Problems 8: The Black-Scholes theory

Roman Belavkin

Middlesex University

Question 1

The following is the Black-Scholes equation describing how the value V(S, t) of an option depends on the underlying stock price S and time t, when stock is paying continuous dividend at rate ρ :

$$\frac{\partial V}{\partial t} = rV - (r-\rho)S\frac{\partial V}{\partial S} - \frac{1}{2}\sigma^2S^2\frac{\partial^2 V}{\partial S^2}$$

Which part of this equation is usually denoted by the Greek letter Δ ? What does it represent? How is it used for Δ -hedging? If V is a call option, what is the value of Δ , if S is significantly below the strike price?

Question 2

Consider the Black-Scholes equation in the previous question. Which part of this equation is usually denoted by the Greek letter Γ ? What does it represent? How is it used for Γ -hedging? What is the value of Γ , if S is far away from the strike price?

Question 3

The following equations are the Black-Scholes prices of call and put options with stock S paying dividends at constant continuous rate ρ :

$$C(S,t) = e^{-\rho(T-t)}SN(d_1) - e^{-r(T-t)}KN(d_2)$$

$$P(S,t) = e^{-r(T-t)}KN(-d_2) - e^{-\rho(T-t)}SN(-d_1)$$

where

$$d_1 = \frac{\ln(S/K) + (r - \rho + \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}}, \qquad d_2 = d_1 - \sigma\sqrt{T - t}$$

Differentiate over S to derive the equations for Δ and Γ . Hint: use the fact that the CDF of the standard normal distribution ($\mu = 0, \sigma^2 = 1$) is $N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-s^2/2} ds$, and its derivative is $dN(x)/dx = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

MSO4112

Question 4

Check that the Black-Scholes prices for call and put satisfy the call-put parity: $C - P = e^{-\rho(T-t)}S - e^{-r(T-t)K}$. Hint: use the fact that N(x) = 1 - N(-x) for the CDF of normal distribution.