
Lecture 5:

Self–Organising Maps

Dr. Roman V Belavkin

Middlesex University

BIS4435



Euclidean Space and Euclidean Distance (Examples)

The Clustering Problem

SOM Architecture and Principles

Training Procedure

Contextual Maps

Applications of SOM



HISTORICAL BACKGROUND

1960s Vector quantisation problems studied by
mathematicians (Glienn, 1964; Stratonowitch, 1966).

1973 von der Malsburg did the first computer simulation
demonstrating self–organisation.

1976 Willshaw and von der Malsburg suggested the idea of
SOM.

1980s Works by Kohonen further developed and studied
computational algorithms for SOM.



EUCLIDEAN SPACE

Points in Euclidean space have coordinates, represented by
real numbers R (e.g. x , y and z or x1, x2 and x3).



EUCLIDEAN SPACE

Points in Euclidean space have coordinates, represented by
real numbers R (e.g. x , y and z or x1, x2 and x3).

We denote m-dimensional space by Rm.



EUCLIDEAN SPACE

Points in Euclidean space have coordinates, represented by
real numbers R (e.g. x , y and z or x1, x2 and x3).

We denote m-dimensional space by Rm.

Every point in Rm is defined by m coordinates:

{x1, . . . , xm}

or by an m–dimensional vector

x = (x1, . . . , xm)

.



EUCLIDEAN SPACE

Points in Euclidean space have coordinates, represented by
real numbers R (e.g. x , y and z or x1, x2 and x3).

We denote m-dimensional space by Rm.

Every point in Rm is defined by m coordinates:

{x1, . . . , xm}

or by an m–dimensional vector

x = (x1, . . . , xm)

.

How can we compute the distance between different points in
such a space?



EXAMPLES

Example

In R1 (one–dimensional space or a line) points are represented by
just one number, such as a = (2) or b = (−1).



EXAMPLES

Example

In R1 (one–dimensional space or a line) points are represented by
just one number, such as a = (2) or b = (−1).

Example

In R3 (three–dimensional space) points are represented by three
coordinates x , y and z (or x1, x2 and x3), such as a = (2,−1, 3).



EUCLIDEAN DISTANCE
The distance ρ(a,b) between two points

a = (a1, . . . , am) and b = (b1, . . . , bm)

in Euclidean space Rm is calculated as:

‖a − b‖ =

√

√

√

√

m
∑

i=1

(ai − bi )2

=
√

(a1 − b1)2 + · · · + (am − bm)2



EUCLIDEAN DISTANCE
The distance ρ(a,b) between two points

a = (a1, . . . , am) and b = (b1, . . . , bm)

in Euclidean space Rm is calculated as:

‖a − b‖ =

√

√

√

√

m
∑

i=1

(ai − bi )2

=
√

(a1 − b1)2 + · · · + (am − bm)2

Remark

Note that Euclidean distance is

1 Positive: ρ(a,b) ≥ 0, and ρ(a,b) = 0 iff a = b

2 Symmetric: ρ(a,b) = ρ(b, a).

3 Triangle inequality: ρ(a, c) ≤ ρ(a,b) + ρ(b, c)

Such functions are called metrics, and sets with metrics are called

metric spaces.



EXAMPLES

Example

Let a = (2) and b = (−1) in R1. Then



EXAMPLES

Example

Let a = (2) and b = (−1) in R1. Then

‖a − b‖ =
√

(2 + 1)2 = 3



EXAMPLES

Example

Let a = (2) and b = (−1) in R1. Then

‖a − b‖ =
√

(2 + 1)2 = 3

Example

Let a = (2,−3) and b = (4, 1) in R2.
Then



EXAMPLES

Example

Let a = (2) and b = (−1) in R1. Then

‖a − b‖ =
√

(2 + 1)2 = 3

Example

Let a = (2,−3) and b = (4, 1) in R2.
Then

‖a − b‖ =
√

(2 − 4)2 + (−3 − 1)2

=
√

20 ≈ 4.47

||a - b||

0 2 4

0

- 3

1

x

y



MULTIDIMENSIONAL DATA IN BUSINESS

A bank gathered information about its customers:

Case: Age Gender Income
($K p.m.)

Expenses
($K p.m.)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2



MULTIDIMENSIONAL DATA IN BUSINESS

A bank gathered information about its customers:

Case: Age Gender Income
($K p.m.)

Expenses
($K p.m.)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

We may consider each variable (age, gender, income, etc) as a
coordinate xi and each case as a point in an m–dimensional
space.



MULTIDIMENSIONAL DATA IN BUSINESS

A bank gathered information about its customers:

Case: Age Gender Income
($K p.m.)

Expenses
($K p.m.)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

We may consider each variable (age, gender, income, etc) as a
coordinate xi and each case as a point in an m–dimensional
space.

How far should be similar cases from each other?



CLUSTERS

Clusters

0 2 4 6 8 10
0

2

4

6

8

10

x

y Clusters are groups of points close
to each other.

One of the main goals of
multivariate analysis is to find
clusters of points.



CLUSTERS

Clusters

0 2 4 6 8 10
0

2

4

6

8

10

x

y Clusters are groups of points close
to each other.

One of the main goals of
multivariate analysis is to find
clusters of points.

‘Similar’ customers would have
small Euclidean distance between
them and would belong to the
same group (cluster).



SOM ARCHITECTURE

SOM uses a single layer network of neurons competing with
each other, so that only one neuron can fire at a time.

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



SOM ARCHITECTURE

SOM uses a single layer network of neurons competing with
each other, so that only one neuron can fire at a time.

The algorithm consists of three phases: competition,
cooperation and adaptation.

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



INPUT TOPOLOGY

The input layer has m nodes, so the input pattern is point
x = (x1, . . . , xm) in m–dimensional input space Rm.

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



INPUT TOPOLOGY

The input layer has m nodes, so the input pattern is point
x = (x1, . . . , xm) in m–dimensional input space Rm.

Each neuron j has m weights, so the weights represent point
wj = (w1j , . . . ,wmj) in the same input space Rm.

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



INPUT TOPOLOGY

The input layer has m nodes, so the input pattern is point
x = (x1, . . . , xm) in m–dimensional input space Rm.

Each neuron j has m weights, so the weights represent point
wj = (w1j , . . . ,wmj) in the same input space Rm.

‘Closeness’ (neighbourhood) in the m-dimensional input space
Rm is computed by the Euclidean distance ρ(x,w).

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



OUTPUT TOPOLOGY

The outputs of the nodes of an SOM are arranged in a lattice,
which is usually a 1 or 2-dimensional space (i.e. a line R1 or a
plane R2).

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



OUTPUT TOPOLOGY

The outputs of the nodes of an SOM are arranged in a lattice,
which is usually a 1 or 2-dimensional space (i.e. a line R1 or a
plane R2).

The lattice represents the output space, where different points
correspond to the outputs of different nodes i and j .

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



OUTPUT TOPOLOGY

The outputs of the nodes of an SOM are arranged in a lattice,
which is usually a 1 or 2-dimensional space (i.e. a line R1 or a
plane R2).

The lattice represents the output space, where different points
correspond to the outputs of different nodes i and j .

‘Closeness’ (neighbourhood) in this 1 or 2-dimensional output
space is computed by abother distance function d(i j).

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



TOPOLOGICAL MAPPING

SOM f : Rm → Rn maps m-dimensional input space Rm onto
the n-dimensonal output space Rn (usually m ≫ n).



TOPOLOGICAL MAPPING

SOM f : Rm → Rn maps m-dimensional input space Rm onto
the n-dimensonal output space Rn (usually m ≫ n).

SOM is designed to preserve topology so that ‘closeness’ in
the input space corresponds to ‘closeness’ in the output space
(i.e. in the lattice), and vice verse.



TOPOLOGICAL MAPPING

SOM f : Rm → Rn maps m-dimensional input space Rm onto
the n-dimensonal output space Rn (usually m ≫ n).

SOM is designed to preserve topology so that ‘closeness’ in
the input space corresponds to ‘closeness’ in the output space
(i.e. in the lattice), and vice verse.

f : R3 → R1

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input



TOPOLOGICAL MAPPING

SOM f : Rm → Rn maps m-dimensional input space Rm onto
the n-dimensonal output space Rn (usually m ≫ n).

SOM is designed to preserve topology so that ‘closeness’ in
the input space corresponds to ‘closeness’ in the output space
(i.e. in the lattice), and vice verse.

f : R3 → R1

mA mB

1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

f : R1 → R2

output lattice
Two-dimensional

d d d

d d d
d
d

d d
d
d

dd

d

�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���













�











�

Winning neuron

Input

Synaptic weights



COMPETITION

Input pattern x = (x1, . . . , xm) is compared with each weight
pattern wj = (w1j , . . . ,wmj).



COMPETITION

Input pattern x = (x1, . . . , xm) is compared with each weight
pattern wj = (w1j , . . . ,wmj).

The winner is the node whose weight wj is the closest to the
input x in terms of Euclidean distance:

‖x − w1‖ =
√

(x1 − w11)2 + · · · + (xm − wm1)2

...
...

‖x − wn‖ =
√

(x1 − w1n)2 + · · · + (xm − wmn)2



COMPETITION

Input pattern x = (x1, . . . , xm) is compared with each weight
pattern wj = (w1j , . . . ,wmj).

The winner is the node whose weight wj is the closest to the
input x in terms of Euclidean distance:

‖x − w1‖ =
√

(x1 − w11)2 + · · · + (xm − wm1)2

...
...

‖x − wn‖ =
√

(x1 − w1n)2 + · · · + (xm − wmn)2

Thus, nodes ‘compete’ in the sense which of the nodes wj is
more ‘similar’ to a give input pattern x.



Example

Consider SOM with three inputs and two
output nodes (A and B). Let

wA = (2,−1, 3) , wB = (−2, 0, 1)

Find which node is the winner for the input

x = (1,−2, 2)

1 2 3

mA mB

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

n = 3

m = 2



Example

Consider SOM with three inputs and two
output nodes (A and B). Let

wA = (2,−1, 3) , wB = (−2, 0, 1)

Find which node is the winner for the input

x = (1,−2, 2)

1 2 3

mA mB

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

n = 3

m = 2

‖x − wA‖ =
√

(1 − 2)2 + (−2 + 1)2 + (2 − 3)2 =
√

3

‖x − wB‖ =
√

(1 + 2)2 + (−2 − 0)2 + (2 − 1)2 =
√

14



Example

Consider SOM with three inputs and two
output nodes (A and B). Let

wA = (2,−1, 3) , wB = (−2, 0, 1)

Find which node is the winner for the input

x = (1,−2, 2)

1 2 3

mA mB

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

n = 3

m = 2

‖x − wA‖ =
√

(1 − 2)2 + (−2 + 1)2 + (2 − 3)2 =
√

3

‖x − wB‖ =
√

(1 + 2)2 + (−2 − 0)2 + (2 − 1)2 =
√

14

Node A is the winner because it is ‘closer’ (
√

3 <
√

14)



Example

Consider SOM with three inputs and two
output nodes (A and B). Let

wA = (2,−1, 3) , wB = (−2, 0, 1)

Find which node is the winner for the input

x = (1,−2, 2)

1 2 3

mA mB

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

n = 3

m = 2

‖x − wA‖ =
√

(1 − 2)2 + (−2 + 1)2 + (2 − 3)2 =
√

3

‖x − wB‖ =
√

(1 + 2)2 + (−2 − 0)2 + (2 − 1)2 =
√

14

Node A is the winner because it is ‘closer’ (
√

3 <
√

14)

What if x = (−1,−2, 0)?



ADAPTATION

After the input x has been presented to SOM, the weights of
all nodes are adapted (adjusted) so that they become more
‘similar’ to the input x.



ADAPTATION

After the input x has been presented to SOM, the weights of
all nodes are adapted (adjusted) so that they become more
‘similar’ to the input x.

The adaptation formula for node j is:

wnew
j = wold

j + α hij

[

x − wold
j

]

,

where

wj is the weight vector of node j ;
α is the learning rate coefficient;
hij is the neighbourhood of node j with respect to the winner i .



ADAPTATION (cont.)

To understand better the adaptation formula, let us check how the
weights change for different values of α and hij .

wnew
j = wold

j + α hij

[

x − wold
j

]

,



ADAPTATION (cont.)

To understand better the adaptation formula, let us check how the
weights change for different values of α and hij .

wnew
j = wold

j + α hij

[

x − wold
j

]

,

Suppose α = 0 or hij = 0. Then

wnew
j = wold

j + 0 · 0
[

x − wold
j

]

= wold
j

The weight does not change (wnew
j = wold

j ).



ADAPTATION (cont.)

To understand better the adaptation formula, let us check how the
weights change for different values of α and hij .

wnew
j = wold

j + α hij

[

x − wold
j

]

,

Suppose α = 0 or hij = 0. Then

wnew
j = wold

j + 0 · 0
[

x − wold
j

]

= wold
j

The weight does not change (wnew
j = wold

j ).

Suppose hij = 1 and α = 1. Then

wnew
j = wold

j + x − wold
j = x

The new weight is equal to the input (wnew
j = x).



COOPERATION
Although weights of all nodes are adapted, they do not adapt
equally. Adaptation depends on how close the nodes are from the
winner in the output lattice.



COOPERATION
Although weights of all nodes are adapted, they do not adapt
equally. Adaptation depends on how close the nodes are from the
winner in the output lattice.

If the winner is node i , then the level of adaptation for node j

is defined by the neighbourhood function h = hij(dij), where
d(i , j) is the distance in the lattice.



COOPERATION
Although weights of all nodes are adapted, they do not adapt
equally. Adaptation depends on how close the nodes are from the
winner in the output lattice.

If the winner is node i , then the level of adaptation for node j

is defined by the neighbourhood function h = hij(dij), where
d(i , j) is the distance in the lattice.

The neighbourhood is defines in such a way that it is smaller
as the distance d(i , j) gets larger. For example, the Gaussian
bell function

hij(d) = e
−

d2

2σ
2

Gaussian bell

- 2 - 1 0 1 2
0

0.5

1

d

h(d)



COOPERATION
Although weights of all nodes are adapted, they do not adapt
equally. Adaptation depends on how close the nodes are from the
winner in the output lattice.

If the winner is node i , then the level of adaptation for node j

is defined by the neighbourhood function h = hij(dij), where
d(i , j) is the distance in the lattice.

The neighbourhood is defines in such a way that it is smaller
as the distance d(i , j) gets larger. For example, the Gaussian
bell function

hij(d) = e
−

d2

2σ
2

Gaussian bell

- 2 - 1 0 1 2
0

0.5

1

d

h(d)

The winner ‘helps’ mostly its neighbours to adapt. Note also
that the winner is adapted more than any other node (i.e.
because d(i , i) = 0).



Example

Let α = 0.5 and h = 1, and let us adapt the winning node A from
previous example:

wA = (2,−1, 3) , x = (1,−2, 2)

We use adaptation formula: wnew
j = wold

j + α hij [x − wold
j ]



Example

Let α = 0.5 and h = 1, and let us adapt the winning node A from
previous example:

wA = (2,−1, 3) , x = (1,−2, 2)

We use adaptation formula: wnew
j = wold

j + α hij [x − wold
j ]

wA =





2
−1

3



 + 0.5 · 1 ·









1
−2

2



 −





2
−1

3









=





2
−1

3



 + 0.5 ·





−1
−1
−1



 =





1.5
−1.5

2.5







TRAINING PROCEDURE

Initially set all the weights to some random values



TRAINING PROCEDURE

Initially set all the weights to some random values

Repeat

Until the network stabilises



TRAINING PROCEDURE

Initially set all the weights to some random values

Repeat
1 Feed an input pattern from the set of data

Until the network stabilises



TRAINING PROCEDURE

Initially set all the weights to some random values

Repeat
1 Feed an input pattern from the set of data
2 Find the winner

Until the network stabilises



TRAINING PROCEDURE

Initially set all the weights to some random values

Repeat
1 Feed an input pattern from the set of data
2 Find the winner
3 Adapt the weights of the winner and its neighbours

Until the network stabilises



WHAT SHOULD BE THE RESULT?

Initially, there is no relation between closeness (similarity) in
the input space and closeness in the output lattice.



WHAT SHOULD BE THE RESULT?

Initially, there is no relation between closeness (similarity) in
the input space and closeness in the output lattice.

After training, nodes close to each other in the lattice
correspond to points close to each other in the input space.



WHAT SHOULD BE THE RESULT?

Initially, there is no relation between closeness (similarity) in
the input space and closeness in the output lattice.

After training, nodes close to each other in the lattice
correspond to points close to each other in the input space.

The number of input dimensions (m) is usually very large (e.g.
m = 100), so we cannot see the clusters directly.



WHAT SHOULD BE THE RESULT?

Initially, there is no relation between closeness (similarity) in
the input space and closeness in the output lattice.

After training, nodes close to each other in the lattice
correspond to points close to each other in the input space.

The number of input dimensions (m) is usually very large (e.g.
m = 100), so we cannot see the clusters directly.

The output lattice is usually one or two dimensional, so we
can visualise and ‘see’ the clusters.



EXAMPLE OF SOM

d h d g o h e f d w c t l h z c
o e u o w a a o o o a i i o e o
v n c o l w g x g l t g o r b w
e k s k l f e n s r

e e r e a

small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

2 legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
4 legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0



FEATURE MAP

dog · · fox · · cat · · eagle
· · · · · · · · · ·
· · · · · · · · · owl
· · · · · · tiger · · ·

wolf · · · · · · · · hawk
· · · lion · · · · · ·
· · · · · · · · · dove

horse · · · · · · hen · ·
· · · · cow · · · · goose

zebra · · · · · · duck · ·



USEFUL PROPERTIES OF SOM

Reducing dimensions (Indeed, SOM is a map f : Rm → Rn)



USEFUL PROPERTIES OF SOM

Reducing dimensions (Indeed, SOM is a map f : Rm → Rn)

Visualisation of clusters



USEFUL PROPERTIES OF SOM

Reducing dimensions (Indeed, SOM is a map f : Rm → Rn)

Visualisation of clusters

Ordered display (preserving the topology)



USEFUL PROPERTIES OF SOM

Reducing dimensions (Indeed, SOM is a map f : Rm → Rn)

Visualisation of clusters

Ordered display (preserving the topology)

Handles missing data



USEFUL PROPERTIES OF SOM

Reducing dimensions (Indeed, SOM is a map f : Rm → Rn)

Visualisation of clusters

Ordered display (preserving the topology)

Handles missing data

The learning algorithm is unsupervised.



APPLICATIONS OF SOM IN BUSINESS

SOM can be very useful during the intelligence phase of
decision making. It helps to visualise very complex and
highly–dimensional data.



APPLICATIONS OF SOM IN BUSINESS

SOM can be very useful during the intelligence phase of
decision making. It helps to visualise very complex and
highly–dimensional data.

Visualisation of multi–dimensional data can be used for
presentations and reports.



APPLICATIONS OF SOM IN BUSINESS

SOM can be very useful during the intelligence phase of
decision making. It helps to visualise very complex and
highly–dimensional data.

Visualisation of multi–dimensional data can be used for
presentations and reports.

Identifying clusters in the data (e.g. typical groups of
customers) can help in optimising busibess operations.



APPLICATIONS OF SOM IN BUSINESS

SOM can be very useful during the intelligence phase of
decision making. It helps to visualise very complex and
highly–dimensional data.

Visualisation of multi–dimensional data can be used for
presentations and reports.

Identifying clusters in the data (e.g. typical groups of
customers) can help in optimising busibess operations.

Can be used for pattern recognition (e.g. to identify
credit–card fraud, errors in data, etc).


	Outline
	Euclidean Space and Euclidean Distance (Examples)
	The Clustering Problem
	SOM Architecture and Principles
	Training Procedure
	Contextual Maps
	Applications of SOM

