Do neural models scale up to a human brain?

Roman V. Belavkin (r.belavkin@mdx.ac.uk)

School of Computing Science, Middlesex University, London NW4 4BT, UK

August 27, 2007

MOTIVATION

 Understanding the main function of an object can give us understanding about its organisation

Example Engine of a car — one function, different constraints, many implementations.

- What is the main function of the brain?
- Cognitive architectures (ACT-R, SOAR) operate at a high (macro) level. Neural models operate at a low (micro) level.
- Can these models explain or predict macroscopic data about the brain? (e.g. why 10^{11} neurons in the human brain?)
- Are our neural models sufficient? (many are necessary)

Central (CNS)	Peripheral (PNS)
Brain (10^{11} neurons)	Somatic voluntary control
• Forebrain ($2 \cdot 10^{10}$ neocortex)	Autonomic (ANS)
Midbrain	 Sympathetic (fight or flight)
Hindbrain	 Parasympathetic (rest and di-
Spinal cord (10^9)	gest)
	• Enteric (10^9)

 $\mathsf{PNS} \longrightarrow (\mathsf{inputs})^m (\mathsf{CNS})^S (\mathsf{outputs})^n \longrightarrow \mathsf{PNS}$

PNS connects CNS to the outside world through 12 pairs of *cranial* and 31 pairs of *spinal* nerves.

CRANIAL NERVES (12	pairs)
-------------------------	----	--------

Nerve:	Afferent (IN)	Efferent (OUT)	Fibres
olfactory	smell		$1.2 \cdot 10^7$
optic	vision		$1.2 \cdot 10^7$
vestibulocochlear	hearing, balance		$3.1 \cdot 10^4$
oculomotor		eye, pupil size	$3\cdot 10^4$
trochlear		eye	$3 \cdot 10^3$
abducens		eye	$3.7 \cdot 10^3$
hypoglossal		tongue	$7 \cdot 10^3$
spinal-accessory		throat, neck	?
trigeminal	face	chewing	$8.1 \cdot 10^3$
facial	2/3 taste	face	10^{4}
glossopharyngeal	1/3 taste, blood pressure	throat, soliva secreation	?
vagus	pain	heart, lungs, abdominal, throat	?

(Bear, Connors, & Paradiso, 2007; Poritsky, 1992)

 $m_c \approx 4.81 \cdot 10^7$, $n_c \approx 1.45 \cdot 10^5$

Nerves:	Number
cervical	8
thoracic	12
lumbar	5
sacral	5
соссух	1

SPINAL NERVES (31 pairs)

- Spinal nerves are both sensory and motor
- $\bullet\,$ There are 10^9 neurons in spinal cord

$$m_s = n_s \approx 2 \cdot 31 \cdot 4.5 \cdot 10^3 = 2.8 \cdot 10^5$$

 $1, 1 \cdot 10^6$ fibres in pyramidal decussation (motor fibres which pass from the brain to medulla)

MY ESTIMATES

$$m = m_c + m_s \approx 4.84 \cdot 10^7 \quad (3 \cdot 10^8)$$

 $n = n_c + n_s \approx 4.26 \cdot 10^5 \quad (9, 8 \cdot 10^5)$

 $2,5\cdot 10^8$ fibres in corpus callosum (connects the left and right cerebral hemispheres).

Important:

- $m \gg n$
- $S \gg m, \, n$, where $S pprox 10^{11}$ (n. of neurons in the brain)
- $k \ll m$, where $k \in [10^3, 10^4]$ (n. of synapses)

HYPOTHESES

What could be the main function of neurons and the CNS?

- Optimal estimation and control
- Optimal abstract model
- Optimal information coding

OPTIMAL ESTIMATION and CONTROL

Let $x \in X$ be unobserved state of the world with preferences induced by $c: X \to \mathbf{R}$ (cost function).

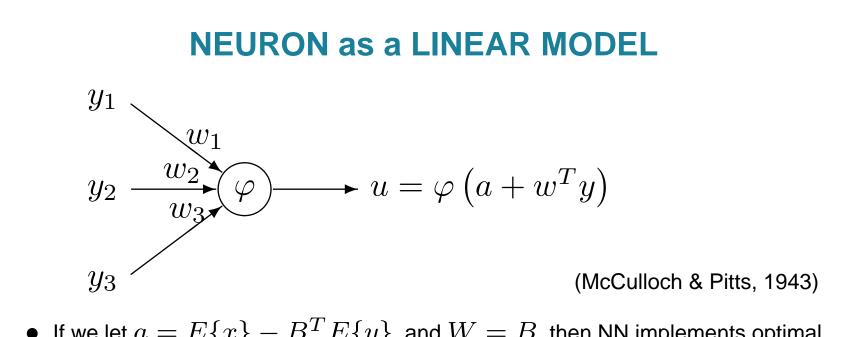
Let $y \in Y^m$ be observed, $u \in U^n$ the estimate or control. The optimal

$$u^{*}(y) = \arg \min_{u(y)} E\{c(x, u(y)) \mid y\}$$
$$= \arg \min_{u(y)} \int c(x, u(y)) P(\mathrm{d}x \mid y)$$

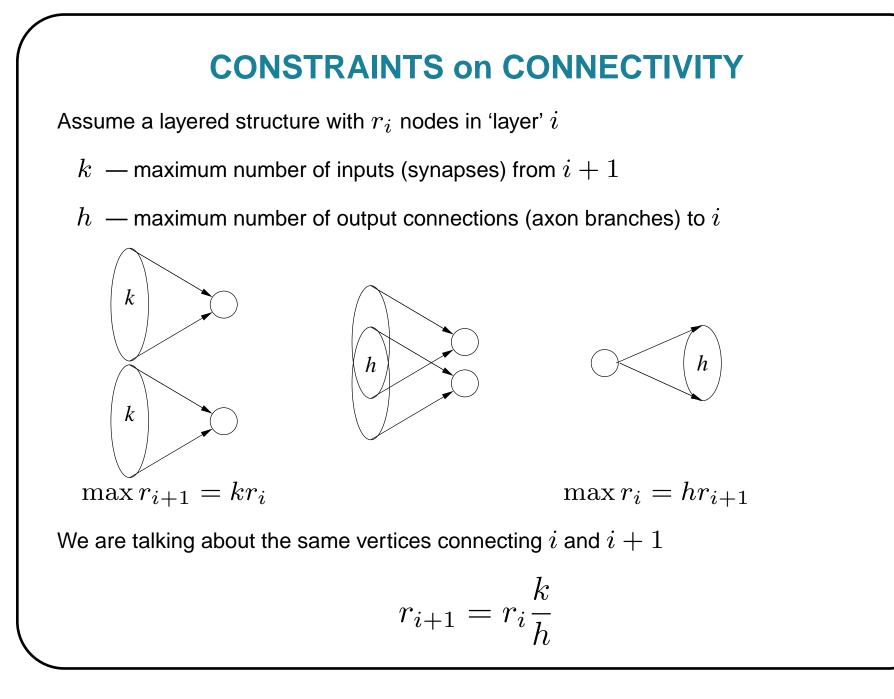
For quadratic cost (e.g. $c = |x - u(y)|^2$) the optimal is

$$u^*(y) = E\{x \mid y\} \approx E\{x\} + B^T(y - E\{y\})$$

For Gaussian x, linear is optimal (Stratonovich, 1959; Kalman & Bucy, 1961)



- If we let $a = E\{x\} B^T E\{y\}$, and W = B, then NN implements optimal linear transformation (estimation or control).
- Hebbian learning $w_i pprox eta_i(y,u)$ (Hebb, 1955; Sejnowski, 1977)
- Principal or independent components analysis using NN (Oja, 1982; Hyvärinen & Oja, 1998), self–organising maps (Kohonen, 1982)
- It is possible to do linear $u: Y^m \to U^n$ with a single layer (S = 0) of n neurons with k = m (but $k \ll m$)



PARTIALLY CONNECTED FORWARD NETWORKS

Using boundary conditions $r_0 = n$, $r_i = n \left(\frac{k}{h}\right)^i$, $r_{l+1} = m$. Thus

$$m\left(\frac{h}{k}\right)^{l+1} = n$$

The number of layers (the order of connectivity)

$$l = \frac{\ln m - \ln n}{\ln k - \ln h} - 1 \tag{1}$$

Total number of hidden nodes

$$S = \sum_{i=1}^{l} r_i = n \sum_{i=1}^{l} \left(\frac{k}{h}\right)^i = m \sum_{i=1}^{l} \left(\frac{h}{k}\right)^i \tag{2}$$

$\textbf{ESTIMATING} \ l \ \textbf{and} \ S$

• Set
$$m=4.84\cdot 10^7$$
, $n=4.26\cdot 10^5$

$$\bullet~$$
 For $\frac{h}{k}=.9995,$ using (1) and (2) we get
$$l=9461~,\qquad S=0.96\cdot 10^{11}$$

• Note that
$$h, k \in \mathbf{N}$$
, and if k is minimised, $\frac{h}{k}$ maximised, then $h = k - 1$.

• For
$$\frac{h}{k} = .9995$$
, we have

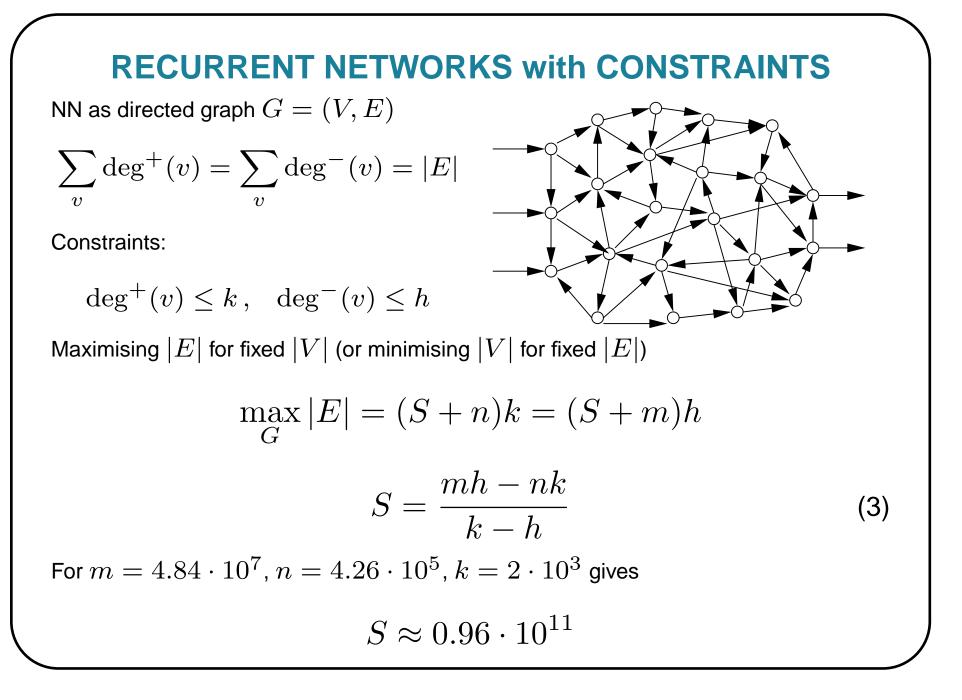
$$k = 2 \cdot 10^3$$

• Recall that $k \in [10^3, 10^4]$ (n. of synapses of an average neuron)

OPTIMAL NONLINEAR FILTERING

 $\max u(y)$

- Several linear units with an extra layer can approximate nonlinear functions.
- Optimal linear algorithms require only the first two moments, but are optimal only for Gaussian *P*. Similar algorithms are optimal in the sense of max *P* and suitable for non-linear problems (Stratonovich, 1959).
- For small k, P on $Y^k \subset Y^m$ the Gaussian approximation can be sufficient.
- Small $k \rightarrow$ faster convergence.
- The sum of Dirac δ -measures (i.e. Gaussians with $\sigma^2 = 0$) can be used to approximate any P.



OPTIMAL ABSTRACT MODEL

- Directed graph, G = (V, E), can represent an abstract model. Each link between two nodes is a binary relation, and a path of l nodes between input and output nodes can be seen as l-operator between y and u.
- Fully connected directed graph represents Cartesian product $Y \times \cdots \times U$ all possible relations (not interesting).
- The mind can be seen as a subset $G \subset Y \times \cdots \times U$ representing the most important operators.

OPTIMAL INFORMATION CODING

- Consider CNS as a function of random variable, $u: Y^m \to U^n$.
- If u(y) is not an isomorphism, then information contained in y is generally destroyed ($|Y|^m \ge |U|^n$).
- For entropically stable y, we only need to encode

$$e^{H_y} \le |Y|^m$$
, (where $H_y = -E\{\ln P(y)\}$)

 $\bullet\,$ The optimal code approaches uniform P(u) such that

$$\max_{P(u)} H_u = |U|^n = e^{H_y} \le |Y|^m$$

• If |U| = |Y| (e.g. 2), then $n \leq m$, and still encodes all information.

NN for OPTIMAL CODING

 Many ANN algorithms maximise the entropy of the output. For example, ICA can be implemented using

$$u^*(y) = \arg\min_{u(y)} \left(\sum_{i=1}^n H_{u_i} - H_u\right)$$

The above minimum corresponds to maximum H_u (optimal coding).

- Linear ICA can be implemented using single layer network, which does not correspond to $S\approx 10^{11}$ and $k\approx 10^3$.
- The constraints on connectivity lead to 'multilayered' network, and therefore the brain may implement nonlinear u(y).

OPTIMAL CODING

- A network of S units has the capacity to communicate $|U|^S$ realisations.
- However, h units receive the same information, and the real capacity is $|U|^{S/h}$.
- Preserving information between input and output (perfect communication) means

$$|Y|^m = |U|^{S/h}, \qquad m = \frac{S}{h}$$
 (e.g. $|Y| = |U| = 2$)

 $\bullet\,$ Using our estimates of m and h, we obtain

$$S \approx .97 \cdot 10^{11}$$

CONCLUSIONS and DISCUSSION

• It is possible that the brain implements the optimal (nonlinear) control and optimal coding. Their combination is a familiar variational problem

$$F = \min_{P(du|x)} \left(E\{c(x, u(y))\} + \lambda E\{\ln P(du \mid x)\} \right) = R - TC$$

(Free energy)

- Are neural models **sufficient**? We need to consider:
 - Partially connected, multilayer (nonlinear) networks
 - Achieves maximum connectivity (or minimum number of nodes)
 - Local and bounded connectivity leads to cell–assemblies (Hebb, 1955) (may lead to topology preserving mapping like in SOM).
- A particular organisation of the brain is likely the result of optimisation due to additional constraints: Sensory (*m*), motor (*n*), h/k-ratio.

References

Bear, M. F., Connors, B. W., & Paradiso, M. (2007). *Neuroscience: Exploring the brain* (Third ed.). PA: Lippincott Williams & Wilkins.
Hebb, D. O. (1955). Drives and the C.N.S. (conceptual nervous system). *Psychological Review*, 62, 243–254.
Hyvärinen, A., & Oja, E. (1998). Independent component analysis by general nonlinear Hebbian–like learning rules. *Signal Processing*, 64, 301–313.

Kalman, R. E., & Bucy, R. S. (1961, December). New results in linear filtering and prediction theory. *Transactions ASME, Series D–J. Basic Engineering.*, 83, 94–107.

Kohonen, T. (1982). Self-organized formation of topologically correct

feature maps. *Biological Cybernetics*, *43*, 59–69. McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. *Bulletin of Mathematical Biophysics*, *5*, 115-133.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. *Journal of Mathematical Biology*, *15*, 267–273.
Poritsky, R. (1992). *Neuroanatomy: A functional atlas of parts and pathways*. Hanley & Belfus Inc.
Sejnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons. *Journal of Mathematical Biology*, *4*, 303–321.

Stratonovich, R. L. (1959). Optimum nonlinear systems which bring about a separation of a signal with constant parameters from noise. *Radiofizika*, 2(6), 892–901.