the
full descriptor in our framework as follows. First, we define a convenience function for collecting all parents
given class.

parents :

{
CLASS→ P(CLASS)
c 7→ {c′ | c′ ∈ CLASS∧ c ≺ c′}

The full set of attributes of classc is the set ATT∗c containing all inherited attributes and those that are defin
directly in the class.

ATT∗c = ATTc ∪
⋃

c′∈parents(c)

ATTc′

We define the set of inherited user-defined operations analogously.

OP∗c = OPc ∪
⋃

c′∈parents(c)

OPc′

Finally, the set of navigable role names for a class and all of its parents is given as follows.

navends∗(c) = navends(c) ∪
⋃

c′∈parents(c)

navends(c′)

DEFINITION 5.8 (FULL DESCRIPTOR OF A CLASS )
The full descriptor of a classc ∈ CLASS is a structure FDc = (ATT∗c ,OP∗c ,navends∗(c)) containing all attributes,
user-defined operations, and navigable role names defined for the class and all of its parents. �

The UML standard requires that properties of a full descriptor must be distinct. For example, a class m
define an attribute that is already defined in one of its parent classes. These constraints are captured more
by the following well-formedness rules in our framework. Each constraint must hold for each classc ∈ CLASS.

1. Attributes are defined in exactly one class.

∀(a : tc → t, a′ : tc′ → t′ ∈ ATT∗c) :
(a = a′ =⇒ tc = tc′ ∧ t = t′) (WF-1)
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2. In a full class descriptor, an operation may only be defined once. The first parameter of an operation sig
indicates the class in which the operation is defined. The following condition guarantees that each op
in a full class descriptor is defined in a single class.

∀(ω : tc × t1 × · · · × tn → t, ω : tc′ × t1 × · · · × tn → t′ ∈ OP∗c) :
(tc = tc′) (WF-2)

3. Role names are defined in exactly one class.

∀c1, c2 ∈ parents(c) ∪ {c} :
(c1 6= c2 =⇒ navends(c1) ∩ navends(c2) = ∅) (WF-3)

4. Attribute names and role names must not conflict. This is necessary because in OCL the same not
used for attribute access and navigation by role name. For example, the expressionself.x may either be
a reference to an attributex or a reference to a role namex .

∀(a : tc → t ∈ ATT∗c) : ∀r ∈ navends∗(c) :
(a 6= r) (WF-4)

Note that operations may have the same name as attributes or role names because the concrete synta
allows us to distinguish between these cases. For example, the expressionself.age is either an attribute or role
name reference, but a call to an operation age without parameters is written asself.age() .

5.1.1.7 FORMAL SYNTAX

We combine the components introduced in the previous section to formally define the syntax of object mod

DEFINITION 5.9 (SYNTAX OF OBJECT MODELS )
The syntax of an object model is a structure

M = (CLASS,ATTc,OPc,ASSOC, associates, roles,multiplicities,≺)

where

i. CLASS is a set of classes (Definition 5.1).

ii. ATTc is a set of operation signatures for functions mapping an object of classc to an associated attribute
value (Definition 5.2).

iii. O Pc is a set of signatures for user-defined operations of a classc (Definition 5.3).

iv. A SSOCis a set of association names (Definition 5.4).

(a) associates is a function mapping each association name to a list of participating classes
(Definition 5.4).

(b) roles is a function assigning each end of an association a role name (Definition 5.5).

(c) multiplicities is a function assigning each end of an association a multiplicity specification
(Definition 5.6).

v. ≺ is a partial order on CLASS reflecting the generalization hierarchy of classes (Definitions 5.7 and 5.8
�
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5.1.2 INTERPRETATION OF OBJECT MODELS

In the previous section, the syntax of object models has been defined. An interpretation of object mo
presented in the following.

5.1.2.1 OBJECTS

The domain of a classc ∈ CLASS is the set of objects that can be created by this class and all of its child cla
Objects are referred to by unique object identifiers. In the following, we will make no conceptual distin
between objects and their identifiers. Each object is uniquely determined by its identifier and vice versa. The
the actual representation of an object is not important for our purposes.

DEFINITION 5.10 (OBJECT IDENTIFIERS )
i. The set of object identifiers of a classc ∈ CLASS is defined by an infinite setoid(c) = {c1, c2, . . . }.

ii. The domain of a classc ∈ CLASS is defined asICLASS(c) =
⋃
{oid(c′) | c′ ∈ CLASS∧ c′ � c}.

�

In the following, we will omit the index for a mappingI when the context is obvious. The concrete scheme
naming objects is not important as long as every object can be uniquely identified, i.e., there are no different
having the same name. We sometimes use single letters combined with increasing indexes to name objec
clear from the context to which class these objects belong.

GENERALIZATION

The above definition implies that a generalization hierarchy induces a subset relation on the semantic do
classes. The set of object identifiers of a child class is a subset of the set of object identifiers of its parent
With other words, we have

∀c1, c2 ∈ CLASS : c1 ≺ c2 =⇒ I(c1) ⊆ I(c2) .

From the perspective of programming languages this closely corresponds to the domain-inclusion semanti
monly associated with subtyping and inheritance [CW85]. Data models for object-oriented databases suc
generic OODB model presented in [AHV95] also assume an inclusion semantics for class extensions. T
quirement guarantees two fundamental properties of generalizations. First, an object of a child class has (i
all the properties of its parent classes because itis an instance of the parent classes. Second, this implies tha
object of a more specialized class can be used anywhere where an object of a more general class is expec
ciple of substitutability) because it has at least all the properties of the parent classes. In general, the interp
of classes is pairwise disjoint if two classifiers are not related by generalization and do not have a common

5.1.2.2 L INKS

An association describes possible connections between objects of the classes participating in the associ
connection is also called a link in UML terminology. The interpretation of an association is a relation desc
the set of all possible links between objects of the associated classes and their children.
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DEFINITION 5.11 (LINKS )
Each associationas ∈ ASSOCwith associates(as) = 〈c1, . . . , cn〉 is interpreted as the Cartesian product of th
sets of object identifiers of the participating classes:IASSOC(as) = ICLASS(c1)× · · · × ICLASS(cn). A link denoting
a connection between objects is an elementlas ∈ IASSOC(as). �

5.1.2.3 SYSTEM STATE

Objects, links and attribute values constitute the state of a system at a particular moment in time. A syste
different states as it changes over time. Therefore, a system state is also called a snapshot of a running
With respect to OCL, we can in many cases concentrate on a single system state given at a discrete point
For example, a system state provides the complete context for the evaluation of OCL invariants. For pr
postconditions, however, it is necessary to consider two consecutive states.

DEFINITION 5.12 (SYSTEM STATE )
A system state for a modelM is a structureσ(M) = (σCLASS, σATT, σASSOC).

i. The finite setsσCLASS(c) contain all objects of a classc ∈ CLASS existing in the system state:
σCLASS(c) ⊂ oid(c).

ii. FunctionsσATT assign attribute values to each object:σATT(a) : σCLASS(c)→ I(t) for each
a : tc → t ∈ ATT∗c .

iii. The finite setsσASSOC contain links connecting objects. For eachas ∈ ASSOC: σASSOC(as) ⊂ IASSOC(as).
A link set must satisfy all multiplicity specifications defined for an association (the functionπi(l) projects
theith component of a tuple or listl, whereas the function̄πi(l) projectsall but theith component):

∀i ∈ {1, . . . , n},∀l ∈ σASSOC(as) :
|{l′ | l′ ∈ σASSOC(as) ∧ (π̄i(l′) = π̄i(l))}| ∈ πi(multiplicities(as))

�
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5.2 OCL TYPES AND OPERATIONS

OCL is a strongly typed language. A type is assigned to every OCL expression and typing rules determ
which ways well-formed expressions can be constructed. In addition to those types introduced by UML m
there are a number of predefined OCL types and operations available for use with any UML model. This s
formally defines the type system of OCL. Types and their domains are fixed, and the abstract syntax and se
of operations is defined.

Our general approach to defining the type system is as follows. Types are associated with a set of ope
These operations describe functions combining or operating on values of the type domains. In our approa
use a data signatureΣ = (T,Ω) to describe the syntax of types and operations. The semantics of typesT
and operations inΩ is defined by a mapping that assigns each type a domain and each operation a functio
definition of the syntax and semantics of types and operations will be developed and extended in several s
the end of this section, the complete set of types is defined in a single data signature.

Section 5.2.1 defines the basic typesInteger, Real, BooleanandString. Enumeration types are defined in Sec
tion 5.2.3. Section 5.2.4 introduces object types that correspond to classes in a model. Collection and tup
are discussed in Section 5.2.5. The special typesOclAnyandOclStateare considered in Section 5.2.6. Section 5.2
introduces subtype relationships forming a type hierarchy. All types and operations are finally summarize
data signature defined in Section 5.2.8.

5.2.1 BASIC TYPES

Basic types areInteger, Real, BooleanandString. The syntax of basic types and their operations is defined b
signatureΣB = (TB,ΩB). TB is the set of basic types,ΩB is the set of signatures describing operations over ba
types.

DEFINITION 5.13 (SYNTAX OF BASIC TYPES )
The set of basic typesTB is defined asTB = {Integer,Real,Boolean,String}. �

Next we define the semantics of basic types by mapping each type to a domain.

DEFINITION 5.14 (SEMANTICS OF BASIC TYPES )
LetA∗ be the set of finite sequences of characters from a finite alphabetA. The semantics of a basic typet ∈ TB
is a functionI mapping each type to a set:

• I(Integer) = Z ∪ {⊥}

• I(Real) = R ∪ {⊥}

• I(Boolean) = {true, false} ∪ {⊥}

• I(String) = A∗ ∪ {⊥}.

�

The basic typeInteger represents the set of integers,Real the set of real numbers,Booleanthe truth values true
and false, andStringall finite strings over a given alphabet. Each domain also contains a special undefined
which is motivated in the next section.
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-9
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5.2.1.1 ERROR HANDLING

Each domain of a basic typet contains a special value⊥. This value represents an undefined value which is use
for two purposes.

1. An undefined value may, for example, be assigned to an attribute of an object. In this case the undefine
helps to model the situation where the attribute value is not yet known (for example, the email addre
customer is unknown at the time of the first contact, but will be added later) or does not apply to this sp
object instance (e.g., the customer does not have an email address). This usage of undefined values
known in database modeling and querying with SQL [Dat90, EN94]), in the Extended ER-Model [Go
and in the object specification language TROLLlight [Her95].

2. An undefined value can signal an error in the evaluation of an expression. An example for an expr
that is defined by a partial function is the division of integers. The result of a division by zero is undefi
The problems with partial functions can be eliminated by including an undefined value⊥ into the domains
of types. For all operations we can then extend their interpretation to total functions.

The interpretation of operations is considered strict unless there is an explicit statement in the following. He
undefined argument value causes an undefined operation result. This ensures the propagation of error con

5.2.1.2 OPERATIONS

There are a number of predefined operations on basic types. The setΩB contains the signatures of these operation
An operation signature describes the name, the parameter types, and the result type of an operation.

DEFINITION 5.15 (SYNTAX OF OPERATIONS )
The syntax of an operation is defined by a signatureω : t1 × · · · × tn → t. The signature contains the operatio
symbolω, a list of parameter typest1, . . . , tn ∈ T , and a result typet ∈ T . �

Table 5.1 shows a schema defining most predefined operations over basic types. The left column contains
parameterized signatures inΩB. The right column specifies variations for the operation symbols or types in
left column.

The set of predefined operations includes the usual arithmetic operations+,−, ∗, /, etc. for integers and real
numbers, division (div) and modulo (mod) of integers, sign manipulation (−, abs), conversion ofRealvalues to
Integervalues (floor, round), and comparison operations (<,>,≤,≥).

Operations for equality and inequality are presented later in Section 5.2.2, since they apply to all types. B
values can be combined in different ways (and, or, xor, implies), and they can be negated (not). For
the length of a string (size) can be determined, a string can be projected to a substring and two strings
concatenated (concat). Finally, assuming a standard alphabet like ASCII or Unicode, case translations are
with toUpper and toLower.

Some operation symbols (such as+ and−) are overloaded, that is there are signatures having the same oper
symbol but different parameters (concerning number or type) and possibly different result types. Thus in g
the full argument list has to be considered in order to identify a signature unambiguously.

The operations in Table 5.1 all have at least one parameter. There is another set of operations inΩB which do not
have parameters. These operations are used to produce constant values of basic types. For example, th
value12 can be generated by the operation12 :→ Integer. Similar operations exist for the other basic types. F
each value, there is an operation with no parameters and an operation symbol that corresponds to the c

notational representation of this value.

OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-10
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ω : Integer× Integer→ Integer ω ∈ {+,−, ∗,max,min}

Integer× Real→ Real
Real× Integer→ Real
Real× Real→ Real

ω : Integer× Integer→ Integer ω ∈ {div,mod}
/ : t1 × t2 → Real t1, t2 ∈ {Integer,Real}
− : t→ t t ∈ {Integer,Real}

abs :t→ t

floor : t→ Integer
round :t→ Integer

ω : t1 × t2 → Boolean ω ∈ {<,>,≤,≥},
t1, t2 ∈ {Integer,Real,

String,Boolean}
ω : Boolean× Boolean→ Boolean ω ∈ {and,or,

xor, implies}
not : Boolean→ Boolean
size :String→ Integer

concat :String× String→ String
toUpper :String→ String
toLower : String→ String

substring :String× Integer× Integer→ String

Table 5.1: Schema for operations on basic types

5.2.1.3 SEMANTICS OF OPERATIONS

DEFINITION 5.16 (SEMANTICS OF OPERATIONS )
The semantics of an operation with signatureω : t1 × · · · × tn → t is a total functionI(ω : t1 × · · · × tn → t) :
I(t1)× · · · × I(tn)→ I(t). �

When we refer to an operation, we usually omit the specification of the parameter and result types and o
the operation symbol if the full signature can be derived from the context.

The next example shows the interpretation of the operation+ for adding two integers. The operation has tw
argumentsi1, i2 ∈ I(Integer). This example also demonstrates the strict evaluation semantics for unde
arguments.

I(+)(i1, i2) =

{
i1 + i2 if i1 6= ⊥ andi2 6= ⊥,

⊥ otherwise.

We can define the semantics of the other operations in Table 5.1 analogously. The usual semantics of the
operations and, or, xor, implies, and not, is extended for dealing with undefined argument values. Table 5.2
the interpretation of boolean operations following the proposal in [CKM+99] based on three-valued logic.

Since the semantics of the other basic operations forInteger, Real, andStringvalues is rather obvious, we will not
further elaborate on them here.
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-11
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b1 b2 b1 andb2 b1 or b2 b1 xor b2 b1 impliesb2 not b1
false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false ⊥ false ⊥ ⊥ true true
true ⊥ ⊥ true ⊥ ⊥ false
⊥ false false ⊥ ⊥ ⊥ ⊥
⊥ true ⊥ true ⊥ true ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 5.2: Semantics of boolean operations

5.2.2 COMMON OPERATIONS ON ALL TYPES

At this point, we introduce some operations that are defined on all types (including those which are defi
subsequent sections). For each typet ∈ T , the constant operation undefinedt :→ t generates the undefined
value⊥. The semantics is given byI(undefinedt) = ⊥. The equality of values of the same type can be check
with the operation=t: t × t → Boolean. Furthermore, the semantics of=t defines undefined values to be equa
For two valuesv1, v2 ∈ I(t), we have

I(=t)(v1, v2) =

{
true if v1 = v2, or v1 = ⊥ andv2 = ⊥,

false otherwise.

A test for inequality6=t: t × t → Booleancan be defined analogously. It is also useful to have an operation
allows to check whether an arbitrary value is well-defined or undefined. This can be done with the oper
isDefinedt : t→ Booleanand isUndefinedt : t→ Boolean.

I(isDefinedt)(v) = I(6=)(v,⊥)
I(isUndefinedt)(v) = I(=)(v,⊥)

5.2.3 ENUMERATION TYPES

Enumeration types are user-defined types. An enumeration type is defined by specifying a name and
literals. An enumeration value is one of the literals used for its type definition.

The syntax of enumeration types and their operations is defined by a signatureΣE = (TE ,ΩE). TE is the set of
enumeration types andΩE the set of signatures describing the operations on enumeration types.

DEFINITION 5.17 (SYNTAX OF ENUMERATION TYPES )
An enumeration typet ∈ TE is associated with a finite non-empty set of enumeration literals by a func
literals(t) = {e1t , . . . , ent}. �

An enumeration type is interpreted by the set of literals used for its declaration.

DEFINITION 5.18 (SEMANTICS OF ENUMERATION TYPES )
The semantics of an enumeration typet ∈ TE is a functionI(t) = literals(t) ∪ {⊥}. �
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-12
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5.2.3.1 OPERATIONS

There is only a small number of operations defined on enumeration types: the test for equality or inequa
two enumeration values, a test for the undefined value, and the generation of an undefined enumeration va
syntax and semantics of these general operations was defined in Section 5.2.2 and applies to enumeration
well.

In addition, the operation allInstancest :→ Set(t) is defined for eacht ∈ TE to return the set of all literals of the
enumeration:

∀t ∈ TE : I(allInstancest()) = literals(t)

5.2.4 OBJECT TYPES

A central part of a UML model are classes that describe the structure of objects in a system. For each cl
define a corresponding object type describing the set of possible object instances. The syntax of object ty
their operations is defined by a signatureΣC = (TC ,ΩC). TC is the set of object types, andΩC is the set of
signatures describing operations on object types.

DEFINITION 5.19 (SYNTAX OF OBJECT TYPES )
LetM be a model with a set CLASS of class names. The setTC of object types is defined such that for each cla
c ∈ CLASS there is a typet ∈ TC having the same name as the classc. �

We define the following two functions for mapping a class to its type and vice versa.

typeOf : CLASS→ TC

classOf : TC → CLASS

The interpretation of classes is used for defining the semantics of object types. The set of object ide
ICLASS(c) was introduced in Definition 5.10 on page 7.

DEFINITION 5.20 (SEMANTICS OF OBJECT TYPES )
The semantics of an object typet ∈ TC with classOf(t) = c is defined asI(t) = ICLASS(c) ∪ {⊥}. �

In summary, the domain of an object type is the set of object identifiers defined for the class and its childre
undefined value that is only available with the type – not the class – allows us to work with values not ref
to any existing object. This is useful, for example, when we have a navigation expression pointing to a clas
multiplicity 0..1 . The result of the navigation expression is a value referring to the actual object only if a t
object exists. Otherwise, the result is the undefined value.

5.2.4.1 OPERATIONS

There are four different kinds of operations that are specific to object types.

• Predefined operations: These are operations which are implicitly defined in OCL for all object types.

• Attribute operations: An attribute operation allows access to the attribute value of an object in a given sy
state.
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-13
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• Object operations: A class may have operations that do not have side effects. These operations are ma
the UML model with the tagisQuery. In general, OCL expressions could be used to define object operati
The semantics of an object operation is therefore given by the semantics of the associated OCL expr

• Navigation operations: An object may be connected to other objects via association links. A naviga
expression allows to follow these links and to retrieve connected objects.

PREDEFINED OPERATIONS

For all classesc ∈ CLASS with object typetc = typeOf(c) the operations

allInstancestc :→ Set(tc)

are inΩC . The semantics is defined as

I(allInstancestc :→ Set(tc)) = σCLASS(c) .

This interpretation of allInstances is safe in the sense that its result is always limited to a finite set. The ext
of a class is always a finite set of objects.

ATTRIBUTE OPERATIONS

Attribute operations are declared in a model specification by the set ATTc for each classc. The set contains
signaturesa : tc → t with a being the name of an attribute defined in the classc. The type of the attribute ist. All
attribute operations in ATTc are elements ofΩC . The semantics of an attribute operation is a function mapping
object identifier to a value of the attribute domain. An attribute value depends on the current system state.

DEFINITION 5.21 (SEMANTICS OF ATTRIBUTE OPERATIONS )
An attribute signaturea : tc → t in ΩC is interpreted by an attribute value functionIATT(a : tc → t) : I(tc)→ I(t)
mapping objects of classc to a value of typet.

IATT(a : tc → t)(c) =

{
σATT(a)(c) if c ∈ σCLASS(c),
⊥ otherwise.

�

Note that attribute functions are defined for all possible objects. The attempt to access an attribute of a non-
object results in an undefined value.

OBJECT OPERATIONS

Object operations are declared in a model specification. For side effect-free operations the computation ca
be described with an OCL expression. The semantics of a side effect-free object operation can then be g
the semantics of the OCL expression associated with the operation. We give a semantics for object opera
Section 5.3 when OCL expressions are introduced.
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-14
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NAVIGATION OPERATIONS

A fundamental concept of OCL is navigation along associations. Navigation operations start from an ob
a source class and retrieve all connected objects of a target class. In general, everyn-ary association induces a
total ofn · (n − 1) directed navigation operations, because OCL navigation operations only consider two c
of an association at a time. For defining the set of navigation operations of a given class, we have to cons
associations the class is participating in. A corresponding function namedparticipating was defined on page 4.

DEFINITION 5.22 (SYNTAX OF NAVIGATION OPERATIONS )
LetM be a model

M = (CLASS,ATTc,OPc,ASSOC, associates, roles,multiplicities,≺) .

The setΩnav(c) of navigation operations for a classc ∈ CLASS is defined such that for each associatio
as ∈ participating(c) with associates(as) = 〈c1, . . . , cn〉, roles(as) = 〈r1, . . . , rn〉, andmultiplicities(as) =
〈M1, . . . ,Mn〉 the following signatures are inΩnav(c).

For all i, j ∈ {1, . . . , n} with i 6= j, ci = c, tci = typeOf(ci), andtcj = typeOf(cj)

i. if n = 2 andMj − {0, 1} = ∅ thenrj(as,ri)
: tci → tcj ∈ Ωnav(c),

ii. if n > 2 orMj − {0, 1} 6= ∅ thenrj(as,ri)
: tci → Set(tcj ) ∈ Ωnav(c).

All navigation operations are elements ofΩC . �

As discussed in Section 5.1, we use unique role names instead of class names for navigation operations
to avoid ambiguities. The index of the navigation operation name specifies the association to be navigate
as well as the source role name of the navigation path. The result type of a navigation over binary associa
the type of the target class if the multiplicity of the target is given as0..1 or 1 (i). All other multiplicities allow
an object of the source class to be linked with multiple objects of the target class. Therefore, we need a set
represent the navigation result (ii). Non-binary associations always induce set-valued results since a mul
at the target end is interpreted in terms ofall source objects. However, for a navigation operation, only a sin
source object is considered.

Navigation operations are interpreted by navigation functions. Such a function has the effect of first selec
those links of an association where the source object occurs in the link component corresponding to the rol
source class. The resulting links are then projected onto those objects that correspond to the role of the targ

DEFINITION 5.23 (SEMANTICS OF NAVIGATION OPERATIONS )
The set of objects of classcj linked to an objectci via associationas is defined as

L(as)(ci) = {cj | (c1, . . . , ci, . . . , cj , . . . , cn) ∈ σASSOC(as)}

The semantics of operations inΩnav(c) is then defined as

i. I(rj(as,ri)
: tci → tcj )(ci) =

{
cj if cj ∈ L(as)(ci),
⊥ otherwise.

ii. I(rj(as,ri)
: tci → Set(tcj ))(ci) = L(as)(ci).
�
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5.2.5 COLLECTION AND TUPLE TYPES

We call a type that allows the aggregation of several values into a single value a complex type. OCL pr
the complex typesSet(t), Sequence(t), andBag(t) for describing collections of values of typet. There is also
a supertypeCollection(t) which describes common properties of these types. The OCL collection types ar
mogeneous in the sense that all elements of a collection must be of the same typet. This restriction is slightly
relaxed by the substitution rule for subtypes in OCL (see Section 5.2.7). The rule says that the actual elem
a collection must have a type which is a subtype of the declared element type. For example, aSet(Person) may
contain elements of typeCustomeror Employee.

5.2.5.1 SYNTAX AND SEMANTICS

Since complex types are parameterized types, we define their syntax recursively by means of type express

DEFINITION 5.24 (TYPE EXPRESSIONS)
Let T̂ be a set of types andl1, . . . , ln ∈ N a set of disjoint names. The set of type expressionsTExpr(T̂ ) over T̂ is
defined as follows.

i. If t ∈ T̂ thent ∈ TExpr(T̂ ).

ii. If t ∈ TExpr(T̂ ) thenSet(t),Sequence(t),Bag(t) ∈ TExpr(T̂ ).

iii. If t ∈ TExpr(T̂ ) thenCollection(t) ∈ TExpr(T̂ ).

iv. If t1, . . . , tn ∈ TExpr(T̂ ) thenTuple(l1 : t1, . . . , ln : tn) ∈ TExpr(T̂ ).

�

The definition says that every typet ∈ T̂ can be used as an element type for constructing a set, sequence, b
collection type. The components of a tuple type are marked with labelsl1, . . . , ln. Complex types may again be
used as element types for constructing other complex types. The recursive definition allows unlimited nes
type expressions.

For the definition of the semantics of type expressions we make the following conventions. LetF(S) denote the
set of all finite subsets of a given setS, S∗ is the set of all finite sequences overS, andB(S) is the set of all finite
multisets (bags) overS.

DEFINITION 5.25 (SEMANTICS OF TYPE EXPRESSIONS)
Let T̂ be a set of types where the domain of eacht ∈ T̂ is I(t). The semantics of type expressionsTExpr(T̂ ) over

T̂ is defined for allt ∈ T̂ as follows.

i. I(t) is defined as given.

ii. I(Set(t)) = F(I(t)) ∪ {⊥},
I(Sequence(t)) = (I(t))∗ ∪ {⊥},
I(Bag(t)) = B(I(t)) ∪ {⊥}.

iii. I(Collection(t)) = I(Set(t)) ∪ I(Sequence(t)) ∪ I(Bag(t)).

iv. I(Tuple(l1 : t1, . . . , ln : tn)) = I(t1)× · · · × I(tn) ∪ {⊥}.
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-16
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In this definition, we observe that the interpretation of the typeCollection(t) subsumes the semantics of the se
sequence and bag type. In OCL, the collection type is described as a supertype ofSet(t), Sequence(t) andBag(t).
This construction greatly simplifies the definition of operations having a similar semantics for each of the co
collection types. Instead of explicitly repeating these operations for each collection type, they are define
for Collection(t). Examples for operations which are “inherited” in this way are the size and includes opera
which determine the number of elements in a collection or test for the presence of an element in a coll
respectively.

5.2.5.2 OPERATIONS

CONSTRUCTORS

The most obvious way to create a collection value is by explicitly enumerating its element values. We the
define a set of generic operations which allow us to construct sets, sequences, and bags from an enume
element values. For example, the set{1, 2, 5} can be described in OCL by the expressionSet {1,2,5 }, the list
〈1, 2, 5〉 by Sequence {1,2,5 }, and the bag{{2, 2, 7}} by Bag{2,2,7 }. A shorthand notation for collections
containing integer intervals can be used by specifying lower and upper bounds of the interval. For examp
expressionSequence {3..6 } denotes the sequence〈3, 4, 5, 6〉. This is only syntactic sugar because the sam
collection can be described by explicitly enumerating all values of the interval.

Operations for constructing collection values by enumerating their element values are calledconstructors. For
typest ∈ TExpr(T̂ ) constructors inΩTExpr(T̂ ) are defined below. A parameter listt × · · · × t denotesn (n ≥ 0)
parameters of the same typet. We define constructors mkSett, mkSequencet, and mkBagt not only for any typet
but also for any finite numbern of parameters.

• mkSett : t× · · · × t→ Set(t)

• mkSequencet : t× · · · × t→ Sequence(t)

• mkBagt : t× · · · × t→ Bag(t)

The semantics of constructors is defined for valuesv1, . . . , vn ∈ I(t) by the following functions.

• I(mkSett)(v1, . . . , vn) = {v1, . . . , vn}

• I(mkSequencet)(v1, . . . , vn) = 〈v1, . . . , vn〉

• I(mkBagt)(v1, . . . , vn) = {{v1, . . . , vn}}

A tuple constructor in OCL specifies values and labels for all components, for example,Tuple {number:3,
fruit:’apple’, flag:true }. A constructor for a tuple with component typest1, . . . , tn ∈ TExpr(T̂ )
(n ≥ 1) is given in abstract syntax by the following operation.

• mkTuple: l1 : t1 × · · · × ln : tn → Tuple(l1 : t1, . . . , ln : tn)

The semantics of tuple constructors is defined for valuesvi ∈ I(ti) with i = 1, . . . , n by the following function.

• I(mkTuple)(l1 : v1, . . . , ln : vn) = (v1, . . . , vn)

Note that constructors having element values as arguments are deliberately defined not to be strict. A co

value therefore may contain undefined values while still being well-defined.
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COLLECTION OPERATIONS

The definition of operations of collection types comprises the set of all predefined collection operations. Ope
common to the typesSet(t), Sequence(t), andBag(t) are defined for the supertypeCollection(t). Table 5.3 shows
the operation schema for these operations. For allt ∈ TExpr(T̂ ), the signatures resulting from instantiating th
schema are included inΩTExpr(T̂ ). The right column of the table illustrates the intended set-theoretic interpreta
For this purpose,C,C1, C2 are values of typeCollection(t), andv is a value of typet.

Signature Semantics
size :Collection(t)→ Integer |C|

count :Collection(t)× t→ Integer |C ∩ {v}|
includes :Collection(t)× t→ Boolean v ∈ C
excludes :Collection(t)× t→ Boolean v /∈ C

includesAll : Collection(t)× Collection(t)→ Boolean C2 ⊆ C1

excludesAll :Collection(t)× Collection(t)→ Boolean C2 ∩ C1 = ∅
isEmpty :Collection(t)→ Boolean C = ∅

notEmpty :Collection(t)→ Boolean C 6= ∅
sum :Collection(t)→ t

∑|C|
i=1 ci

Table 5.3: Operations for typeCollection(t)

The operation schema in Table 5.3 can be applied to sets (sequences, bags) by substitutingSet(t) (Sequence(t),
Bag(t)) for all occurrences of typeCollection(t). A semantics for the operations in Table 5.3 can be easily defi
for each of the concrete collection typesSet(t), Sequence(t), andBag(t). The semantics for the operations o
Collection(t) can then be reduced to one of the three cases of the concrete types because every collection
either a set, a sequence, or a bag. Consider, for example, the operation count: Set(t)× t→ Integerthat counts the
number of occurrences of an elementv in a sets. The semantics of count is

I(count: Set(t)× t→ Integer)(s, v) =


1 if v ∈ s,
0 if v /∈ s,
⊥ if s = ⊥.

Note that count is not strict. A set may contain the undefined value so that the result of count is 1 if the und
value is passed as the second argument, for example, count({⊥},⊥) = 1 and count({1},⊥) = 0.

For bags (and very similar for sequences), the meaning of count is

I(count: Bag(t)× t→ Integer)({{v1, . . . , vn}}, v)

=


0 if n = 0,

I(count)({{v2, . . . , vn}}, v) if n > 0 andv1 6= v,

I(count)({{v2, . . . , vn}}, v) + 1 if n > 0 andv1 = v.

As explained before, the semantics of count for values of typeCollection(t) can now be defined in terms of the
semantics of count for sets, sequences, and bags.

I(count: Collection(t)× t→ Integer)(c, v)

=


I(count: Set(t)× t→ Integer)(c, v) if c ∈ I(Set(t)),
I(count: Sequence(t)× t→ Integer)(c, v) if c ∈ I(Sequence(t)),
I(count: Bag(t)× t→ Integer)(c, v) if c ∈ I(Bag(t)),
⊥ otherwise.
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-18



SEMANTICS

the ele-

lumn of

ically
SET OPERATIONS

Operations on sets include the operations listed in Table 5.3. These are inherited fromCollection(t). Operations
which are specific to sets are shown in Table 5.4 whereS, S1, S2 are values of typeSet(t), B is a value of type
Bag(t) andv is a value of typet.

Signature Semantics
union : Set(t)× Set(t)→ Set(t) S1 ∪ S2

union : Set(t)× Bag(t)→ Bag(t) S ∪B
intersection :Set(t)× Set(t)→ Set(t) S1 ∩ S2

intersection :Set(t)× Bag(t)→ Set(t) S ∩B
− : Set(t)× Set(t)→ Set(t) S1 − S2

symmetricDifference :Set(t)× Set(t)→ Set(t) (S1 ∪ S2)− (S1 ∩ S2)
including : Set(t)× t→ Set(t) S ∪ {v}
excluding :Set(t)× t→ Set(t) S − {v}

asSequence :Set(t)→ Sequence(t)
asBag :Set(t)→ Bag(t)

Table 5.4: Operations for typeSet(t)

Note that the semantics of the operation asSequence is nondeterministic. Any sequence containing only
ments of the source set (in arbitrary order) satisfies the operation specification in OCL.

BAG OPERATIONS

Operations for bags are shown in Table 5.5. The operation asSequence is nondeterministic also for bags.

Signature Semantics
union : Bag(t)× Bag(t)→ Bag(t) B1 ∪B2

union : Bag(t)× Set(t)→ Bag(t) B ∪ S
intersection :Bag(t)× Bag(t)→ Bag(t) B1 ∩B2

intersection :Bag(t)× Set(t)→ Set(t) B ∩ S
including : Bag(t)× t→ Bag(t) B ∪ {{v}}
excluding :Bag(t)× t→ Bag(t) B − {{v}}

asSequence :Bag(t)→ Sequence(t)
asSet :Bag(t)→ Set(t)

Table 5.5: Operations for typeBag(t)

SEQUENCE OPERATIONS

Sequence operations are displayed in Table 5.6. The intended semantics again is shown in the right co
the table.S, S1, S2 are sequences occurring as argument values,v is a value of typet, andi, j are arguments of
type Integer. The length of sequenceS is n. The operator◦ denotes the concatenation of lists,πi(S) projects
theith element of a sequenceS, andπi,j(S) results in a subsequence ofS starting with theith element up to and
including thejth element. The result is⊥ if an index is out of range.S − 〈v〉 produces a sequence equal toS but
with all elements equal tov removed. Note that the operations append and including are also defined ident

in the OCL standard.
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Signature Semantics
union : Sequence(t)× Sequence(t)→ Sequence(t) S1 ◦ S2

append :Sequence(t)× t→ Sequence(t) S ◦ 〈e〉
prepend :Sequence(t)× t→ Sequence(t) 〈e〉 ◦ S

subSequence :Sequence(t)× Integer× Integer→ Sequence(t) πi,j(S)
at : Sequence(t)× Integer→ t πi(S)

first : Sequence(t)→ t π1(S)
last : Sequence(t)→ t πn(S)

including : Sequence(t)× t→ Sequence(t) S ◦ 〈e〉
excluding :Sequence(t)× t→ Sequence(t) S − 〈e〉

asSet :Sequence(t)→ Set(t)
asBag :Sequence(t)→ Bag(t)

Table 5.6: Operations for typeSequence(t)

FLATTENING OF COLLECTIONS

Type expressions as introduced in Definition 5.24 allow arbitrarily deep nested collection types. We purs
following approach for giving a precise meaning to collection flattening. First, we keep nested collection
because they do not only make the type system more orthogonal, but they are also necessary for descr
input of the flattening process. Second, we define flattening by means of an explicit function making the ef
the flattening process clear. There may be a shorthand notation omitting the flatten operation in concrete
which would expand in abstract syntax to an expression with an explicit flattening function.

Flattening in OCL does apply to all collection types. We have to consider all possible combinations first. Tab
shows all possibilities for combiningSet, Bag, andSequenceinto a nested collection type. For each of the differe
cases, the collection type resulting from flattening is shown in the right column. Note that the element typet can
be any type. In particular, ift is also a collection type the indicated rules for flattening can be applied recursi
until the element type of the result is a non-collection type.

Nested collection type Type after flattening
Set(Sequence(t)) Set(t)
Set(Set(t)) Set(t)
Set(Bag(t)) Set(t)
Bag(Sequence(t)) Bag(t)
Bag(Set(t)) Bag(t)
Bag(Bag(t)) Bag(t)
Sequence(Sequence(t)) Sequence(t)
Sequence(Set(t)) Sequence(t)
Sequence(Bag(t)) Sequence(t)

Table 5.7: Flattening of nested collections.

A signature schema for a flatten operation that removes one level of nesting can be defined as

flatten: C1(C2(t))→ C1(t)

whereC1 andC2 denote any collection type nameSet, Sequence, or Bag. The meaning of the flatten operation
can be defined by the following generic iterate expression. The semantics of OCL iterate expressions is de
Section 5.3.1.2.
OCL 2.0 INITIAL SUBMISSION VERSION1.0, AUGUST 20, 2001 5-20



SEMANTICS

that is,

entially
lti-) set
t in the
ts, there
vigation
ents is

ent of

duced

omain

rring
<collection-of-type-C1(C2(t))>->iterate(e1 : C2(t);
acc1 : C1(t) = C1 {} |
e1->iterate(v : t;

acc2 : C1(t) = acc1 |
acc2->including(v)))

The following example shows how this expression schema is instantiated for a bag of sets of integers,
C1 = Bag, C2 = Set, andt = Integer. The result of flattening the valueBag{Set {3,2 },Set {1,2,4 }} is
Bag{1,2,2,3,4 }.

Bag{Set {3,2 },Set {1,2,4 }}->iterate(e1 : Set(Integer);
acc1 : Bag(Integer) = Bag {} |
e1->iterate(v : Integer;

acc2 : Bag(Integer) = acc1 |
acc2->including(v)))

It is important to note that flattening sequences of sets and bags (see the last two rows in Table 5.7) is pot
nondeterministic. For these two cases, the flatten operation would have to map each element of the (mu
to a distinct position in the resulting sequence, thus imposing an order on the elements which did not exis
first place. Since there are types (e.g. object types) which do not define an order on their domain elemen
is no obvious mapping for these types. Fortunately, these problematic cases do not occur in standard na
expressions. Furthermore, these kinds of collections can be flattened if the criteria for ordering the elem
explicitly specified.

TUPLE OPERATIONS

An essential operation for tuple types is the projection of a tuple value onto one of its components. An elem
a tuple with labeled components can be accessed by specifying its label.

• elementli : Tuple(l1 : t1, . . . , li : ti, . . . , ln : tn)→ ti

• I(elementli : Tuple(l1 : t1, . . . , li : ti, . . . , ln : tn)→ ti)(v1, . . . , vi, . . . , vn) = vi

5.2.6 SPECIAL TYPES

Special types in OCL that do not fit into the categories discussed so far areOclAnyandOclState.

• OclAnyis the supertype of all other types except for the collection types. The exception has been intro
in UML 1.3 because it considerably simplifies the type system [CKM+99]. A simple set inclusion seman-
tics for subtype relationships as proposed in the next section would not be possible due to cyclic d
definitions ifOclAnywere the supertype ofSet(OclAny).

• OclStateis a type very similar to an enumeration type. It is only used in the operation oclInState for refe
to state names in a state machine. There are no operations defined on this type.OclStateis therefore not
treated specially.

DEFINITION 5.26 (TYPE OclAny)
The set of special types isTS = {OclAny}.

Let T̂ be the set of basic, enumeration, and object typesT̂ = TB ∪ TE ∪ TC . The domain of OclAny is given as(⋃ )

I(OclAny) = t∈T̂ I(t) ∪ {⊥}. �
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Operations onOclAny include equality (=) and inequality (<>) which already have been defined for all type
in Section 5.2.2. The operations oclIsKindOf, oclIsTypeOf, and oclAsType expect a type as argument. W
fine them as part of the OCL expression syntax in the next section. The operation oclIsNew is only allow
postconditions and will be discussed in Section 5.3.2.

5.2.7 TYPE HIERARCHY

The type system of OCL supports inclusion polymorphism [CW85] by introducing the concept of atype hierarchy.
The type hierarchy is used to define the notion oftype conformance. Type conformance is a relationship betwee
two types, expressed by theconformsTo ()operation from the abstract syntax metamodel. A valid OCL express
is an expression in which all the types conform. The consequence of type conformance can be loosely stat
value of a conforming typeB may be used wherever a value of typeA is required.

The type hierarchy reflects the subtype/supertype relationship between types. The following relationsh
defined in OCL.

1. Integeris a subtype ofReal.

2. All types, except for the collection and tuple types, are subtypes ofOclAny.

3. Set(t), Sequence(t), andBag(t) are subtypes ofCollection(t).

4. The hierarchy of types introduced by UML model elements mirrors the generalization hierarchy in the
model.

Type conformance is a relation which is identical to the subtype relation introduced by the type hierarchy
relation is reflexive and transitive.

DEFINITION 5.27 (TYPE HIERARCHY )
Let T be a set of types andTC a set of object types withTC ⊂ T . The relation≤ is a partial order onT and is
called thetype hierarchyoverT . The type hierarchy is defined for allt, t′, t′′ ∈ T and alltc, t′c ∈ TC , n,m ∈ N as
follows.

i. ≤ is (a) reflexive, (b) transitive, and (c) antisymmetric:

(a) t ≤ t
(b) t′′ ≤ t′ ∧ t′ ≤ t =⇒ t′′ ≤ t
(c) t′ ≤ t ∧ t ≤ t′ =⇒ t = t′.

ii. Integer≤ Real.

iii. t ≤ OclAnyfor all t ∈ (TB ∪ TE ∪ TC).

iv. Set(t) ≤ Collection(t),
Sequence(t) ≤ Collection(t), and
Bag(t) ≤ Collection(t).

v. If t′ ≤ t thenSet(t′) ≤ Set(t), Sequence(t′) ≤ Sequence(t), Bag(t′) ≤ Bag(t), and
Collection(t′) ≤ Collection(t).

vi. If t′i ≤ ti for i = 1, . . . , n andn ≤ m then
Tuple(l1 : t′ , . . . , ln : t′ , . . . , lm : t′ ) ≤ Tuple(l1 : t1, . . . , ln : tn).
1 n m
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vii. If classOf(t′c) ≺ classOf(tc) thent′c ≤ tc.

�

If a typet′ is a subtype of another typet (i.e. t′ ≤ t), we say thatt′ conformsto t. Type conformance is associate
with the principle of substitutability. A value of typet′ may be used wherever a value of typet is expected. This
rule is defined more formally in Section 5.3.1 which defines the syntax and semantics of expressions.

The principle of substitutability and the interpretation of types as sets suggest that the type hierarchy sho
defined as a subset relation on the type domains. Hence, for a typet′ being a subtype oft, we postulate that the
interpretation oft′ is a subset of the interpretation oft. It follows that every operationω accepting values of typet
has the same semantics for values of typet′, sinceI(ω) is already well-defined for values inI(t′):

If t′ ≤ t thenI(t′) ⊆ I(t) for all typest′, t ∈ T .

5.2.8 DATA SIGNATURE

We now have available all elements necessary to define the final data signature for OCL expressions. The s
provides the basic set of syntactic elements for building expressions. It defines the syntax and semantics o
the type hierarchy, and the set of operations defined on types.

DEFINITION 5.28 (DATA SIGNATURE )
Let T̂ be the set of non-collection types:̂T = TB ∪ TE ∪ TC ∪ TS . The syntax of a data signature over an obje
modelM is a structureΣM = (TM,≤,ΩM) where

i. TM = TExpr(T̂ ),

ii. ≤ is a type hierarchy overTM,

iii. ΩM = ΩTExpr(T̂ ) ∪ ΩB ∪ ΩE ∪ ΩC ∪ ΩS .

The semantics ofΣM is a structureI(ΣM) = (I(TM), I(≤), I(ΩM)) where

i. I(TM) assigns eacht ∈ TM an interpretationI(t).

ii. I(≤) implies for all typest′, t ∈ TM thatI(t′) ⊆ I(t) if t′ ≤ t.

iii. I(ΩM) assigns each operationω : t1 × · · · × tn → t ∈ ΩM a total function
I(ω) : I(t1)× · · · × I(tn)→ I(t).

�
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5.3 OCL EXPRESSIONS AND CONSTRAINTS

The core of OCL is given by an expression language. Expressions can be used in various contexts, for e
to define constraints such as class invariants and pre-/postconditions on operations. In this section, we f
define the syntax and semantics of OCL expressions, and give precise meaning to notions like context, in
and pre-/postconditions.

Section 5.3.1 defines the abstract syntax and semantics of OCL expressions and shows how other OCL co
can be derived from this language core. The context of expressions and other important concepts such as in
queries, and shorthand notations are discussed. Section 5.3.2 defines the meaning of operation specificat
pre- and postconditions.

5.3.1 EXPRESSIONS

In this section, we define the syntax and semantics of expressions. The definition of expressions is bas
the data signature we developed in the previous section. A data signatureΣM = (TM,≤,ΩM) provides a set of
typesTM, a relation≤ on types reflecting the type hierarchy, and a set of operationsΩM. The signature contains
the initial set of syntactic elements upon which we build the expression syntax.

5.3.1.1 SYNTAX OF EXPRESSIONS

We define the syntax of expressions inductively so that more complex expressions are recursively built from
structures. For each expression the set of free occurrences of variables is also defined. Also, each secti
definition corresponds to a subclass of OCLExpression in the abstract syntax. The mapping is indicated.

DEFINITION 5.29 (SYNTAX OF EXPRESSIONS)
Let ΣM = (TM,≤,ΩM) be a data signature over an object modelM. Let Var = {Vart}t∈TM be a family of
variable sets where each variable set is indexed by a typet. The syntax of expressions over the signatureΣM is
given by a set Expr= {Exprt}t∈TM and a functionfree : Expr→ F(Var) that are defined as follows.

i. If v ∈ Vart thenv ∈ Exprt andfree(v) := {v}. This maps into theVariableExp class in the abstract
syntax.

ii. If v ∈ Vart1 , e1 ∈ Exprt1 , e2 ∈ Exprt2 thenlet v = e1 in e2 ∈ Exprt2 and
free(let v = e1 in e2) := free(e2)− {v}. This maps intoLetExpression in the abstract syntax.v = e1 is
theVariableDeclaration referred through thevariableassociation;e2 is theOclExpressionreferred
through association endin. e1 is theOclExpressionreferred from theVariableDeclaration through the
initExpressionassociation.

iii. (a) If t ∈ TM andω :→ t ∈ ΩM thenω ∈ Exprt andundefined ∈ Exprt andfree(ω) := ∅ and
free(undefined) := ∅. This maps into theConstantExpclass and its subclasses from the abstract
syntax.

(b) If ω : t1 × · · · × tn → t ∈ ΩM andei ∈ Exprti for all i = 1, . . . , n thenω(e1, . . . ,en) ∈ Exprt and
free(ω(e1, . . . , en)) := free(e1) ∪ · · · ∪ free(en). This maps intoModelPropertyCallExp and its
subclasses, withe1 representing thesourceande2 to en thearguments.
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iv. If e1 ∈ ExprBooleanande2, e3 ∈ Exprt thenif e1 then e2 elsee3 endif ∈ Exprt and
free(if e1 thene2 elsee3 endif) := free(e1) ∪ free(e2) ∪ free(e3). This corresponds to theIfExpression in
the abstract syntax.e1 is theOclExpressionreferred throughcondition, e2 corresponds to the
thenExpressionassociation, ande3 maps into theOclExpressionelseExpression.

v. If e ∈ Exprt andt′ ≤ t or t ≤ t′ then(e asTypet′) ∈ Exprt′ , (e isTypeOf t′) ∈ ExprBoolean,
(e isKindOf t′) ∈ ExprBooleanandfree((e asTypet′)) := free(e), free((e isTypeOft′)) := free(e),
free((e isKindOf t′)) := free(e). This maps into some special instances of
OclOperationWithTypeArgument .

vi. If e1 ∈ ExprCollection(t1), v1 ∈ Vart1 , v2 ∈ Vart2 , ande2, e3 ∈ Exprt2 thene1→ iterate(v1; v2 = e2 | e3)
∈ Exprt2 andfree(e1→ iterate(v1; v2 = e2 | e3)) := (free(e1) ∪ free(e2) ∪ free(e3))− {v1, v2}. This is a
representation of theIterateExp. e1 is thesource, v2 = e2 is theVariableDeclaration which is referred to
through theresultassociation in the abstract syntax.v1 corresponds to theiterator VariableDeclaration.
Finally, e3 is theOclExpressionbody. Instances ofIteratorExp are defined in the OCL Standard Library.

An expression of typet′ is also an expression of a more general typet. For allt′ ≤ t: if e ∈ Exprt′ thene ∈ Exprt.
�

A variable expression (i) refers to the value of a variable. Variables (including the special variableself ) may
be introduced by the context of an expression, as part of an iterate expression, and by a let expressio
expressions (ii) do not add to the expressiveness of OCL but help to avoid repetitions of common sub-expre
Constant expressions (iiia) refer to a value from the domain of a type. Operation expressions (iiib) ap
operation fromΩM. The set of operations includes:

• predefined data operations:+, - , * , <, >, size , max

• attribute operations:self.age , e.salary

• side effect-free operations defined by a class:
b.rentalsForDay(...)

• navigation by role names:self.employee

As demonstrated by the examples, an operation expression may also be written in OCL path syn
e1.ω(e2, . . . , en). This notational style is common in many object-oriented languages. It emphasizes the
of the first argument as the “receiver” of a “message”. Ife1 denotes a collection value, an arrow symbol is used
OCL instead of the period:e1 → ω(e2, . . . , en). Collections may be bags, sets, or lists.

An if-expression (iv) provides an alternative selection of two expressions depending on the result of a con
given by a boolean expression.

An asType expression (v) can be used in cases where static type information is insufficient. It correspo
the oclAsType operation in OCL and can be understood as a cast of a source expression to an equival
pression of a (usually) more specific target type. The target type must be related to the source type, that
must be a subtype of the other. The isTypeOf and isKindOf expressions correspond to theoclIsTypeOf and
oclIsKindOf operations, respectively. An expression(e isTypeOft′) can be used to test whether the type of th
value resulting from the expressione has the typet′ given as argument. An isKindOf expression(e isKindOf t′) is
not as strict in that it is sufficient for the expression to become true ift′ is a supertype of the type of the value ofe.
Note that in previous OCL versions these type casts and tests were defined as operations with parameter
OclType. Here, we technically define them as first class expressions which has the benefit that we do not n
metatypeOclType. Thus the type system is kept simple while preserving compatibility with standard OCL syn
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An iterate expression (vi) is a general loop construct which evaluates an argument expressione3 repeatedly for
all elements of a collection which is given by a source expressione1. Each element of the collection is bound i
turn to the variablev1 for each evaluation of the argument expression. The argument expressione3 may contain
the variablev1 to refer to the current element of the collection. The result variablev2 is initialized with the
expressione2. After each evaluation of the argument expressione3, the result is bound to the variablev2. The final
value ofv2 is the result of the whole iterate expression.

The iterate construct is probably the most important kind of expression in OCL. Many other OCL constructs
asselect , reject , collect , exists , forAll , andisUnique ) can be equivalently defined in terms o
an iterate expression (see Section 5.3.1.3).

Following the principle of substitutability, the syntax of expressions is defined such that wherever an expr
e ∈ Exprt is expected as part of another expression, an expression with a more special typet′, (t′ ≤ t) may be
used. In particular, operation arguments and variable assignments in let and iterate expressions may be
expressions of more special types.

5.3.1.2 SEMANTICS OF EXPRESSIONS

The semantics of expressions is made precise in the following definition. A context for evaluation is given
environmentτ = (σ, β) consisting of a system stateσ and a variable assignmentβ : Vart → I(t). A system
stateσ provides access to the set of currently existing objects, their attribute values, and association links b
objects. A variable assignmentβ maps variable names to values.

DEFINITION 5.30 (SEMANTICS OF EXPRESSIONS)
Let Env be the set of environmentsτ = (σ, β). The semantics of an expressione ∈ Exprt is a functionI[[ e ]] :
Env→ I(t) that is defined as follows.

i. I[[ v ]](τ) = β(v).

ii. I[[ let v = e1 in e2 ]](τ) = I[[ e2 ]](σ, β{v/I[[ e1 ]](τ)}).

iii. I[[ undefined]](τ) = ⊥ andI[[ω ]](τ) = I(ω)

iv. I[[ω(e1, . . . , en) ]](τ) = I(ω)(τ)(I[[ e1 ]](τ), . . . , I[[ en ]](τ)).

v. I[[ if e1 thene2 elsee3 endif]](τ) =


I[[ e2 ]](τ) if I[[ e1 ]](τ) = true,

I[[ e3 ]](τ) if I[[ e1 ]](τ) = false,

⊥ otherwise.

vi. I[[ (e asTypet′) ]](τ) =

{
I[[ e ]](τ) if I[[ e ]](τ) ∈ I(t′),
⊥ otherwise.

I[[ (e isTypeOft′) ]](τ) =

{
true if I[[ e ]](τ) ∈ I(t′)−

⋃
t′′<t′ I(t′′),

false otherwise.

I[[ (e isKindOf t′) ]](τ) =

{
true if I[[ e ]](τ) ∈ I(t′),
false otherwise.

vii. I[[ e1→ iterate(v1; v2 = e2 | e3) ]](τ) = I[[ e1→ iterate′(v1 | e3) ]](τ ′) whereτ ′ = (σ, β′) andτ ′′ = (σ, β′′)
are environments with modified variable assignments

β′ := β{v2/I[[ e2 ]](τ)}
β′′ := β′{v2/I[[ e3 ]](σ, β′{v1/x1})}

′
and iterateis defined as:
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(a) If e1 ∈ ExprSequence(t1) then

I[[ e1 → iterate′(v1 | e3) ]](τ ′) =


I[[ v2 ]](τ ′)

if I[[ e1 ]](τ ′) = 〈〉,
I[[ mkSequencet1(x2, . . . , xn)→ iterate′(v1 | e3) ]](τ ′′)

if I[[ e1 ]](τ ′) = 〈x1, . . . , xn〉.
(b) If e1 ∈ ExprSet(t1) then

I[[ e1 → iterate′(v1 | e3) ]](τ ′) =


I[[ v2 ]](τ ′)

if I[[ e1 ]](τ ′) = ∅,
I[[ mkSett1(x2, . . . , xn)→ iterate′(v1 | e3) ]](τ ′′)

if I[[ e1 ]](τ ′) = {x1, . . . , xn}.
(c) If e1 ∈ ExprBag(t1) then

I[[ e1 → iterate′(v1 | e3) ]](τ ′) =


I[[ v2 ]](τ ′)

if I[[ e1 ]](τ ′) = ∅,
I[[ mkBagt1(x2, . . . , xn)→ iterate′(v1 | e3) ]](τ ′′)

if I[[ e1 ]](τ ′) = {{x1, . . . , xn}}.

�

The semantics of a variable expression (i) is the value assigned to the variable. A let expression (ii) result
value of the sub-expressione2. Free occurrences of the variablev in e2 are bound to the value of the expressione1.
An operation expression (iv) is interpreted by the function associated with the operation. Each argument exp
is evaluated separately. The stateσ is passed to operations whose interpretation depends on the system state.
include, for example, attribute and navigation operations as defined in Section 5.2.4.

The computation of side effect-free operations can often be described with OCL expressions. We can ext
definition to allow object operations whose effects are defined in terms of OCL expressions. The semant
side effect-free operation can then be given by the semantics of the OCL expression associated with the op
Recall that object operations in OPc are declared in a model specification. Letoclexp : OPc → Expr be a
partial function mapping object operations to OCL expressions. We define the semantics of an operation
associated OCL expression as

I[[ω(p1 : e1, . . . , pn : en) ]](τ) = I[[ oclexp(ω) ]](τ ′)

wherep1, . . . , pn are parameter names, andτ ′ = (σ, β′) denotes an environment with a modified variable assig
ment defined as

β′ := β{p1/I[[ e1 ]](τ), . . . , pn/I[[ en ]](τ)} .

Argument expressions are evaluated and assigned to parameters that bind free occurrences ofp1, . . . , pn in the ex-
pressionoclexp(ω). For a well-defined semantics, we need to make sure that there is no infinite recursion res
from an expansion of the operation call. A strict solution that can be statically checked is to forbid any occur
of ω in oclexp(ω). However, allowing recursive operation calls considerably adds to the expressiveness of
We therefore allow recursive invocations as long as the recursion is finite. Unfortunately, this property is gen
undecidable.

The result of an if-expression (v) is given by the then-part if the condition is true. If the condition is false, the
part is the result of the expression. An undefined condition makes the whole expression undefined. Note th
an expression in one of the alternative branches is undefined, the whole expression may still have a well-
result. For example, the result of the following expression is1.
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if true then 1 else 1 div 0 endif

The result of a cast expression (vi) using asType is the value of the expression, if the value lies within the d
of the specified target type, otherwise it is undefined. A type test expression with isTypeOf is true if the expr
value lies exactly within the domain of the specified target type without considering subtypes. An isKindO
test expression is true if the expression value lies within the domain of the specified target type or one
subtypes. Note that these type cast and test expressions also work with undefined values since every
including an undefined one – has a well-defined type.

An iterate expression (vii) loops over the elements of a collection and allows the application of a function to
collection element. The function results are successively combined into a value that serves as the resu
whole iterate expression. This kind of evaluation is also known in functional style programming languagesfold
operation (see, e.g., [Tho99]).

In Definition 5.30, the semantics of iterate expressions is given by a recursive evaluation scheme. Informa
passed between different levels of recursion by modifying the variable assignmentβ appropriately in each step.
The interpretation of iterate starts with the initialization of the accumulator variable. The recursive evalu
following thereafter uses a simplified version of iterate, namely an expression iterate′ where the initialization of the
accumulator variable is left out, since this sub-expression needs to be evaluated only once. If the source co
is not empty, (1) an element from the collection is bound to the iteration variable, (2) the argument expres
evaluated, and (3) the result is bound to the accumulator variable. These steps are all part of the definitio
variable assignmentβ′′. The recursion terminates when there are no more elements in the collection to iterate
The constructor operations mkSequencet,mkBagt, and mkSett (see page 17) are inΩM and provide the abstract
syntax for collection literals likeSet {1,2 } in concrete OCL syntax.

The result of an iterate expression applied to a set or bag is deterministic only if the inner expression i
commutative and associative.

5.3.1.3 DERIVED EXPRESSIONS BASED ON ITERATE

A number of important OCL constructs such asexists , forAll , select , reject , collect , and
isUnique are defined in terms of iterate expressions. The following schema shows how these expressio
be translated to equivalent iterate expressions. A similar translation can be found in [Cla99].

I[[ e1→exists(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = false| v2 or e3) ]](τ)

I[[ e1→ forAll (v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = true | v2 ande3) ]](τ)

I[[ e1→select(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = e1 |

if e3 thenv2 elsev2→excluding(v1) endif) ]](τ)

I[[ e1→ reject(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = e1 |

if e3 thenv2→excluding(v1) elsev2 endif) ]](τ)

I[[ e1→collect(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = mkBagtype-of-e3() | v2→ including(e3)) ]](τ)
I[[ e1→ isUnique(v1 | e3) ]](τ) =
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I[[ e1→ iterate(v1; v2 = true | v2 ande1→count(v1) = 1) ]](τ)

5.3.1.4 EXPRESSION CONTEXT

An OCL expression is always written in some syntactical context. Since the primary purpose of OCL
specification of constraints on a UML model, it is obvious that the model itself provides the most genera
of context. In our approach, the signatureΣM contains types (e.g., object types) and operations (e.g., attrib
operations) that are “imported” from a model, thus providing a context for building expressions that depend
elements of a specific model.

On a much smaller scale, there is also a notion of context in OCL that simply introduces variable declar
This notion is closely related to the syntax for constraints written in OCL. A context clause declares variab
invariants, and parameters in pre- and postconditions.

A context of an invariantis a declaration of variables. The variable declaration may be implicit or explicit. In
implicit form, the context is written as

context C inv :
<expression>

In this case, the<expression> may use the variableself of typeC as a free variable. In the explicit form,
the context is written as

context v1 : C1, . . . , vn : Cn inv :
<expression>

The<expression> may use the variablesv1, . . . , vn of typesC1, . . . , Cn as free variables.

A context of a pre-/postconditionis a declaration of variables. In this case, the context is written as

context C :: op(p1 : T1, . . . , pn : Tn) : T
pre : P
post : Q

This means that the variableself (of typeC) and the parametersp1, . . . , pn may be used as free variables in th
preconditionP and the postconditionQ. Additionally, the postcondition may useresult (of typeT) as a free
variable. The details are explained in Section 5.3.2.

5.3.1.5 INVARIANTS

An invariant is an expression with boolean result type and a set of (explicitly or implicitly declared) free vari
v1 : C1, . . . , vn : Cn whereC1, . . . , Cn are classifier types. An invariant

context v1 : C1, . . . , vn : Cn inv :
<expression>

is equivalent to the following expression without free variables that must be valid in all system states.
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<expression>
)
...

)

A system state is called valid with respect to an invariant if the invariant evaluates to true. Invariants with und
result invalidate a system state.

5.3.2 PRE- AND POSTCONDITIONS

The definition of expressions in the previous section is sufficient for invariants and queries where we h
consider only single system states. For pre- and postconditions, there are additional language constructs
which enable references to the system state before the execution of an operation and to the system state th
from the operation execution. The general syntax of an operation specification with pre- and postcondit
defined as

context C :: op(p1 : T1, . . . , pn : Tn)
pre : P
post : Q

First, the context is determined by giving the signature of the operation for which pre- and postconditio
to be specified. The operationop which is defined as part of the classifierC has a set of typed parameter
PARAMSop = {p1, . . . , pn}. The UML model providing the definition of an operation signature also specifies
direction kind of each parameter. We use a functionkind : PARAMSop → {in,out, inout, return} to map each
parameter to one of these kinds. Although UML makes no restriction on the number of return parameters,
usually only at most one return parameter considered in OCL which is referred to by the keywordresult in a
postcondition. In this case, the signature is also written asC :: op(p1 : T1, . . . , pn−1 : Tn−1) : T with T being the
type of theresult parameter.

The precondition of the operation is given by an expressionP , and the postcondition is specified by an expre
sionQ. P andQmust have a boolean result type. If the precondition holds, the contract of the operation guar
that the postcondition is satisfied after completion ofop . Pre- and postconditions form a pair. A condition defau
to true if it is not explicitly specified.

5.3.2.1 EXAMPLE

Before we give a formal definition of operation specifications with pre- and postconditions, we demonstra
fundamental concepts by means of an example. Figure 5.1 shows a class diagram with two classesA andB that are
related to each other by an association R. ClassA has an operationop() but no attributes. ClassB has an attributec
and no operations. The implicit role namesa andb at the link ends allow navigation in OCL expressions from aB
object to the associatedA object and vice versa.

Figure 5.2 shows an example for two consecutive states of a system corresponding to the given class mo
object diagrams show instances of classesA andB and links of the association R. The left object diagram sho
the state before the execution of an operation, whereas the right diagram shows the state after the opera
been executed. The effect of the operation can be described by the following changes in the post-state:
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Figure 5.1: Example class diagram

a : A b1 : B

c = 1

R

(a) Pre-state with ob-
jectsa andb1.

a : A b1 : B

b2 : B

c = 2

c = 0R

(b) Post-state. Ob-
ject b2 did not exist in
the pre-state.

Figure 5.2: Object diagrams showing a pre- and a post-state

value of the attributec in objectb1 has been incremented by one, (2) a new objectb2 has been created, (3) the link
betweena andb1 has been removed, and (4) a new link betweena andb2 has been established.

For the following discussion, consider the OCL expressiona.b.c wherea is a variable denoting the objecta.
The expression navigates to the associated object of class B and results in the value of the attributec. Therefore,
the expression evaluates to1 in the pre-state shown in Figure 5.2(a). As an example of how the OCL mod
@pre may be used in a postcondition to refer to properties of the previous state, we now look at some variat
the expressiona.b.c that may appear as part of a postcondition. For each case, the result is given and exp

• a.b.c = 0
Because the expression is completely evaluated in the post-state, the navigation froma leads to theb2 object.
The value of the attributec of b2 is 0 in Figure 5.2(b).

• a.b@pre.c = 2
This expression refers to both the pre- and the post-state. The previous value ofa.b is a reference to
objectb1. However, since the@pre modifier only applies to the expressiona.b , the following reference to
the attributec is evaluated in the post-state ofb1, even thoughb1 is not connected anymore toa. Therefore,
the result is2.

• a.b@pre.c@pre = 1
In this case, the value of the attributec of objectb1 is taken from the pre-state. This expression is semantica
equivalent to the expressiona.b.c in a precondition.

• a.b.c@pre = ⊥
The expressiona.b evaluated in the post-state yields a reference to objectb2 which is now connected toa.
Sinceb2 has just been created by the operation, there is no previous state ofb2. Hence, a reference to the
previous value of attributec is undefined.

Note that the@pre modifier may only be applied to operations not to arbitrary expressions. An expression
as(a.b)@pre is syntactically illegal.

OCL provides the standard operationoclIsNew for checking whether an object has been created during
execution of an operation. This operation may only be used in postconditions. For our example, the foll

conditions indicate that the objectb2 has just been created in the post-state andb1 already existed in the pre-state.
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• a.b.oclIsNew = true

• a.b@pre.oclIsNew = false

5.3.2.2 SYNTAX AND SEMANTICS OF POSTCONDITIONS

All common OCL expressions can be used in a preconditionP . Syntax and semantics of preconditions are defin
exactly like those for plain OCL expressions in Section 5.3.1. Also, all common OCL expressions can be u
a postconditionQ. Additionally, the@pre construct, the special variableresult , and the operationoclIsNew
may appear in a postcondition. In the following, we extend Definition 5.29 for the syntax of OCL expressio
provide these additional features.

DEFINITION 5.31 (SYNTAX OF EXPRESSIONS IN POSTCONDITIONS )
Let op be an operation with a set of parameters PARAMSop. The set of parameters includes at most one parame
of kind “return”. The basic set of expressions in postconditions is defined by repeating Definition 5.29
substituting all occurrences of Exprt with Post-Exprt. Furthermore, we define that

• Each non-return parameterp ∈ PARAMSop with a declared typet is available as variable:p ∈ Vart.

• If PARAMSop contains a parameter of kind “return” and typet thenresult is a variable:result ∈ Vart.

• The operationoclIsNew : c→ Booleanis in ΩM for all object typesc ∈ TM.

The syntax of expressions in postconditions is extended by the following rule.

vii. If ω : t1 × · · · × tn → t ∈ ΩM andei ∈ Post-Exprt′ for all i = 1, . . . , n then
ω@pre(e1, . . . , en) ∈ Post-Exprt.

�

All general OCL expressions may be used in a postcondition. Moreover, the basic rules for recursively const
expressions do also apply. Operation parameters are added to the set of variables. For operations with
type, the variableresult refers to the operation result. The set of operations is extended byoclIsNew which is
defined for all object types. Operationsω@preare added for allowing references to the previous state (vii). The r
says that the@pre modifier may be applied to all operations, although, in general, not all operations do act
depend on a system state (for example, operations on data types). The result of these operations will be t
in all states. Operations which do depend on a system state are, e.g., attribute access and navigation oper

For a definition of the semantics of postconditions, we will refer toenvironmentsdescribing the previous state
and the state resulting from executing the operation. An environmentτ = (σ, β) is a pair consisting of a system
stateσ and a variable assignmentβ (see Section 5.3.1.2). The necessity of including variable assignments
environments will be discussed shortly. We call an environmentτpre = (σpre, βpre) describing a system state an
variable assignments before the execution of an operation apre-environment. Likewise, an environmentτpost =
(σpost, βpost) after the completion of an operation is called apost-environment.

DEFINITION 5.32 (SEMANTICS OF POSTCONDITION EXPRESSIONS )
Let Env be the set of environments. The semantics of an expressione ∈ Post-Exprt is a functionI[[ e ]] :
Env× Env → I(t). The semantics of the basic set of expressions in postconditions is defined by repe
Definition 5.30 while substituting all occurrences of Exprt with Post-Exprt. References toI[[ e ]](τ) are replaced
by I[[ e ]](τpre, τpost) to include the pre-environment. Occurrences ofτ are changed toτpost which is the default

environment in a postcondition.
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• For allp ∈ PARAMSop : I[[ p ]](τpre, τpost) = βpost(p).

– Input parameters may not be modified by an operation:
kind(p) = in impliesβpre(p) = βpost(p).

– Output parameters are undefined on entry:
kind(p) = out impliesβpre(p) = ⊥.

• I[[ result ]](τpre, τpost) = βpost(result ).

• I[[ oclIsNew ]](τpre, τpost)(c) =

{
true if c /∈ σpre(c) andc ∈ σpost(c),
false otherwise.

vii. I[[ω@pre(e1, . . . , en) ]](τpre, τpost) = I(ω)(τpre)(I[[ e1 ]](τpre, τpost), . . . , I[[ en ]](τpre, τpost))

�

Standard expressions are evaluated as defined in Definition 5.30 with the post-environment determining the
of evaluation. Input parameters do not change during the execution of the operation. Therefore, their val
equal in the pre- and post-environment. The value of theresult variable is determined by the variable assignme
of the post-environment. TheoclIsNew operation yields true if an object did not exist in the previous syst
state. Operations referring to the previous state are evaluated in context of the pre-environment (vii). No
the operation arguments may still be evaluated in the post-environment. Therefore, in a nested express
environment only applies to the current operation, whereas deeper nested operations may evaluate in a
environment.

With these preparations, the semantics of an operation specification with pre- and postconditions can be p
defined as follows. We say that a preconditionP satisfiesa pre-environmentτpre – written asτpre |= P – if the
expressionP evaluates to true according to Definition 5.30. Similarly, a postconditionQ satisfies a pair of pre-
and post-environments, if the expressionQ evaluates to true according to Definition 5.32:

τpre |= P iff I[[P ]](τpre) = true

(τpre, τpost) |= Q iff I[[Q ]](τpre, τpost) = true

DEFINITION 5.33 (SEMANTICS OF OPERATION SPECIFICATIONS )
The semantics of an operation specification is a setR ⊆ Env× Env defined as

[[ context C :: op(p1 : T1, . . . , pn : Tn)
pre: P
post: Q ]] = R

whereR is the set of all pre- and post-environment pairs such that the pre-environmentτpre satisfies the precondi-
tion P and the pair of both environments satisfies the postconditionQ:

R = {(τpre, τpost) | τpre |= P ∧ (τpre, τpost) |= Q}

�

The satisfaction relation forQ is defined in terms of both environments since the postcondition may con
references to the previous state. The setR defines all legal transitions between two states corresponding to
effect of an operation. It therefore provides a framework for a correct implementation.
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DEFINITION 5.34 (SATISFACTION OF OPERATION SPECIFICATIONS )
An operation specification with pre- and postconditions is satisfied by a programS in the sense of total correctnes
if the computation ofS is a total functionfS : dom(R)→ im(R) and graph(fS) ⊆ R. �

In other words, the programS accepts each environment satisfying the precondition as input and produce
environment that satisfies the postcondition. The definition ofR allows us to make some statements about t
specification. In general, a reasonable specification implies a non-empty setR allowing one or more different im-
plementations of the operation. IfR = ∅, then there is obviously no implementation possible. We distinguish t
cases: (1) no environment satisfying the precondition exists, or (2) there are environments making the preco
true, but no environments do satisfy the postcondition. Both cases indicate that the specification is incon
with the model. Either the constraint or the model providing the context should be changed. A more rest
definition might even prohibit the second case.
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1 6
The OCL Standard Library

This section describes the OCL Standard Library of predefined types and operations in the OCL. This section
contains all standard types defined within OCL, including all the operations defined on those types. For each
operation the signature and a description of the semantics is given. Within the description, the reserved word
‘result’ is used to refer to the value that results from evaluating the operation. In several places, post conditions
are used to describe properties of the result. When there is more than one postcondition, all postconditions must
be true.

6.1  INTRODUCTION

The structure, syntax and semantics of the OCL is defined in the sections 3 (“Abstract Syntax”), 4 (“Concrete
Syntax”) and 5 (“Semantics”). This section add another part to the OCL definition: a library of predefined types
and operations. Any implementation of OCL must include this library. This approach has also been taken by e.g.
the Java definition, where the language definition and the standard libraries are both mandatory parts of the com-
plete language definition.

The standard OCL library includes several primitive types: Integer, Real, String and Boolean. These are mostly
familiar from many other languages. The second part of the standard library consists of the collection types. They
are the Bag, Set, Sequence and Collection, where Collection is an abstract type.

Note that the OCL standard library exists at the modeling level, also referred to as the M1 level (where the
abstract syntax is the metalevel or M2 level).

6.2  OCLANY

6.2.1 OclAny
The type OclAny is the supertype of all types in the UML model and the primitive types in the OCL Standard
Library. The collection types from the OCL Standard Library are not subtypes of OclAny. Properties of OclAny
are available on each object in all OCL expressions.

All classes in a UML model inherit all operations defined on OclAny. To avoid name conflicts between proper-
ties in the model and the properties inherited from OclAny, all names on the properties of OclAny start with ‘ocl.’
Although theoretically there may still be name conflicts, they can be avoided. One can also use the oclAsType()
operation to explicitly refer to the OclAny properties.

Operations of OclAny, where the instance of OclAny is called object.
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THE OCL STANDARD LIBRARY
object = (object2 : OclAny) : Boolean
True if object is the same object as object2.

object <> (object2 : OclAny) : Boolean
True if object is a different object from object2.
post: result = not (object = object2)

object.oclIsNew() : Boolean
Can only be used in a postcondition.
Evaluates to true if the object is created during performing the operation. I.e. it didn’t exist at precondi-
tion time.

6.3  PRIMITIVE TYPES

The primitive types defined in the OCL standard library are Integer, Real, String and Boolean. They are all
instance of the metaclass Primitive from the UML core package.

6.3.1 Real
The standard type Real represents the mathematical concept of real. Note that Integer is a subclass of Real, so for
each parameter of type Real, you can use an integer as the actual parameter.
Properties of Real, where the instance of Real is called r.

r + (r2 : Real) : Real
The value of the addition of r and r2.

r - (r2 : Real) : Real
The value of the subtraction of r2 from r.

r * (r2 : Real) : Real
The value of the multiplication of r and r2.

- r : Real
The negative value of r.

r / (r2 : Real) : Real
The value of r divided by r2.

r.abs() : Real
The absolute value of r.
post: if r < 0 then result = - r else result = r endif
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r.floor() : Integer
The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.round() : Integer
The integer which is closest to r. When there are two such integers, the largest one.
post: ((r - result) < r).abs() < 0.5) or ((r - result).abs() = 0.5 and (result > r))

r.max(r2 : Real) : Real
The maximum of r and r2.
post: if r >= r2 then result = r else result = r2 endif

r.min(r2 : Real) : Real
The minimum of r and r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean
True if r1 is less than r2.

r > (r2 : Real) : Boolean
True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean
True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)

r >= (r2 : Real) : Boolean
True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

6.3.2 Integer
The standard type Integer represents the mathematical concept of integer. Properties of Integer, where the
instance of Integer is called i.

- i : Integer
The negative value of i.

i + (i2 : Integer) : Integer
The value of the addition of i and i2.
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i - (i2 : Integer) : Integer
The value of the subtraction of i2 from i.

i * (i2 : Integer) : Integer
he value of the multiplication of i and i2.

i / (i2 : Integer) : Real
The value of i divided by i2.

i.abs() : Integer
The absolute value of i.
post: if i < 0 then result = - i else result = i endif

i.div( i2 : Integer) : Integer
The number of times that i2 fits completely within i.
pre : i2 <> 0
post: if i / i2 >= 0 then result = (i / i2).floor() else result = -((-i/i2).floor()) endif

i.mod( i2 : Integer) : Integer
The result is i modulo i2.
post: result = i - (i.div(i2) * i2)

i.max(i2 : Integer) : Integer
The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer
The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

6.3.3 String
The standard type String represents strings, which can be both ASCII or Unicode. Properties of String, where the
instance of String is called string.

string.size() : Integer
The number of characters in string.

string.concat(string2 : String) : String
The concatenation of string and string2.
post: result.size() = string.size() + string2.size()
post: result.substring(1, string.size() ) = string
post: result.substring(string.size() + 1, result.size() ) = string2
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string.substring(lower : Integer, upper : Integer) : String
The sub-string of string starting at character number lower, up to and including character number upper.

6.3.4 Boolean
The standard type Boolean represents the common true/false values. Features of Boolean, the instance of Boolean
is called b.

b or (b2 : Boolean) : Boolean
True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean
True if either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean
True if both b1 and b2 are true.

not b : Boolean
True if b is false.
post: if b then result = false else result = true endif

b implies (b2 : Boolean) : Boolean
True if b is false, or if b is true and b2 is true.
post: (not b) or (b and b2) 

6.4  COLLECTION-RELATED TYPES

This section defines the collection types and their operations. As defined in this section, each collection type is
actually a template type with one parameter. ‘T’ denotes the parameter. A concrete collection type is created by
substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

6.4.1 Collection
Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence of an
object in a collection is called an element. If an object occurs twice in a collection, there are two elements. This
section defines the properties on Collections that have identical semantics for all collection subtypes. Some oper-
ations may be defined within the subtype as well, which means that there is an additional postcondition or a more
specialized return value.

The definition of several common operations is different for each subtype. These operations are not mentioned
in this section.

The semantics of the collection operations is given in the form of a postcondtion that uses the IterateExp ot the
IteratorExp construct. The semantics of those constructs is defined in section 5 (“Semantics”). In several cases
the postcondtion refers to other collection operations, which in turn are defined in terms oof the IterateExp or
IteratorExp constructs.
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Properties of Collection, where the instance of Collection is called collection.

collection->size() : Integer
The number of elements in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

collection->includes(object : T) : Boolean
True if object is an element of collection, false otherwise.
post: result = (collection->count(object) > 0)

collection->excludes(object : T) : Boolean
True if object is not an element of collection, false otherwise.
post: result = (collection->count(object) = 0)

collection->count(object : T) : Integer
The number of times that object occurs in the collection collection.
post: result = collection->iterate( elem; acc : Integer = 0 |
             if elem = object then acc + 1 else acc endif)

collection->includesAll(c2 : Collection(T)) : Boolean
Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

collection->excludesAll(c2 : Collection(T)) : Boolean
Does collection contain none of the elements of c2 ?
post: result = c2->forAll(elem | collection->excludes(elem))

collection->isEmpty() : Boolean
Is collection the empty collection?
post: result = ( collection->size() = 0 )

collection->notEmpty() : Boolean
Is collection not the empty collection?
post: result = ( collection->size() <> 0 )

collection->sum() : T
The addition of all elements in collection. Elements must be of a type supporting the + operation. The +
operation must take one parameter of type T and be both associative: (a+b)+c = a+(b+c), and commuta-
tive: a+b = b+a. Integer and Real fulfill this condition.
post: result = collection->iterate( elem; acc : T = 0 | acc + elem )
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6.4.2 Set
The Set is the mathematical set. It contains elements without duplicates. Operations of Set, the instance of Set is
called set.

set->union(set2 : Set(T)) : Set(T)
The union of set and set2.
post: result->forAll(elem | set->includes(elem) or set2->includes(elem))
post: set   ->forAll(elem | result->includes(elem))
post: set2  ->forAll(elem | result->includes(elem))

set->union(bag : Bag(T)) : Bag(T)
The union of set and bag.
post: result->forAll(elem | result->count(elem) = set->count(elem) + bag->count(elem))
post: set->forAll(elem | result->includes(elem))
post: bag->forAll(elem | result->includes(elem))

set = (set2 : Set(T)) : Boolean
Evaluates to true if set and set2 contain the same elements.
post: result = (set->forAll(elem | set2->includes(elem)) and 
                                            set2->forAll(elem | set->includes(elem)) )

set->intersection(set2 : Set(T)) : Set(T)
The intersection of set and set2 (i.e, the set of all elements that are in both set and set2).
post: result->forAll(elem | set->includes(elem) and set2->includes(elem))
post: set->forAll(elem | set2->includes(elem) = result->includes(elem))
post: set2->forAll(elem | set->includes(elem) = result->includes(elem))

set->intersection(bag : Bag(T)) : Set(T)
The intersection of set and bag.
post: result = set->intersection( bag->asSet )

set – (set2 : Set(T)) : Set(T)
The elements of set, which are not in set2.
post: result->forAll(elem | set->includes(elem) and set2->excludes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))

set->including(object : T) : Set(T)
The set containing all elements of set plus object.
post: result->forAll(elem | set->includes(elem) or (elem = object))
post: set->forAll(elem | result->includes(elem))
post: result->includes(object)

set->excluding(object : T) : Set(T)
The set containing all elements of set without object.
post: result->forAll(elem | set->includes(elem) and (elem <> object))
post: set->forAll(elem | result->includes(elem) = (object <> elem))
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post: result->excludes(object)

set->symmetricDifference(set2 : Set(T)) : Set(T)
The sets containing all the elements that are in set or set2, but not in both.
post: result->forAll(elem | set->includes(elem) xor set2->includes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))
post: set2->forAll(elem | result->includes(elem) = set->excludes(elem))

set->count(object : T) : Integer
The number of occurrences of object in set.
post: result <= 1

set->flatten() : Set(T2)
If the element type is not a collection type this result in the same set. If the element type is a collection
type, the result is the set containing all the elements of all the elements of set.
post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
                  set->iterate(c; acc : Set() = Set{} |
                       acc->union(c->asSet() ) )
               else
                  set
               endif

set->asSet() : Set(T)
A Set identical to self. This operation exists for convenience reasons.
post: result = set

set->asSequence() : Sequence(T)
A Sequence that contains all the elements from set, in undefined order.
post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

set->asBag() : Bag(T)
The Bag that contains all the elements from set.
post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

6.4.3 Bag
A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times. There is
no ordering defined on the elements in a bag. Properties of Bag, where the instance of Bag is called bag.

bag = (bag2 : Bag(T)) : Boolean
True if bag and bag2 contain the same elements, the same number of times.
post: result = (bag->forAll(elem | bag->count(elem) = bag2->count(elem)) and 
bag2->forAll(elem | bag2->count(elem) = bag->count(elem)) )
OCL 2.0 INITIAL SUBMISSION VERSION    1.0 ,AUGUST 20, 2001                                                                       6-8



THE OCL STANDARD LIBRARY
bag->union(bag2 : Bag(T)) : Bag(T)
The union of bag and bag2.
post: result->forAll( elem | result->count(elem) = bag->count(elem) + bag2->count(elem))
post: bag   ->forAll( elem | result->count(elem) = bag->count(elem) + bag2->count(elem))
post: bag2  ->forAll( elem | result->count(elem) = bag->count(elem) + bag2->count(elem))

bag->union(set : Set(T)) : Bag(T)
The union of bag and set.
post: result->forAll(elem | result->count(elem) = bag->count(elem) + set->count(elem))
post: bag   ->forAll(elem | result->count(elem) = bag->count(elem) + set->count(elem))
post: set->forAll(elem | result->count(elem) = bag->count(elem) + set->count(elem))

bag->intersection(bag2 : Bag(T)) : Bag(T)
The intersection of bag and bag2.
post: result->forAll(elem | 
      result->count(elem) = bag->count(elem).min(bag2->count(elem)) )
post: bag->forAll(elem |
      result->count(elem) = bag->count(elem).min(bag2->count(elem)) )
post: bag2->forAll(elem |
      result->count(elem) = bag->count(elem).min(bag2->count(elem)) )

bag->intersection(set : Set(T)) : Set(T)
The intersection of bag and set.
post: result->forAll(elem| result->count(elem) = bag->count(elem).min(set->count(elem)) )
post: bag->forAll(elem | result->count(elem) = bag->count(elem).min(set->count(elem)) )
post: set->forAll(elem | result->count(elem) = bag->count(elem).min(set->count(elem)) )

bag->including(object : T) : Bag(T)
The bag containing all elements of bag plus object.
post: result->forAll(elem | 
        if elem = object then
           result->count(elem) = bag->count(elem) + 1
        else
           result->count(elem) = bag->count(elem)
        endif)
post: bag->forAll(elem | 
        if elem = object then
           result->count(elem) = bag->count(elem) + 1
        else
           result->count(elem) = bag->count(elem)
        endif)

bag->excluding(object : T) : Bag(T)
The bag containing all elements of bag apart from all occurrences of object.
post: result->forAll(elem | 
        if elem = object then
           result->count(elem) = 0
        else
           result->count(elem) = bag->count(elem)
        endif)
post: bag->forAll(elem | 
        if elem = object then
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           result->count(elem) = 0
        else
           result->count(elem) = bag->count(elem)
        endif)

bag->count(object : T) : Integer
The number of occurrences of object in bag.

bag->flatten() : Bag(T2)
If the element type is not a collection type this result in the same bag. If the element type is a collection
type, the result is the bag containing all the elements of all the elements of bag.
post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
                  bag->iterate(c; acc : Bag() = Bag{} |
                       acc->union(c->asBag() ) )
               else
                  bag
               endif

bag->asBag() : Bag(T)
A Bag identical to self. This operation exists for convenience reasons.
post: result = bag

bag->asSequence() : Sequence(T)
A Sequence that contains all the elements from bag, in undefined order.
post: result->forAll(elem | bag->count(elem) = result->count(elem))
post: bag->forAll(elem | bag->count(elem) = result->count(elem))

bag->asSet() : Set(T)
The Set containing all the elements from bag, with duplicates removed.
post: result->forAll(elem | bag->includes(elem) )
post: bag->forAll(elem | result->includes(elem))

6.4.4 Sequence
A sequence is a collection where the elements are ordered. An element may be part of a sequence more than
once. Operations of Sequence(T), where the instance of Sequence is called sequence.

sequence->count(object : T) : Integer
The number of occurrences of object in sequence.

sequence = (sequence2 : Sequence(T)) : Boolean
True if sequence contains the same elements as sequence2 in the same order.
post: result = Sequence{1..sequence->size()}->forAll(index : Integer |
         sequence->at(index) = sequence2->at(index))
         and
         sequence->size() = sequence2->size()
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sequence->union (sequence2 : Sequence(T)) : Sequence(T)
The sequence consisting of all elements in sequence, followed by all elements in sequence2.
post: result->size() = sequence->size() + sequence2->size()
post: Sequence{1..sequence->size()}->forAll(index : Integer |
       sequence->at(index) = result->at(index))
post: Sequence{1..sequence2->size()}->forAll(index : Integer |
                        sequence2->at(index) =  result->at(index + sequence->size() )))

sequence->flatten() : Sequence(T2)
If the element type is not a collection type this result in the same sequence. If the element type is a col-
lection type, the result is the seuqnce containing all the elements of all the elements of sequence. The
order of the elements is partial.
post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
                  sequence->iterate(c; acc : Sequence() = Sequence{} |
                       acc->union(c->asSequence() ) )
               else
                  sequence
               endif

sequence->append (object: T) : Sequence(T)
The sequence of elements, consisting of all elements of sequence, followed by object.
post: result->size() = sequence->size() + 1
post: result->at(result->size() ) = object
post:   Sequence{1..sequence->size() }->forAll(index : Integer |
         result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)
The sequence consisting of object, followed by all elements in sequence.
post: result->size = sequence->size() + 1
post: result->at(1) = object
post:   Sequence{1..sequence->size()}->forAll(index : Integer |
        sequence->at(index) = result->at(index + 1))

sequence->subSequence(lower : Integer, upper : Integer) : Sequence(T)
The sub-sequence of sequence starting at number lower, up to and including element number upper.
pre : 1 <= lower
pre : lower <= upper
pre : upper <= sequence->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll( index |
         result->at(index - lower + 1) =
                          sequence->at(index))

sequence->at(i : Integer) : T
The i-th element of sequence.
pre : i >= 1 and i <= sequence->size()

sequence->first() : T
The first element in sequence.
post: result = sequence->at(1)
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sequence->last() : T
The last element in sequence.
post: result = sequence->at(sequence->size() )

sequence->including(object : T) : Sequence(T)
The sequence containing all elements of sequence plus object added as the last element.
post: result = sequence.append(object)

sequence->excluding(object : T) : Sequence(T)
The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elements is not changed.
post:result->includes(object) = false
post: result->size() = sequence->size() - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T)
     = Sequence{}|
         if elem = object then acc else acc->append(elem) endif )

sequence->asBag() : Bag(T)
The Bag containing all the elements from sequence, including duplicates.
post: result->forAll(elem | sequence->count(elem) = result->count(elem) )
post: sequence->forAll(elem | sequence->count(elem) = result->count(elem) )

sequence->asSequence() : Sequence(T)
The Sequence identical to the object itself. This operation exists for convenience reasons..
post: result = sequence

sequence->asSet() : Set(T)
The Set containing all the elements from sequence, with duplicated removed.
post: result->forAll(elem | sequence->includes(elem))
post: sequence->forAll(elem | result->includes(elem))

6.5  PREDEFINED OCLITERATOR LIBRARY

This section defines the standard OCL iterator expressions. In the abstract syntax these are all instances of OclIt-
erator. These iterator expressions always have a collection expression as their source, as is defined in the well-
formedness rules in section 3 (“Abstract Syntax”). The defined iterator expressions are shown per source collec-
tion type. The semantics of each iterator expression is defined with the postcondition.

In all of the following OCL expressions, the lefthand side of the equals sign is the IteratorExp to be defined,
and the righthand side of the equals sign is the equivalent as an IterateExp. The names source, body and iterator
refer to the role names in the abstract syntax:

source The source expression of the IterateExp
body The body expression of the IterateExp
iterator The iterator variable of the IterateExp
result The result variable of the IteratorExp
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6.5.1 Collection

exists
Results in true if body evaluates to true for at least one element in the source collection.

source->exists(iterator | body) =
                     source->iterate(iterator; result : Boolean = false | result or body)

forAll
Results in true if the body expression evaluates to true for each element in the source collection; other-
wise, result is false.

source->forAll(iterator | body ) = 
                   source->iterate(iterator; result : Boolean = true | result and body)

isUnique
Results in true if body evaluates to a different value for each element in the source collection; otherwise,
result is false.

source->isUnique(iterator | body) =
    source->collect(body)->forAll( iterator | source->collect(body)->count(iterator) = 1) 

sortedBy
Results in the Sequence containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive i.e. if a < b and b < c then a
< c.

source->sortedBy(body) =
        ToBeDone-- 

any
Returns any element in the source collection for which body evaluates to true. If there is more than one
element for which body is true, one of them is returned. There must be at least one element fulfilling
body, otherwise the result of this IteratorExp is Undefined.

source->any(iterator | body) =
       source->select(iterator | body)->asSequence()->first()

one
Results in true if there is exactly one element in the source collection for which body is true.

source->one(iterator | body) =
      source->select(iterator | body)->size() = 1

6.5.2 Set
The standard iterator expression with source of type Set(T) are:
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select
The subset of set for which expr is true.

source->select(iterator | body) =
         source->iterate(iterator; result : Set(T) = Set{} |
                          if body then result->including(iterator)
                                  else result
                           endif)

reject
The subset of the source set for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)

collect
The Bag of elements which results from applying body to every member of the source set. The result is
flattened.

source->collect(iterator | body) =
        source->iterate(iterator; result : Bag(body.type) = Bag{} |
                        result->including(body->flatten() ) )

collectNested
The Bag of elements which results from applying body to every member of the source set.

source->collect(iterator | body) =
        source->iterate(iterator; result : Bag(body.type) = Bag{} |
                        result->including(body ) )

6.5.3 Bag
The standard iterator expression with source of type Bag(T) are:

select
The sub-bag of the source bag for which body is true.

source->select(iterator | body) =
        source->iterate(iterator; result : Bag(T) = Bag{} |
                        if body then result->including(iterator)
                                else result
                        endif)

reject
The sub-bag of the source bag for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)

collect
The Bag of elements which results from applying body to every member of the source bag. The result is
flattened.
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source->collect(iterator | body) =
        source->iterate(iterator; result : Bag(body.type) = Bag{} |
                        result->including(body->flatten() ) )

collectNested
The Bag of elements which results from applying body to every member of the source bag.

source->collect(iterator | body) =
        source->iterate(iterator; result : Bag(body.type) = Bag{} |
                        result->including(body ) )

6.5.4 Sequence
The standard iterator expressions with source of type Sequence(T) are:

sequence->select(expression : OclExpression) : Sequence(T)
The subsequence of the source sequence for which body is true.

source->select(iterator | body) =
        source->iterate(iterator; result : Sequence(T) = Sequence{} |
                        if body then result->including(iterator)
                                else result
                        endif)

reject
The subsequence of the source sequence for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)

collect
The Sequence of elements which results from applying body to every member of the source sequence.
The result is flattened.

source->collect(iterator | body) = 
        source->iterate(iterator; result : Sequence(body.type) = Sequence{} |
                        result->append(body->flatten() ) )

collectNested
The Sequence of elements which results from applying body to every member of the source sequence.

source->collect(iterator | body) = 
        source->iterate(iterator; result : Sequence(body.type) = Sequence{} |
                        result->append(body ) )
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1 7
The Use of Ocl Expressions in the UML

This section describes the usage of OCL expressions in the UML.

7.1  INTRODUCTION

In principle, everywhere in the UML specification where the term expression is used, an OCL expression can be
placed. The meaning of the value, which results from the evaluation of the OCL expression, depends on its place-
ment within the UML model. In UML 1.4 OCL expressions could be used e.g. for invariants, preconditions and
postconditons.

In this specification the structure of an expression, and its evaluation are separated from the usage of the
expression. The section "Abstract Syntax" defines the structure of an expression, and the section "Semantics"
defines the evaluation. For UML users (the modelers) this is not quite enough. They need to understand what the
meaning and consequences are when an OCL expression is used at a certain place.

This section specifies a number of predefined places where OCL expressions can be used and their associated
meaning. The modeler has to define her/his own meaning, if OCL is used at a place which is not defined in this
section.

Three things need to be separated: the placement, the context, and the self instance of an ocl expression. The
placement is the position where the ocl expression is used in the UML model. The context is the namespace in
which the expression is evaluated. The self instance is the reference to the type of the object that evaluates the
expression. For each predefined use of OCL in the next section these three things are stated explicitly. Each use
also contains well-formedness rules, that define the exact structure of the place where the OCL expression is
attached to the UML model.

7.2  STANDARD USES OF OCL EXPRESSIONS

7.2.1 Definition
Place: The body of expression of UML metaclass Constraint, where the constraint has

stereotype <,definition>> and is attached to a Classifier.
Context: The Classifier to which the Constraint is attached.
Self: The Classifier to which the Constraint is attached.

A definition constraint may only consist of one or more LetExpressions. The variable or function defined by the
Let expression can be used in an identical way as an attribte or operation of the Classifier. Their visibility is equal
to that of a public attribute or operation.

The purpose of a definition constraint is to define reusable sub-expressions for use in other OCL expressions.
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Wellformedness rules

[1] The Constraint has the stereotype <<definition>>.

context OclExpression
inv: self.constraint.stereotype.name = ’definition’

[2] The Constraint is attached to only one model element.

context OclExpression
inv: self.constraint.constrainedElement->size() = 1

[3] The Constraint is attached to a Classifier.

context OclExpression
inv: self.constraint.constrainedElement.one(true).oclIsKindOf(Classifier)

7.2.2 Invariant
Place: The body of expression of UML metaclass Constraint
Context: The Classifier to which the Constraint is attached.
Self: The Classifier to which the Constraint is attached.

An invariant constraint consists of an OCL expression of type Boolean. The expression must be true for each
instance of the classifier at any moment in time. Only when an instance is executing an operation, this does not
need to evaluate to true.

Wellformedness rules

[1] The type of the OCL expression must be Boolean.

context OclExpression
inv: self.type.name = ’Boolean’

[2] The Constraint has the stereotype <<invariant>>.

context OclExpression
inv: self.constraint.stereotype.name = ’invariant’

[3] The Constraint is attached to only one model element.

context OclExpression
inv: self.constraint.constrainedElement->size() = 1

[4] The Constraint is attached to a Classifier.

context OclExpression
inv: self.constraint.constrainedElement.one(true).oclIsKindOf(Classifier)

7.2.3 Precondition
Place: The body of expression of UML metaclass Constraint
Context: The Operation that the Constraint is attached to.
Self: The Classifier that owns the Operation that the Constraint is attached to.

The precondition constraint consists of an OCL expression of type Boolean. The expression must evaluate to true
whenever the operation starts executing, but only for the instance that will execute the operation.

Wellformedness rules

[1] The type of the OCL expression must be Boolean.
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THE USE OF OCL EXPRESSIONS IN THE UML
context OclExpression
inv: self.type.name = ’Boolean’

[2] The Constraint has the stereotype <<precondition>>.

context OclExpression
inv: self.constraint.stereotype.name = ’precondition’

[3] The Constraint is attached to only one model element.

context OclExpression
inv: self.constraint.constrainedElement->size() = 1

[4] The Constraint is attached to an Operation.

context OclExpression
inv: self.constraint.constrainedElement.one(true).oclIsKindOf(Operation)

7.2.4 Postcondition
Place: The body of expression of UML metaclass Constraint
Context: The Operation that the Constraint is attached to.
Self: The Classifier that owns the Operation that the Constraint is attached to.

The postcondition constraint consists of an OCL expression of type Boolean. The expression must evaluate to
true at the moment that the operation stops executing, but only for the instance that has just executed the opera-
tion.

Within an OCL expression used in a postcondition, the "@pre" can be used to refer to values at precondition
time. The variable result refers to the return value of the operation if there is any.

Wellformedness rules

[1] The type of the OCL expression must be Boolean.

context OclExpression
inv: self.type.name = ’Boolean’

[2] The Constraint has the stereotype <<postcondition>>.

context OclExpression
inv: self.constraint.stereotype.name = ’postcondition’

[3] The Constraint is attached to only one model element.

context OclExpression
inv: self.constraint.constrainedElement->size() = 1

[4] The Constraint is attached to an Operation.

context OclExpression
inv: self.constraint.constrainedElement.one(true).oclIsKindOf(Operation)

7.2.5 Action invariant
Place: The body of expression of UML metaclass Constraint
Context: The Classifier that the Constraint is attached to.
Self: The Classifier that the Constraint is attached to.

An action invariant consist of an OCL action expression. Whenever the condition evaluation changes from false
to true, the specified action must be executed immediately by the instance for which the condition changed value.
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THE USE OF OCL EXPRESSIONS IN THE UML
Wellformedness rules

[1] The Constraint has the stereotype <<actionInvariant>>.

context OclExpression
inv: self.constraint.stereotype.name = ’actionInvariant’

[2] The Constraint is attached to only one model element.

context OclExpression
inv: self.constraint.constrainedElement->size() = 1

[3] The Constraint is attached to a Classifier.

context OclExpression
inv: self.constraint.constrainedElement.one(true).oclIsKindOf(Classifier)

7.2.6 Action postcondition
Place: The body of expression of UML metaclass Constraint
Context: The Operation that the Constraint is attached to.
Self: The Classifier that owns the Operation that the Constraint is attached to.

An action postcondition consist of an OCL action expression. The condition is evaluated at postcondition time. If
the condition evaluates to true, the instance that just executed the operation must have executed the specified
action within the operation execution.

Within an OCL expression used in an action postcondition, the "@pre" can be used to refer to values at precon-
dition time. The variable result refers to the return value of the operation if there is any.

Wellformedness rules

[1] The Constraint has the stereotype <<actionPostcondition>>.

context OclExpression
inv: self.constraint.stereotype.name = ’actionPostcondition’

[2] The Constraint is attached to only one model element.

context OclExpression
inv: self.constraint.constrainedElement->size() = 1

[3] The Constraint is attached to an Operation.

context OclExpression
inv: self.constraint.constrainedElement.one(true).oclIsKindOf(Operation)

7.2.7 Attribute initial value
Place: The body of initialValue expression of UML metaclass Attribute
Context: The Classifier that owns the Attribute that contains the expression.
Self: The Classifier that owns the Attribute that contains the expression.

An OCL expression acting as the initial value of an attribute must conform to the defined type of the attribute.
The OCL expression is eveluated at the creation time of the instance that owns the attribute for this created
instance.

Wellformedness rules

[1] The type of the OCL expression must conform to the type of the attribute.

context OclExpression
inv: self.type.conformsTo(self.attribute.type)
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THE USE OF OCL EXPRESSIONS IN THE UML
7.2.8 Guard
Place: The body of expression of the UML metaclass Guard
Context: The guard that contains the expression. Specifically the parameters of the

optional trigger event of the transition of the guard are visible within the OCL
expression.

Self: The Classifier that owns statemachine which contains the Guard.

An OCL expression acting as value of a guard is of type Boolean. The expresion is evaluated at the moment that
the transition attached to the guard is attempted.

Wellformedness rules

[1] The type of the OCL expression must be Boolean.

context OclExpression
inv: self.type.name = ’Boolean’

[2] The statemachine in which the guard appears must be attached to a Classifier.

context OclExpression
inv: self.guard.transition.stateMachine->notEmpty() and
     self.guard.transition.stateMachine.context->notEmpty() and
     self.guard.transition.stateMachine.context.oclIsKindOf(Classifier)

7.3  CONCRETE SYNTAX

This section describes the concrete syntax for specifying the context of the different types of usage of OCL
expressions.

Comment – This section will contain the syntax for the "context Classifier inv: ..." context declara-
tions. This is to be done.
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1 A
Semantics Described using UML

This appendix describes the semantics of the OCL using the UML itself to describe the semantic domain, and the
mapping between semantic domain and abstract syntax. This UML-based description is added to the specifica-
tion, as a courtesy to those who are not familiar with the formal notation used in chapter 5 (“Semantics”). It
explains the same semantics in a manner based on the report Unification of Static and Dynamic Semantics for
UML [Kleppe2001], which in its turn is based on the MML report [Clark2000].

A.1  INTRODUCTION

In section 3.3 (“The Expressions Package”) an OCL expression is defined as: "an expression that can be evalu-
ated in a given environment.", and in section 3.2 (“The Types Package”) it is stated that an "evaluation of the
expression yields a value". The ‘meaning’ (semantics) of an OCL expression, therefore, can be defined as the
value yielded by its evaluation in a given environment. In order to specify the semantics of OCL expressions we
need to define two things: (1) the set of possible values that evaluation of expressions may yield, and (2) evalua-
tions and their environment. The set of possible values is called the semantic domain. The set of evaluations
together with their associations with the concepts from the abstract syntax represent the mapping from OCL
expressions to values form the semantic domain.

This appendix describes the semantic domain in the form of a UML class diagram, containing classes, associa-
tions and attributes. The real semantic domain is the (infinite) set of instances that can be created according to this
class diagram. To represent the evaluation of the OCL expressions in the semantic domain a second UML class
diagram is used. In it, a set of so-called evaluation classes is defined. Each evaluation class is associated with a
value (its result value), and a name space environment that binds names to values. Note that the UML model
comprising both class diagrams, resides on layer 1 of the OMG 4-layered architecture.

The semantics of an OCL expression is given by association: each value defined in the semantic domain is
associated with a type defined in the abstract syntax, each evaluation is associated with an expression from the
abstract syntax. The value yielded by an OCL expression in a given environment, its ‘meaning’, is the result value
of its evaluation with a certain name space environment.

The UML-based semantics is divided into several packages. Figure REF shows how the packages relate to
each other and to the packages from the abstract syntax.

• The Values package describes the semantic domain. It shows which values are predefined in OCL and which
values are deduced from the UML models.

• The Evaluations package describes the evaluations of OCL expressions. The Evaluations package contains
the rules that determine the result value for a given expression.

• The Semantics package describes the associations of the values and evaluations with elements from the
abstract syntax. It is subdivided into two subpackages:

• The Semantics Type-Value package contains the associations between the instances in the semantics
domain and the types in the abstract syntax.
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• The Semantics Expression-Evaluation package contains the associations between the evaluation classes
with the expressions in the abstract syntax.

A.2  THE VALUES PACKAGE

OCL is an object language. Values can be either an object, which can change its state in time, or a data type,
which can not change its state. The model in figure A-2 shows the values that form the semantic domain of an
OCL expression. The basic type is the Value, which includes both objects and data values. There is a special sub-
type of Value called UndefinedValue, which is used to represent the undefined value for any Type in the abstract
syntax.

Figure A-3 on page 4 show a number of special data values, the collection and tuple values. To distinguish
between instances of the Set, Bag, and Sequence types defined in the standard library, and the (more generic)
classes in this package that represent instances in the semantic domain, the names SetTypeValue, BagTypeValue,
and SequenceTypeValue are used, instead of SetValue, BagValue, and SequenceValue.

Figure A-1 Overview of packages in the UML-based semantics
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A.2.1 Definitions of concepts for the Values package.

BagTypeValue
A bag type value is a collection value which is a multiset of elements where each element may occur multiple
times in the bag. The elements are unordered. Part of a bag value are the values of its elements. In the metamodel,
this is shown as an association from CollectionValue (a generalization of BagTypeValue) to Element.

CollectionValue
A collection value is a list of values. Part of every collection value are the values of its elements. In the meta-
model, this is shown as an association from CollectionValue to Element.

Associations
elements The values of the elements in a collection.

DomainElement
A domain element is an element of the domain. It is the generic superclass of all classes defined in this appendix,
including Value and OCLExpEvaluation. It serves the same purpose as ModelElement in the UML meta model.

Element
An element represents a single component of a tuple value, or collection value. An element has a name, an
indexNr, and a value. The purpose of the name is to uniquely identify each component, when it is used as an ele-
ment of a TupleValue. The purpose of the indexNr is to uniquely identify the position of each component, when it
is used as an element of a SequenceValue.

Figure A-2 The kernel values in the semantic domain
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EnumerationValue
An enumeration value is a value taken from a set of user-specified named enumeration literals.

LocalSnapshot
A local snapshot is a domain element that holds for one point in time the subvalues of an object value. It is always
part of an ordered list, which is represented in the metamodel by the associations pred, and succ. An Object Value
also holds a sequence of Actions (from the UML metamodel). This sequence of Actions will also change in time,
therefore it is linked to a local snapshot. This is represented by an association in the metamodel called output-
Queue.

Associations
bindings The set of name value bindings that hold the changes in time of the subvalues of

the associated object value.
outputQueue The sequence of actions that the associated value at the certain point in time has

send and are not yet put through to their targets.
pred The predecessor of this local snapshot in the history of an object value.
succ The successor of this local snapshot in the history of an object value.

NameValueBinding
A name value binding is a domain element that binds a name to a value.

Figure A-3 The collection values in the semantic domain
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ObjectValue
An object value is a value that has an identity, and a certain structure of subvalues. Its subvalues may change over
time, although the structure remains the same. Its identity may not change over time. In the metamodel, the struc-
ture is shown as a set of NameValueBindings. Because these bindings may change over time, and identification of
these changes is necessary to describe the semantics of the action clause, the ObjectValue is associated with a
sequence of LocalSnapshots, that hold a set of NameValueBindings at a certain point in time.

Associations
history The sequence of local snapshots that hold the changes in time of the subvalues of

this object value.

PrimitiveValue
A primitive value is a predefined static value, without any relevant UML substructure (i.e., it has no UML parts).

SequenceTypeValue
A sequence type value is a collection value which is a list of values where each value may occur multiple times in
the sequence. The values are ordered by their position in the sequence. Part of a sequence value are the values of
its elements. In the metamodel, this is shown as an association from CollectionValue (a generalization of Sequen-
ceTypeValue) to Element. The position of an element in the list is represented by the attribute indexNr of Element.

SetTypeValue
A set type value is a collection value which is a set of elements where each distinct element occurs only once in
the set. The elements are not ordered. Part of a set value are the values of its elements. In the metamodel, this is
shown as an association from CollectionValue (a generalization of SetTypeValue) to Element.

StaticValue

A static value is a value that will not change over time.1

TupleValue
A tuple value (also known as record value) combines values of different types into a single aggregate value. The
components of a tuple value are described by tuple parts each having a name and a value. In the metamodel, this
is shown as an association from TupleValue to Element.

Associations
elements The values of the elements in a collection.

UndefinedValue
An undefined value is a value that represent the ‘null’ value for any type.

Value
A part of the semantic domain.

1. As StaticValue is the counterpart of the DataType concept in the abstract syntax, the name DataValue would be preferable. Because this
name is used in the UML 1.4 specification to denote a model of a data value, the name StaticValue is used here.
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A.2.2 Well-formedness rules for the Values Package

BagTypeValue
No additional well-formedness rules.

CollectionValue
No additional well-formedness rule.

DomainElement
No additional well-formedness rule.

Element
No additional well-formedness rule.

EnumerationValue
No additional well-formedness rule.

LocalSnapshot

1. All predecessors is the collection of all snapshots before a snapshot. All successors is the collection of all
snapshots after a snapshot.

context LocalSnapshot 
def: Let allPredecessors : Set(LocalSnapshot) =
         if pred->notEmpty then
            pred->union(pred.allPredecessors)
         else
            Set {}
         endif
def: Let allSuccessors : Set(LocalSnapshot) =
         if succ->notEmpty then
            succ->union(succ.allSuccessors)
         else
            Set {}
         endif 

NameValueBinding
No additional well-formedness rule.

ObjectValue

1. The history of an object is ordered. The first element does not have a predecessor, the last does not have a suc-
cessor.

context ObjectValue 
inv: history->oclIsTypeOf( Sequence(LocalSnapShot) )
inv: history->last().succ->size = 0
inv: history->first().pre->size = 0

2. The operation getCurrentValueOf results in the value that binds to the name parameter in the latest snapshot in
the history of an object value. Note that the value may be the UndefinedValue.

context ObjectValue::getCurrentValueOf(n: String): Value
pre: -- none
post: result = history->last().bindings->one(name = n).value
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PrimitiveValue
No additional well-formedness rule.

SequenceTypeValue

[1] All elements belonging to a sequence value have unique index numbers.

self.element->isUnique(e : Element | e.indexNr)

SetTypeValue

1. All elements belonging to a set value have unique values.

self.element->isUnique(e : Element | e.value)

StaticValue
No additional well-formedness rule.

TupleValue

[1] All elements belonging to a tuple value have unique names.

self.element->isUnique(e : Element | e.name)

UndefinedValue
No additional well-formedness rule.

Value
No additional well-formedness rule.

A.3  THE EVALUATIONS PACKAGE

This section defines the evaluations of OCL expressions. The evaluations package is a mirror image of the
expressions package from the abstract syntax. Figure A-4 on page 8 shows the core part of the Evaluations pack-
age. The basic structure in the package consists of the classes OclEvaluation, PropertyCallExpEval and Variable-
ExpEval. An OclEvaluation always has a result value, and a name space that binds names to values. In figure A-5
on page 10 the various subtypes of model propertycall evaluation are defined.

Most of the OCL expressions can be simply evaluated, i.e. their value can be determined based on a non-
changing set of name value bindings. Operation call expressions, however, need the execution of the called oper-
ation. The semantics of the execution of an operation will be defined in the UML infrastructure. For our purposes
it is enough to assume that an operation execution will add to the environment of an OCL expression the name
’result’ bound to a certain value. In order not to become tangled in a mix of terms, the term evaluation is used in
the following to denote both the ‘normal’ OCL evaluations and the executions of operation call expressions.

A.3.1 Definitions of concepts for the Evaluations package

ActionExpEval
An action expression evaluation is defined in section A.3.4 (“Action Expression Evaluations”), but included in
this diagram for completeness.
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ConstantExpEval
A constant expression evaluation is an evaluation of a constant expression.

IterateExpEval
An IterateExpEval is an expression evaluation which evaluates its body expression for each element of a collec-
tion value, and accumulates a value in a result variable.

IteratorExpEval
An IteratorExp is an expression evaluation which evaluates its body expression for each element of a collection.

Associations
bodyEvals The oclExpEvaluations that represent the evaluation of the body expression for

each element in the source collection.

Figure A-4 Domain model for ocl evaluations
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ModelPropertyCallExpEval
A model property call expression evaluation is an evaluation of a ModelPropertyCallExp. In A-5 on page 10 the
various subclasses of ModelPropertyCallExpEval are shown.

Operations
atPre The atPre operation returns true if the property call is marked as being evaluated

at precondition time.

NameSpace
A NameSpace is a set of NameValueBindings that form the environment in which an OCL expression is evalu-
ated. A NameSpace has three operation which are defined in the well-formnedness rules (section A.3.8 (“Well-
formedness Rules of the Evaluations package”).

Associations
bindings The NameValueBindings that are the elements of this name space.

OclExpressionEval
An OCL evaluation is an evaluation or evaluation of an OclExpression. It has a result value, and it is associated
with a set of name values bindings, called environment. These bindings represent the values that are visible for
this evaluation, and the names by which they can be referenced. A second set of name values bindings is used to
evaluate any sub expression for which the operation atPre returns true, called beforeEnvironment.

Note that these bindings need to be established, based on the placement of the OCL expression within the
UML model. A binding for an invariant will not need the beforeEnvironment, and it will be different from a bind-
ing of the same expression when used as precondition.

Associations
environment The set of name value bindings that is the context for this evaluation of an ocl

expression.
beforeEnvironment The set of name value bindings that is the context for this evaluation, to evaluate

any sub expressions of type ModelPropertyCallExp for which the operation
atPre returns true.

resultValue The value that is the result of evaluating the OclExpression.

PropertyCallExpEval
A property call expression evaluation is an evaluation of a PropertyCallExp.

Associations
source The result value of the source expression evaluation is the instance that performs

the property call.

VariableExpEval
A variable expression evaluation is an evaluation of a VariableExp, which in effect is the search of the value that
is bound to the variable name within the expression environment.

Associations
variable The variable which value is the result of this evaluation.

A.3.2 Model PropertyCall Evaluations
The three subtypes of ModelPropertyCallExpEval are shown in figure A-5.
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AssociationClassCallExpEval
An association end call expression evaluation is an evaluation of a AssociationClassCallExp, which in effect is
the search of the value that is bound to the associationEnd name within the expression environment.

Associations
referredAssociationClass The name of the AssociationClass to which the corresponding AssociationClass-

CallExp is a reference.

AssociationEndCallExpEval
An association end call expression evaluation is an evaluation of a AssociationEndCallExp, which in effect is the
search of the value that is bound to the associationEnd name within the expression environment.

Associations
referredAssociationEnd The name of the AssociationEnd to which the corresponding NavigationCallExp

is a reference.

AttributeCallExpEval
An attribute call expression evaluation is an evaluation of an AttributeCallExp, which in effect is the search of the
value that is bound to the attribute name within the expression environment.

Figure A-5 Domain model for ModelPropertyCallExpEval and subtypes
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Associations
referredAttributeThe name of the Attribute to which the corresponding AttributeCallExp is a

reference.

NavigationCallExpEval
A navigation call expression evaluation is an evaluation of a NavigationCallExp.

Associations
navigationSource The name of the AssociationEnd of which the corresponding NavigationCallExp

is the source.

OperationCallExp
An operation call expression evaluation is an evaluation of an OperationCallExp.

Associations
arguments The arguments denote the arguments to the operation call. This is only useful

when the operation call is related to an Operation that takes parameters.
referredOperation The name of the Operation to which this OperationCallExp is a reference This is

an Operation of a Classifier that is defined in the UML model.

A.3.3 If Expression Evaluations

IfExpEval
An IfExpEval is an evaluation of an IfExpression.

Associations
condition The OclExpEvaluation that evaluates the condition of the corresponding IfEx-

pression.
thenExpression The OclExpEvaluation that evaluates the thenExpression of the corresponding

IfExpression.
elseExpression The OclExpEvaluation that evaluates the elseExpression of the corresponding

IfExpression.

Figure A-6 Domain model for action expression
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A.3.4 Action Expression Evaluations
Action expressions are used to specify the fact that an object has will perform some action at a some moment in
time.

ActionExpEval

An action expression evaluation is an evaluation of an ActionExpression. As explained in [Kleppe2000] the only
demand we can put on the action expression is that its associated action (operation call or signal) has been at
some time between ‘now’ and a reference point in time in the output queue of the self instance. The ‘now’ time-
point is the point in time at which this evaluation is performed. This point is represented by the environment link
of the ActionExpEval (inherited from OCLExpEvaluation).

Note that the Action metaclass from the UML specification is a model element, or, in our terminology, an
abstract syntax concept, therefore it can not be used in the definition of an ActionExpEval, which is an element of
the semantic domain. Instead we must use another element of the semantic domain, which we call ActionIn-
stance. Actually, ActionInstance should be a concept defined in the UML specification, but at the moment it is
unclear wether we can substitute the ActionExecution concept from the Action Semantics [REF], or any other
concept from the UML specification (e.g. Message, Stimulus, Signal) or Action Semantics for ActionInstance.

Associations
condition The OclExpEvaluation that represents the evaluation of the boolean condition

under which the actions are performed by the object.
target The OclExpEvaluation that represents the evaluation of the target instance or

instances on which the action is perfomed.
arguments The OclExpEvaluation that represents the evaluation of the actual parameters to

the Operation or Signal.
action The ActionInstance that is send by the object when the condition is true. The

action can be an instance of a CallAction, denoting that an Operation has been
called, or an instance of a SendAction, denoting that a Signal has been sent.

A.3.5 Constant Expression Evaluations
This section defines the different types of constant expression evaluations in OCL. It is not a complete mirror
image of the Constant Expressions in the abstract syntax, because there is no need to distinguish most of the sub-
types of ConstantExp for the semantics. It does contain a metaclass for enumeration values, because there is a
restriction that these come from the set of enumeration literals.

Figure A-7 Domain model for action avaluation
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EnumConstantExpEval
An enumeration constant expression evaluation represents the evaluation of a reference to an enumeration literal.

Associations
referredEnumLiteral The EnumLiteral to which the enum expression refers.

A.3.6 Let expressions

LetExpEval

A Let expression evaluation is an evaluation of a Let expression that defines a new variable with an initial value.
A Let expression evaluation changes the environment of the in expression evaluation.

Associations
variable The VariableDeclaration that defined the variable.
in The expression in whose environment the defined variable is visible.

Figure A-8 Domain model for constant expressions
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A.3.7 Operations with special source or argument
This section defines the evaluations for operations that have either as their source, or as their argment a ModelE-
lement that is not an OclExpression, but a concept defined in the UML metamodel, e.g. Classifier, and State.

OclOperationWithTypeSourceEval
An OclOperationWithTypeSourceEval is an evaluation of an OclOperationWithTypeSource.

Associations
source The source is the Classifier that ’performs’ this operation.

OclOperationWithTypeArgumentEval
An OclOperationWithTypeArgumentEval is an evaluation of an OclOperationWithTypeArgument.

Associations
argument The argument is the Classifier that is the argiument of this operation.

OclOperationWithStateArgumentEval
An OclOperationWithStateArgument is an evaluation of an OclOperationWithStateArgument.

Associations
argument The argument is the State that is the argument for this operation.

Figure A-10 Domain model for predefined operations that have a non OclExpressions as their source or
argument

PropertyCall
ExpEval

OCLExpEvaluation

1

+source

1

OclOperationWithStateArgumentEval

OclOperationWithTypeArgumentEval

OclOperationWithTypeSourceEval StringValue
(from standardLibrary)

1

0..n

+argument
1

0..n

10..n

+source

10..n
1

0..n

+argument
1

0..n
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A.3.8 Well-formedness Rules of the Evaluations package
The metaclasses defined in the evaluations package have the following well-formednes rules. These rules state
the the result value is defined. This defines the semantics of the OCL expressions.

Comment – The rules for building the name space environment of an ocl expression must still be
added. These are equal to the rules given in the concrete syntax for the inherited attribute ’env’.

ActionExpEval

[1] The meaning of the action expression is that the action should have been in the output queue of the self
instance at some time between ‘now’ and a reference point in time. ‘Now’ is represented by the environment
of the expression, the reference point in time is represented by the before environment. The Lets in the invari-
ant below are convenient to indicate the list of all snapshots between the ‘now’ and the reference time point.

context ActionExpEval inv:
Let start: LocalSnapshot = beforeEnvironment.getValueOf( ’self’ )->history->last() in
Let end: LocalSnapshot = environment.getValueOf( ’self’ )->history->last()  in
Let inBetween: Sequence( LocalSnapshot ) = 

start.allSuccessors->excluding( end.allSuccessors)->including( start ) in
resultValue = condition implies 

inBetween->collect(outputQueue)->exists( q | q.includes( action ) )

AssociationClassCallExpEval

[1] The result value of an association class call expression is the value bound to the name of the association class
to which it refers.

context AssociationClassCallExpEval inv: 
resultValue = 

source.resultValue.getCurrentValueOf(referredAssociationClass.name)

AssociationEndCallExpEval

[1] The result value of an attribute call expression is the value bound to the name of the attribute to which it
refers.

context  AssociationEndCallExpEval inv: 
resultValue =

source.resultValue.getCurrentValueOf(referredAssociationEnd.name)

AttributeCallExpEval

[1] The result value of an attribute call expression is the value bound to the name of the attribute to which it
refers.

context AttributeCallExpEval inv: 
resultValue = source.resultValue.getCurrentValueOf(referredAttribute.name)

ConstantExpEval

[1] The result value of a constant expression is its symbol.

context ConstantExpEval inv:
resultvalue = symbol

EnumConstantExpEval
No extra well-formedness rule (follows its parent ConstantExpEval).
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IfExpEval

[1] The result value of an if expression is the result of the thenExpression if the condition is true, else it is the
result of the elseExpression.

context IfExpEval inv:
resultValue = if condition then thenExpression.resultValue else elseExpression.resultValue

IterateExpEval

[1] The result value of an IterateExpEval is the result of the last of its body evaluations.

rule equal to that of its parent IteratorExpEval

[2] All sub evaluations have a different environment. The environment is the same environment as the one from
its parent, plus the result variable which is bound to the result value of the last sub evaluation.

context IterateExpEval
inv: bodyEvals[1].environment = self.environment

->add( NameValueBinding( result.varName, null ))
inv: Sequence{2..source->size()}->forAll( i: Integer |

bodyEvals[i].environment = self.environment
->replace( NameValueBinding( result.varName, bodyEvals[i-1].resultValue )))

IteratorExpEval

[1] The result value of an IteratorExpEval is the result of the last of its body evaluations.

context IteratorExpEval inv:
resultValue = bodyEvals->last().resultValue

[2] There is an OCLExpEvaluation (a sub evaluation) for every element of the source collection.

context IteratorExpEval
inv: bodyEvals->size() = source.value->size()

[3] All sub evaluations have a different environment. The environment is the same environment as the one from
its parent, plus the iterator variable which is bound to the value of the next element in the source collection.

context IteratorExpEval
inv: bodyEvals[1].environment = self.environment

->add( NameValueBinding( iterator.varName, source->asSequence()->at[1] ))
inv: Sequence{2..source->size()}->forAll( i: Integer |

bodyEvals[i].environment = self.environment
->including( NameValueBinding( iterator.varName, source->asSequence()->at[i] )))

LetExpEval

[1] A let expression results in the value of its in expression.

context LetExpEval inv:
resultValue = in.resultValue

[2] A let expression evaluation adds a name value binding that binds the variable to the value of its initExpres-
sion, to the environment of its in expression.

context LetExpEval
inv: in.environment = self.environment

->add( NameValueBinding( variable.varName, variable.initExpression.resultValue ))

ModelPropertyCallExpEval
No additional well-formedness rules. Result value is determined by its subtypes.
OCL 2.0 INITIAL SUBMISSION VERSION    1.0 ,AUGUST 20, 2001                                                                       A-16



NameSpace

[1] All names in a name space must be unique.

context NameSpace inv:
bindings->collect(name)->forAll( name: String | bindings->collect(name)->isUnique(name))

[2] The operation getValueOf results in the value that binds to the name parameter in the bindings of a name
space. Note that the value may be the UndefinedValue.

context NameSpace::getValueOf(n: String): Value
pre: -- none
post: result = bindings->one(name = n).value

[3] The operation replace replaces the value of a name, by the value given in the nvb parameter.

context NameSpace::replace(nvb: NameValueBinding): NameSpace
pre: -- none
post: result.bindings = self.bindings

->excluding( self.bindings->any( name = nvb.name) )->including( nvb )

[4] The operation add adds the name and value indicated by the NameValueBinding given by the nvb parameter.

context NameSpace::add(nvb: NameValueBinding): NameSpace
pre: -- none
post: result.bindings = self.bindings->including( nvb )

NavigationCallExpEval
No additional well-formedness rules. Result value is determined by its subtypes.

OclExpressionEval

[1] The result value of an ocl expression is determine by its subtypes.

[2] Every OCLExpEvaluation has an environment in which at most one self instance is known.

context OCLExpEvaluation
inv: environment->select( name = ’self’ )->size() = 1

OclOperationWithStateArgumentEval

[1] The result value of ...

context OclOperationWithStateArgumentEval inv:
resultValue =

To be done.

OclOperationWithTypeArgumentEval

[1]

context OclOperationWithTypeArgumentEval inv:
resultValue =

To be done

OclOperationWithTypeSourceEval

[1]

context OclOperationWithTypeSourceEval inv:
resultValue = 

To be done
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OperationCallExpEval
The definition of the semantics of the operation call expression depends on the definition of operation call execu-
tion in the UML semantics. This is part of the UML infrastructure specification, and will not be defined here. For
the semantics of the OperationCallExp it suffices to know that the execution of an operation call will add a name
value binding to its environment that binds a value to the name ’result’.

[1] The result of an operation call expression is equal to the result of the execution of the called operation.

context OperationCallEval inv:
resultValue = environment.getValueOf( ’result’ )

PropertyCallExpEval
No additional well-formedness rules. Result value is determined by its subtypes.

VariableExpEval

[1] The result of a VariableExpEval is the value bound to the name of the variable to which it refers.

context VariableExp inv: 
resultValue = environment.getValueOf(referredVariable.varName)

A.4  THE SEMANTICS PACKAGE

The figures A-11 and A-12 show the associations between the abstract syntax concepts and the domain con-
cepts defined in this appendix. Each domain concept has a counterpart called model in the abstract syntax. Each
model has one or more instances in the semantic domain. Note that in particular every OCL expression can have
more than one evaluation. Still every evaluation has only one value. For example, the "asSequence" applied to a
Set may have n! evaluations, which each give a different permutation of the elements in the set, but each evalua-
tion has exactly one value.

Comment – The figures are not yet complete, but they show the ’general rule’ for associating
abstract syntax and semantic domain.
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Figure A-11 Associations between evaluations and abstract syntax concepts
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A.4.1 Well-formedness rules for the Semantics.type-value Package

CollectionValue

[1] All elements in a collection value must have a type that conforms to the elementType of its corresponding
CollectionType.

context CollectionValue inv:
elements->forAll( e: Element | e.value.model.conformsTo( model.elementType ) )

Figure A-12 Associations between values and the types defined in the abstract syntax.
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DomainElement
No additional well-formedness rule.

Element
No additional well-formedness rule.

EnumarationValue
No additional well-formedness rule.

ObjectValue
No additional well-formedness rule.

PrimitiveValue
No additional well-formedness rule.

SequenceTypeValue
No additional well-formedness rule.

SetTypeValue
No additional well-formedness rule.

StaticValue
No additional well-formedness rule.

TupleValue

[1] The elements in a tuple value must have a type that conforms to the type of the corresponding TupleParts.

context TupleValue inv:
elements->forAll( elem | 

Let correspondingPart: tuplePart = 
self.model.part->select( part | part.name = elem.name ) in

elem.value.model.conformsTo( correspondingPart.type ) )

UndefinedValue
No additional well-formedness rule.

Value

[1] The additional operation isInstanceOf return true if this value is an instance of the parameter classifier.

context Value::isInstanceOf( c: Classifier ): Boolean
pre: -- none
post: result = self.model.conformsTo( c )

[2] The symbol, which is the result value, of an enumeration constant evaluation must be one of the literals of
the enumeration type.

context EnumConstantExpEval
inv: model.type->contains( symbol )
OCL 2.0 INITIAL SUBMISSION VERSION    1.0 ,AUGUST 20, 2001                                                                       A-21



A.4.2 Well-formedness rules for the Semantics.exp-eval Package

ActionExpEval

[1] The action instance of this evaluation must correspond with the Action in the action expression.
To be done.

AssociationClassCallExpEval

[1] The string that represents the referredAssociationClass in the evaluation must be equal to the name of the
referredAssociationClass in the corresponding expression.

context AssociationClassCallExpEval inv:
referredAssociationClass = model.referredAssociationClass.name

AssociationEndCallExpEval

[1] The string that represents the referredAssociationEnd in the evaluation must be equal to the name of the
referredAssociationEnd in the corresponding expression.

context AssociationEndCallExpEval inv:
referredAssociationEnd = model.referredAssociationEnd.name

AttributeCallExpEval

[1] The string that represents the referredAttribute in the evaluation must be equal to the name of the referredAt-
tribute in the corresponding expression.

context AttributeCallExpEval inv:
referredAttribute = model.referredAttribute.name

ConstantExpEval
No additional well-formedness rule.

EnumConstantExpEval

[1] The result value of an EnumConstantExpEval must be equal to one of the literals defined in its type.

context EnumConstantExpEval inv:
model.literals->contains( self.resultValue )

IfExpEval

[1] The condition evaluation corresponds with the condition of the expression, and likewise for the thenExpres-
sion and the else Expression.

context IfExpEval inv:
condition.model = model.condition
thenExpression.model = model.thenExpression
elseExpression.model = model.elseExpression

IterateExpEval

[1] To be done

IteratorExpEval

[1] All sub evaluations have the same model, which is the body of the associated IteratorExp.
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context IteratorExpEval
inv: bodyEvals->forAll( model = self.model )

LetExpEval

[1] To be done

ModelPropertyCallExpEval

[1] To be done

NameSpace

[1] To be done

NavigationCallExpEval

[1] To be done

OclExpressionEval

[1] The result value of the evaluation of an ocl expression must be an instance of the type of that expression.

context OclExpEvaluation
inv: resultValue.isInstanceOf( model.type )

OclOperationWithStateArgumentEval

[1] To be done

OclOperationWithTypeArgumentEval

[1] To be done

OclOperationWithTypeSourceEval

[1] To be done

OperationCallExpEval

[1] To be done

PropertyCallExpEval

[1] To be done

VariableExpEval

[1] To be done
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1 B
Interchange Format

B.1  THIS APPENDIX IS INTENTIALLY LEFT BLANK.
This section contains the interchnage format for OCL. This XMI DTD should be generetaed from the metamodel.

Comment – This needs to be done when the final submission is finished.

Comment – Note that even the concrete syntax could be used as a simple interchange format,
because it only consists of standard text strings. However. accepting tools would need to (re)parse
the concrete syntax. The benefit will be that tools that do not support OCL (it is a optional compli-
ance point within UML) can still create and interchange OCL as text.
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