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Question 1

The following is the Black-Scholes equation describing how the value V (S, t)
of an option depends on the underlying stock price S and time t, when stock
is paying continuous dividend at rate ρ:
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Which part of this equation is usually denoted by the Greek letter ∆? What
does it represent? How is it used for ∆-hedging? If V is a call option, what
is the value of ∆, if S is significantly below the strike price?

Answer: ∆ is the first partial derivative ∂V/∂S. It represents the change
of the option’s value relative to changes in the underlying stock. ∆-hedging
is used to replicate the changes in the value of option by buying (possibly
negative) amount ∆ of stock. When a call is far out of the money, the value
function V is almost constant (close to zero), and so ∆ is close to zero.

Question 2

Consider the Black-Scholes equation in the previous question. Which part
of this equation is usually denoted by the Greek letter Γ? What does it
represent? How is it used for Γ-hedging? What is the value of Γ, if S is far
away from the strike price?

Answer: Γ is the second partial derivative ∂2V/∂S2. It represents the cur-
vature (convexity for long and concavity for short positions) of the option’s
value relative to changes in the underlying stock. When Γ is large, and there
is a significant change of S, then the first derivative ∂V/∂S does not predict
well the optimal amount of stock to buy or sell used for ∆-hedging, which is
known as Γ-risk. Thus, Γ-hedging is used to minimise Γ-risk by replicate the
curvature by buying (possibly negative) amount of another option. When
stock S is far from the strike price, the value function V has almost zero
curvature, and so Γ is close to zero.
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Question 3

The following equations are the Black-Scholes prices of call and put options
with stock S paying dividends at constant continuous rate ρ:

C(S, t) = e−ρ(T−t)SN(d1)− e−r(T−t)KN(d2)

P (S, t) = e−r(T−t)KN(−d2)− e−ρ(T−t)SN(−d1)

where

d1 =
ln(S/K) + (r − ρ+ σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

Differentiate over S to derive the equations for ∆ and Γ. Hint: use the
fact that the CDF of the standard normal distribution (µ = 0, σ2 = 1) is
N(x) = 1√

2π

∫ x
−∞ e

−s2/2 ds, and its derivative is dN(x)/dx = 1√
2π
e−x

2/2

Answer: For ∆s we have:

∂

∂S
C(S, t) = e−ρ(T−t)N(d1) + e−ρ(T−t)S

∂

∂S
N(d1)− e−r(T−t)K

∂

∂S
N(d2)

∂

∂S
P (S, t) = −e−ρ(T−t)N(−d1) + e−ρ(T−t)S

∂
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N(d1)− e−r(T−t)K

∂
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N(d2)

We shall now prove that

e−ρ(T−t)S
∂

∂S
N(d1)− e−r(T−t)K

∂

∂S
N(d2) = 0 (1)

Consider the derivatives:
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where we used the fact that ∂d1(S)/∂S = ∂d2(S)/∂S = 1
Sσ
√
T−t , because

d2 = d1 − σ
√
T − t. The first equation gives

e−ρ(T−t)S
∂

∂S
N(d1) = e−ρ(T−t)

e−d
2
1/2

σ
√

2π(T − t)
(2)

Using d2 = d1 − σ
√
T − t and the definition of d1 obtain:

−1

2
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2
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√
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σ2(T − t)

= −1

2
d21 + ln

S

K
+ (r − ρ)(T − t)
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This allows us to rewrite e−d
2
2/2 as follows

e−d
2
2/2 = er(T−t)e−ρ(T−t)

S

K
e−d

2
1/2

Therefore

e−r(T−t)K
∂

∂S
N(d2) = e−ρ(T−t)

e−d
2
1/2

σ
√

2π(T − t)
(3)

One can see the equality of the right-hand-sides of equations (2) and (3),
which proves our assertion (1). The final expressions for ∆s are

∂

∂S
C(S, t) = e−ρ(T−t)N(d1)

∂

∂S
P (S, t) = −e−ρ(T−t)N(−d1)

For Γs we have:

∂2

∂S2
C(S, t) = e−ρ(T−t)

∂
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N(d1) = e−ρ(T−t)
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P (S, t) = −e−ρ(T−t) ∂

∂S
N(−d1) = e−ρ(T−t)

e−d
2
1/2
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√
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Note that Γs are the same for calls and puts.

Question 4

Check that the Black-Scholes prices for call and put satisfy the call-put
parity: C − P = e−ρ(T−t)S − e−r(T−t)K . Hint: use the fact that N(x) =
1−N(−x) for the CDF of normal distribution.

Answer: Subtract C −P and use N(x) +N(−x) = N(x) + 1−N(x) = 1:

C − P
= e−ρ(T−t)S[N(d1) +N(−d1)]− e−r(T−t)K[N(d2) +N(−d2)]
= e−ρ(T−t)S − e−r(T−t)K


