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MOTIVATION

e Humans and animals always express some degree of
randomness in their choice behaviour (Myers, Fort, Katz, &
Suydam, 1963)

e Cognitive architectures add noise into utility to model the

‘irrational’ component (e.g. ACT-R, Anderson & Lebiere, 1998)

e Noise seems to play an important role optimising the behaviour
(Belavkin & Ritter, 2003)

e The expected utility theory leads to many unexplained paradoxes.
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EXPECTED UTILITY THEORY

e The classical decision—making theory is due to Bernoulli
(1738/1954), von Neumann and Morgenstern (1944), Savage
(1954) and Anscombe and Aumann (1963).

e The central idea is to represent preferences by some utility

functionu : X — R
r -y < u(r)>uly),

e Under uncertainty, the expected utilities (EUs) are considered

p-q <= Y p2)u(z) > q(z)u(z),

ze/ z€Z

where Z is a set of prizes, P a set of probability measures.
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Due to Allais (1953). Also studied by Tversky and Kahneman (1974)
in many interpretations. Consider two lotteries A and B

THE ALLAIS PARADOX

1 $300 | $100
3

wWinNo

$0 0 $0

1 2
w.%wooan.%on%So 1-%$10040-%0 = $100

About 80% of subjects express preference A < B.

Professional traders behave this way too (List & Haigh, 2005).
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THE MAX EU PRINCIPLE

e Many paradoxes occur when we try to apply

© = arg max me@ _@i&

e For Gaussian distributions, F{u} corresponds to max P(u)

P(u) Normal

E{u}
Utility U(2)
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NON-GAUSSIAN DISTRIBUTIONS
e Ingeneral, E{u} # arg max P(u)
P(u) Bimodal

E{u}

Utility U(2)

e Often, E{x} ¢ X, suchas $100 ¢ {30, $300}
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EXPLORATION vs EXPLOITATION

e Distributions P* an agent uses may be only approximations of
the objective probabilities P, and E*{u} # FE{u}.

P(U) Utility distributions

— Objective
— Subjective

E{u} E*{u}

Utility U(2)

e Is max F'{u} a good sampling strategy?

e Distributions P(z) may depend on the agent’s actions.
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RANDOM DECISION-MAKING

e Instead of ) ,_p(z | x)u(z), we canuse p(z | =) to draw 2
randomly (i.e. Monte—Carlo). The utility of this outcome is called

random utility u(z), and it can be used to choose x

r = argmax u(z) , where z < p(z | x)
reX

e Sampling can be implemented using the inverse PDF method

Outcome = F~*(p), wherep € (0,1)

e On average, z = arg max p(z2)
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THE AGENT ARCHITECTURE
e The following decision—theoretic agents architecture is used
X ={x1,...,z;,} percepts
Y =A{yi,...,yn} preferences (e.g. Y = {success, failure })
Z  =A{z,...,2z} actions
e Transitions (;, y;, 2i) are recorded in M.

e Normalised i&w is used as a Markov transition model
P(X,Y,Z) = QNV where EN. = p(Ti,Y;, 2k).

e \We can use Bayesian inference

B B 1
P(Y | X,Z)=aP(X,Y,Z), wherea = 15

X, 2)|
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LEARNING

e The memory is initialised to is@. = [ = (1). Normalised, it
represents uniform distribution that yields maximum entropy

max H(X,Y,Z) =In(m x n x k) (i.e. no information).

® The preference relations influence the action selection

mechanism, which makes X, Y and Z statistically dependent.

e Mutual information can measure this dependence

[(X,Y,Z)=H(X)+HY)+ H(Z)— H(X.,Y, Z)
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THE EXPERIMENT

Om mm

4 5

O =mm

1 2 3

Preferences:

e The rewards appear randomly according to some distribution law

and at different rates.

e The performance of agents can be measured and compared by

the number of rewards they manage to collect.

Percepts:

Actions:

X =A{x1,...,25}

Y = {success, failure }

Z = {left, stay, right }
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ACTION SELECTION

Three agents were used in tests. The only difference was how actions

were selected from Z

max EU
Z = arg MW@W M Py |z, 2)u(y)
yey
rand Act
z— p(z | z,arg max u(y))
rand U

z = arg maxu(y), wherey «— p(y|z,2)
z€4
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COMPLETELY RANDOM WORLD

Rewards appear without any pattern (i.e. uniformly).

max EU Rand Act Rand U
P(X) P(X) P(X)
—1 | [ ] T ]
X X X
P(Z] X) P(Z] X) P(Z] X)

—= Left —= Left —= Left
= Stay = Stay mm Stay
== Right == Right == Right

X X T
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PERFORMANCE (NO PATTERN)

Rewards Random pattern
100% A

50% A
oee Max EU
¢4 Rand U
o0 Rand Act

0% -

min max
Rewards frequency

The random agents are not doing too bad!
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MUTUAL INFORMATION (NO PATTERN)

1(X,Y,2) Random pattern
0.5 1

eee Max EU
¢ Rand U

o0 Rand Act
0.25 A

—F —
S

min max
Rewards frequency
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REGULAR PATTERN (POOR)

Rewards appeared according to {0,1,0,1,0}

max FEU Rand Act Rand U
P(X) P(X) P(X)
— — 1 +—— — _ [ ]
X X X
PzlX) — Left Pzl —= Left PzlX) — Left
= Stay = Stay = Stay
—= Right —= Right —= Right

-
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PERFORMANCE (REGULAR 1)

Rewards Poor pattern
100% A

oo \ax EU
¢ Rand U
i1 Rand Act

50% A

0% -

min max
Rewards frequency

The random agents outperform max £U almost 2:1.
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MUTUAL INFORMATION (REGULAR 1)

1(X,Y,2) Poor pattern
0.5 1

eeoe |\ax EU

¢ Rand U
o0 Rand Act

0.25 A

min max
Rewards frequency
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REGULAR PATTERN (RICH)

Rewards appeared according to {1,0,1,0,1}

max KU Rand Act Rand U
P(X) P(X) P(X)
) — ] _
X X X
Pl — Left Pl — Left Pl — Left
= Stay = Stay = Stay
—= Right —= Right —= Right

e
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PERFORMANCE (REGULAR 2)

Rewards Rich pattern

e eeo Max EU

¢ Rand U
H1 Rand Act

50% A

0% -

min max
Rewards frequency

Again, random outperform max EU as much as 2:1.
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MUTUAL INFORMATION (REGULAR 2)

1(X,Y,2) Rich pattern

0.5 -
eeoe |\ax EU
¢ Rand U
o+ Rand Act

0.25 -

o Jo———————o—"
min max

Rewards frequency
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INVERSE PDF (A and B)

F(U) PDF Lottery A F(U) PDF Lottery B
1- 1-
0 0 - . .
$0 $300 $0 $100
U U
Utility  Utility A and B
- —1
Utility = F'~(P) 5300 -
RU4 < RUpg 2 out of 3 times, which ¥ ]
: : $100 -
supports experimental evidence
8 ) r T T 1
A< B 0 13 2/3 1

Probability
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CONCLUSIONS

Here, the max F/U method turned to be inferior to the

Monte—Carlo methods.

The random agents not only maximise the utility, but also sample

the distributions (exploration vs exploitation).

Monte—Carlo methods use all statistics (not just £).

Random d.m. accommodates better human choice behaviour.
The inverse PDF provides some clues for the Allais paradox.

Should we go back to the game theory? (e.g. the Prisoners’

dilemma)
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