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THE ICA PROBLEM

Let X = (x1,...,X,)’ be the observable mixture of sources
S =(s1,...8m)"
X =AS, where A = (a;;)isanm X n matrix
Assuming that
1. P(s1,...,8m) = P(s1)--- P(s;) (independence)

2. Vs; but one are non—-Gaussian

Find demixing matrix W =~ A~ such that

Y ="WX~A'X=S
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MEASURE OF INDEPENDENCE

We seek W to minimise mutual information in Y

I(Y) = Mum?.TES
— Mm?TENTEﬁlo

For pre-whitened X, In |W| = 0, and therefore

%n%ﬁ@%ﬂﬁ?:%h@i
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DIRECT ENTROPY ESTIMATION

To estimate H (y;), we use the direct approximation due to Vasicek

(1976):
H(, ... W MU In A (2(Fm) — NEVV
Y u n .
s”
where 21 , 2"* is a sample of random variable Z, and 2 s a
non—decreasing ordering L)< < )

We shall minimise Y, H(y;) by rotating W by angle 6 as in
Learned-Miller and Fisher (2003).
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JACOBI ROTATIONS

Used to rotate W in 7, 7 plane by angle 6

\H 0 0 O/
0 cos 6 — sin 6 0

J(i,7,0) =

0 sin 6 cos 6 0

o

In two dimensions J (0) = A cos®  —sind v

sin 6 cos 6

WhY = J(i, 5, 0)W
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THE AGENT ARCHITECTURE

The following decision—theoretic agents architecture is used
(Belavkin, in press)

X ={x1,...,z,} percepts
Y ={yi,...,yn} preferences (e.g. Y = {success, failure })

Z  =A{z,...,2} actions

The Markov transition model P(X,Y, Z) = @Nv where

ﬁm. = P(z;,y;, k), is used as the associative memory and can be
used for Bayesian inference

PY|X,Z)=aP(X,Y,Z), wherea = __wcx_wnmv__
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SETTING UP THE AGENT FOR ICA

e Letangles # € |0, /2] be the percepts of the agent
e Changes of angle Af € [6~, 67] be the actions

e Changes of entropy AH = A" | H(y;) be related to

preferences (i.e. negative change A is a success)

With this setup, the agent learns which rotations A minimise the

entropy faster

P(AH | 0, A6)
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MARGINAL ENTROPIES

By changing the angle, the agent searches the angle space

¢ € |0, 7/2] in order to minimise marginal entropy

H Entropy minimisarion
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DEMIXING THE SIGNALS

\ The agent’s output is J(6)

and demixing matrix J (6)W

such that

y JOWY ~ S
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FUTURE WORK

e Use the estimation of entropy as a feedback parameter to control

the precision of rotations A6.

e Use communities of agents each minimising individual component
H(y;).

® |nvestigate the possibility of a non—linear ICA using the same

agent—based approach. This may be done by assigning different

(non—linear) transformations to actions of agents.
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