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1 Sets and Operations on Sets

Sets

Definition 1. A set is a collection of objects of some kind with a common
property that, given an object and a set, it is possible to decide if the object
belongs to the set.

• We denote elements of a set by lower case letters (e.g. x, y, z, . . . ) and sets
by upper case (e.g. X, Y, Z, . . . ).

• x ∈ X means ‘x belongs to set X’

Example 2. Let A = {apple, orange, lemon}. Then ‘orange’ ∈ A and ‘cucumber’ /∈
A.

Example 3. Let X = {x1, . . . , x10}. Then x2 ∈ X and x100 /∈ X.
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How to Write Sets

• Enumerating elements of the set:

X = {a, b, c} , Y = {1, 3, 5, 7, 9}

• Set comprehension
X = {x : P (x)}

where : means ‘such that’ and P (x) is a rule that describes the common
property.

Example 4. Set Y can be written

Y = {y ∈ N : x < 10 and x is odd}

Example 5.

P = {p : p is a prime number}
Y = {y : y = x2, x ∈ R}

Subsets
If every element of set A is also an element of set B, then we write A ⊆ B

or A ⊂ B.

⊂ subset (proper)
{a, b, c} ⊂ {a, b, c, d}

⊆ subset or equal
{a, b, c} ⊆ {a, b, c}

≡ equivalence of sets

A ≡ B is A ⊆ B and A ⊇ B

Remark 1. • Empty set ∅ = {} is a subset of any other set ∅ ⊆ A.

• Any set is a subset of itself A ⊆ A.

Set Unions and Intersections
Let A and B be two sets, then A∪B is their union, A∩B is their intersection.

∪ the result has all elements of both sets (belong to A or B)

{a, b, c} ∪ {b, c, d} = {a, b, c, d}

∩ the result has only the elements that are in both sets (belong to A and B)

{a, b, c} ∩ {b, c, d} = {b, c}

Remark 2. Intersection of sets is always a subset of their union:

(A ∩B) ⊆ (A ∪B)
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Special Sets
L. Kronecker:

God gave us the integers; the rest is the work of Man

∅ = {} an empty set

N = {1, 2, . . . } set of natural numbers

Z = {0,±1,±2, . . . } set of integer numbers

Q = {0, 1,− 1
2 , 20

7 , . . . } set of rational numbers

R = {0,−1, 3.1, π, e, . . . } set of real numbers

C = {1 + i1,−1 + i3.4, . . . } set of complex numbers

Remark 3. All above sets apart from ∅ have infinite number of elements.

Properly Formed Sets
Russell’s paradox (after Bertrand Russell, 1872–1970)
A barber in a village put a note:

‘I shave everybody who does not shave themselves’

Question 1. Does the barber shave himself?

The following sentence is false The previous sentence is true

2 Correspondences and Mappings between Sets

Direct (Cartesian) Product

Definition 6 (Cartesian product). If A and B are two sets, then A × B is a
set with elements (a, b), where a ∈ A and b ∈ B.

Example 7. Let A = {α, β, γ}, B = {0, 1}. Then

A×B = {(α, 0), (β, 0), (γ, 0), (α, 1), (β, 1), (γ, 1)}
Remark 4. The order is important:

A×B 6= B ×A

Correspondences

Definition 8 (Correspondence). Is any subset R ⊆ A × B. The domain and
image (range) of R are:

domR = {a ∈ A : (a, b) ∈ R} , imR = {b ∈ B : (a, b) ∈ R}
Inverse correspondence is R−1 = {(b, a) : (a, b) ∈ R}
Example 9. Let R = {(α, 0), (γ, 1)}. Then

domR = {α, γ} , imR = {0, 1}
and R−1 = {(0, α), (1, γ)}
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Functions (Mappings)

Definition 10 (Function (mapping)). A function (mapping) from X into Y

f : X → Y , or y = f(x)

is a correspondence f ⊂ X × Y , such that domR = X, and for each x ∈ X
precisely one y ∈ Y is associated.

Example 11. y = x2 is a function, while y =
√

x is not.

Classification of Mappings

Definition 12. A mapping f : X → Y is called

• Surjective (or onto Y ) if imf = Y .

• Injective (or one–one) if f(x1) = f(x2) only if x1 = x2 (i.e. distinct
elements have distinct images).

• Bijective (or one–one correspondence) if f is both surjective and injective.

If a mapping is bijective, then there exists an inverse mapping

f−1 : Y → X

Example 13. Linear function y = α + βx is bijective, and its inverse is x =
β−1(y − α).
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