Towards a Theory of Decision-Making without Paradoxes

Roman V. Belavkin (r.belavkin@mdx.ac.uk)

School of Computing Science, Middlesex University, London NW4 4BT, UK

8 April 2006

MOTIVATION

- The expected utility theory leads to many paradoxes
- Data suggests that humans and animals often violate principles of the rational choice (Allais, 1953; Ellsberg, 1961; Myers, Fort, Katz, & Suydam, 1963; Tversky & Kahneman, 1981).
- Many Al systems and cognitive architectures (e.g. ACT-R, Anderson & Lebiere, 1998) use the $E\{u\}$.
- Noise seems to play an important role optimising the behaviour (Belavkin & Ritter, 2003)

THE EXPECTED UTILITY THEORY

Savage (1954) and Anscombe and Aumann (1963). Bernoulli (1738/1954), von Neumann and Morgenstern (1944), The classical decision-making theory is due to Pascal and Fermat,

1. Represent preferences by some $\mathit{utility}$ function $u: X \to \mathbb{R}$

$$x \succ y \iff u(x) > u(y)$$
,

2. Under uncertainty, the expected utilities ($E\{u\}$) are considered (due to Pascal and Fermat):

$$p \succ q \iff \sum_{z \in Z} p(z) \, u(z) > \sum_{z \in Z} q(z) \, u(z) \,,$$

where Z is a set of prizes, P a set of probability measures.

DECISION MAKING IN ACT-R

resolution mechanism. A rule with the highest utility is selected: alternative decisions (i.e. rules) is implemented by the conflict In ACT-R (Anderson & Lebiere, 1998), the choice between several

$$U_i = P_i G - C_i + \mathsf{noise}(s)$$

 $i = \arg \max U_i$, where

rule's properties :

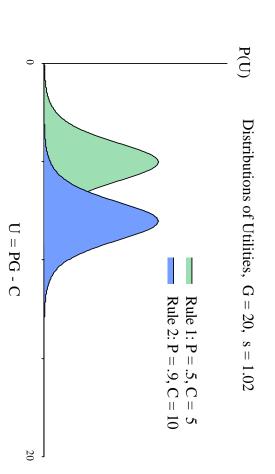
 P_i – probability of success

 C_i – cost (e.g. time)

global parameters (constants) :

G – goal value

s – controls noise variance σ^2



ACT-R AND EXPECTED UTILITY

- For each decision, two outcomes: Success ∨ Failure
- Let $U^s=U(\operatorname{Success})$ and $U^f=U(\operatorname{Failure}).$ Then

$$E\{U\} = P^{s}U^{s} + P^{f}U^{f}$$

$$= P^{s}U^{s} + (1 - P^{s})U^{f}$$

$$= P^{s}(U^{s} - U^{f}) + U^{f}$$

- $\bullet \ \mbox{ If } G = U^{s} U^{f} \mbox{ and } U^{f} = -C \mbox{, then } E\{U\} = PG C$
- ACT-R uses the expected utility and therefore is prone to all the paradoxes

THE RATIONAL DONKEY PARADOX

Haystack A

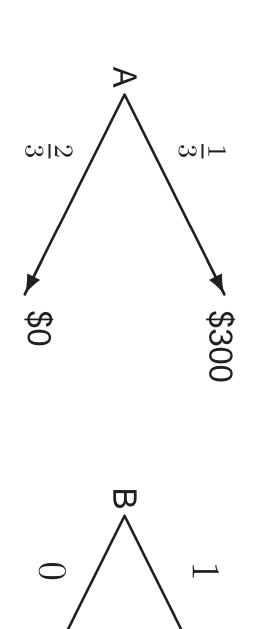
Haystack B

- $\max EU$ fails if there is no unique \max (use a roulette wheel).
- Human subjects and animals always retain some degree of randomness (e.g. Myers et al., 1963).
- ACT-R uses noise (:egs) to model this.

THE ALLAIS PARADOX

Due to Allais (1953). Consider two lotteries ${\cal A}$ and ${\cal B}$

\$100



About 80% of subjects prefer $A \prec B$.

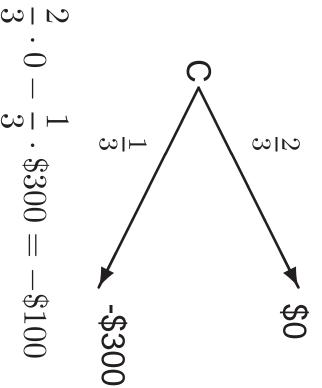
 $\frac{1}{3} \cdot \$300 + \frac{2}{3} \cdot \$0 = \$100$

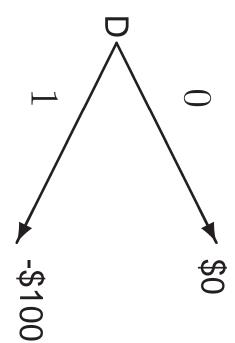
 $1 \cdot \$100 + 0 \cdot \$0 = \$100$

\$0

THE ALLAIS PARADOX (LOSSES)

When the gains are changed to losses, the preferences reverse





$$\frac{2}{3} \cdot 0 - \frac{1}{3} \cdot \$300 = -\$100$$

$$0 \cdot \$ - 1 \cdot \$100 = -\$100$$

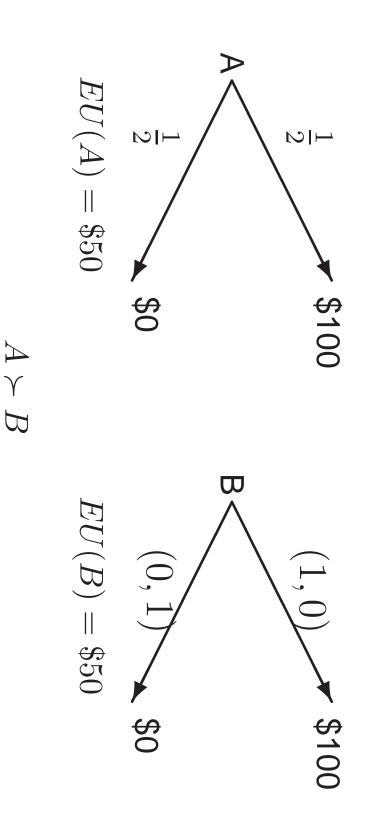
About 80% of subjects express preference $C\succ D$

Confirmed in many studies (e.g. Tversky & Kahneman, 1981)

Professional traders behave this way too (List & Haigh, 2005).

THE ELLSBERG PARADOX

probabilities of outcomes for A are given Due to Ellsberg (1961). Consider two lotteries A and B, and



ISSUES TO CONSIDER

or sensing) and then choosing based on the highest estimate. Decision-making under uncertainty is estimation of utilities (sampling

- Many paradoxes occur when $E\{u\}$ is used to estimate future utility based on some p(u).
- ullet Is $E\{\}$ the optimal estimator of utility?
- Are the lottery problems good examples of estimation (regression) problems?
- Should we use subsymbolic or symbolic mechanisms to build models of the paradoxes (e.g. quantitative vs qualitative)?

 \boldsymbol{x} unobservable random (e.g. future utility)

y observable (e.g. past utilities)

Estimation of \boldsymbol{x} through \boldsymbol{y} is finding some regression function

$$x \approx g(y)$$

$$x = g(y) + C(x, y)$$

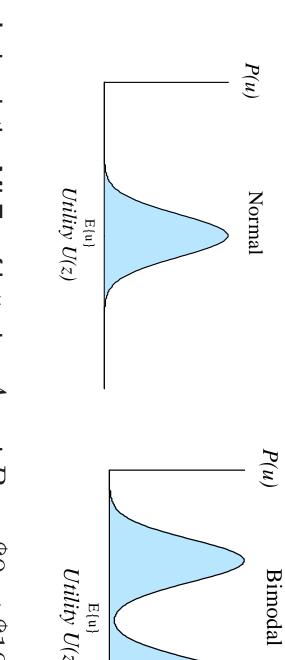
If $C(x,y)=(x-y)^2$, then optimal $g(y)=E\{x\mid y\}$

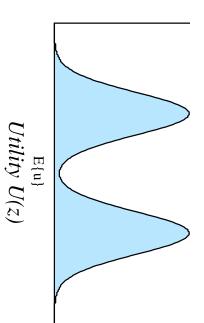
If $C(x,y)=1-\delta_x^y$ (i.e. success if y=x, failure otherwise), then optimal $g(y) = \arg_x \max p(y \mid x) \equiv \max L(x, y)$

(maximum likelihood estimate).

MAX LIKELIHOOD vs. EXPECTED VALUE

Often (e.g. for non–Gaussian) $\arg\max p(y\mid x) \neq E\{x\mid y\}$



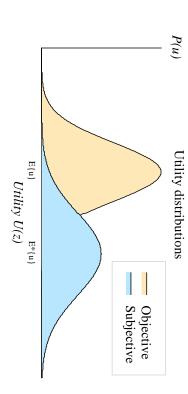


- Indeed, the MLEs of lotteries A and B are \$0 < \$100.
- Similarly, the MLEs of lotteries C and D are \$0 > -\$100

$$A \prec B$$
, $C \succ D$

EXPLORATION VS EXPLOITATION

The quality of estimation depends on information about the utility in P(u). What is the best sampling strategy?

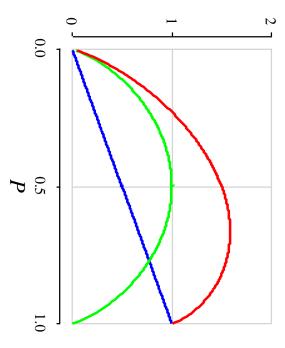


 Exploration with maximum information

$$I(u) = -\log p(u) \sim \frac{1}{p(u)}$$

This contradicts exploitation

$$arg \max p(u)$$



- Instead of $x \approx \sum_y p(y)y$ or MLE, we can use $p(x \mid y)$ to draw random estimates of x (i.e. Monte–Carlo simulation).
- If F(y) is the distribution function for p(y) (PDF), then sampling can be done using the inverse PDF method:

$$x \approx F^{-1}(p)$$
, where $p \in (0,1)$

- Asymptotically, this estimation is similar to both MLE and $E\{x\}$.
- Given $P(\boldsymbol{u})$, decisions can be made based on the largest random estimates of utility.

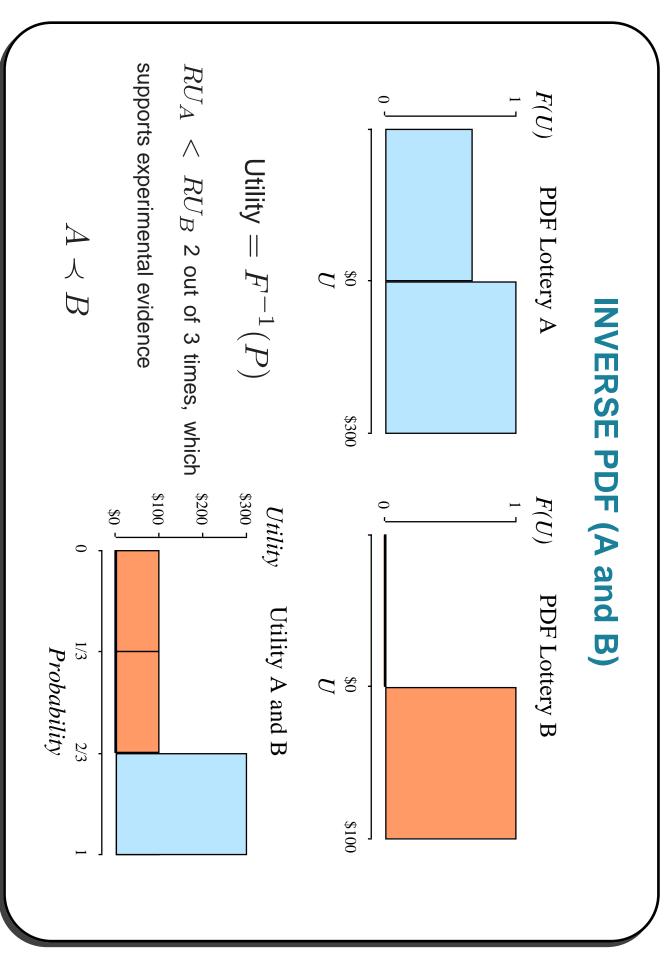
RANDOM UTILITY IN ACT-R

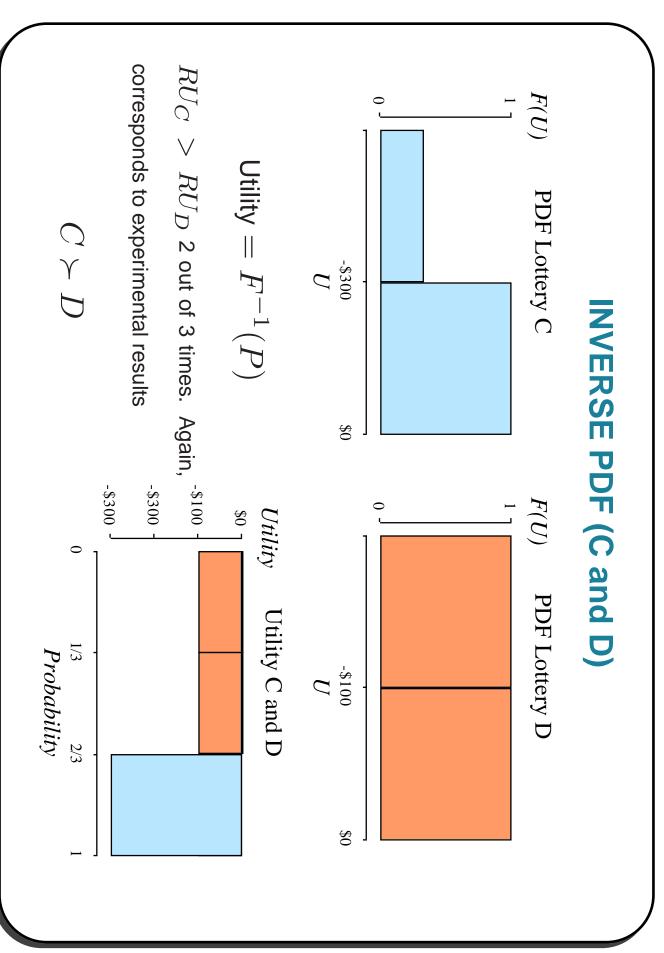
a set of conflicting rules, the following scheme is used to generate random utilities U_i Each rule i has a history of successes and failures $P_i(\mathsf{Outcome}).$ For

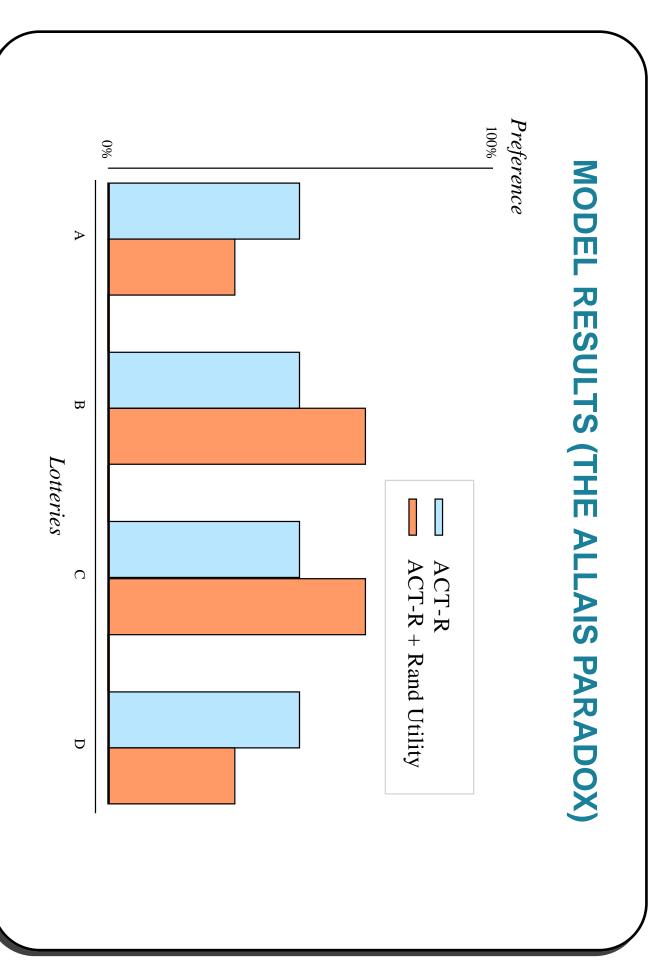
$$P_i(ext{Outcome})
ightarrow ext{Success} ee ext{Failure}$$
 $U_i = U_i^s ee U_i^f$ $= G + U_i^f ee U_i^f$ $= G - C_i ee - C_i$

where C_i is the cost. We can also use Gamma noise

$$U_i = G - \mathsf{Gamma}(\theta_i) \vee -\mathsf{Gamma}(\theta_i)$$







THE EFFECT OF PROBABILITY

(List & Haigh, 2005)	38%	\$240	\$1000	1/4
(Tversky & Kahneman, 1981)	16%	\$240	\$1000	1/4
(Tversky & Kahneman, 1981)	28%	\$200	\$600	1/3
	$A \prec B$	B	A	P(A)

- In the lottery task, ${\cal P}$ of uncertain prize does not seem to have consistent effect on % of subjects preferring it.
- Probabilities are given, no sampling allowed.
- Could qualitative decision—making be used to model the task symbolically?

THE LOGIC OF CHOICE

- \sim indifference (any can be chosen)
- preference (the preferred is chosen)

Object A
Object B

attribute 2 attribute 1 attribute 1

attribute 2

attribute n 5 attribute n

Combining preferences

 ↑ and 人 = 5

Combination of \succ or $\sim=3/4$ chance of choosing A.

QUALITATIVE CHOICE MODEL (SYMBOLIC)

In ACT-R, can be implemented at least in two ways

Using parallel rules for each attribute

(p A or B, attribute 1 A
$$\succ$$
 B ==> choose

 \nearrow

Using OAV triplets (e.g. A gain better) and rules such as

• •

CHOOSING LOTTERIES QUALITATIVELY

Union	P^f	U^f	P^s	U^s	Attribute:
	2/3	\$0	1/3	\$300	Α
人	人	5	人	Υ	
	0	\$0	_	\$100	В
	2/3	-\$300	1/3	\$0	С
Υ	Υ	人	Υ	ζ	
	<u></u>	-\$100	0	\$0	D

Moreover, the chance of choosing A is

$$P(A) = \frac{1}{4} \times \left(1 + 0 + \frac{1}{2} + 0\right) = \frac{3}{8} \approx 38\%$$

OTHER OBSERVATIONS

- Can model the Ellsberg paradox: If one prefers certainty, then $A \succ B$ follows.
- Symbolic model can be improved to take into account other effects of choosing (e.g. how many attributes are considered, how long does it take to choose. etc).
- How to encode real values, such as $P=0.1,\,0.2?$ Both small or one larger than another? Can explain the violations of the independence axiom (Allais, 1953).

. .

CONCLUSIONS

- The $E\{u\}$ theory does not provide the optimal decision–making strategy (Belavkin, 2005).
- The MLE and the random utility estimation of utility can explain some data contradicting the $E\{u\}$ theory.
- Qualitative reasoning be used to make choice, and symbolic models can also explain the data.
- Subsymbolic mechanisms may be better for modelling tasks where some statistics has to be learnt (e.g. trials and errors).
- Symbolic models may also (and perhaps better) represent the decision-making in the lottery task.

. .

THE ORIGINS OF THE EXPECTED UTILITY THEORY

- Blaise Pascal and Fermat used $E\{\}$ to solve several problems (e.g. rolling a dice, etc)
- Pascal also proposed to use $E\{u\}$ to argue that a rational agent should believe in God (yet, there are some people who are atheists).
- Because there is no prior $P(\operatorname{God})$, the max. likelihood or the random estimation of utility may explain this fact.

References

- Allais, M. (1953). Le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'École americaine. Econometrica, 21, 503-546.
- Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.
- Anscombe, F. J., & Aumann, R. J. (1963). A definition of subjective probability. Annals of Mathematical Statistics, 34, 199–205.
- Belavkin, R. V. (2005, December). Acting irrationally to improve performance in stochastic worlds. In M. Bramer, F. Coenen, & International Conference on Innovative Techniques and T. Allen (Eds.), Proceedings of AI-2005, the 25th SGAI

Applications of Artificial Intelligence (Vol. XXII, pp. 305-316).

Cambridge: Springer. (ISBN 1-84628-225-X)

Belavkin, R. V., & Ritter, F. E. (2003, April). The use of entropy for analysis and control of cognitive models. In F. Detje, D. Dörner,

& H. Schaub (Eds.), Proceedings of the Fifth International

Conference on Cognitive Modelling (pp. 21-26). Bamberg,

Germany: Universitäts-Verlag Bamberg. (ISBN 3-933463-15-7)

Bernoulli, D. (1954). Commentarii acad [English translation].

Imperialis Petropolitanae, 1738, 5, 175-192) Econometrica, 22, 23-36. (Reprinted from Scientiarum

Ellsberg, D. (1961, November). Risk, ambiguity, and the Savage

axioms. The Quarterly Journal of Economics, 75(4), 643-669.

List, J. A., & Haigh, M. S. (2005). A simple test of expected utility

theory using professional traders. PNAS, 102(3), 945-948.

Myers, J. L., Fort, J. G., Katz, L., & Suydam, M. M. (1963). Differential situation. Journal of Experimental Psychology, 77, 453-359 monetary gains and losses and event probability in a two-choice

Neumann, J. von, & Morgenstern, O. (1944). Theory of games and University Press. economic behavior (first ed.). Princeton, NJ: Princeton

Savage, L. (1954). The foundations of statistics. New York: John Wiley & Sons.

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453-458.