Lecture 13: Decision-Making and Decision Support Systems

Dr. Roman V Belavkin

BIS4410

Contents

1	Decision Support Systems	1
2	Motivation for data-driven modelling	2
3	Techniques and applications for data-driven modelling	3
R	eferences	7

1 Decision Support Systems

Decision Support Systems

Definition 1 (Decision Support Systems (DSS)). Information systems designed to support mangers and organisations in making-decisions

- Typical components:
 - 1. Database (local, shared, internal, external)
 - 2. Knowledge base (e.g. ontology, mathematical or statistical model)
 - 3. User interface
- DSS can be classified by levels: Operational, tactical, strategic (executive)

Remark 1. Closely related to DSS are the Management Support Systems (MSS)

Multivariate Data and Databases

Data-driven models

Data is used as input to data-driven models

2 Motivation for data-driven modelling

Hidden relations in data

• Suppose you observe the following data:

$$\begin{array}{cccc}
x & y \\
\hline
0 & 1 \\
1 & 2 \\
2 & 4 \\
3 & 8
\end{array}$$

• Can you suggest what should be the next value of y?

$$\frac{x \quad y}{4 \quad ?}$$

• You may have concluded that x and y are related by

$$y = 2^x$$

• Would it be useful to know y for each x?

Hidden relations in data

• Suppose you observe the following GBP/EUR rates:

Today	Tomorrow
0.89513	0.89966
0.89966	0.89934
0.89934	0.89963
0.89963	0.89771

• Can you suggest what should be the next value of y?

Today	Tomorrow
0.89771	?

- Is there a relationship between x (today) and y (tomorrow) rates of GBP/EUR?
- Would it be useful to know y for each x?
- Hint: Consider buy or sell decisions.

3 Techniques and applications for data-driven modelling

Data-Mining

Definition 2 (Data-mining). is the process of analysing large datasets to discover new patterns and knowledge about the underlying phenomena.

- Data is analysed and used to
 - Make predictions
 - Provide explanations
- This helps to make informed and better decisions

Remark 2 (Structured and unstructured of data). Data can be

Structured : numerical, ordinal, nominal

Unstructured : text, audio, video

Techniques used for structured DM

- Statistical modelling of relationships in data:
 - logistic regression
 - linear regression
 - non-linear regression
 - neural networks

Table 1: GBP/EUR rates 4-8 Jan, 2010

Date	Today	Tomorrow
2010/01/04	0.89513	0.89966
2010/01/05	0.89966	0.89934
2010/01/06	0.89934	0.89963
2010/01/07	0.89963	0.89771
2010/01/08	0.89771	?

- Clustering and classification
 - hierarchical clustering
 - k-means clustering
 - self-organising maps
- Factor analysis and complexity reduction
 - principle component analysis
 - independent component analysis
 - blind source separation

Linear regression: Detecting trends

If there are just two variables x (e.g. 'Today') and y (e.g. 'Tomorrow'), then we can use a function f(x) of one variable to model y:

Tomorrow $\approx f(\text{Today})$

GBP / EUR Exchange rates

For example, we can use linear model with parameters \boldsymbol{a} (intercept) and \boldsymbol{b} (slope):

$$y \approx f(x) = \mathbf{a} + \mathbf{b} x$$

\mathbf{C}	lustering	and	classification
--------------	-----------	-----	----------------

Case:	Age	Gender	M. Income (£	M. Expenses	Home	Credit
			K)	(£ K)	owner	score
1	21	0	2	1	0	3
2	18	1	1	2	0	1
3	50	1	6	2	1	5
4	23	0	3	1	1	4
5	40	1	3	2	0	2

- **Clusters** are groups of points close to each other.
- One of the main goals of **multivariate analysis** is to find clusters of points.

• 'Similar' customers would have small distance between them and would belong to the same group (cluster).

Main DM applications

Free :

- R Statistics and programming language
- Orange
- RapidMiner
- Weka

Commercial :

- SAS Enterprise Miner
- $\bullet \ {\rm SPSS}$
- IBM InfoSphere
- $\bullet\,$ Oracle DM
- Microsoft Analysis Services

Some other modelling techniques

- Numerical optimisation (linear programming, convex programming)
- Combinatorial optimisation (genetic algorithms, particle swarm filters)
- Stochastic simulation (Monte-Carlo models)
- Text-mining

Additional Reading

1. Metaxiotis and Psarras (2004):

The contribution of neural networks and genetic algorithms to business decision support: Academic myth or practical solution?

References

Metaxiotis, K., & Psarras, J. (2004). The contribution of neural networks and genetic algorithms to business decision support: Academic myth or practical solution? *Management Decision*, 42(2).