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MOTIVATION

• Understanding the main function of an object can give us

understanding about its organisation

Example Engine of a car — one function, different constraints,

many implementations.

• What is the main function of the brain?

• Cognitive architectures (ACT–R, SOAR) operate at a high (macro)

level. Neural models operate at a low (micro) level.

• Can these models explain or predict macroscopic data about the

brain? (e.g. why 1011 neurons in the human brain?)

• Are our neural models sufficient ? (many are necessary )
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ORGANISATION of HUMAN NERVOUS SYSTEM

Central (CNS) Peripheral (PNS)

Brain (1011 neurons)

• Forebrain (2·1010 neocortex)

• Midbrain

• Hindbrain

Spinal cord (109)

Somatic voluntary control

Autonomic (ANS)

• Sympathetic (fight or flight)

• Parasympathetic (rest and di-

gest)

• Enteric (109)

PNS −→ (inputs)m (CNS)S (outputs)n −→ PNS

PNS connects CNS to the outside world through 12 pairs of cranial

and 31 pairs of spinal nerves.
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CRANIAL NERVES (12 pairs)

Nerve: Afferent (IN) Efferent (OUT) Fibres

olfactory smell 1.2 · 10
7

optic vision 1.2 · 10
7

vestibulocochlear hearing, balance 3.1 · 10
4

oculomotor eye, pupil size 3 · 10
4

trochlear eye 3 · 10
3

abducens eye 3.7 · 10
3

hypoglossal tongue 7 · 10
3

spinal-accessory throat, neck ?

trigeminal face chewing 8.1 · 10
3

facial 2/3 taste face 10
4

glossopharyngeal 1/3 taste, blood pressure throat, soliva secreation ?

vagus pain heart, lungs, abdominal, throat ?

(Bear, Connors, & Paradiso, 2007; Poritsky, 1992)

mc ≈ 4.81 · 107 , nc ≈ 1.45 · 105
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SPINAL NERVES (31 pairs)

Nerves: Number

cervical 8

thoracic 12

lumbar 5

sacral 5

coccyx 1

• Spinal nerves are both sensory and motor

• There are 109 neurons in spinal cord

ms = ns ≈ 2 · 31 · 4.5 · 103 = 2.8 · 105

1, 1 · 106 fibres in pyramidal decussation (motor fibres which pass

from the brain to medulla)
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MY ESTIMATES

m = mc + ms ≈ 4.84 · 107 (3 · 108)

n = nc + ns ≈ 4.26 · 105 (9, 8 · 105)

2, 5 · 108 fibres in corpus callosum (connects the left and right

cerebral hemispheres).

Important:

• m ≫ n

• S ≫ m, n, where S ≈ 1011 (n. of neurons in the brain)

• k ≪ m, where k ∈ [103, 104] (n. of synapses)
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HYPOTHESES

What could be the main function of neurons and the CNS?

• Optimal estimation and control

• Optimal abstract model

• Optimal information coding
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OPTIMAL ESTIMATION and CONTROL

Let x ∈ X be unobserved state of the world with preferences induced by c : X → R

(cost function).

Let y ∈ Y m be observed, u ∈ Un the estimate or control. The optimal

u∗(y) = arg min
u(y)

E{c(x, u(y)) | y}

= arg min
u(y)

∫

c(x, u(y))P (dx | y)

For quadratic cost (e.g. c = |x − u(y)|2) the optimal is

u∗(y) = E{x | y} ≈ E{x} + BT (y − E{y})

For Gaussian x, linear is optimal (Stratonovich, 1959; Kalman & Bucy, 1961)
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NEURON as a LINEAR MODEL
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(McCulloch & Pitts, 1943)

• If we let a = E{x} − BT E{y}, and W = B, then NN implements optimal

linear transformation (estimation or control).

• Hebbian learning wi ≈ βi(y, u) (Hebb, 1955; Sejnowski, 1977)

• Principal or independent components analysis using NN (Oja, 1982; Hyvärinen &

Oja, 1998), self–organising maps (Kohonen, 1982)

• It is possible to do linear u : Y m → Un with a single layer (S = 0) of n

neurons with k = m (but k ≪ m)
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CONSTRAINTS on CONNECTIVITY

Assume a layered structure with ri nodes in ‘layer’ i

k — maximum number of inputs (synapses) from i + 1

h — maximum number of output connections (axon branches) to i

k

k

h h

max ri+1 = kri max ri = hri+1

We are talking about the same vertices connecting i and i + 1

ri+1 = ri
k

h
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PARTIALLY CONNECTED FORWARD NETWORKS

Using boundary conditions r0 = n, ri = n
(

k
h

)i
, rl+1 = m. Thus

m

(

h

k

)l+1

= n

The number of layers (the order of connectivity)

l =
lnm − lnn

ln k − lnh
− 1 (1)

Total number of hidden nodes

S =

l
∑

i=1

ri = n

l
∑

i=1

(

k

h

)i

= m

l
∑

i=1

(

h

k

)i

(2)
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ESTIMATING l and S

• Set m = 4.84 · 107, n = 4.26 · 105

• For h
k = .9995, using (1) and (2) we get

l = 9461 , S = 0.96 · 10
11

• Note that h, k ∈ N, and if k is minimised, h
k maximised, then

h = k − 1.

• For h
k = .9995, we have

k = 2 · 10
3

• Recall that k ∈ [103, 104] (n. of synapses of an average neuron)
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OPTIMAL NONLINEAR FILTERING

• Several linear units with an extra layer can

approximate nonlinear functions.

• Optimal linear algorithms require only the

first two moments, but are optimal only for

Gaussian P . Similar algorithms are opti-

mal in the sense of max P and suitable

for non–linear problems (Stratonovich,

1959).

• For small k, P on Y k ⊂ Y m the Gaus-

sian approximation can be sufficient.

u(y)

u

y

max

• Small k → faster convergence.

• The sum of Dirac δ–measures (i.e. Gaussians with σ2 = 0) can be used to

approximate any P .
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RECURRENT NETWORKS with CONSTRAINTS
NN as directed graph G = (V, E)

X

v

deg+(v) =
X

v

deg−(v) = |E|

Constraints:

deg+(v) ≤ k , deg−(v) ≤ h

Maximising |E| for fixed |V | (or minimising |V | for fixed |E|)

max
G

|E| = (S + n)k = (S + m)h

S =
mh − nk

k − h
(3)

For m = 4.84 · 107, n = 4.26 · 105, k = 2 · 103 gives

S ≈ 0.96 · 1011
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OPTIMAL ABSTRACT MODEL

• Directed graph, G = (V, E), can represent an abstract model.

Each link between two nodes is a binary relation, and a path of l

nodes between input and output nodes can be seen as l–operator

between y and u.

• Fully connected directed graph represents Cartesian product

Y × · · · × U — all possible relations (not interesting).

• The mind can be seen as a subset G ⊂ Y × · · · × U

representing the most important operators.
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OPTIMAL INFORMATION CODING

• Consider CNS as a function of random variable, u : Y m → Un.

• If u(y) is not an isomorphism, then information contained in y is generally

destroyed (|Y |m ≥ |U |n).

• For entropically stable y, we only need to encode

eHy ≤ |Y |m , (where Hy = −E{ln P (y)})

• The optimal code approaches uniform P (u) such that

max
P (u)

Hu = |U |n = eHy ≤ |Y |m

• If |U | = |Y | (e.g. 2), then n ≤ m, and still encodes all information.



Roman Belavkin, Middlesex University, August 27, 2007 16

NN for OPTIMAL CODING

• Many ANN algorithms maximise the entropy of the output. For

example, ICA can be implemented using

u∗(y) = arg min
u(y)

(

n
∑

i=1

Hui
− Hu

)

The above minimum corresponds to maximum Hu (optimal

coding).

• Linear ICA can be implemented using single layer network, which

does not correspond to S ≈ 1011 and k ≈ 103.

• The constraints on connectivity lead to ‘multilayered’ network, and

therefore the brain may implement nonlinear u(y).
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OPTIMAL CODING

• A network of S units has the capacity to communicate |U |S

realisations.

• However, h units receive the same information, and the real

capacity is |U |S/h.

• Preserving information between input and output (perfect

communication) means

|Y |m = |U |S/h , m =
S

h
(e.g. |Y | = |U | = 2)

• Using our estimates of m and h, we obtain

S ≈ .97 · 1011
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CONCLUSIONS and DISCUSSION

• It is possible that the brain implements the optimal (nonlinear) control and optimal

coding. Their combination is a familiar variational problem

F = min
P (du|x)

(E{c(x, u(y))} + λE{ln P (du | x)}) = R − TC

(Free energy)

• Are neural models sufficient ? We need to consider:

– Partially connected, multilayer (nonlinear) networks

– Achieves maximum connectivity (or minimum number of nodes)

– Local and bounded connectivity leads to cell–assemblies (Hebb, 1955) (may

lead to topology preserving mapping like in SOM).

• A particular organisation of the brain is likely the result of optimisation due to

additional constraints: Sensory (m), motor (n), h/k–ratio.
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