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Abstract

The π-calculus is one of the most important mobile process calculi and has been well studied in the
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transition graph. A new version π-µ-Logic is introduced as an appropriate temporal logic for the π-
calculus. Since we make a distinction between proposition and predicate, the possible interactions
between recursion and first-order quantification can be solved. A concise semantics interpretation
for our modal logic is given. Based on the above work, we provide a model checking algorithm for the
logic, which follows the well-known Winskel’s tag set method to deal with fixpoint operator. As for
the problem of name instantiating, our algorithm follows the ’on-the-fly’ style, and systematically
employs schematic names. The correctness of the algorithm is shown.
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1 Introduction

Over the last decades, various calculi of mobile processes, notably the π-
calculus [13], have been the focus of research in concurrency theory. Because of
the deficiency of using algebra method to model and describe related properties
of systems, e.g. mobility, safety, a lot of research has focused on modal logic
of calculus. Modal logic (temporal logic especially) is thought as a good
compromise between description convenience and abstraction. In addition,
many modal logics support useful computational applications, such as model-
checking. As a powerful language to describe mobile and dynamic process
networks, the problem of verifying general temporal and functional properties,
cast in terms of the π-calculus, has been investigated in-depth. Some modal
logic systems for π-calculus have been provided in the literatures. The original
work, as far as we know, belongs to Milner et al. In [14], they provided a
cluster of extensions for Hennessy-Milner Logic [8], and proved that two of
them characterize the two bisimulation equivalences, that is, the strong late
and early bisimulation. However, their extension is rather simple. This may be
owned to their motivation to characterize bisimulaiton relation. In [1][4] and
more recently [6], Amadio and Dam introduced recursion into the modal logic
via fixpoints, as in the propositional µ-calculus, thus has the ability to express
properties for processes with infinite behaviors. These logic systems may be
referred as π-µ-calculus. The main concern of these two papers is to formulate
proof systems for deriving statements asserting whether a process satisfies a
formula. What’s more, from our point of view, although the composition
proof systems in the two papers are subtle, they are a little tedious, especially
the completeness proof. We think it is rooted in the lacking of adequate
’symbolic’ information. The start point is to remedy this deficiency in some
sense. It is well-known that symbolic technique has been widely used for name-
passing calculi, especially providing the complete proof system for bisimulation
equivalence and devising efficient bisimulation checking algorithm, e.g. [10][9].
In this paper, we borrow the ideas from this technique and adapt it to devising
model checking algorithms.

We present our main idea in brief. In this paper, first, we use symbolic
transition graph to model concurrent systems. A wide class of processes, that
is, the finite-control processes can be represented as a finite symbolic transition
graph. And the transition from process terms to symbolic transition graph
is direct and rather simple. Second, we introduce a new version π-µ-Logic,
an extension of the modal µ-calculus with boolean expressions over names,
and primitives for name input and output as an appropriate temporal logic
for the π-calculus. Note that in our π-µ-logic, the ’bound output’ modality is
worth paying attention to. The fresh name quantification due to Pitts which is
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used in spatial logic [2] is subsumed implicitly, thus we must face the problem
of possible interactions between recursion and first-order quantification. To
solve this problem, we make a distinction between proposition and predicate
in the syntax of logic system, thus a concise semantics interpretation for our
modal logic can be given while the notion of ’property sets’ is not needed.
We defer more details to Section 4. The main contribution of our work lies
in the model checking algorithm for the logic introduced in this paper. We
follow the well-known Winskel’s tag set method to deal with fixpoint operator
since we prefer the local algorithm. As for the problem of name instantiating,
our algorithm follows the ’on-the-fly’ style, and systematically employs the so
called schematic names, that is, the fresh name set of current node and logical
formula with one new name. The correctness of the algorithm is shown.

The rest of the paper is organized as follows: some background material for
π-calculus, especially the symbolic transition graph is reviewed in the following
section. In Section 3, the π-µ-logic is introduced and the semantics is given,
some useful properties are also discussed in this section. The model checking
algorithm is presented and its correctness is shown in Section 4. The paper is
concluded with Section 5 where related work is also discussed. Note that in
this extended abstract, due to space restriction, most of the detailed proofs
are omitted. We refer the interested readers to the full version of the paper.

2 π-calculus and Symbolic Transition Graph

In this section, we review some background knowledge on π-calculus and in-
troduce the notion of symbolic transition graph.

Boolean Expressions and Substitution

The basic entities of the π-calculus are names, i.e. identifiers for commu-
nication channels. Let N , ranged over by a, b, m, n . . . be a countably infinite
set of names. Vectors of names will be denoted by ã, b̃, m̃, ñ . . . .

Boolean Expressions, ranged over by φ, ψ, are defined by BNF as follows:

φ ::= true | x = y | ¬φ | φ ∧ φ

We will write BExp for the set of boolean expressions and we use false,
x �= y and φ ∨ ψ to denote ¬true, ¬(x = y) and ¬(¬φ ∧ ¬ψ).

The evaluation of a boolean formula Ev is a function Ev : BExp →

T. Chen et al. / Electronic Notes in Theoretical Computer Science 123 (2005) 19–33 21



{true, false}, and is defined as follows:

Ev(x = x) = true Ev(x = y) = false if x �≡ y

Ev(¬φ) = ¬Ev(φ) Ev(φ ∧ ψ) = Ev(φ) ∧ Ev(ψ)

Substitutions, ranged over by σ, δ, etc, are partial mappings from N to N .
If σ = [ỹ/x̃], where the length of x̃ equals to that of ỹ, then dom(σ) = {x̃},
cod(σ) = {ỹ} and n(σ) = {x̃} ∪ {ỹ}. If fn(φ) ⊆ V , we say φ is a boolean
expression on V . Note that σ maps x onto y for x ∈ dom(σ) and x onto itself
for x /∈ dom(σ). In the sequel, we will use ∅ to denote empty substitution, σδ
to denote the composition of σ and δ. The substitution σ[x 
→ z] is the same
as σ except that it maps x to z instead of xσ. The restriction of σ on V ⊆ N ,
written σ�V is defined as if x ∈ V then return xσ else return x itself.

For each name x, the function νx is defined in a stardand way in literature.
We refer the reader to [10] for details.

A substitution σ satisfies φ, written σ |= φ, if Ev(φσ) = true. We write
φ ⇒ ψ to mean that σ |= φ implies σ |= ψ for any substitution σ, and φ = ψ
to mean φ ⇒ ψ and ψ ⇒ φ. φ is consistent if there are no x, y ∈ N s.t.
φ ⇒ [x = y] and φ ⇒ [x �= y] at the same time. Otherwise it is inconsistent.
It is easy to see that φ is consistent iff there exists a substitution σ, s.t. σ |= φ.
φ is valid, if Ev(φ) = true. Note for a valid boolean expression φ, we have
σ |= φ for any substitution σ, thus it can be denoted by true.

Substitutions that just interchange a pair of names, which is called trans-
positions and ranged by θ, will play a special role in the following techni-
cal developments. More precisely, the transposition of n and m, written as
{m ↔ n}, denotes the substitution σ : {m, n} → {n, m}. It turns out that
transposition is a useful tool in proving properties concerning fresh names.

Symbolic Transition Graph

Since π-calculus and related notions is well-known, we will omit the de-
tailed presentation on its syntax in order to save space. Readers who are
not familiar with it can refer to some standard literature, e.g. [13]. We only
point out that in this paper, we disallow the parallel composition operator |
to appear in the bodies of recursive definitions, and call this restricted lan-
guage ’finite-control’ π-calculus [5]. By confining the process expression to
finite control processes, which is the syntactic counterpart of CCS finite state
processes, the symbolic transition graph in the below is finite thus we obtain
a decidable model checking problem.

Now, we introduce the notion of Symbolic Transition Graph (STG for
short) as a new model for π-calculus process terms. In the sequel, let SAct =
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{τ} ∪ {a(b), āb, ā(b) | a, b ∈ N} denote the set of symbolic actions. For a set
of names V ⊂fin N , function new(V ) returns the least name in N\V .

Definition 2.1 (Symbolic Transition Graph) A symbolic transition graph
(STG for short) is a rooted directed graph where each node n has an associated
finite set of free names fn(n) and each edge is labelled by a tuple (φ, α) where
φ is the boolean expression φ ∈ BExp and α ∈ SAct is a symbolic action. A
STG is well-formed if where (φ, α) is the label of an edge from n to m, written

n
φ,α
→ m, then fn(φ) ⊆ fn(m) and fn(n) ⊆ fn(m) ∪ bn(α).

We write m
true,α
→ n as m

α
→ n for simplicity. Given a process t in π-
calculus, the corresponding STG can be generated by some systematic rules.
Due to space restriction, we omit the details.

It is worth pointing out that for finite-control process t, by which the
symbolic transition graph is generated is finite. Instead of giving the operation
semantics for π-calculus terms, we give the concrete operational semantics for
the STGs. First, we introduce some notations. Given a STG, a state nσ is a
pair consisting of a node n together with a substitution σ associated with it.
The set of free names fn(nσ) is defined as fn(n)σ and it is understood that
σ is restricted to fn(n).

The late (concrete) operational semantics is defined as the least relation
over states generated by the rules as follows:

m
φ,τ
→ n

mσ
τ→ nσ

σ |= φ
m

φ,āb
→ n

mσ
āσbσ→ nσ

σ |= φ

m
φ,a(b)
→ n

mσ
aσ(c)→ nσ[b�→c]

σ |= φ∧c /∈ fn(mσ)
m

φ,ā(b)
→ n

mσ
āσ(c)→ nσ[b�→c]

σ |= φ∧c /∈ fn(mσ)

An important property of label transition is the so called monotonicity
property. It is well known when mismatch is included in the calculus, the com-
mon presentation of this property (using substitution) does not hold. However,
when transposition is used, we have:

Lemma 2.2 Given STG G, s, s′ are nodes of G, θ is a transposition, the
following properties hold:

(i) If s
α→ s′, then sθ

αθ→ s′θ.

(ii) If sθ
α→ s′, then there exists α′, s′′, such that s

α′→ s′′, α′θ ≡ α and s′′θ ≡ s.

Proof. By structure induction on transition. �
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3 π-µ-Logic

Syntax

We assume a countably infinite set V of name variables ranged over by
x, y, z . . . , such that V ∩N = ∅. And we assume a countably infinite set X of
predicate variables, ranged over by X, Y, Z, . . . . Each predicate variable has
been assigned an arity n ∈ ω, written X : n. The syntax of the formula is
defined by BNF as follows:

α ::= τ | u?(x) | u?v | u!v | u!(x)

φ ::= true | u = v

A, B ::= φ | Λ(ũ) | ¬A | A ∧ B | ∀x.A | 〈α〉A
Λ ::= X | (x̃)A | νX.Λ

where, u, v ∈ N ∪ V. The syntax is divided into two categories: propositions
and predicates. Semantically, propositions denote sets of nodes in a STG (i.e.
process terms), while predicates denote functions from sets of names to sets of
nodes. For propositions, the operators are rather standard since it is adapted
from well-known Hennessy-Milner Logic [8]. A predicate is either a predicate
variable X, or an abstraction (x̃)A, or a greatest fixpoint νX.Λ. When forming
an abstraction (x̃)A, as our notation indicates, it is required that x̃ be a vector
of distinct name variables. Then the arity of a predicate Λ is defined as: the
arity of X if Λ has the form X or νX.Λ, or the length of x̃ if Λ has the form
(x̃)A. In abstractions and applications we always require arities to be matched
properly. In formulas of the form ∀x.A, 〈u?(x)〉.A, 〈u!(x)〉.A, (x̃)A and νX.Λ,
the distinguished occurrences of x and X are binding, with the scope of the
propositions A or predicate Λ. These introduce the notions of bound and free
name variables as well as bound and free predicate variables in the usual way.
The set of free names , free name variables and free predicate variables of a
formula A are denoted by fn(A), fnv(A) and fpv(A) respectively. Formulas
that do not have free name variables are name-closed. Formulas that do not
have free predicate variables are predicate-closed. A formula is closed if it
is both name-closed and predicate-closed.

We defined on formulas the relation ≡α of α-congruence in the standard
way, that is, as the least congruence identifying formulas modulo renaming
of bound (name and predicate) variables. We will consider formulas always
modulo α-congruence. Note that for formula, the notion of name substitution
is extended to function from N ∪V to N , i.e. we allow the name variables to
be replaced by names. Note that for convenience, we identify β-equivalence
formulas, that is, ((x̃)A)(ũ) and A[ũ/x̃].

The unary operator ¬ is negative. An occurrence of a predicate variable
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is positive if it is under an even number of negative operators. X occurs pos-
itively in a formula A if every occurrence of X in A is positive. Otherwise
we say X occurs negatively in A. A fixpoint predicate νX.Λ is well-formed
if fn(Λ) = fnv(Λ) = ∅ and X occurs positively in Λ. Note that we require
that predicate Λ has no free name, thus n(Λ(ũ)) and fv(Λ(ũ)) are totally
determined by the actual parameter ũ, which is very important to the sound-
ness of semantics. A formula is well-formed if every fixpoint subformula in
it is well-formed. In the sequel, we only consider well-formed formulas. Note
that as usual, in our π-µ-logic system, we can define some standard derived
connectives. In this paper, we choose an economical way to present our logical
system.

Semantics

Given STG G, by the concrete operational semantics rules, we can get a
concrete graph denoted by G. The semantics of formula is defined by assigning
to each formula A a node set of G, i.e. �A�, namely all the nodes of G that
satisfy the property denoted by A. For convenience, we denote nσ by s and for
any s ≡ nσ, s[c/b] ≡ nσ[b�→c]. Since formulas may contain free name variables
and free predicate variables, to interpret them we need name valuations and
predicate valuations. A name valuation ρ is an extended version of substi-
tution, which is a total mapping from N ∪ V → N with identity on N . A
predicate valuation ξ assigns to every predicate variable X of arity k a function
ξ(X) : N k → ℘(G). As usual, the relation ⊆ can be extended point-wise to
functional space as follows: for each k, two functions f (k), g(k) : N k → ℘(G),
define f (k) � g(k) iff f(ñ) ⊆ g(ñ) for any ñ ∈ N k. Thus, the functional space
N k → ℘(G) forms a complete lattice w.r.t. �. The denotation of formulas is
defined inductively in Fig.1.

If A is name-closed then �A�ρ;ξ does not depend on ρ and will be written
�A�ξ. Furthermore, if A is name-closed and predicate-closed, then �A�ρ;ξ de-
pends on neither ρ nor ξ and it will be written as �A�. We will write s |= A
to denote s ∈ �A�.

As in the case of first-order logic, the following lemma which relates sub-
stitutions with valuations is common, and will be used implicitly.

Lemma 3.1 The following properties hold:

(i) �A[b/x]�ρ;ξ=�A�ρ[x �→b];ξ.

(ii) �Λ[F/X]�ρ;ξ = �Λ�ρ;ξ[X �→ξ(F )].

Proof. By mutual induction on the structure of A and Λ. �

It is routine to show that for any formula A and B with A ≡α B, �A�ρ,ξ =
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�φ�ρ;ξ =

⎧⎨
⎩

G If ρ |= φ

∅ o.w.

�A ∧ B�ρ;ξ = �A�ρ;ξ ∩ �B�ρ;ξ

�¬A�ρ;ξ =G\�A�ρ;ξ

�〈τ〉A�ρ;ξ = {s | ∃s′, s.t. s
τ→ s′ ∧ s′ ∈ �A�ρ;ξ}

�〈u!v〉A�ρ;ξ = {s | ∃s′, s.t. s
ūρvρ→ s′ ∧ s′ ∈ �A�ρ;ξ}

�〈u?(x)〉A�ρ;ξ = {s | ∃s′, s.t. s
uρ(b)→ s′ ∧ s′[c/b] ∈ �A�ρ[x �→c];ξ

for all c ∈ N}
�〈u!(x)〉A�ρ;ξ = {s | ∃s′, s.t. s

ūρ(b)→ s′ ∧ s′[c/b] ∈ �A�ρ[x �→c];ξ

for some c /∈ fn(s) ∪ fn(A)}
�〈u?v〉A�ρ;ξ = {s | ∃s′, s.t. s

uρ(b)→ s′ ∧ s′[vρ/b] ∈ �A�ρ;ξ}
�Λ(ũ)�ρ;ξ = �Λ�ρ;ξ(ρ(ũ))

�X�ρ;ξ = ξ(X)

�(x̃)A�ρ;ξ =λỹ.�A�ρ[x̃ �→ỹ];ξ

�νX.Λ�ρ;ξ =�{F : N k → ℘(G) | F � �Λ�ρ;ξ[F/X]}

Fig. 1. Interpretation of Formula

�B�ρ,ξ for any ρ and ξ, which justifies our decision to identify α-equivalent
formulas. Also, we can easily show the monotonicity of the semantics function
Λ, since it is required that X occur positive in Λ. Thus, λf.�A�ρ,ξ[X �→f ] is
a monotone functional over the complete lattice ({f : N k → ℘(G)},�). By
Knaster-Tarski Theorem, we can draw the conclusion that νX.Λ is the greatest
fixpoint of λf.�A�ρ,ξ[X �→f ]. The soundness of semantics can be obtained.

Now, we do some remarks on the choice of modality for the logical system.
Generally speaking, there are two styles of syntax for the ’Hennessy-Milner
logic’ like systems for π-calculus. One is used by [14], the other is used by [4][6].
We follow the style of the former since from our point of view, it is clearer.
However, the semantics is dramatically different. First, [14] lacks a modality
for bound output, although the syntax 〈ā(x)〉A exists in the logic system. It
is not difficult to see that the semantics for 〈ā(x)〉A does not coincide with the
intuition very much. Second, the input modality in this paper coincides with
the 〈ā(x)〉L in [14]. We don’t introduce the corresponding modality for the
other two ’input’ modality because they can be rendered in our framework as
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follows:

〈a(b)〉A def
= ∃x.〈a?x〉A 〈a(b)〉EA

def
= ∀x.〈a?x〉A

The bound output modality needs more remarks. Note that our semantics
for this modality coincides with Dam’s though the syntax is different. To
make this modality clearer, we consult to the fresh name quantification Nand
Dam’s syntax a little. In fact,

〈a!(x)〉A def
= 〈a〉 Nx.x ← A

We think reader who is familiar with Ncan easily understand this. We refer
the reader to [2][3] for details. It is worth pointing out that as we men-
tioned in Section 1, such a quantification conveys difficulties when giving an
interpretation though it is only implicit in our logic. The similar problems
have been considered in [2]. As a remedy, [2] introduces the notion of PSets
(Property sets). However, such a semantic device makes the semantics defini-
tion rather complex. Our solution is to make distinction between proposition
and predicate, thus the possible interactions between recursion and first-order
quantification can be solved. The advantage of our system lies in that the
semantics of our logic is clearer and more concise. What’s more, it is more
favorable for model checking purpose. Also, it is worth pointing out that we
need not introduce 〈a!(b)〉-like modality, since by the semantics, the choice of
concrete name as the content of output action is immaterial, therefore, we use
a variable instead of name.

Now, we set to establish some important results concerning the properties
of logical formula, which is important for the model checking algorithm. Fol-
lowing [2], we use transposition as a useful tool to give some concise proof of
properties concerning fresh names. Due to space restriction, most of detailed
proofs are omitted. We refer the reader to the full version of this paper for
more details. The following definition extends the notion of transposition to
predicate.

Definition 3.2 Let θ be a transition. A function f : N → ℘(G) is θ-
preserving if (f(n))θ = f(nθ) for any n. A valuation ξ is θ-preserving if
ξ(X) is θ-preserving for any X.

Lemma 3.3 Given a transposition θ and a function f : N → ℘(G), define
f θ : N → ℘(G) as f θ(n) = f(n) ∪ (f(nθ))θ for any n, then the following
properties hold:

(i) f θ is θ-preserving.

(ii) If f � g and g is θ-preserving, then f θ � g.
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Proof. By the definition of transposition and θ-preserving, the proof is easy.�

Lemma 3.4 Suppose ξ is θ-preserving, then the following properties hold:

(i) (�A�ρ;ξ)θ = �Aθ�ρ;ξ.

(ii) �Λ�ρ;ξ is θ-preserving.

Proof. By mutual induction on the structure of A and Λ.

�

According to the semantics of ∀x.A and 〈a?(x)〉A , to check if P ∈ �∀x.A�
requires to instantiate x with every name. However, as the following lemma
demonstrates, it is sufficient to consider only the free names of A plus one fresh
name. This finite characterization will be exploited in the model checking
algorithm.

Lemma 3.5 Suppose c /∈ fn(s, A), then the following properties hold:

(i) s ∈ �∀x.A�ρ;ξ iff s ∈ ⋂
k∈fn(A)∪{c}�A�ρ[x �→k];ξ.

(ii) s ∈ �〈u?(x)〉A�ρ;ξ iff there exists s′ s.t. s
ρ(u)(b)→ s′ and s′[k/b] ∈ �A�ρ[x �→k];ξ

for k ∈ fn(A) ∪ fn(s) ∪ {c}.
The semantics definition of the 〈a!(x)〉A is stated in ’existential’ style, i.e.

s |= 〈a!(x)〉A if there is some fresh name c and s′, such that s
a(b)→ s′ and

s′[c/b] |= A[c/x]. We give such a definition because from our point of view,
it may coincide with our intuition of bound output and restriction operator
better. However, since c is not free in either s or A, this particular choice
of c should not matter. That is, any other name d with d /∈ fn(s, A) should
equally do. Thus indeed the semantics can also be characterized ’universally’.

Lemma 3.6 s ∈ �〈a!(x)〉A�ρ;ξ iff there exists s′ s.t. s
ā(b)→ s′ and s′[c/b] ∈

�A�ρ[x �→c];ξ for every c /∈ fn(s, A).

4 Model Checking Algorithm

In this section, we devote to providing a model checking algorithm for our
π-µ-logic. Based on the results in the last section, now the most challenging
problem is to deal with the fixpoint operator. For propositional µ-calculus,
many researchers have provided a lot of methods to solve this problem. We
choose the so called local model checking algorithm since the global algorithm
requires a prior construction of state space, which is impossible in our setting.

One of the notable features of such an algorithm is the mechanism used to
keep track of unfolding fixpoint formula. There are two common, equivalent,
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approaches to this problem: one is to introduce constants in which the name
of fixpoints occurrences and to use a global rule of inference to detect pre-
vious unwinding, the other is to introduce tags into fixpoint formula, which
remembers exactly the points of the model that have been visited before. As
in [15], we adopt the latter of the methods and follow the framework due
to Winskel [16], sometimes referred as tag set method. However, differing
from [15], we lift it to the predicate case and in our algorithm, the tag sets
will contain pairs (ñ, s) of name vector and the node of STG. Formally, let
T = {(b̃1, s1), . . . , (b̃n, sn)}, where, ñi (1 ≤ i ≤ n) are vectors of the same
length, say k and for ∀i, j, i �= j, we have b̃i �= b̃j . For any tag set T , we use
λT to denote a function N k → ℘(G) defined as follows:

(λT )(b̃) =

⎧⎨
⎩

⋃
i{si} if (b̃, si) ∈ T

∅ if o.w.

Now, the fixpoint predicate νX.Λ can be generalized to νX.[T ]Λ, note that
the X must have the same arity as T and the usage of T lies in recording what
points of the model have been visited before thus is only a bookkeeping device.
The definitions of n(νX.[T ]Λ), fv(νX.[T ]Λ) and fpv(νX.[T ]Λ) are the same
as the corresponding definition for νX.Λ. Obviously, νX.Λ can be covered as
νX.[]Λ.

The denotation of νX.[T ]Λ is a simple extension for �νX.Λ�ρ;ξ as follows:

�νX.[T ]Λ�ρ;ξ = �{F : N k → ℘(G)|F � �Λ�ρ;ξ[X �→F ] � λT}

There now follows a technical lemma which is a generalization of the so
called Reduction Lemma of [16], the essence of the tag set method.

Lemma 4.1 (Reduction Lemma) Let L = N k → ℘(G) be a complete lattice
and let φ be a monotone functional. Then for any f ∈ L,

f � νg.φ(g) iff f � φ(νg.(φ(g) � f))

Proof. Straightforward generalization of the proof in [16]. �

Since X occurs positive in Λ, λf.�Λ�ρ;ξ[X �→f ]�λT is a monotonic functional
over N k → ℘(G), and �νX.[T ]Λ�ρ;ξ is its greatest fixpoint. So, using Lemma
4.1, the following lemma can be easily proved.

Lemma 4.2 If s /∈ λT (b̃), then

s ∈ �νX.[T ]Λ�ρ;ξ(b̃) iff s ∈ �Λ[νX.[T ∪ {(b̃, s)}]Λ/X]�ρ;ξ(b̃)
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check(mσ, φ)
def
= Ev(φσ);

check(mσ,¬A)
def
= ¬check(mσ, A);

check(mσ, A ∧ B)
def
= check(mσ, A) ∧ check(mσ, B);

check(mσ, ∀x.A)
def
=

∧
b∈fn(mσ ,A) check(mσ, A[b/x])∧

check(mσ, A[new(fn(mσ, A))/x]);

check(mσ, 〈τ〉A)
def
=

∨
m

φ,τ�→n
Ev(φσ) ∧ check(nσ, A);

check(mσ, 〈a?(x)〉A)
def
=

∨
m

φ,b(c)�→ n
Ev(φσ ∧ [bσ = a])

∧∧
d∈fn(mσ ,A)∪new(fn(mσ ,A)) check(nσ[c �→d]�fn(n), A[d/x]);

check(mσ, 〈a!c〉A)
def
=

∨
m

φ,b̄d�→ n
Ev(φσ∧ [a = bσ]∧ [c = dσ])∧ check(nσ, A);

check(mσ, 〈a?b〉A)
def
=

∨
m

φ,c(d)�→ n
Ev(φσ∧ [a = cσ])∧check(nσ[d�→b]�fn(n), A);

check(mσ, 〈a!(x)〉A)
def
=

∨
m

φ,b̄(c)�→ n
Ev(φσ ∧ [b = aσ])

∧check(nσ[c �→new(fn(mσ ,A))], A[new(fn(mσ, A))/x]);

check(mσ, (νX.[T ]Λ)(b̃))

=

⎧⎨
⎩

true if (b̃, mσ) ∈ T

check(mσ, (Λ[νX.[T ∪ {(b̃, mσ)}]Λ/X])(b̃)) o.w.

Fig. 2. Local Model Checking Algorithm

Now, we present our algorithm as follows. The algorithm inputs a STG
with the root n and substitution σ and a closed formula A. As usual, we
denote mσ as s. The algorithm returns true if s = mσ satisfies A, otherwise,
it returns false. The pseudo-codes of the algorithm is presented in Fig.2.
Recall that for a set of names V ⊂fin N , function new(V ) returns the least
name in N\V .

Now, we devote to proving the correctness of our algorithm. To establish
the termination property of the algorithm, we need to bound on the number of
names for model checking process, just as in [15] to bound on the free variables.
First, we should point out that according to the rule for transferring process
terms to STG, all bound names in a STG are different. And since we adopt
the α-equivalence for formula, we can assume the bound name variables in
a formula are also different. Now, we write NG for the number of names
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(including free and bound names) contained in the nodes of G and NA for
the number of names and name variables contained in A. Note that names
in tag set of the formula does not be included, since it only contributes as a
bookkeeping. The following lemma is important, by which we can conclude
that provided that each term only appears once in each tag set (just as in our
algorithm), the size of tag set is bounded since the STG we consider is finite.

Lemma 4.3 For each recursive call of check, with caller parameter (s, A) and
the callee parameter (s’,A’), Ns′ + NA′ ≤ Ns + NA

Proof. By case analysis for each recursive call, the proof is routine. �

We now use this fact to give a well-founded ordering to formula. We write
A �G A′ iff A′ is not a fixpoint formula and A is a proper sub-formula of A′,
otherwise A is the form (Λ[νX.[T ∪ {b̃, s}]Λ/X])(b̃) and A′ is (νX.[T ]Λ)(b̃)
where (b̃, s) /∈ T and T contains only nodes from G. We aim to show that the
transitive closure �+

G of this relation is a well-founded order whenever G is
finite.

Lemma 4.4 If G is finite, then �+
G is a well-founded order.

Proof. Similar to [15], Proposition 4. �

Theorem 4.5 For any STG with root r and closed formula A, the following
properties hold:

(i) check(r, A) terminates;

(ii) check(r, A) = true iff r ∈ �A�.

Proof. (Sketch)

(i) Apply well-founded induction on �G, the termination is guaranteed.

(ii) Most cases follow closely the interpretation of formula. The cases for φ, ¬A
and A∧B, 〈a?b〉A and 〈a!u〉A are trivial. The correctness of case for ∀x.A
follows from Lemma 3.5(i). The case of 〈a?(x)〉A follows Lemma 3.5(ii).
The case of 〈a!(x)〉A follows Lemma 3.6. For the fixpoint (νX.[T ]Λ)(b̃),
Lemma 4.2 applies.

The proof is completed. �

5 Conclusion

In this section, we conclude our work and discuss the related work. This
paper deals with modal logic for mobile concurrent system and related model-
checking algorithm. In this paper, we use symbolic transition graph to model
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concurrent systems. A wide class of π calculus processes, that is, the finite-
control processes can be represented as finite symbolic transition graph and
such translation is rather simple.Thus our model has strong expressing power.
A new version π-µ-Logic, an extension of the modal µ-calculus with boolean
expressions over names, and primitives for name input and output is intro-
duced as an appropriate modal logic for the π-calculus. Also our logical system
can be seen as the extension for the modal logic in [14]. We give a concise
semantics interpretation for our modal logic by making a distinction between
proposition and predicate, thus the possible interactions between recursion
and first-order quantification can be solved. Based on the above work, a local
model checking algorithm for the logic is presented in this paper. We follow
the well-known Winskel’s tag set method to deal with fixpoint operator. As
for the problem of name instantiating, our algorithm follows the ’on-the-fly’
style, and systematically employs schematic names. The correctness of the
algorithm is shown.

There is a sea of publications on model checking, but only a few address
name-passing processes. The most related work on this paper may be [4][6], we
have discussed his work in Introduction. There are also some work on value-
passing process, e.g. [15] extends modal logic in [7] with fixpoints. The main
concern of these papers is to formulate proof systems for deriving statements
asserting whether a process satisfies a formula. Algorithm for model checking
processes against such modal logics, was not payed much attention to. On the
other direction, [11] deals with model checking value-passing CCS processes,
by which some ideas of this paper is inspired. However, comparing the work
on value-passing process, the modality of bound output conveys difficulties to
both the semantics interpretation and model-checking algorithm, which is one
of the main challenges on our work. We also should mention [2][3], the fresh
name quantification concerning the bound output modality is studied there.
We have compared our work with theirs in details in Section 3. We think
our method, at least, is more favorable for model checking purpose. However,
some useful tools, such as transposition, come from [2].

There are several directions for further research. How to improve efficiency
of our algorithm, is an interesting problem. Also, we are investigating how to
generate information diagnosis messages which will be useful in debugging a
system when the answer returned by the algorithm is ’no’. Maybe we should
apply symbolic technique in more depth.
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