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Introduction

• Options derive their values V from prices of the underlying stock S (hence
the term ‘derivatives’).

• The pricing problem is a problem, only because the future stock price
S(T ) is unknown.

• Can we predict the future stock price S(T ) (e.g. by using historical stock
prices S(t) up to the current time moment t < T )?

• We begin by discussing a naive attempt to predict stock prices using clas-
sical differential calculus (i.e. like in celestial mechanics), and then explain
why these methods fail in general.

• This will provide the main motivation for the stochastic calculus, on which
the Black-Scholes pricing theory is based.

• We shall define the concept of a stochastic process (aka random function)
and define their main characteristics, such as the power spectrum and
correlation time.
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1 Signals and Processes in Time

Signals and Processes in Time

Definition 1 (Process (Signal)). x(t) is a sequence of values x(0), x(t1), x(t2), . . . x(T ),
indexed by an increasing sequence 0 < t1 < t2 < . . . < T of time moments, that
conveys information about the states of a system or a phenomenon at these
time moments t ∈ [0, T ]. Thus, s process is a function of time x(t), the domain
of which is time t ∈ [0, T ] and the range x ∈ X is some variable of interest.
Typical notation:

{x(t)}t∈[0,T ]

Example 2. • Position x(t) of a car at different time moments.

• Records of temperature τ(t) in London on different days.

• Prices of stock S(t) at times t1, t2, . . ..

• Sequence of outcomes of tossing a coin (e.g. “tail”, “head”, “head”).

Discrete or Continuous

Definition 3 (Discrete or continuous-time processes). A process is said to be

• discrete-time process, if its values x(t) are defined only for a discrete set
of time moments t1, t2, . . . (i.e. countable domain).

• continuous-time process, if x(t) are defined for all time moments on the
interval [0, T ] ⊆ R (uncountable domain).

Question 1. In the examples above, which of the processes are discrete and
which are continuous time?

Definition 4 (Discrete or continuous-valued processes). A process is said to be

• discrete-valued, if the values x(t) are elements of a countable set X (count-
able range).

• continuous-valued, if the values x(t) are elements of a continuous (un-
countable) set X (uncountable range).

Question 2. In the examples above, which of the processes are discrete and
which are continuous-valued?

Prediction of differentiable processes

Predicting position of a car

• If x(0) is the initial position of a car moving with constant speed v, then
position of the car x(t) for any t ∈ [0, T ] is

x(t) = x(0) + vt
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• If the car is accelerating from v(0) with constant acceleration a, then

x(t) = x(0) + v(0)t +
1
2
at2

• Note that v = ẋ = dx/dt and a = ẍ = dv/dt = d2x/dt2:

x(t) = x(0) + ẋ(0)t +
1
2
ẍt2

• Could the same logic be applied to predict more general processes (e.g.
stock prices S(t))?

Differentiation

Definition 5. A function x(t), that is continuous at t0, has a derivative x′(t0)
at t0 if the following limit exists:

x′(t0) = lim
∆t→0

x(t0 + ∆t)− x(t0)
∆t

• Other notations
dx(t)

dt
, ẋ

• x′ = dx/dt represents the slope of a tangent line to x(t) passing through
(t0, x(t0)).

• The tangent line gives the best linear approximation:

x(t) ≈ x(t0) + x′(t0)(t− t0)

Taylor Expansion

Taylor series expansion

• If x(t) is n times differentiable at t0 (i.e. derivatives x′, x′′,..., x(n) exist
at t0), then x(t) can be approximated as follows:

x(t) ≈ x(t0) + x′(t0)(t− t0) +
x′′(t0)

2
(t− t0)2 + · · ·+ x(n)(t0)

n!
(t− t0)n

• If x(t) is infinitely many times differentiable at t0, then x(t) can be found
precisely by Taylor expansion at t0:

x(t) =
∞∑

n=0

x(n)(t0)
n!

(t− t0)n

• How likely does the stock price process S(t) have any derivatives?
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Nowhere differentiable functions

• The existence of derivative x′(t) implies continuity of x(t) (Why? Recall
the definitions of x′(t) and of continuity of a function).

• Is the opposite true (i.e. does continuity imply differentiability)?

• Simple answer is NO (e.g. x(t) = |t| has no x′(0)).

• In 1872, Karl Weierstrass gave an example of a function that is continuous
everywhere, but differentiable nowhere:

x(t) =
∞∑

n=0

an cos(bnπt)

• Rather than being exotic, it was proved by Banach and Mazurkiewics that
almost all continuous functions are nowhere differentiable.

• It turns out that a trajectory w(t) of Brownian motion is another such
example, because ∆w(t) = w(t + ∆t) − w(t) is proportional to

√
∆t, so

that:
w(t + ∆t)− w(t)

∆t
∼
√

∆t

∆t
=

1√
∆t

2 Stochastic Processes

Stochastic Process

Definition 6 (Stochastic Process). Process {x(t)}t∈[0,T ] is stochastic if for each
time moment t ∈ [0, T ] its value is a random variable x(t, ω), defined by a prob-
ability space (Ω,A, P ) (or by the probability density p(t, x) = dP (x(t, ω))/dx).
Thus, a stochastic process is a random function x(t, ω).

Example 7 (Probability densitiy). • Uniform density:

p(x) =
{

1
b−a if a < x < b

0 otherwise

• Gaussian density:

p(x) =
1√

2πσ2
e−

(x−x̄)2

2σ2

where x̄ = Ep{x} =
∫

xp(x) dx is the mean and σ2 = Ep{(x − x̄)2} =
Ep{x2} − x̄2 is the variance.
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Description of a Continuous-time Stochastic Process

• For each finite partition 0 < t1 < · · · < tn < T of [0, T ], the values
x(t1), . . . , x(tn) constitute a finite collection of random variables defined
by joint probability density p(x(t1), . . . , x(tn)) such that:

p(x(t1), . . . , x(tn)) =
∫

p(x(t1), . . . , x(tn), x(tn+1)) dx(tn+1)

• Thus, the n+1-dimensional partition 0 < t1 < · · · < tn+1 < T and density
includes all the information about n-dimensional partition 0 < t1 < · · · <
tn < T and density.

• The complete information about continuous-time stochastic process {xt}t∈(0,T )

is given by the probability functional:

P [x(t)] = lim
max ∆t→0

p(x(t1), . . . , x(tn))

• Stochastic process is stationary, if its characteristics at t and t+ τ are the
same (translation invariant):

p(x(t1), . . . , x(tn)) = p(x(t1 + τ), . . . , x(tn + τ))

Characteristic Functional

• Alternatively, a stochastic process can be characterised by the character-
istic functional:

Θ[u(t)] = EP

{
exp

[
i

∫
u(t)x(t) dt

]}
= 1 +

∞∑
s=1

is

s!

∫
· · ·

∫
ms(t1, . . . , ts) u(t1) . . . u(ts) dt1 . . . dts

= exp

{ ∞∑
s=1

is

s!

∫
· · ·

∫
ks(t1, . . . , ts) u(t1) . . . u(ts) dt1 . . . dts

}

• The moment functions ms(t1, . . . , ts) = E{x(t1) · · ·x(ts)} and the correla-
tion functions ks(t1, . . . , ts) are the derivatives of Θ[u]:

ms(t1, . . . , ts) =
1
is

∂sΘ(u1, . . . , us)
∂u1 · · · ∂us

∣∣∣∣
u=0

, ks(t1, . . . , ts) =
1
is

∂s lnΘ(u1, . . . , us)
∂u1 · · · ∂us

∣∣∣∣
u=0

Gaussian stochastic process

• If for arbitrary partition {t1, . . . , tn} ⊂ (0, T ), the density of {x1, . . . , xn}
is Gaussian:

p(x1, . . . , xn) =
1

(2π)n/2
√

det ‖kij‖
e−

1
2

Pn
i=1

Pn
j=1 aij(xi−x̄i)(xj−x̄j)
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where x̄i = E{xi} are the mean values and

kij = E{(xi − x̄i)(xj − x̄j)} = E{xixj} − x̄ix̄j

are the covariances. They completely define a Gaussian process.

• The matrix ‖aij‖ is the inverse ‖kij‖−1 of the covariance matrix.
Example 8.

p(x1, x2) =
1

2πσ1σ2

√
1−R2

12

e
− 1

2(1−R2
12)

»
(x1−x̄1)2

σ2
1

+
(x2−x̄2)2

σ2
2

+2R12
(x1−x̄1)(x2−x̄2)

σ1σ2

–

where R12 = k12
σ1σ2

is the correlation coefficient.

3 Characteristics of Stochastic Processes

Correlation function

• Correlation (or auto-correlation) function:

k(t, t + τ) = E{x(t)x(t + τ)} − E{x(t)}E{x(t + τ)}

• For a stationary process k(t, t + τ) = k(0, τ) =: k(τ):

k(τ) := k(0, τ) = E{x(t)x(t + τ)} − E2{x}

• Some properties:
k(0) = σ2 , k(τ) = k(−τ)

Correlation time

• Correlation time is defined as the following the integral of the correlation
function:

τcor =
1
σ2

∫ ∞

0

|k(τ)| dτ

• Note that σ2 = k(0).

• Because for stationary processes σ2(t) = σ2(t + τ), we can re-write this
using correlation coefficient R(τ) = k(τ)/σ2:

τcor =
∫ ∞

0

|R(τ)| dτ
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Spectral density (power spectrum)

• The spectral density S[λ] (or the power spectrum) of stochastic process
{x(t)}t∈(0,T ) is the Fourier transform S[λ] = F [k(τ)] of its correlation
function:

S[λ] =
∫ ∞

−∞
k(τ) e−iλτ dτ

• The inverse transform recovers the correlation function:

k(τ) =
1
2π

∫ ∞

−∞
S[λ]eiλτ dλ

• Another characterisation of the variance:

σ2 = k(0) =
1
2π

∫ ∞

−∞
S[λ] dλ

Reading

• Chapter 6, Sec. 6.1 (Elliott & Kopp, 2004).

• Chapter 9 (Roman, 2012).

• Chapter 1, Sec. 3 (Stratonovich, 2014).
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