Problems 5: Continuous Markov process and the diffusion equation

Roman Belavkin

Middlesex University

Question 1

Give a definition of Markov stochastic process. What is a continuous Markov process?

Question 2

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of independent identically distributed random variables. Which of the following processes is Markov?

- **a)** $y_n = x_1 + \dots + x_n$
- **b)** $y_n = x_1 \times \cdots \times x_n$
- c) $y_n = \max\{0, x_1, \dots, x_n\}$
- **d)** $y_n = (n, \frac{x_1 + \dots + x_n}{n})$

Hint: convert to iteration $y_{n+1} = f(y_n)$.

Question 3

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of independent identically distributed random variables. Why is the following process not Markov?

$$y_n = [x_1 + \dots + x_n]$$

where $[\cdot]$ means rational part.

Question 4

Let $\{m(t)\}_{t\geq 0}$ be a stochastic process defined by

$$m(t) = \frac{n(t) - \nu t}{\sqrt{\nu}}$$

where n(t) is the value of a stationary Poisson process $\{n(t)\}_{t\geq 0}$ with expected value $\mathbb{E}\{n(t)\} = \nu t$ (see Appendix A). Use properties of the Poisson process to

a) Show that the expected value and variance of m(t) are:

$$\mathbb{E}\{m(t)\} = 0, \qquad \sigma^2(m(t)) = t$$

b) Prove that the differential dm(t) = m(t + dt) - m(t) has the property

$$\lim_{\nu \to \infty} (dm^2) = dt$$

c) The stochastic process $\{m(t)\}_{t\geq 0}$ becomes Wiener process as $\nu \to \infty$.

A Poisson process

The Poisson point process $\{n(t)\}_{t\geq 0}$ is a discrete-valued stochastic process counting the number $n \in \mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ of occurrences of some event during time interval [0, t], and satisfying the following properties:

- **Independent increments** : The number $\Delta n(\Delta t) = n(t + \Delta t) n(t)$ of events in the interval Δt is independent of the number of events in any other interval non-overlapping with Δt (e.g. [0, t]). This property implies $\{n(t)\}_{t>0}$ is a Markov process.
- **Orderliness** : The probability of two or more events during sufficiently small interval Δt is essentially zero:

$$P\{\Delta n(\Delta t) \ge 2\} = o(\Delta t)$$

(note the use of the small 'o' notation.)

These two properties imply that the number n(t) of events in [0, t] has Poisson distribution. For stationary (or homogeneous) Poisson process this distribution is

$$P(n(t)) = \frac{(\nu t)^n}{n!} e^{-\nu t}$$

where ν is the expected *rate* or *intensity* parameter (the expected number of events in a unit interval). The expected value and the variance for stationary Poisson process are respectively

$$\mathbb{E}\{n(t)\} = \nu t, \qquad \sigma^2(n(t)) = \nu t$$

MSO4112

The orderliness property implies also that differential dn(t) = n(t+dt) - n(t) can have only two values: dn(t) = 0 (almost everywhere) or dn(t) = 1 (in a set of measure zero). This means that the differential dn of a Poisson process satisfies the property

$$dn^2 = dn$$