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Introduction and Notation

Introduction

Optimisation of dynamic information systems (e.g. strategic games,
machine learning, evolutionary systems).

Three kinds of problems (Tsypkin, 1973):

Deterministic : maximise f(ω).
Stochastic : maximise Ep{f(ω)} =

∑
f(ω) p(ω).

Adaptive : estimate p(ω) and maximise Ep{f(ω)}.

Information as a bounded resource.

Learning, evolving and adaptive systems:

PerformanceOO
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Introduction and Notation

Representation in Paired Spaces

Ω — a set of observable states (measurable, locally compact).

X, Y — linear spaces in duality via 〈·, ·〉 : X × Y → R:

〈x, y〉 :=
∑
Ω

x(ω) y(ω) , 〈x, y〉 :=

∫
Ω

x(ω) dy(ω) , 〈x, y〉 := tr {xy}

Observables and Measures

X := Cc(Ω, R) space of continuous function with compact support.

Y := M(Ω) space of Radon measures on Ω.

Remark

X is an ordered, commutative, linear ∗-algebra with ‖x‖∞ = supx(ω)

Y is a module over X ⊂ Y with ‖y‖1 = |〈1, y〉|
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Introduction and Notation

Statistical Manifold

1

0
1

P
3

P1

p(da) =
n

1
3
, 1

3
, 1

3

o

δa(a1) = {1, 0, 0}

δa(a3) = {0, 0, 1}

P(Ω) := {y ∈ Y : y ≥ 0, ‖y‖1 = 1}

Let Ω = {ω1, ω2, ω3}

p = {p1, p2, p3} ∈ R3, pi ≥ 0:

‖p‖1 = p1 + p2 + p3 = 1

Vertexes of n-simplex are
m = n + 1 Dirac δ-measures.

Choquet simplex if Ω is infinite.
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Utility and Information

Measures of Performance and Information

Expected utility

Let (Ω,R, p) be a probability space, and x : Ω → R a utility. Then

〈x, p〉 = Ep{x}

Information resource

A closed functional F : Y → R ∪ {∞} with F (p)|P = I(p, q), where
I : P × P → R+ ∪ {∞} is an information distance. For example

FKL(p) := IKL(p, q) = Ep{ln p− ln q}

Remark

Other information distances are

IV (p, q) = ‖p− q‖|1 , IF (p, q) = 2 arccos〈1, p1/2q1/2〉
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Utility and Information

Information Dynamics

1

0
1

P
3

P1

Convex F (y) = const
Linear 〈x, y〉 = const

Ep{x} = 〈x, p〉 is linear.

Ep{ln p− ln q} is convex.

y ∈ P are states and
{y(t) ∈ P : t ≥ 0} is an
information trajectory.

Replicator dynamics
ṗ := dp(t)/dt:

ṗ = [x− Ep{x}] p

Integral solution

pt = etx−Ψx(t)p0 , p0 = q

where Ψx(t) := ln〈1, etxp0〉.
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Utility and Information

Utility of Information

If x ∈ X is fitness (utility), then the value of event p relative to q is

〈x, p− q〉 = Ep{x} − Eq{x}

Definition (Utility of information)

Ux(I) := sup{〈x, y〉 : F (y) ≤ I}

Stratonovich (1965) defined Ux(I) for Shannon information (i.e.
F (y) = Ep{ln p− ln q}, where p is joint and q product of marginals).

Related problem (inverse of Ux(I)):

Ix(U) := inf{F (y) : 〈x, y〉 ≥ U}

Question

Which transformations (controls) of the system lead to Ux(I) on P(Ω)?
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Utility and Information

Optimal Information Dynamics

1

0
1

P
3

P1

Convex F (y) = const
Linear 〈x, y〉 = const

Question

Time or Information?

The gradient of information
must coincide with the gradient
of the expected utility:

∂〈x, yβ〉 ∈ β−1∂F (yβ)

F (yβ) = I

β−1 ∈ ∂Ux(I)

Optimal solutions (Belavkin,
2010):

Replicator dynamics in β:

ṗβ = [x− Ep{x}] pβ

Roman V. Belavkin (Middlesex University) Dynamics of Information and Optimal Control of Reproduction in Evolutionary SystemsFebruary 16, 2011 11 / 42



Utility and Information

Optimal Information Dynamics

1

0
1

P
3

P1

Convex F (y) = const
Linear 〈x, y〉 = const

Question

Time or Information?

The gradient of information
must coincide with the gradient
of the expected utility:

∂〈x, yβ〉 ∈ β−1∂F (yβ)

F (yβ) = I

β−1 ∈ ∂Ux(I)

Optimal solutions (Belavkin,
2010):

Replicator dynamics in β:
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Evolution as an Information Dynamic System

Summary

Evolution in biology occurs via death and birth of individuals.

Reproduction involves selection, mutation and recombination.

Is there a theory of optimal control of reproduction?

Meta-heuristics in combinatorial optimisation (Fogarty, 1989; Bäck,
1993; Vafaee, Turán, & Nelson, 2010).

Do biological organisms control reproduction?

Problem

To describe evolution and the dynamics of variables involved in genetic
reproduction via information theoretic approach.

Problem

To use the theory for predictions and models, experiments for its
verification, as well as inform and extend the theory

Roman V. Belavkin (Middlesex University) Dynamics of Information and Optimal Control of Reproduction in Evolutionary SystemsFebruary 16, 2011 14 / 42



Evolution as an Information Dynamic System

Summary

Evolution in biology occurs via death and birth of individuals.

Reproduction involves selection, mutation and recombination.

Is there a theory of optimal control of reproduction?

Meta-heuristics in combinatorial optimisation (Fogarty, 1989; Bäck,
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Evolution as an Information Dynamic System

In Vitro, In Silico (C. Knight (2009))
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Evolution In Vitro
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Evolution as an Information Dynamic System

Evolution In Vivo
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Evolution as an Information Dynamic System

Individual Organisms

Alphabet : α = {G, A, T,C} or {0, 1}

Genotype : A sequence ω = ‘AATTCGC . . .′, ω ∈ Ω := αn.

Metric : We can define d : Ω× Ω → R+, such as the Hamming
metric: d(a, b) := |{i : ai 6= bi}|.

Environment : imposes a preference relation (total pre-order) (Ω,.).

Fitness : is a pre-order embedding f : (Ω,.) → (R,≤):

a . b ⇐⇒ f(a) ≤ f(b)

Definition (Monotonic landscape)

f is locally monotonic (isomorphic) relative to a metric d, if there exist
S(>, l) := {ω : d(>, ω) < l}, > = ∨Ω such that ∀ a, b ∈ S(>, l):

−d(>, a) ≤ −d(>, b) =⇒ ( ⇐⇒ ) f(a) ≤ f(b)
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Evolution as an Information Dynamic System

Optimisation of Population Dynamics

Population of size n is a multiset of ω ∈ Ω.

Measure of each ω in a population is y ∈ R|Ω|, y ≥ 0.

Frequency is p = y/‖y‖1 (i.e. ‖p‖1 = 1 and p ≥ 0).

Expected fitness of a population

Ep{f} :=
∑
ω∈Ω

f(ω) p(ω)

Dynamics of populations
ṗ = [f − Ep{f}] p

Question

How to control parameters to achieve optimal evolution?
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Evolution as an Information Dynamic System

Control of Mutation

Ω = {α}n is a metric space (e.g. with Hamming metric d).

Mutation of a by radius r is a transfer into a sphere:

S(a, r) := {b ∈ Ω : d(a, b) = r}
If θ is the mutation rate, then

Pθ(b ∈ S(a, r)) =

(
n

r

)
θr(1− θ)n−r

If a ∈ S(>, l), what is the probability that its offspring b ∈ S(>, k)?
Thus, d(a,>) = l, d(a, b) = r, d(b,>) = k:

Pθ(b ∈ S(a, r)∩S(>, k) | a ∈ S(>, l)) = |S(a, r)∩S(>, l)|lθr(1−θ)n−r

where for α = 2 (binary strings):

|S(a, r) ∩ S(>, k)|l =

{
0 , if l+ /∈ N ∪ {0}(
n−l
l+

)(
l

l−

)
, otherwise

with l+ = 1
2(r + k − l) and l− = 1
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Evolution as an Information Dynamic System

Analysis Using Absorbing Markov Chain

We have the following Markov transition probability

Pθ(k | l) := Pθ(b ∈ S(>, k) | a ∈ S(>, l))

It defines linear transformation Tθ : P → P of pt = P (l):

pt+1 = Tθpt =
n∑

l=0

Pθ(k | l)P (l) or pt+m = Tm
θ pt

The top element > ∈ Ω can be assumed as an absorbing state.
Using function θ = θ(l), we can compute operator Tθ and its
fundamental matrix

Tθ =

(
I 0
R Q

)
N = (I −Q)−1

Given p0 = P (l), compute the expected time of convergence:

EP {t} =
n∑

l=1

tlP (l) =
n∑

l=1

P (l)
n∑

k=1

nlk
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Approximately Optimal Mutation Rates

Optimisation of Mutation in One Step

The expected fitness after transformation a 7→ b is

Eθ{f} =
∑
b∈Ω

f(b) Pθ(b) =
∑
b∈Ω

f(b)
∑
a∈Ω

Pθ(b | a)P (a)

The optimal mutation rate is given by condition

dEθ{f}
dθ

=
∑
b∈Ω

f(b)
d

dθ
Pθ(b) = 0

If f(b) = −d(>, b) and P (a) = δa(ω), then

θ̄(l) :=

{
0 if l < n/2
1 if l > n/2
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Approximately Optimal Mutation Rates

Step function
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Approximately Optimal Mutation Rates

Maximising Fitness Growth

Let E0{f} = 〈f, p0〉, and consider

∆Eθ{f} = Eθ{f} − E0{f}

Consider utility

u(θ) :=

{
0 if ∆Eθ{f} ≤ 0
1 if ∆Eθ{f} > 0

The maximiser of u(θ) can be found numerically.
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Approximately Optimal Mutation Rates

Needle in a Haystack

Consider fitness

f(l) :=

{
1 if l = 0
0 otherwise

Maximum probability of absorption

Tθ =

(
I 0
R Q

)
where rlk = Pθ(0 | l 6= 0) = θl(1− θ)n−l

Condition dPθ(0 | l 6= 0)/dθ = 0 is satisfied for l = nθ, which gives
linear function:

θ(l) =
l

n
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Approximately Optimal Mutation Rates
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Approximately Optimal Mutation Rates

Information Heuristics

f(ω) = −l is not all information that can be used.

Given q = P (l), random information is

IKL(δkl, q) = − log P (l)

The expected random information is entropy:

Eq{IKL(δkl, q)} = −
∑

l

[log P (l)]P (l)

The probability of ‘improvement’ is given by

P (k < l) =
l−1∑
k=0

P (k) = 2−n
l−1∑
k=0

(
n

k

)
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Approximately Optimal Mutation Rates
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Approximately Optimal Mutation Rates

Comparing Mutation Rate Functions
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Approximately Optimal Mutation Rates

Theoretical Ux(I)
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Approximately Optimal Mutation Rates

Conclusions and Questions

Optimisation in time and information may not be the same.

Optimisation in information dynamics can give a different and
potentially more effective methods (e.g. non-stationary, adaptive).

There is a problem of relating transformations of the system to
information dynamics.
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