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Introduction

e Options derive their values V' from prices of the underlying stock S (hence

the term ‘derivatives’).

e The pricing problem is a problem, only because the future stock price

S(T') is unknown.

e Can we predict the future stock price S(T) (e.g. by using historical stock

prices S(t) up to the current time moment ¢t < 7')?

e We begin by discussing a naive attempt to predict stock prices using clas-
sical differential calculus (i.e. like in celestial mechanics), and then explain

why these methods fail in general.

e This will provide the main motivation for the stochastic calculus, on which

the Black-Scholes pricing theory is based.

e We shall define the concept of a stochastic process (aka random function)
and define their main characteristics, such as the power spectrum and

correlation time.



1 Signals and Processes in Time

Signals and Processes in Time

Definition 1 (Process (Signal)). () is a sequence of values x(0), z(t1), z(t2), ... z(T),
indexed by an increasing sequence 0 < t; < to < ... < T of time moments, that
conveys information about the states of a system or a phenomenon at these

time moments ¢ € [0, T]. Thus, s process is a function of time z(t), the domain

of which is time ¢ € [0,7] and the range x € X is some variable of interest.
Typical notation:

{=(t) }eqo,1)
Example 2. e Position z(t) of a car at different time moments.
e Records of temperature 7(¢) in London on different days.
e Prices of stock S(t) at times t1,to, .. ..

e Sequence of outcomes of tossing a coin (e.g. “tail”, “head”, “head”).

Discrete or Continuous
Definition 3 (Discrete or continuous-time processes). A process is said to be

e discrete-time process, if its values x(t) are defined only for a discrete set
of time moments ¢, %o, ... (i.e. countable domain).

e continuous-time process, if z(t) are defined for all time moments on the
interval [0,7] C R (uncountable domain).

Question 1. In the examples above, which of the processes are discrete and
which are continuous time?

Definition 4 (Discrete or continuous-valued processes). A process is said to be

o discrete-valued, if the values z(t) are elements of a countable set X (count-
able range).

o continuous-valued, if the values z(t) are elements of a continuous (un-
countable) set X (uncountable range).

Question 2. In the examples above, which of the processes are discrete and
which are continuous-valued?

Prediction of differentiable processes

Predicting position of a car

e If 2(0) is the initial position of a car moving with constant speed v, then
position of the car z(t) for any ¢ € [0,7] is

x(t) = z(0) + vt



e If the car is accelerating from v(0) with constant acceleration a, then
1
z(t) = z(0) + v(0)t + §at2
e Note that v = & = dz/dt and a = & = dv/dt = d*x/dt*:

z(t) = z(0) + 2(0)t + %j}ﬁ

e Could the same logic be applied to predict more general processes (e.g.
stock prices S(t))?

Differentiation

Definition 5. A function x(t), that is continuous at tg, has a derivative 2/ (¢g)
at tg if the following limit exists:

e Other notations

e 1z’ = dx/dt represents the slope of a tangent line to z(t) passing through
(to, w(to)).

e The tangent line gives the best linear approximation:
z(t) ~ z(to) + z'(to) (t — to)
Taylor Expansion

Taylor series expansion

e If x(t) is n times differentiable at to (i.e. derivatives z’, 2”,..., (") exist
at tg), then x(¢) can be approximated as follows:

.,L,// (tO)
2

(M) (to)

x(t) = x(to) + ' (to) (t — to) + nl

(t—t0)” 4+

(t—to)"

o If x(¢) is infinitely many times differentiable at tg, then x(t) can be found
precisely by Taylor expansion at tg:

()
o) = 3 ety
n=0 :

e How likely does the stock price process S(t) have any derivatives?



Nowhere differentiable functions

e The existence of derivative z’(t) implies continuity of z(t) (Why? Recall
the definitions of z’/(t) and of continuity of a function).

e Is the opposite true (i.e. does continuity imply differentiability)?
e Simple answer is NO (e.g. z(t) = [t has no 2/(0)).

e In 1872, Karl Weierstrass gave an example of a function that is continuous
everywhere, but differentiable nowhere:

x(t) = Z a”™ cos(b™rt)
n=0

e Rather than being exotic, it was proved by Banach and Mazurkiewics that
almost all continuous functions are nowhere differentiable.

e It turns out that a trajectory w(t) of Brownian motion is another such
example, because Aw(t) = w(t + At) — w(t) is proportional to v/At, so
that:

wt 4+ At) —w(t) VAL 1

~ =

At At At

2 Stochastic Processes

Stochastic Process

Definition 6 (Stochastic Process). Process {x(t)}+cjo,7] is stochastic if for each
time moment ¢ € [0, T its value is a random variable z(¢,w), defined by a prob-
ability space (€2, A, P) (or by the probability density p(¢t,z) = dP(x(t,w))/dx).
Thus, a stochastic process is a random function x(t,w).

Ezample 7 (Probability densitiy). e Uniform density:

ﬁ ifa<z<bd
0 otherwise

e Gaussian density:

plr) = e 202

(=) V2ro?

where 7 = E,{z} = [ap(z)dz is the mean and ¢* = E,{(x — 7)?} =
E,{z?} — z? is the variance.



Description of a Continuous-time Stochastic Process

e For each finite partition 0 < ¢; < -+ < ¢, < T of [0,T], the values
x(t1),...,z(t,) constitute a finite collection of random variables defined
by joint probability density p(x(t1),...,z(t,)) such that:

p(x(tr), ... x(tn)) = /p(x(tl),..~,fc(tn)7x(tn+1))dw(tn+1)

e Thus, the n+1-dimensional partition 0 < ¢; < --- < t,41 < T and density
includes all the information about n-dimensional partition 0 < t; < --- <
t, < T and density.

e The complete information about continuous-time stochastic process {z¢ }+c(o, 1)

is given by the probability functional:

Plz(t)] = lim p(z(t1),...,2z(t,))

max At—0

e Stochastic process is stationary, if its characteristics at ¢t and ¢ + 7 are the
same (translation invariant):

p(a(t1),....z(tn)) =plx(ts +7),...,z(tn + 7))
Characteristic Functional

e Alternatively, a stochastic process can be characterised by the character-
istic functional:

O] = Ep {exp [z / u(t)x(t)dt]}

o0 /L.S
HZQ/.../ms(tl,...,ts)u(tl)...u(ts)dtl...dts
s=1

exp{zll:!/.../ks(tl,...,ts)u(tl)...u(ts)dtl...dts}

e The moment functions mg(ty,...,ts) = E{x(t1) - - - x(ts)} and the correla-
tion functions ks(ty,...,ts) are the derivatives of O[u]:
1 0°0(uy, ..., us) 10°InO(u,. .., us)
sy ty) = — 2 TSI () = —
ms(t ) i Ouy---0us |, (2 ) 8 Ouy - -+ Oug

Gaussian stochastic process

o If for arbitrary partition {¢,...,t,} C (0,T), the density of {z1,...,2,}
is Gaussian:

1 o3 I S i (e ) (25— 75)

(2m)"/2/det |||

p(x1,...,x,) =




where Z; = E{x;} are the mean values and
kij = B{(zi — 2:)(z; — ;) } = B{wiz;} — 275

are the covariances. They completely define a Gaussian process.

I~

o The matrix ||a;;|| is the inverse ||k;; of the covariance matrix.

Ezample 8.

~ N2 ~ N2 = =
1 -5 132 [(11*;1) +(22*;2) +2312(11*z;)(;2*12)}
((E x): (1-RZ,) o? o3 102
p(T1, T2 >
2ro109y/1 — Riq

where Ry = % is the correlation coefficient.

3 Characteristics of Stochastic Processes
Correlation function
e Correlation (or auto-correlation) function:
k(t,t+7) =E{z(t)z(t + )} — E{z(t)}E{z(t + 7)}
e For a stationary process k(t,t + 7) = k(0,7) =: k(7):

k(1) := k(0,7) = BE{z(t)z(t + 1)} — E*{z}

e Some properties:

Correlation time

e Correlation time is defined as the following the integral of the correlation
function:

1 o0
Tcor = 72/ |k(7—)‘ dr
= Jo

e Note that o2 = k(0).

e Because for stationary processes 0%(t) = o2(t + 7), we can re-write this
using correlation coefficient R(7) = k(1) /0%

- / \R(7)| dr
0



Spectral density (power spectrum)

e The spectral density S[A] (or the power spectrum) of stochastic process
{z(t) }re0,) is the Fourier transform S[A] = F[k(7)] of its correlation
function:

S\ = /OO k(1) e ™ dr

— 00

e The inverse transform recovers the correlation function:
k(t) = — S[Ale* T dA
() =5 /_ N [A]

e Another characterisation of the variance:

o = k(0) = /oo SIAdA

:% .

Reading

e Chapter 6, Sec. 6.1 (Elliott & Kopp, 2004).
e Chapter 9 (Roman, 2012).
e Chapter 1, Sec. 3 (Stratonovich, 2014).
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