Common Lisp Implementation of FastICA

Roman V. Belavkin (R.Belavkin@mdx.ac.uk)

School of Computing Science, Middlesex University, London NW4 4BT, UK

April 12, 2005

BLIND SOURCE SEPARATION (or ICA)

$$X = (x_1, \dots, x_m)^T, Y = (y_1, \dots, y_n)^T$$

$$Y = WX$$

Assuming:

1.
$$P(x_1, ..., x_m) = P(x_1) \cdots P(x_m)$$

2. $\forall i$ but one $P(x_i)$ are non–Gaussian

Find $oldsymbol{A} pprox oldsymbol{W}^{-1}$ such that

Common Lisp Implementation

```
ICA.lisp (5K) + PCA.lisp (8K) + Matrices.lisp (10K) = 23K of code:
                                                                                                                                                                                                                                                                                                                                                                                                                (defun one-unit-fica (X &key ....)
                                                                                                                                                                                                                                                                                                                                                                           (do* ((m (num-rows X))
                                                                                                                                                                                                         ((= (length ws) m)
                                                                                                                                                                                                                                                (ws (list w) (push w ws)))
                                                                                                                                                                                                                                                                                                                                  (w (find-one-weight X nil)
                                                                                                                                                                 (let ((W (make-array (list m m))))
                                                                                                                            (dotimes (i m W)
                                                                                                                                                                                                                                                                                          (find-one-weight X ws))
                                                                                 (dotimes (j m)
                                          (setf (aref W i j)
(aref (nth j ws) i 0)))))))
```


FUTURE WORK

Use ICA output as an input to Bayesian learning agents information): (perception with reduction of dimensions and minimal loss of

$$oldsymbol{X} \in \mathbf{R}^n$$

perception inputs

$$Y\in \mathbf{Z}$$

set of actions

$$oldsymbol{X}
ightarrow oldsymbol{S} \in \mathbf{R}^m$$

reduce dimensions (ICA)

$$P(Y \mid S, U) =$$

 $\alpha P(Y, S, U)$

Encourage MSc students to use ICA in their projects in Business Information Systems programme