Lecture 15: Social Network Analysis and Communities of Practice

Dr. Roman V Belavkin

BIS4410

Contents

1	Communities of Practice	1
2	CoPs and Social Network Analysis	2
Re	References	

1 Communities of Practice

Communities of practice

Definition 1 (Community of practice). A group of people with common identity, professional interests, and who share, participate and establish a fellowship.

- CoP may share electronic or virtual workspace, such as a part of the organisation's intranet.
- CoP can be facilitated by e-mail lists, user groups, discussion boards, wiki, community yellow pages and other forms.
- Many organisations have CoPs

Common Characteristics of COP

Joint enterprise : personal and community's goals

Mutual engagement : based on trust, interest, credibility, professionalism, ethics

Shared repertoire : shared workspace and knowledge repository

Types of CoPs

CoPs can be described by

- A common function (e.g. profession, industry, long-standing problem)
- Goals (e.g. development of standards, benchmarking)
- Self-organised or sponsored
- Recognition: unrecognised, bootlegged, legitimised, supported, and institutionalised
- •

Roles and Responsibilities in CoPs

- Kim (2000) lists the following key roles:
 - visitor
 - novice
 - regular
 - leader
 - elder
- Nickols (2000) defines the following roles:
 - champion
 - sponsor
 - facilitator
 - practice leader
 - knowledge service centre or office (KSO)
 - member.

2 CoPs and Social Network Analysis

Social Network Analysis and Graphs

• Social network analysis (SNA) is aimed at measuring and mapping the relationships and information flows between people in CoPs.

• Social network can be represented as a *graph*, in which nodes (vertexes) represent *actors* and links (edges, arrows) represent their *interdependencies*

Graphs

Definition 2 (Graph). G = (V, E) is a set $V = \{v_1, \ldots, v_n\}$ of vertexes (or nodes) and a set $E = \{e_1, \ldots, e_m\}$ of edges (or links) between the vertexes.

Definition 3 (Path). A sequence (v_0, \ldots, v_l) of vertexes, such that each (v_k, v_{k+1}) is an edge in G = (V, E).

Definition 4 (Distance). d(v, w) between two vertexes v, w is the number of edges in the shortest path (v, \ldots, w) .

Definition 5 (Connected graph). if there is a path (v, \ldots, w) between *each* pair of vertexes v, w.

Example: Collaboration graphs

- If two persons v and w have collaborated, then there is an edge (v, w) the collaboration graph G = (V, E).
- Movie actors appearing in the same film are linked in the collaboration graph, known as the *Hollywood graph*
- Mathematicians who have co-authored a paper are linked in the *Erdös* graph. See

http://www.ams.org/mathscinet/collaborationDistance.html

k-Regular Graphs

Definition 6 (Degree). of vertex $v \in V$ of the graph G = (V, E) is a number of vertexes $w \in V$ connected to $v \neq w$.

Definition 7 (k-Regular graph). if each vertex $v \in V$ is connected to k other vertexes (i.e. has degree k)

Definition 8 (Complete graph). if there is an edge $(v, w) \in E$ for each pair vertexes $v, w \in V$.

Question 1. • What is the distance between v and w in a complete graph?

- Is a complete graph regular?
- What happens if you remove a vertex from a complete graph?

Centrality of an Actor (Node) in a Social Network

Degree : counts the number of links with other nodes (actors)

Closeness : the inverse of the total (sum) distance of the node to other nodes.

- **Betweenness** : counts the number of shortest paths (v, \ldots, w) that pass through the node.
- **Bridge** : an edge $(v, w) \in E$ such that deleting it makes v and w be in different components of the graph.

Directed Graphs

Definition 9 (Directed Graph). G = (V, A) is a set $V = \{v_1, \ldots, v_n\}$ of vertexes (or nodes) and a set $A = \{a_1, \ldots, a_m\}$ of arrows (ordered pairs) between the vertexes.

Definition 10 (In- (Out-)Degree). of vertex $v \in V$ of the directed graph G = (V, A) is a number of arrows $(w, v) \in A$ ending at v $((v, w) \in A$ starting v).

Definition 11 (Sources and Sinks). A *source* is a vertex $v \in V$ in directed graph G = (V, A) with zero in-degree. A *sink* is a vertex with zero out-degree.

SNA Tools

Some common tools and software:

- AllegroGraph http://www.franz.com/agraph/
- CFinder http://www.cfinder.org/
- C-IKNOW http://ciknow.northwestern.edu/
- Idiro SNA Plus http://www.idiro.com/
- NodeX foe Excel http://nodexl.codeplex.com/
- NetMiner http://www.netminer.com/
- SocNetV http://socnetv.sourceforge.net/

Additional Reading

1. Wey, Blumstein, Shen, and Jordán (2008)

Social network analysis of animal behaviour: a promising tool for the study of sociality

2. Abbasi, Altmann, and Hossain (2011):

Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures

References

- Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of coauthorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. *Journal of Informetrics*, 5, 594-607.
- Kim, A. (2000). Community building on the web. Berkeley, CA: Peachpit Press.
- Nickols, F. (2000). Community of practice start up kit. the distance consulting company. Available at http://home.att.net/ñickols/.
- Wey, T., Blumstein, D. T., Shen, W., & Jordán, F. (2008). Social network analysis of animal behaviour: a promising tool for the study of sociality. *Animal Behaviour*, 75, 333–344.