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Abstract. The concept of information distance in non-commutative set-
ting is re-considered. Additive information, such as Kullback-Leibler di-
vergence, is defined using convex functional with gradient having the
property of homomorphism between multiplicative and additive sub-
groups. We review several geometric properties, such as the logarithmic
law of cosines, Pythagorean theorem and a lower bound given by squared
Euclidean distance. We also prove a special case of Pythagorean theo-
rem for Shannon information, which finds applications in information-
theoretic variational problems.

1 Introduction

Kullback-Leibler (KL) divergence [1] is, perhaps, the most important functional
in information theory and statistics. If p and q are two probability measures
defined on the same σ-algebra, and p is absolutely continuous with respect to q,
then KL-divergence of q from p is defined as the expected value of ln(p/q) with
respect to p:

DKL(p, q) := Ep{ln(p/q)} (1)

This functional plays a role of a distance, because DKL(p, q) ≥ 0 for all p, q,
and DKL(p, q) = 0 if and only if p = q, but it is not a metric (e.g. DKL(p, q) 6=
DKL(q, p) in general). In fact, it is well-known that KL-divergence plays a role of
half of squared Euclidean distance [2], and it is related to the unique Riemannian
metric on the set of all probability measures on the same σ-algebra [3]. In physics,
KL-divergence is used to define relative entropy, and similar functionals have
been used in non-commutative (or quantum) probability [4–6].

In the next section, we overview the common algebraic structure and duality
used both in classical and quantum probability. We then use ideas of convex
analysis to define information distance by restricting its gradient to a logarith-
mic map that has the property of homomorphism from multiplicative to additive
subgroups of the dual spaces. Alternatively, one can restrict the gradient of the
dual functional to an exponential map. In classical probability, these definitions
are equivalent leading to the familiar KL-divergence. In the non-commutative
case, different definitions are known to lead to different types of quantum in-
formation. Our definition corresponds to the Araki-Umegaki type [5, 4], and it
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has the advantage that various geometric properties, such as law of cosines and
Pythagorean theorem [2], hold for all, not necessarily normalized measures or
operators. The relation to squared Euclidean distance is shown by an inequality.
We give new and simple proofs of these properties. In the final section, we show
that a certain orthogonality condition always holds for a triangle, defined by a
joint state and its reduced (i.e. marginal) states. The corresponding Pythagorean
theorem gives a new, geometric interpretation of Shannon information, and can
be used to relate different information-theoretic variational problems.

2 Algebra of Random Variables and Module of Measures

Throughout this paper we shall consider two linear spaces X and Y put in
duality via a non-degenerate bilinear form 〈·, ·〉 : X × Y → C. Space X is in
fact a ∗-algebra with associative, but generally non-commutative multiplication
· : X × X → X and involution as a self-inverse, antilinear map ∗ : X → X
reversing the multiplication order: (x∗z)∗ = z∗x. It is usually assumed that the
algebra has a multiplicative unit 1 ∈ X. Commutative algebra X is understood as
an algebra of classical random variables (i.e. measurable functions with pointwise
multiplication). In this case, the pairing 〈x, y〉 is understood either as the sum∑

xiyi or the integral
∫

x dy. Non-commutative algebra X is understood as an
algebra of Hermitian operators on a separable Hilbert space, often referred to as
observables in physics. In this case, 〈x, y〉 is understood as trace pairing tr {xy}.

The dual space Y is closed under the transposed involution ∗ : Y → Y ,
defined by 〈x, y∗〉 = 〈x∗, y〉∗. If the pairing 〈·, ·〉 has the property that for each
z ∈ X there exists a transposed element z′ ∈ Y such that 〈zx, y〉 = 〈x, z′y〉,
then Y is a left (resp. right) module over algebra X ⊆ Y with respect to the
transposed left (resp. right) action y 7→ z′y (resp. y 7→ yz∗′∗) of X on Y such
that (xz)′ = z′x′ and 〈x, yz∗′∗〉 = 〈x∗, z∗′y∗〉∗ = 〈z∗x∗, y∗〉∗ = 〈xz, y〉.

The sets of positive elements in X and Y are defined respectively as

X+ := {x : z∗z = x, ∃ z ∈ X} , Y+ := {y : 〈x, y〉 ≥ 0, ∀x ∈ X+}

Elements of the cone Y+ are understood as positive measures or their non-
commutative generalizations. The base of the positive cone

P(X) := {p ∈ Y+ : 〈1, p〉 = 1}

is a (weakly) compact convex set. When X is a commutative algebra, P(X) is
a simplex — each p ∈ P(X) is uniquely represented as a convex combination
of the extreme points δ of P(X). In this case, elements of P(X) are classical
probability measures. Their non-commutative generalizations are also referred
to as quantum states. Note that although 〈x, y〉 ∈ C in general, the expected
values Ep{x} = 〈x, p〉 are always real, because x is self-adjoint and p is positive
(and hence also self-adjoint).

One can see that random variables (observables) x ∈ X and measures (states)
y ∈ Y can be equipped with a rich algebraic structure. This allows us, in partic-



ular, to define the exponential and logarithmic mappings by the power series:

ex =
∞∑

n=0

xn

n!
, ln y =

∞∑
n=1

(−1)n−1

n
(y − 1)n

The exponential and logarithmic mappings are homomorphisms of additive and
multiplicative groups of commutative subalgebras of X: eu+v = euev, ln(yz) =
ln y + ln z iff uv = vu and yz = zy. Furthermore, if X is a tensor product
A ⊗ B of two algebras, then eu⊕v = eu ⊗ uv and ln(y ⊗ z) = ln y ⊕ ln z, where
u⊕v := u⊗1B +1A⊗v. Note that duality of X and Y allows us to consider the
exponent as a mapping from X into its (pre)-dual Y , and the logarithm as its
inverse. In the next section we shall consider them as gradients of dual convex
functionals. Their algebraic properties are key to additivity of information.

3 Information Distance for Measures

Additivity of information from independent sources is considered to be one of
the most important properties of information, and is often required as an axiom
[7]. Because joint probability distributions of independent random variables are
products of the marginal distributions, this leaves us little choice but to use the
logarithmic mapping, which has the required property of homomorphism from
multiplicative to an additive group. More specifically, we shall define information
using a functional on the space of measures Y , such that its gradient at y is the
logarithm of y. Alternatively, because gradients of dual convex functionals are
inverse mappings of each other, we can define information as the Legendre-
Fenchel dual of a functional on the space of random variables X, the gradient of
which at x is the exponent of x. Let us now make this explicit.

Consider the following functional F (y) := 〈ln y−1, y〉. We define (ln 0) ·0 = 0
and F (y) = ∞ if y < 0, so that F is a proper closed convex functional. It is not
difficult to check that its gradient ∇F : Y → X is ∇F (y) = ln y, the logarithm
of y. The inverse mapping y = ex is the gradient ∇F ∗ : X → Y of the dual
functional F ∗(x) := 〈1, ex〉, which is the Legendre-Fenchel transform of F (i.e.
F ∗(y) = sup[〈x, y〉−F (x)]). We note also that F (y) is in turn the dual of F ∗(x),
because F ∗∗ = F for proper closed convex functions [8].

An information distance I : Y × Y → R∪ {∞} between two measures y and
z ∈ Y can be defined in a similar way [9]:

I(y, z) = 〈ln y − ln z, y〉 − 〈1, y − z〉 (2)

In addition to the rule (ln 0) · 0 = 0, we define I(y, z) = ∞ if y < 0 or z ≤ 0.
One can see that I(p, q) = DKL(p, q) for probability measures, as 〈1, p− q〉 = 0.
Unlike the KL-divergence, however, functional (2) is non-negative for all, not
necessarily normalized or positive measures. Indeed, I(y, z) ≥ 0 for all y, z ∈ Y
and I(y, z) = 0 iff y = z. The information distance is not symmetric, as I(y, z) 6=
I(z, y) in general. The symmetrized distance can be defined

SI(y, z) = I(y, z) + I(z, y) = 〈ln y − ln z, y − z〉 (3)



Remark 1. In classical probability, the KL-divergence can be equivalently de-
fined using ln(y/z), where y/z is the Radon-Nikodym derivative. In quantum
probability, however, ln(y/z) 6= ln y − ln z if density operators y, z do not
commute. Furthermore, if yz 6= zy, then the Radon-Nikodym derivative y/z
is not uniquely defined. The naive definition y/z := exp(ln y − ln z) corre-
sponds to quantum relative information of Araki-Umegaki [5, 4], similar to equa-
tion (2). Alternatively, one can use Hermitian operators y/z := y1/2z−1y1/2 or
y/z := z−1/2yz−1/2, and they lead to different forms of quantum relative in-
formation [6] known to give better contrast for non-commutative measures [10].
Finally, the definition of information as the Legendre-Fenchel dual of functional
I∗(x, z), the gradient of which is ex/2zex/2 or z1/2exz1/2, leads to other (ther-
modynamic) types of quantum relative information.

Functional I(y, z) is proper, closed and strictly convex, and it is the dual
of functional I∗(x, z) := 〈1, exz〉. Furthermore, I(y, z) is Gâteaux differentiable
for all y where it is finite, and its gradient has a convenient form ∇yI(y, z) =
ln y− ln z. The second derivative ∇2

yI(y, z) (the Hessian) is the inverse y−1, and
it is defined for y with a strictly positive spectrum.

Matrix representation of operator ∇2
pI(p, q) = p−1 taken at p = q is known as

Fisher information matrix at q (note that Fisher information is usually defined
in terms of partial derivatives over some vector of parameters under suitable dif-
ferentiability assumptions). It plays an important role in information geometry
defining the unique Riemannian metric on the set P(X) of all probability mea-
sures [3]. In fact, the following theorems show that information distance I(y, z)
has many properties similar to squared Euclidean distance.

4 Logarithmic Law of Cosines and Pythagorean Theorem

The non-symmetric version of the Pythagorean theorem for the KL-divergence
of classical probability measures was first proven in [2], in which the analogue
of the law of cosines was also obtained. We now present another, perhaps, more
simple proof of these facts using Taylor expansion of information distance (2),
the definition of which also allows us to extend these theorems to all measures
or operators, not necessarily with equal norms.

Theorem 1 (Logarithmic law of cosines). Finite information distances be-
tween any three points w, y, z in Y satisfy the relation

I(w, z) = I(w, y) + I(y, z)− 〈ln y − ln z, y − w〉

Proof. Consider first order Taylor expansion of I(·, z) at y:

I(w, z) = I(y, z) + 〈ln y − ln z, w − y〉+ R1(y, w)



The law follows from the fact that the remainder R1(y, w) = I(w, y). Indeed,

R1(y, w) = I(w, z)− I(y, z)− 〈ln y − ln z, w − y〉
= 〈lnw − ln z, w〉 − 〈1, w − z〉 −
〈ln y − ln z, y〉+ 〈1, y − z〉 − 〈ln y − ln z, w − y〉

= 〈lnw − ln y, w〉 − 〈1, w − y〉

ut

Remark 2. If the information distance I(w, y) is defined using the logarithm of
the Radon-Nikodym derivative w/y, then proof of equality R1(y, w) = I(w, y)
requires the condition ln(w/z)+ln(z/y) = ln(wz−1zy−1) = ln(w/y), which holds
if and only if wy = yw. Definition (2) using lnw− ln y avoids this complication.

Remark 3 (Log-orthogonality). Let us define the squared ‘Euclidean’ distance:

s2(y, z) := 〈1, (y − z)2〉 (4)

Here we use the notation 〈1, y2〉 := 〈y′, y〉. The gradient of s2 is ∇ys2(y, z) =
2(y− z), and the classical law of cosines can be obtained as in Theorem 1 using
the first order Taylor expansion of s2(w, z) at y:

s2(w, z) = s2(w, y) + s2(y, z)− 2〈y − z, y − w〉

When vectors y − z and y − w are orthogonal, then 〈y − z, y − w〉 = 0, and
we obtain the familiar Pythagorean theorem: s2(w, z) = s2(w, y) + s2(y, z). In
information geometry, orthogonality of y−z and y−w is defined by the condition
〈ln y − ln z, y − w〉 = 0. Observe that this condition is not symmetric. The
symmetrized log-orthogonality follows from the logarithmic law of cosines for
symmetrized information distance:

SI(w, z) = SI(w, y) + SI(y, z)− [〈ln y − ln z, y − w〉+ 〈ln y − lnw, y − z〉]

For completeness, let us include analogue of the Pythagorean theorem [2].

Corollary 1 (Log-Pythagorean theorem). Given three points w, y, z in Y
satisfying the log-orthogonality condition 〈ln y−ln z, y−w〉 = 0, their information
distances satisfy the relation: I(w, z) = I(w, y) + I(y, z).

Proof. Follows immediately from Theorem 1. ut

5 Inequality for Information and Euclidean Distances

The fact that KL-divergence D(p, q) plays the role of half of squared Euclidean
distance s2(p, q) between probability measures is well-known [2]. Another fact,
perhaps less known, is the inequality DKL(p, q) + DKL(q, p) ≥ s2(p, q) (Theo-
rem 1.14 in [11]). We now generalize this result for information distance (2), and
also give a different proof.



Theorem 2. Information distance between y, z in Y satisfies the inequality

I(y, z) ≥ s2(y, z)
2 max{‖y‖∞, ‖z‖∞}

where ‖ · ‖∞ is the supremum norm, and s2(y, z) = 〈1, (y − z)2〉.

Proof. Consider the first order Taylor expansion of I(y, w) at z:

I(y, w) = I(z, w) + 〈∇yI(z, w), y − z〉+ R1(z, y)

where the remainder is

R1(z, y) =
∫ 1

0

(1− t)
〈
1,∇2

yI(z + t(y − z), w)(y − z)2
〉

dt

=
1
2

〈
1,∇2

yI(ξ, w)(y − z)2
〉

for some ξ ∈ [z, y)

=
1
2

〈
ξ−1, (y − z)2

〉
Here we used the notation 〈1, Ay2〉 := 〈Ay, y〉. In the second line, we used the
fact that I is sufficiently smooth to apply the mean-value theorem and wrote the
remainder in the Lagrange form for some ξ in the open interval [z, y). Finally,
we used the fact that ∇2

yI(y, w) = y−1. The result follows from the fact that
R1(z, y) = I(y, z), obtained earlier in Theorem 1, and from inequality ‖ξ‖∞ ≤
max{‖y‖∞, ‖z‖∞} for any ξ ∈ [z, y) = {z + t(y − z) : t ∈ [0, 1)}. ut

Corollary 2. I(p, q) + I(q, p) ≥ s2(p, q) for all p, q ∈ P(X).

Proof. Recall that P(X) := {p : p ≥ 0 , 〈1, p〉 = 1}, so that ‖p‖∞ ≤ 1 for any
p, q ∈ P(X). Thus, I(p, q) ≥ 1

2 〈1, (p − q)2〉 = 1
2s2(p, q) by Theorem 2, and the

same is true for I(q, p). The result is the sum of two inequalities. ut

6 Shannon-Pythagorean Theorem

Let algebra X be a tensor product A⊗B of two algebras corresponding to two
subsystems of a composite system. We denote by 1A and 1B the units of these
algebras. As before, Y will denote the (pre)-dual space of X = A ⊗ B, and
P(A ⊗ B) is the set of all positive linear functionals p(x) = 〈x, p〉 preserving
the unit 〈1, p〉 = 1, and they correspond to joint probability measures or joint
states. If q ∈ P(A) is a state on A and p ∈ P(B) is a state on B, then q ⊗ p is
a product state on A ⊗ B. Convex closure of all product states is the set of all
separable states. We remind that in quantum probability, there are joint states
w ∈ P(A⊗B) that are not separable. Given a joint state w on A⊗B, the partial
traces q = 〈1, w〉B and p = 〈1, w〉A are states on A and B respectively.



Lemma 1. Let w ∈ P(A ⊗ B), z ∈ P(A), p, q ∈ P(B), and let p = 〈1, w〉A.
Then vectors z ⊗ p− z ⊗ q and z ⊗ p−w are orthogonal in the following sense:

〈ln z ⊗ p− ln z ⊗ q, z ⊗ p− w〉 = 0

Proof. Using the property ln z⊗ y = ln z⊕ ln y = ln z⊗ 1B +1A⊗ ln y we obtain

ln z ⊗ p− ln z ⊗ q = 1A ⊗ (ln p− ln q)

The result follows from the condition that the expectation 〈b, p〉 of observable
b ∈ B is invariant under the embedding B 3 b 7→ 1A ⊗ b ∈ A ⊗ B, if p ∈ P(B)
is the reduced state of joint state w ∈ P(A ⊗ B). Therefore, 〈1A ⊗ b, w〉 =
〈1A ⊗ b, z ⊗ p〉 = 〈b, p〉, because 〈1, w〉A = 〈1, z ⊗ p〉A = p. ut

A joint state w ∈ P(A ⊗ B) defines a channel T : P(A) → P(B) (Markov
morphism or operation) transforming q ∈ P(A) into p = Tq ∈ P(B), where
q = 〈1, w〉B , p = 〈1, w〉A are reduced states of w (i.e. marginals). The information
distance I(w, q⊗p) is Shannon information defining the capacity of this channel.
If A ⊆ B, then we may consider q also as an element of P(B) and consider
information distance I(p, q) = I(Tq, q). It turns out that I(w, q ⊗ p) and I(p, q)
are related by the Pythagorean theorem.

Theorem 3 (Shannon-Pythagorean theorem). Let w be a joint state on
A⊗B, A ⊆ B, and let q = 〈1, w〉B, p = 〈1, w〉A be its marginal states. Then

I(w, q ⊗ q) = I(w, q ⊗ p) + I(p, q)

Proof. According the law of cosines for w, q ⊗ p and q ⊗ q we have:

I(w, q ⊗ q) = I(w, q ⊗ p) + I(q ⊗ p, q ⊗ q)− 〈ln q ⊗ p− ln q ⊗ q, q ⊗ p− w〉

Observe that I(q ⊗ p, q ⊗ q) = I(p, q):

〈ln q ⊗ p− ln q ⊗ q, q ⊗ p〉 = 〈1A ⊗ (ln p− ln q), q ⊗ p〉 = 〈1A, q〉〈ln p− ln q, p〉

and 〈ln q ⊗ p− ln q ⊗ q, q ⊗ p− w〉 = 0 by Lemma 1. ut

The relation between Shannon information I(w, q⊗p) and divergence I(p, q)
is illustrated on the diagram below:

w

I(w,q⊗p)

��
q ⊗ q

I(p,q)
//

I(w,q⊗q)

66mmmmmmmmmmmmmm
q ⊗ p



We refer to I(w, q ⊗ q) as the hypotenuse of the channel or of the Markov mor-
phism T : P(A) → P(B). This quantity allows us to relate information con-
straints in information-theoretic variational problems of the first and the third
kind [11]. These problems are expressed by the following optimal value functions:

u(λ) = sup{〈u, p〉 : I(p, q) ≤ λ} , p, q ∈ P(B)
v(γ) = sup{〈v, w〉 : I(w, q ⊗ p) ≤ γ} , w, q ⊗ p ∈ P(A⊗B)

It follows from the Shannon-Pythagorean theorem that the hypotenuse satisfies
the constraint I(w, q⊗q) ≤ γ+λ. Thus, if u is the restriction 〈v〉A = u of operator
v ∈ A⊗B to B, then both problems can be solved by maximizing 〈v, w〉 subject
to constraint I(w, q⊗ q) ≤ γ +λ. This property has been considered in problems
of optimization of mutation rate control function in genetic algorithms [12].
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