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Roman Belavkin

Middlesex University

Question 1

The following is the Black-Scholes equation describing how the value V (S, t)
of an option depends on the underlying stock price S and time ¢, when stock
is paying continuous dividend at rate p:
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Which part of this equation is usually denoted by the Greek letter A? What
does it represent? How is it used for A-hedging? If V is a call option, what
is the value of A, if S is significantly below the strike price?

Answer: A is the first partial derivative OV /0S. It represents the change
of the option’s value relative to changes in the underlying stock. A-hedging
is used to replicate the changes in the value of option by buying (possibly
negative) amount A of stock. When a call is far out of the money, the value
function V' is almost constant (close to zero), and so A is close to zero.

Question 2

Consider the Black-Scholes equation in the previous question. Which part
of this equation is usually denoted by the Greek letter I'? What does it
represent? How is it used for I'-hedging? What is the value of I, if S is far
away from the strike price?

Answer: T is the second partial derivative 0>V /0S?. It represents the cur-
vature (convexity for long and concavity for short positions) of the option’s
value relative to changes in the underlying stock. When I is large, and there
is a significant change of S, then the first derivative 0V /0SS does not predict
well the optimal amount of stock to buy or sell used for A-hedging, which is
known as I'-risk. Thus, I'-hedging is used to minimise I'-risk by replicate the
curvature by buying (possibly negative) amount of another option. When
stock S is far from the strike price, the value function V has almost zero
curvature, and so I' is close to zero.
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Question 3

The following equations are the Black-Scholes prices of call and put options
with stock S paying dividends at constant continuous rate p:

C(S,t) = e PTHDIN(dy) — e "TDKN(dy)
P(S,t) = e TTNKN(—dy) — e PTDSN(—dy)

where

dlzln(S/K)—I_(;\;gQ/m(T_t), dy = dy — oVT—I

Differentiate over S to derive the equations for A and I". Hint: use the
fact that the CDF of the standard normal distribution (u = 0, 0% = 1) is

N(z) = \/%7 I e=**/2ds, and its derivative is dN (x)/dx = \/1276*"”2/2

Answer: For As we have:
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5 C(8.8) = PTDN(dy) e AT0S SN () — e T SN (d)
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aSP(S,t) e N(—dy) +e S@SN(dl) e KaSN(dg)
We shall now prove that
e’p(T’t)SiN(dl) - e’T(T’t)KiN(dg) =0 (1)
oS 0S
Consider the derivatives:
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where we used the fact that 0d;(S)/0S = 0d2(S)/0S = #\/ﬂ’ because
dy = dy — o/ T —t. The first equation gives

059 N(dy) = oy €M @)
g5V () = oI T 1)

Using do = di — ov/T — t and the definition of di obtain:
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This allows us to rewrite e=%/2 as follows
o= d3/2 _ r(T—t) j—p(T—1) S —d2/2

Therefore

0 e—d1/2
_T(T_t)KiN do) = —p(T—t) 3
‘ N (d2) = o 2n(T — 1) )

One can see the equality of the right-hand-sides of equations (2) and (3),
which proves our assertion (1). The final expressions for As are

%C(S, t) = e PTON(dy)
%P(S, t) = —e PTIN(=dy)
For I's we have:

0* 0 e i/
—_C(S,t) = —2(T=t) Z_N(dy) = e P(T—1)
052 (5.9 ¢ a8 () =e Sov/2m(T —t)
0 0 e~ i/
—P(S,t) = —ePT D __N(—d))=e T~
05?2 (5.9 ‘ a8 (Fdi)=e Sov/2m(T —t)

Note that I's are the same for calls and puts.

Question 4

Check that the Black-Scholes prices for call and put satisfy the call-put
parity: C — P = e P(T-§ — ¢=7(T=OK Hint: use the fact that N(z) =
1 — N(—=) for the CDF of normal distribution.

Answer: Subtract C — P and use N(z)+ N(—z) = N(z)+1—N(z) = 1:

C—-P
= e PTNIS[IN(dy) + N(—dy)] — e "TOK[N(dy) + N(—ds)]
PTG _ o=r(T=1) f¢



