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1 Metric Spaces

Metric Spaces
Let X be a set. How can we compare the elements of X?

Definition 1 (Metric). is a function d : X x X — R that is
1. Non-negative: d(z,y) >0, and d(z,y) =0 iff © = y.
2. Symmetric: d(z,y) = d(y, x).
3. Triangle inequality: d(z,y) < d(z,z) + d(z,y).
Definition 2 (Metric space). is a pair (X,d) — a set X with a metric d.

Ezample 3 (Discrete space). Let d be defined as

1 ifz
d(””’y):{ 0 ifxiz

Metrics in Vector Spaces

e An m-dimensional real vector space is denoted R™
e Elements of R™ are called vectors.

e Each vector x € R™ is a point in the space represented by its coordinates:

X:(xla"'amm)



e Each coordinate is a real number z; € R.

e Note that coordinates are relative to a chosen basis.
Ezample 4. In R! (one-dimensional space or a line) points are represented by
just one number, such as x = (2) or y = (—1).
Ezample 5. In R? (three-dimensional space) points are represented by three
coordinates x1, 9 and x3, such as x = (2,1, 3).
Metrics on Vectors

e How can we compute the distance between different vectors?

e For two vectors x = (21,...,2m,) and y = (y1,.-.,¥m) € R™, we can
compute the differences of their coordinates:

— Y1, T2—1Y2, Tm — Ym

e Computation of metrics in vector spaces often uses absolute values of the
differences:
lz1 —y1l,  [re —v2l, 0 |Tm — Yml

Ezample 6 (Taxicab (Manhattan) distance).
d(x,y) = |21 —y1l + |z2 — y2[ + - + [2m — Y|

Euclidean Distance

Definition 7 (Euclidean distance).

dx,y) = V]z1 — 12 + s — 122 + -+ [T — Yo |?

Remark 1 (Euclidean space). is vector space in which metric is given by Fu-
clidean distance.

Example 8. Let x = (2) and y = (—1) in R!. Then

Ix-yll=v(E@+1)?=3

Ezample 9. Let x = (2,-3) and y = (4,1) in R% Then

-yl = VI2—4P+]-3-1]

= V20~ 447



y lla-bj|

2 Data as Vectors in Metric Spaces
Data and Similarity

e A bank gathered information about its customers:

Case: | Age | Gender | M. Income (£ | M. Expenses | Home Credit
K) (£ K) owner score
1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

e We may consider each variable (age, gender, income, etc) as a coordinate
x; and each case as a vector in an m-dimensional space.



e What does a distance between the vectors represent?
e How far should be similar cases from each other?

e Which of the cases 1, 2, 3 or 4 is the most similar to case 57

Metric as a Measure of Dissimilarity
e The database corresponds to the following set of vectors:

(21,0,2,1,0,3)
(18,1,1,2,0,1)
(50,1,6,2,1,5)
(23,0,3,1,1,4)
(40,1,3,2,0,2)

N < X F <
I

e If there is a metric d, then we can find the distances from z:

d(z,v), d(z,w), d(z,x), d(z,y)

e The most similar to z is the ‘closest’ vector.

Remark 2. The choice of metric is important, because generally different met-
rics will produce different results.

3 The Clustering Problem

Clusters



Clusters

10 4

e Clusters are groups of points.
e The groups can be based on similarity, such as closeness.

e ‘Similar’ data would correspond to points that are close to each other and
would belong to the same group (cluster).

Definition 10 (Centroid). is the centre of gravity of a cluster X;, computed



as the average vector:

k-Means Clustering Algorithm

e Let X be a set of vectors in R™ (i.e. data)

e The goal of the k-means algorithm is to partition X into k clusters X1, ...

represented by k centroids (means):
M1, M2, B y Mk

e The following is an outline of the k-means algorithm:

1. Select the number of clusters k

2. Define metric d on X

3. Choose at random k vectors ui, u2,..., g in R™
4

. Repeat
(a) Group x € X into clusters X1, X2,..., X} by computing d(u;,X).
(b) Compute new p1, p2,. .., pg as centroids:

H1=X1, H2:X2, cee s Hk:Xk
5. Until finished.

Output of k-Means

e The values (coordinates) of k centroids:

H1 = (l’117--~,$1m)
Mo = ($217.-~,$2m)
He = (Cvkh .- -,ka)

» Xk,

e The partition of X: an assignment of each vector in X (data) to one of k

clusters:
33312121121

o Other information about the clusters (e.g. number of points, diameter).



