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1760 Thomas Bayes (conditional probability)

1812 Pierre–Simon Laplace

1933 Andrey Kolmogorov’s axioms

1920-1940 Ronald Fisher, Abraham Wald (statistics)

1948 Claude Shannon (Information theory)
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SOURCES OF UNCERTAINTY

Complexity : the number of possible states of a system in
question can be too large (e.g. predict how a chess
game can develop after 10 moves?)

Ignorance : some important information about the system may
not be available

Randomness : the system may be random by nature, and thus the
uncertainty is irreducible.
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WHAT IS PROBABILITY?

Definition

The uncertainty about some event E can range from impossible to
certain. Let us denote probability of event E by P(E ) such that

P(E ) = 0 means E is impossible;

P(E ) = 1 means E is certain.

Thus, probability is a number between 0 and 1.

(Impossible) 0 ≤ P(E ) ≤ 1 (Certain)

Example

For a fair coin, P(heads) = 1
2 = 0.5
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It is certain that at least one of the alternative events will
happen.

If E1, E2, . . . , En are n alternative (disjoint) events, then the
fact that at least one of them will certainly happen can be
written as

P(E1) + P(E2) + · · · + P(En) = 1

Example

For a fair coin and a fair dice we have
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WHERE DO PROBABILITIES COME FROM?

If there are n disjoint events, then we could assume that all

P(E1) = P(E2) = · · · = P(En) =
1

n

It would be much better to use the empirical frequency
function

P(Ei ) ≈
n(Ei )

n
=

no. of times event Ei occurs

no. of independent tests

Heads

Tails

1

2

3

4
5

6

Example

Flip a coin or roll a dice several times to estimate the probabilities.



PROBABILITY DISTRIBUTIONS

We can plot probabilities of all events on a graph, which shows
probability distribution
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JOINT PROBABILITY

What is the probability of co–occurrence of several events?
(e.g. clouds and rain)

Do these events occur together simply by chance?

Probability P(E1, E2) is called joint probability of E1 and E2.

E1 E2

heads heads
heads tails
tails heads
tails tails
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CONDITIONAL PROBABILITY and INDEPENDENCE

P(E1 | E2) is the probability of E1 conditional to event E2 (i.e.
if E2 has happened).

Joint probability is P(E1, E2) = P(E1 | E2)P(E2) and

P(E1 | E2) =
P(E1, E2)

P(E2)

If E1 is independent of E2, then P(E1 | E2) = P(E1) and

P(E1, E2) = P(E1)P(E2)
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You selected at random records of 20 customers and divided
them based on homeowner and credit score.

Credit score

Low High

Homeowner No 7 3

Yes 2 8

Can you tell from this data whether credit score and
homeownership depend on each other?
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SIMPLE CREDIT SCORE EXAMPLE (sol.)

Credit score

Low High

Homeowner No 7 3 10

Yes 2 8 10

9 11 20

P(H, C) =

{

7

20
,

2

20
,

3

20
,

8

20

}

P(H) =

{

10
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,
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}

, P(C) =

{

9

20
,

11

20

}

Our simple test for independence P(H, C)
?
= P(H)P(C)
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system that consists of H number of events there are

M = 2H possible states

Information = Uncertainty before − Uncertainty after



UNCERTAINTY and INFORMATION

If each event can have 2 states (i.e. True, False), then for a
system that consists of H number of events there are

M = 2H possible states

To measure uncertainty we can use H = log2 M (aka entropy)
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INFORMATION and PROBABILITY

What if probabilities are not equal? (i.e. P(E ) 6= 1
M

)

We can express the uncertainty as H = log2
1

P(E)

0

1

2

3

4

5

6

7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Probability

In
fo
rm
a
ti
o
n
,
b
it
s

Example

Compare information from observing events with probabilities 1
8

and 1
2



REDUCING THE UNCERTAINTY IN DATA

Case: Age Gender M. Income
($ K)

M. Expenses
($ K)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2
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REDUCING THE UNCERTAINTY IN DATA

Case: Age Gender M. Income
($ K)

M. Expenses
($ K)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

Variables Age = [1,2,...,100], Gender =[0 (Female), 1 (Male)]

How often does each value appear in the data?

Random variables if each value is associated with probability

P(Male) =
3

5
, P(Female) =

2

5
, (P(Male) + P(Female) = 1)



IS THERE STRUCTURE IN DATA?

Using the concept of random variables, we can analyse the
distributions of each variable in the database
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Using the concept of random variables, we can analyse the
distributions of each variable in the database
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Each case in the database can be seen as a complex (joint)
event (e.g. Case 1 is Age=21, Gender=Female, etc).

Thus, the whole database can be seen as a joint probability

P(Case) = P(Age, Gender, Income, Expenses, H. owner, C. score)

Are these variables independent or not?
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MEASURES of LOCATION

Answer questions such as ‘What is the most probable value?’,
‘What value should I expect in the long term?’

If variable x has n possible values X1, X2,...,Xn with
probabilities P(X1), P(X2),...,P(Xn), then we can compute
the expected value

E{x} = X1P(X1) + X2P(X2) + · · · + XnP(Xn) =
n

∑

i=1

Xi P(Xi )

If all P(x) = 1
n
, then E{x} is simply the average (the mean)

value.
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Variable Age has values 21, 18, 50, 23, 40. Each values occurs
once, therefore P(x) = 1
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MEASURES of LOCATION (cont.)

Example

Variable Age has values 21, 18, 50, 23, 40. Each values occurs
once, therefore P(x) = 1

5 and the expected value is

E{Age} =
21 + 18 + 50 + 23 + 40

5
= 30, 4

which is also the average Age.
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What is the ‘average’ case?

The expected value for a joint distribution of m random
variables x1, x2,...,xm is a point in an m–dimensional space
with coordinates given by expectations of each of the m

variables, and is called the centre of gravity

E{x} = (E{x1}, E{x2}, . . . ,E{xm})
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What is the ‘average’ case?

The expected value for a joint distribution of m random
variables x1, x2,...,xm is a point in an m–dimensional space
with coordinates given by expectations of each of the m

variables, and is called the centre of gravity

E{x} = (E{x1}, E{x2}, . . . ,E{xm})

For our data, this is the expected case (i.e the average case)

E{Case} = (E{Age}, E{Gender}, . . . ,E{C. score})
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MEASURES of DISPERSION

Answer questions such as ‘What is the range of the variable?’,
‘What risk is associated with the variable?’

We can compute the average deviation from the expected
value

E{|x − E{x}|} =
n

∑

i=1

|Xi − E{x}|P(Xi )

Or the average squared deviation, called the variance

Var{x} = E{|x − E{x}|2} =
n

∑

i=1

|Xi − E{x}|2P(Xi )

Standard deviation is Sdev{x} =
√

Var{x}
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3 Then we multiply each by P(Age) = 1
5 , and their sum gives

the variance

Var{Age} =
1

5
((21 − 30, 4)2 + · · · + (40 − 30, 4)2) = 154, 64



MEASURES of DISPERSION (cont.)

Example

Find Var{Age} and Sdev{Age}?

1 Earlier we found E{Age} = 30, 4.
2 We need to find squared deviations from 30,4.

(21 − 30, 4)2
, (18 − 30, 4)2

, (50 − 30, 4)2
, (23 − 30, 4)2

, (40 − 30, 4)2

3 Then we multiply each by P(Age) = 1
5 , and their sum gives

the variance

Var{Age} =
1

5
((21 − 30, 4)2 + · · · + (40 − 30, 4)2) = 154, 64

4 Standard deviation is a square root of the variance

Sdev(Age) =
√

154, 64 = 12, 44
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COVARIANCE

Compares concentration of one variable with respect to
another.

If x and y are two random variables, then their covariance is

Cov(x , y) = E{(x − E{x})(y − E{y})}

Note that Cov(x , y) = Cov(y , x) and Cov(x , x) = Var{x}

If x and y have ‘similar’ values, then E{x} ≈ E{y} and

Cov(x , y) ≈ Var{x} ≈ Var{y}

If x and y are not ‘similar’, then Cov(x , y) ≈ 0
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CORRELATION

The ratio of covariance with respect to variances of each
variable is called correlation

Corr(x , y) =
Cov(x , y)

√

Var{x}Var{y}

If x = y , then Corr(x , y) = 1 (for Cov(x , x) = Var{x})

Correlated Uncorrelated Anticorrelated

Corr(x , y) = 1 Corr(x , y) = 0 Corr(x , y) = −1



CORRELATION MATRIX

Correlations (or covariances) can tell us how ‘similar’ are two
random variables.

Age Gender Income Expenses H. owner C. score

Age 1,0 0,6 0,9 0,6 0,4 0,5

Gender 0,6 1,0 0,2 1,0 -0,2 -0,3

Income 0,9 0,2 1,0 0,2 0,7 0,9

Expenses 0,6 1,0 0,2 1,0 -0,2 -0,3

H. owner 0,4 -0,2 0,7 -0,2 1,0 0,9

C. score 0,5 -0,3 0,9 -0,3 0,9 1,0



CORRELATION MATRIX

Correlations (or covariances) can tell us how ‘similar’ are two
random variables.

Below is the correlation matrix showing correlations of each
pair of variables in our database

Age Gender Income Expenses H. owner C. score

Age 1,0 0,6 0,9 0,6 0,4 0,5

Gender 0,6 1,0 0,2 1,0 -0,2 -0,3

Income 0,9 0,2 1,0 0,2 0,7 0,9

Expenses 0,6 1,0 0,2 1,0 -0,2 -0,3

H. owner 0,4 -0,2 0,7 -0,2 1,0 0,9

C. score 0,5 -0,3 0,9 -0,3 0,9 1,0
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DECISION-MAKING UNDER UNCERTAINTY

If the outcomes of decisions are not certain, then the
knowledge of the utility function is not sufficient for making
choices.

If we know probabilities of utilities for different decisions, then
we can ‘predict’ (estimate) the utilities and choose according
to the best prediction.

There are many ways to estimate (predict) using probabilities.
The most popular are using the expected value and the
maximum likelihood (the most probable value).
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In brief, choose the decision that yields the highest
expectation.

If U1, U2,...,Un are the possible utility values (i.e. the
outcomes), and P(U1), P(U2),...,P(Un) are their probabilities,
then we can compute the expected utility

E{u} = U1P(U1) + · · · + UnP(Un)



MAXIMUM EXPECTED UTILITY PRINCIPLE

In brief, choose the decision that yields the highest
expectation.

If U1, U2,...,Un are the possible utility values (i.e. the
outcomes), and P(U1), P(U2),...,P(Un) are their probabilities,
then we can compute the expected utility

E{u} = U1P(U1) + · · · + UnP(Un)

If d1 and d2 are two alternative decisions, then we choose d1 if

E{u | d1} ≥ E{u | d2}
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Lottery A, in which you can win $1000, but also you may
loose $100;
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Example

Lottery A, in which you can win $1000, but also you may
loose $100;

Lottery B, in which you can win $100, but you can loose $10.

Suppose also that the probability of winning in both lotteries
is 1

2

E{u | A} = $1000
1

2
− $100

1

2
= $450

E{u | B} = $100
1

2
− $10

1

2
= $45

Thus, we prefer A to B.
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SUMMARY

Probability allows us to understand our data better

The analysis of probabilities can show that some events or
variables are not independent, and therefore the data is not
entirely random (i.e. the uncertainty is not so great).

For businesses, the information from their corporate data can
lead to a discovery of new knowledge.

This process is often called knowledge discovery in databases
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