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MOTIVATION
e The expected utility theory leads to many paradoxes.

e Data suggests that humans and animals often violate principles of
the rational choice (Allais, 1953; Ellsberg, 1961; Myers, Fort,
Katz, & Suydam, 1963; Tversky & Kahneman, 1981).

e Many Al systems and cognitive architectures (e.g. ACT-R,
Anderson & Lebiere, 1998) use the E{u}.

e Noise seems to play an important role optimising the behaviour
(Belavkin & Ritter, 2003)
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The classical decision—making theory is due to Pascal and Fermat,
Bernoulli (1738/1954), von Neumann and Morgenstern (1944),
Savage (1954) and Anscombe and Aumann (1963).

THE EXPECTED UTILITY THEORY

1. Represent preferences by some utility function v : X — R
r -y < u(r) > uly),

2. Under uncertainty, the expected utilities Q@?&v are considered

(due to Pascal and Fermat):

p-q <= Y p2)u(z) > q(z)u(z),

ze/ z€Z

where Z is a set of prizes, P a set of probability measures.
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DECISION MAKING IN ACT-R

In ACT-R (Anderson & Lebiere, 1998), the choice between several
alternative decisions (i.e. rules) is implemented by the conflict
resolution mechanism. A rule with the highest utility is selected:

1 = arg max U;, where

U; = P,G — C; + noise(s)

P(U) Distributions of Utilities, G =20, s=1.02
rule’s properties

5
10

P; — probability of success — Rie1p-

C
== Rule2: C

5,

9,
C; — cost (e.g. time)

global parameters (constants)

(G — goal value

S — controls noise variance Qw 0 _ _ _ 20
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ACT-R AND EXPECTED UTILITY

e [or each decision, two outcomes: Success V Failure
o Let U® = U(Success) and U/ = U|(Failure). Then
E{U} = P*U*+PU/
= PU°+ (1 - PU/!
= PYU*-U+U/
e fG=U*~U’and U/ = —C,then E{U} = PG — C

e ACT-R uses the expected utility and therefore is prone to all the

paradoxes.
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THE RATIONAL DONKEY PARADOX

7

SN

Haystack A Haystack B

e max U fails if there is no unique max (use a roulette wheel).

e Human subjects and animals always retain some degree of

randomness (e.g. Myers et al., 1963).

® ACT-R uses noise (: egs) to model this.
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THE ALLAIS PARADOX

Due to Allais (1953). Consider two lotteries A and B

1 $300 | $100
3

: $0 0 $0

1 2
w.%wooan.%on%So 1-%$100+40-%0 = $100

About 80% of subjects prefer A < B.
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When the gains are changed to losses, the preferences reverse

THE ALLAIS PARADOX (LOSSES)

2 $0 $0
’ 0
C D
1 1
3 -$300 -$100
2 1
w.olw.%wooﬂl%HOO 0-$—1-%100=-%100

About 80% of subjects express preference C' = D
Confirmed in many studies (e.g. Tversky & Kahneman, 1981)

Professional traders behave this way too (List & Haigh, 2005).
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THE ELLSBERG PARADOX

Due to Ellsberg (1961). Consider two lotteries A and B, and

probabilities of outcomes for A are given

1
2
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ISSUES TO CONSIDER

Decision—making under uncertainty is estimation of utilities (sampling

or sensing) and then choosing based on the highest estimate.

e Many paradoxes occur when F{u} is used to estimate future

utility based on some p(u).

e Is F/{} the optimal estimator of utility?

e Are the lottery problems good examples of estimation (regression)

problems?

e Should we use subsymbolic or symbolic mechanisms to build

models of the paradoxes (e.g. quantitative vs qualitative)?
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WHAT IS THE BEST ESTIMATION OF UTILITY?
T unobservable random (e.g. future utility)
Yy observable (e.g. past utilities)

e Estimation of x through vy is finding some regression function
x = g(y)
x=g(y)+Cx,y)

o IfC(x,y) = (x — y)?, then optimal g(y) = E{x | y}

o If C(x,y) =1—6Y (i.e. success if y = x, failure otherwise),

then optimal g(y) = arg, maxp(y | ) = max L(z, y)
(maximum likelihood estimate).
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MAX LIKELIHOOD vs. EXPECTED VALUE

e Often (e.g. for non—Gaussian) arg max p(y | ) # E{x | y}

Bimodal
P(u) Normal P()
E{u} . .mﬁ u}
Utility U(2) Utility U(2)

e Indeed, the MLEs of lotteries A and B are $0 < $100.

e Similarly, the MLEs of lotteries C and D are $0 > —$100

A< B, C D




Roman Belavkin, Middlesex University, April 8, 2006

\ EXPLORATION vs EXPLOITATION

The quality of estimation depends "V Uty dsributions

— Objective
— Subjective

on information about the utility in

P(u). What is the best sampling

m:mﬁQOV\M E(u) E*{u}

Utility U(2)

e Exploration with maximum in-  gp)Exploration vs Exploitation

formation “]
I(u) = ~logp(u) ~ =,
plu) *

e This contradicts exploitation

@H.m max Nw Agv o..o o..m H..o
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RANDOM ESTIMATION

Instead of x ~ ) | p(y)y or MLE, we can use p(z | y) to draw

random estimates of x (i.e. Monte—Carlo simulation).

If F'(y) is the distribution function for p(y) (PDF), then sampling

can be done using the inverse PDF method:
v~ F '(p), wherepc (0,1)

Asymptotically, this estimation is similar to both MLE and E{x}.

Given P(u), decisions can be made based on the largest random

estimates of utility.
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Each rule ¢ has a history of successes and failures P;(Outcome). For

RANDOM UTILITY IN ACT-R

a set of conflicting rules, the following scheme is used to generate

random utilities U

P;(Outcome) —  Success V Failure

U, = U’vU/
= G+U/ vU/
- G-0C;V—-C,

where C; is the cost. We can also use Gamma noise

U, = G — Gamma(6;) V —Gamma(6;)
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INVERSE PDF (A and B)

F(U) PDF Lottery A F(U) PDF Lottery B
1- 1-
0 0 - . .
$0 $300 $0 $100
U U
Utility  Utility A and B
- —1
Utility = F'~(P) 5300 -
RU4 < RUpg 2 out of 3 times, which ¥ ]
: : $100 -
supports experimental evidence
8 ) r T T 1
A< B 0 13 2/3 1

Probability
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INVERSE PDF (C and D)

F(U) PDF Lottery C F(U) PDF Lottery D
1- 1-
0 0 - . .
-$300 $0 -$100 $0
U U
Utility  Utility Cand D
- —1
Utility = F'~ ~(P) % -
RU~ > RUp 2 out of 3 times. Again, >+ ]
: -$300 -
corresponds to experimental results
-$300 - | | .
C- D 0 13 2/3 1

Probability
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MODEL RESULTS (THE ALLAIS PARADOX)
Preference
— ACT-R
== ACT-R + Rand Utility
” A B C D
Lotteries
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THE EFFECT OF PROBABILITY

P(A) A B A<B

1/3 $600  $200 28% (Tversky & Kahneman, 1981)
1/4 $1000 $240 16% (Tversky & Kahneman, 1981)
1/4  $1000 $240  38% (List & Haigh, 2005)

e In the lottery task, P of uncertain prize does not seem to have

consistent effect on % of subjects preferring it.

e Probabilities are given, no sampling allowed.

e Could qualitative decision—making be used to model the task

symbolically?
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THE LOGIC OF CHOICE
~ Indifference (any can be chosen)

— preference (the preferred is chosen)

Object A Object B

attribute 1 > attribute 1

attribute 2 =< attribute 2

attribute n ~ attribute n

Combining preferences

—and < = ~ = »>or<

Combination of > or ~= 3/4 chance of choosing A.




Roman Belavkin, Middlesex University, April 8, 2006

-~

QUALITATIVE CHOICE MODEL (SYMBOLIC)

In ACT-R, can be implemented at least in two ways

e Using parallel rules for each attribute

(p A or B, attribute 1 A > B ==> choose A)

(p A or B, attribute n A < B ==> choose B)

e Using OAV triplets (e.g. A gain better) and rules such as

(p A or B, =oav A better ==> choose A)

(p A or B, =oav B better ==> choose B)
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CHOOSING LOTTERIES QUALITATIVELY

Attribute: A B C D
U® | $300 > $100 $0 ~ $0
Ps | 13 < 1 1/3 > 0
U’ | $0 ~ $0 | -$300 < -$100
Pr|l 23 < 0 213 > 1
Union < -

Moreover, the chance of choosing A is

1 1 3
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OTHER OBSERVATIONS

Can model the Ellsberg paradox: If one prefers certainty, then
A ~ B follows.

Symbolic model can be improved to take into account other
effects of choosing (e.g. how many attributes are considered, how

long does it take to choose. etc).

How to encode real values, such as P = (0.1, 0.2? Both small or

one larger than another? Can explain the violations of the

Independence axiom (Allais, 1953).




Roman Belavkin, Middlesex University, April 8, 2006

-

CONCLUSIONS

The @?& theory does not provide the optimal decision—making
strategy (Belavkin, 2005).

The MLE and the random utility estimation of utility can explain

some data contradicting the E{u} theory.

Qualitative reasoning be used to make choice, and symbolic

models can also explain the data.

Subsymbolic mechanisms may be better for modelling tasks

where some statistics has to be learnt (e.g. trials and errors).

Symbolic models may also (and perhaps better) represent the

decision—making in the lottery task.
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THE ORIGINS OF THE EXPECTED UTILITY THEORY

e Blaise Pascal and Fermat used E'{} to solve several problems

(e.g. rolling a dice, etc).

e Pascal also proposed to use £/ ?& to argue that a rational agent
should believe in God (yet, there are some people who are

atheists).

e Because there is no prior P(God), the max. likelihood or the

random estimation of utility may explain this fact.
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