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Abstract

A concurrent work-stealing algorithm is analysed to discover necessary positions for memory barri-
ers. The analysis is targeted at the Power processor, and takes into account both instruction-execution
reordering and delayed writes. Formal verifications of the effectiveness of the barriers under instruction-
execution reordering are developed, and a semi-formal argument (using formal assertions with semantic
reasoning) verifies barriers which deal with inter-thread propagation effects. The published algorithm
had a number of suggested barriers to guard against reordering; it is shown that it needs one more bar-
rier for that purpose, and two more to deal with propagation effects. The effect of missing barriers is
described.



Programming is in a weird place. Our programs are mostly sequential but hardware is mostly paral-
lel, even within a single processor. Caches, pipelines, weak memory and speculative execution conspire
to rearrange execution in surprising ways. A single isolated program keeps its sequential meaning, but
shared-variable concurrency becomes rather tricky. Special barrier instructions are needed to enforce some
discipline, and it’s hard to understand when and where they are needed. There’s been a lot of study of the
hardware [3, 26, 25] and some use of model-checking to verify barrier placement [13, 17, 5]; this paper

looks at the problem from a programmer’s point of view and uses verification.

Concurrent algorithms are often published as if they were
to be executed on a sequentially-consistent machine and the
placement of barriers is treated as if it were merely an imple-
mentation detail. This won’t do: barriers are an essential part of
an algorithm designed to run fast and concurrently. In figure 1,
taken from [20], the authors have indicated where the barriers
ought to go (though in private correspondence [30] they made it
clear that these are only suggestions, not tested on any particu-
lar current processor; their experiments were on an architecture
which doesn’t reorder execution).

In this paper we discover the barriers that are needed by
logical argument. We take each procedure and draw a de-
pendency graph of its commands, showing which must follow
what, even if the machine reorders execution. Then, by trying
to make a formal proof that the graph preserves some global
invariants, we find places where the proof won’t go through.
We fix those problems by inserting an extra ordering, provided
by a barrier instruction. This is a sort of abduction [23] in that
it involves guessing and verifying. We find all the suggested
barriers and one extra. Then by considering orderings between
different procedures we find two more barriers. Missing barri-
ers cause bugs, and we describe the bugs that result.

Our technique works well for our chosen example. That is
satisfying, but it is work in progress: our dependency graphs
aren’t formally tied to the semantics of the machine; when con-
sidering memory propagation effects we reason semi-formally;
and it would be easy to guess too many barriers. For all that, we
do find barriers, and it ought to be possible in the near future to
dot all the logical i’s and cross the formal t’s.

Related work is either on automatically placing barri-
ers [19, 2, 1] or removing redundant ones [29]. Most of it as-
sumes TSO, the execution model of the Intel 86; for weaker ar-
chitectures, such as IBM Power, the placement problem seems
to be undecidable [7, 6]. It remains to be seen if automatic tech-
niques can discover all and only the barriers needed for FIFO
IWSQ on a weak architecture.

1 An example algorithm

void put(Task tv) {
Order write at 4 before write at 5
1: h := Hd;
2.t =TI;
3: if t =h+Ta.size then { expand(); goto 1 };
4: Ta.array[t%Ta.size] = tv;
5: Tl :== t+1
1

Task take() {

local Task tv;

h Hd;

t =TI

if h=t then return EMPTY;
: tv = Ta.array[h%Ta.size];
: Hd := h+1;

return tv

Toakwn

void expand() {
Order writes in 2 and 4 before write in 5
Order write in 5 before write in put:5

1: s = Ta.size;

2: a’ = new SizeTaskArray(2xs);

3: for i = Hd:TI-1,

4: a’.array[i%a’.size] := Ta.array[i%Ta.size];
5: Ta:=a

1

Task steal () {
Order read in 1 before read in 2
Order read in 1 before read in 4
Order read in 5 before CAS in 6

ocal Task tv;

h Hd;

t TI;

if h=t then return EMPTY;

a = Ta;

: tv = a.array[h%a.size];

if CAS(&Hd,h,h+1) then goto 1;

return tv;

TNk

Figure 1: Michael et al.’s FIFO IWSQ
(from [20] with abbreviated names)

Work stealing [4, 14] is a technique for scheduling tasks on multiprocessor machines. Each scheduler
thread manages its own queue of tasks, but when the queue is empty it may try to steal a task from another.
Michael et al. [20] describe an ‘idempotent work stealing’ algorithm (henceforth IWSQ): we analyse their



FIFO variant (shown in figure 1, with shortened names). Each queue is in its own global array, with its own
Hd and Tl indices. Indices increase without limit and queue addressing is modulo the size of the array, giving
wrap-around (circularity) within the array. Only the owner thread may write to the queue: it put()s at the
tail and take()s from the head. If the queue gets too big the owner may expand() the array. A thread short on
tasks may attempt to steal () from the head of another’s queue.

IWSQ is designed to be more efficient than its predecessors by using fewer barriers in its common path
(put() and take() by a queue owner), but there is a price to pay: because take() doesn’t use a CAS,! a task may
be stolen at the same time as the owner takes it from the queue. Tasks must therefore be idempotent —i.e. it
mustn’t matter that they are executed/used more than once. A practical example is packet routing. This is
intended to be a practical algorithm; it is clearly worth ensuring that it is correct.

2 Relaxed execution rules and TIoSE

There has been much recent work on verifying concurrent algorithms [10, 11, 22, 16, 15, 9, 12] but it is all
vulnerable to the objection that it doesn’t take into account relaxed memory effects, which arise from inter-
action between in-thread execution reordering and inter-thread communication effects. Different threads’
in a concurrent program running on a relaxed machine can have quite different views of what the values of
shared variables are. The PowerPC is such a machine, and its semantics are mind-splittingly intricate [25].
But it has been explained to us, and we have found a way to use verification to deal with it.

Execution ordering first. Hardware designers are ambitious but they aren’t mad: their machines preserve
the illusion of sequential execution (henceforth TIoSE), within a single thread, that everything happens in
the original program order. That requires some obvious constraints:

d: if one instruction computes a value which is used by another, then they must stay in program order;

c¢: instructions which have an external effect (e.g. writes to memory) and which follow a conditional branch
must stay in program order with the branch;

m: instructions which access the same memory location must stay in program order.

These constraints give designers lots of wriggle room: there’s no constraint, for example, that reads or
writes to different locations have to happen in program order. Most strikingly the hardware can speculate
execution of instructions out of order, provided that speculation is abandoned if a later conditional branch
decides against those executions, and that results are only visible to instructions which follow in program
order. But all that is hidden from the programmer under TIoSE.

Then communication effects. Communication takes place through the memory; caches take much of
the strain so far as reads are concerned, but writes are still a problem. In the model of [25] a write happens
in stages: first, the instruction is executed (possibly even speculated) and the value it writes is immediately
available to reads in the same thread; then it is committed and the value is propagated to other threads.
Memory organisation on Power is so weird that the model abstracts from memory and cache and describes
reads taking values from particular writes. There’s a global coherence order of writes to each individual
location and threads read in coherence order,” but no necessary order on writes otherwise. In particular,
writes to different locations may arrive at different threads in different orders. But the main thing is that a
write is visible at one instant in the writing thread and only much later in other threads.

' CAS: compare and swap, an atomic action which reads a location, compares it with an expected value, and writes a new value
if it read what was expected. Some variants return the value found in the location (hence ‘swap’); in figure I CAS returns a
Boolean to signal success or failure.

2 Throughout this paper ‘thread’ means hardware thread: effectively a single program running on a single processor.

3 An uncommitted write is necessarily later in coherence order than any committed write. So it’s safe to read locally from your
own writes.



TIoSE sorts out what happens in a single isolated thread, but execution reordering and delayed commit-
tal/propagation complicate communication. Barriers force some memory events to happen before others. A
sync, the most expensive, forces all the reads and writes before it to finish — be committed and propagated
— before any of the reads and writes after it can even start. In fact all the committed writes in other threads
that the barring thread has read from must also have finished: sync is cumulative. The less expensive lwsync
separates reads and writes before from writes afterwards (i.e. it doesn’t separate writes from reads) and is
also cumulative. Cheaper still is ctrl +isync which separates a single read from following reads and writes,
and there are other, less powerful, barriers which we ignore.

3 Invariants and actions

In verifying concurrent programs, invariants are priceless, describing relationships between shared variables
in an imaginary snapshot of the machine state. In relaxed memory they constrain the states of each thread:
at every instant, taking into account the values of all the writes that have been propagated to it, the invariant
must appear to hold. (2), for example, prescribes that we must never glimpse Hd > T! in any thread.

The logic we use is RGSep [28, 27], a development of separation logic [24, 21] and rely-guarantee [18].
In separation logic ‘"’ is points to: so, for example, Ta — Ar, Sz asserts that the variable Ta points to a
two-word record in the heap; ‘x’ is and separately, which allows us to talk about different bits of the heap;
‘®’ is repeated ‘x’, a separated V; ‘A’ means and at the same time (no separation); and ‘true’ means as
much space as you need to fill in the gaps.

(1) says that Ta points to a record which contains a pointer to an array and its size; the array is a
record of separate tasks; within that record is the queue and possibly (‘x true’) some unused elements. For
simplicity we have supposed single-word task values. To describe the queue we imagine the existence of
a task sequence T's which has length 71, is indexed from O to 77 — 1, and only changes by appending a
value; the queue proper is T's[Hd.. Tl — 1]. (2) says that Hd never overtakes T1; (3) that the array is never
overfilled; (4) that T never decreases.

JAr, Sz ( Ta — Ar, Sz % (®z‘60:5z—1(147“ + 1= _) N (®qgend:mi—1(Ar + ¢%Sz — Tsy) * true) )) €))

Hd < Ti (2)
JAr, Sz(Ta — Ar,Sz N Hd + Sz > TI) 3)
Tl=T=0(Tl>T) “)

In RGSep we impose a division between local memory, which is private to a thread and can’t be seen
or touched by other threads, and shared memory, which all threads can read or write. Communication is by
writing to shared memory, causing what rely-guarantee calls interference. An action, the unit of interference,
describes the effect of a single-word write.* We write context: pre ~ post to describe the part of shared
memory that doesn’t change but is relevant to the action, and the pre- and post-values of the part of memory
that does change.

The owner alone, with put(), can write to the array and alter 77. To update the queue it’s necessary to
do both, but there are no locks in IWSQ so there must be two separate actions: (5) changes the array; (6)
changes 7! and simultaneously updates the imaginary task sequence T's.

Tas Ar,Sz ATl < j < Hd+ Sz : Ar + j%Sz +—= V ~ Ar + §%Sz — V' 5)

TIl=TNTs=TS ~

Ta — Ar, Sz x Ar + Tl%Sz — V : TI—T+1ATs— TSV

(6)

* Single-word memory accesses are guaranteed to retrieve or deposit a complete value; multi-word reads and writes are piecewise.
The actual operation of a single-word read or write is long-winded, but no thread ever retrieves a half-written single-word value.
We would call them ‘atomic’ reads and writes, but that would be confusing in a relaxed-memory setting.



The owner, with take(), or a thief, with steal (), can increase Hd in (7). The owner can decrease Hd
in (8), if a take() overlaps more than one steal(): the array element containing the restored member of the
queue will have been unmodified during its absence, and the action won’t make the array full.

Hi=H~ Hd=H+1 (7)
Ta s Ar,Sz A ((Ar + H%Sz — Tsg)SHd=H)ANH+ Sz > Tl: Hi=H +1~ Hd=H (8)

In (9) the owner, with expand(), can switch task arrays by writing to 7@, but invariant (1) demands that
the new array must already contain the queue proper, and Hd can’t subsequently decrease to take in values
which are not in both arrays at the instant of expansion.

To=TAHd=H~ Ta=T AO(Hd > H) 9)

Along with interference comes the notion of stability. An assertion in a thread is stable if other threads,
interfere how they may, can’t make it false. So the instruction <t:=Tl>, for example, will instantaneously
produce the postcondition ¢ = T1; interference by action (6) can increase 71 and destroy the postcondition
but the alternative ¢ < 71 is stable since 77 can’t decrease and ¢ is a local register.

4 Instruction-execution ordering

Figure 1 includes constraints on instruction ordering, justified in [20] by describing bad things that could
happen if the orderings weren’t obeyed. Programmers don’t work like that: we shall abduce the barriers by
trying to make an algorithm that produces good results.

4.1 Orderings in steal()

We begin with steal () since it has three ordering constraints in figure 1, making it the most intriguing of the
four procedures. We recast it in figure 2(a) so that each instruction makes at most one access to memory:
suffixes on line numbers (5a, 5b etc.) show where we have split a single line of the original; lower-case
names denote registers; angle brackets show single-word memory operations. Tasks need not be single-
word in IWSQ, so line 5d is not shown as a single-word read, but the address calculation assumes an
array of single-word tasks; to allow for multi-word task reads wouldn’t add much illumination and would
considerably complicate assertions. There are no writes other than the one hidden in CAS. There are five
jumps: two conditional branches, one goto and two returns.

Figure 2(b) shows the important TIOSE dependencies of figure 2(a), using ‘d’ where one instruction
produces a result used by another, ‘c’ where the effect of an instruction must follow a conditional branch,
and ‘po’ where program order applies but we haven’t considered what happens after a goto or return. There’s
something strange about the ‘c’ dependency: strictly it applies to the committal of a write, which must follow
the branch, and the execution of the write can be speculated (though not in the case of a CAS). But we gloss
over that distinction because in any case it marks a proof dependency: in reasoning about the effect of a
command we can rely on the postconditions of the things it depends upon in either the ‘d’ or the ‘c’ sense.

It’s immediately clear that lines 4, 5a and 5b float free of anything to do with Hd or 7!, and that the
CAS is independent of anything to do with reading the array. Lines 1 and 2 are independent of each other,
but line 1 has to precede quite a lot of others. Note that there isn’t a barrier automatically associated with a
CAS on Power: it is implemented as a special read followed by a special write; it is not speculated before a
preceding branch; and the write is committed immediately if it succeeds (and it can fail spuriously, which
messes up correctness arguments, but we shan’t go there.)

Reasoning starts with the placing of assertions on dependencies, describing what you would see if you
could take in at an instant all the thread’s local memory and the values of all the writes that have been
propagated to it. First consider line 7: we’d like to know that it returns a value that was, at some point

4



: = <ti= 4: =T
Task steal () { 1 <h/ Hd> /2/<t@ <a:=Te>
d d d d d
d \

local Task tv;
v ¥ AN

10 <h:i= Hd>; ba:<aa:=[a]> b5b:<as:=[a+1]>

2: <t = TIs; 3a: if h=t then else

3a: if h=t then { ! \ /
3b:  return EMPTY po d d
ic<}a’ - Tas: 3b: return EMPTY ¢ \ /
5a: <aa = [a]>; /I aa:= a.array 5¢: ae = aa+h%as
5b: <as = [a+1]>;  // as = a.size 6a: <b := CAS(&Hd, h, h+1)> g

5c: ae = aa+h%as; // ae:= &(a.array[h%a.size]) d /

5d: tv := [ae]; /I tv = a.array[h%a.size] 6b: if:[)then else 5d: tv := [ae]

6a: <b := CAS(&Hd, h, h+1)>; ‘ PN )

6b: if b then { po po d

6c:  goto 1 ¥ A

6d: }; 6¢: goto 1 7: return tv

7: return tv

) (b) dependency graph

(a) code with single-memory-access commands

Figure 2: FIFO steal recast

during the steal () operation, the head value of the queue. Something like tv = T's, A &(Hd = h) (where &
means ‘at some instant since the procedure execution began’). The second conjunct is immediate, because
h = Hd holds immediately after line 1, which is an execution predecessor of line 7, and the first conjunct
had surely better be a postcondition of line 5d. To consider line 5d we can derive from invariant (1)

JAr, Sz, V(Ta — Ar, Sz« Ar + h%Sz — V N (Hd < h < Tl) =V = Tsp) (10)

— provided h is in the queue-index range, T'sj, is available in the array. If the procedure’s instructions were
executed sequentially, h # t at line 3a, together with invariants (2) and (4), would ensure h < T1 from line
4 onwards and then a successful CAS would tell us that h = Hd < TI at line 6a. From (10), plus invariant
(7) for the tricky case when Hd first increases and then decreases between lines 1 and 6a, we could conclude
that line 5d actually reads T'sy. But very little of that sequential ordering survives in figure 2(b) , and our
job is to abduce how much of it we need to enforce.

After <h:=Hd> in the dependency graph we know instantaneously that h = Hd < TI. Stably (under
interference from other threads — see §3), because Hd can either increase or decrease we don’t know at all
the relationship between h and Hd. But T can only increase, so h < T1 is stable. Similarly, after <t:=TI> we
know instantaneously ¢ = T and stably ¢ < Tl. Atline 3a, however, (h < TIANt < TIANh #t) & h < TI.
But if we abduce a barrier to enforce program order between lines 1 and 2 then we know instantaneously
after line 2 that h < ¢ = T, and stably h < ¢ < Tl;thenatline3a (h <t < TIANh #t) = h < Tl. (In
the other case when h = ¢ we know that at line 2 we had h = ¢ = T and then, since T/ can’t decrease, we
had h = Hd = Tl at line 1, and that instant the queue was empty.)

To be sure from (10) that we are reading T'sj, on line 5d we need two more barriers: one between lines
5d and 6a to ensure that the task is read before the CAS; and one between lines 2 and 5d, after we read ¢, to
ensure that it is read when h < .

The code with its barriers is in figure 3(a). A formal treatment of its dependency graph is in figure 4:
the diagram is just a flattened dependency graph with ribbons instead of lines, and assertions written inside
the ribbons.” In RGSep notation we draw boxes round assertions about shared memory, and leave local

> This style of diagram derives from ‘ribbon proofs’ [8, 31] but it is a distinct variant, designed to suit our dependency graphs.



Task steal () {

1. <h:= Hd>; Hd=0 Arl->0,0

--- Line 1 read/any read barrier ( ctrl +isync) --- /]
2: <t = TlI>; /\
3a: if h=t then { rf
3b: return EMPTY .
3c: }, pUt(1) / """"" u Freeeieieiees Steal()
4: <a:= Ta>; ! R(Hd,0) : R(Hd,0) :
ba: <aa = [a]>; /I aa := a.array : , :
5b: <as := [a+1]>; // as = a.size : J po : ctrlisync :
5c: ae = aa+h%as; // ae:= &(a.array[h%a.size]) : :

--- line 2 read/any read barrier ( ctrl +isync) --- : RO L R(TLY)
5d: tv = [ae]; /I tv = a.array[h%a.size] : J a : po

--- line 5d read/any write barrier ( ctrl +isync) ---
6a: <b := CAS(&Hd, h, h+1)>; P W(ALT) R([Ar1,0)
6b: if b then { l Iwsync / ctrlisyncé
6c¢: goto 1 : rf : :
6d: }; W(TL1) < . ! R(HA,0)/W(Hd,1)
7: return tv;
} (b) the empty steal bug without the line 2 / line 5d

(a) code barrier

Figure 3: FIFO steal with barriers

memory outside the box. The commands and barriers are flattened out to fit their particular dependency
ribbons (for reasons of space the line 2 / line 5d barrier is shown as a line of dashes). The postcondition of
each command describes its instantaneous result, and ‘= (stability)’ shows the effects of interference.

The proof begins with the assertion that there is always an array element indexed by Hd which contains
some value V' and that V' = T'sp, provided the queue isn’t empty. <h:=Hd> picks up the value of Hd but
that’s unstable; what we know stably is that if h = Hd < 71 then we can still read T'spy. That ribbon
splits in two: the left one deals with h, ¢ and 71 while the right one deals with the array. Once we read
Ta we have to allow for interference from the owner, which might switch arrays with (9), so we could lose
the association Ta = A; but if we do then we can be sure (a) that Hd < TI at the switch (the owner only
expands a full array) and therefore (b) that T's ;; was definitely in the array before the switch, and therefore
(c) that it’s in the array rooted at A, which was the array before the switch. Then we read the array pointer
and size, in two separate ribbons, while a third carries the facts about the array element we’re hoping to read.
Those three ribbons recombine, and we compute the address of the array element. We're still not sure, at
this point, that there is a queue element to be read: this side of the diagram has taken no account of <t:=TI>.
Then the line 2 / line 5d barrier comes into play, bringing together a ribbon which asserts H < T < Tl and
one which asserts that we have the address of element H (modulo Sz). The two ribbons are used by tv:=[ae],
which reads T'sy provided H = Hd < TI. Then a successful CAS, plus the assurance h = H < T from
the ‘else’ branch of the conditional, guarantees that we have T'sy,.

TIoSE only guarantees that everything will work within a single thread which suffers no interference:
We had to consider what happens when other threads interfere by changing Hd, T! or Ta and fend them off
by inserting barriers. The barrier between line 1 and line 2 also divides line 1 and line 4, so we can be sure
when we execute <a:=Ta> that h = H, because h = Hd < Tl is what we need to be sure that T'sj, is in the
array. The barrier between line 2 and line 5d was necessary so that we could assert H < T at the instant of
reading the task; the later assurance that H < T seals the deal.®

What remains is to deal with one goto and two returns. It is important to recognise that ordering is of

® Why not put the barrier between line 3a and line 5d? It would simplify the proof, but we did it this way because it feels more
elegant and allows more speculation.



‘HAT, Sz, V(Ta — Ar,Szx Ar + Hi%Sz — V ANHd < Tl =V = Tsyy) ‘ (from invariants)

<h:=Hd>
__dH

h:H/\‘aAr.sz,v(Hd:HA(H< TI=V= TsH)ATa»—)Ar.,Sz*ArJrH%SzHV)‘
= (stability)

aT(h:HgTAaAr,sz,v(\ TI=TANH=Hi<T=V = TsH)/\Ta'—>Ar,Sz*Ar+H%Sz>—>VD)

ctrl+isync (r/rw barrier)

h=HA\
HT(’L:HSTAH) ‘HAT,Sz,V(Ta,HAr,Sz*Ar+H%Sz>—)VAH=Hd<Tl=>V=TsH)‘
<t:=T1> <a:=Ta>
AT, A Ar, Sz
h=H<t=Tx[T=Tl] CAAB—HATY Ta=ANH=Hd<Tl=V = Tsy) A
= (stability) = = A Ar, Sz x Ar + H%Sz — V
h=H<t=TA[T<TI = (stability)
a=ANh=HA3V ((H = Hd < TL=V = Tsy) AN A Ar, Sz % Ar + H%Sz - V) |
if h=t -
I
S =2 o | o=anfaoa] |[a=ann=rnn a=AN[A+10 5]
=| 8 %
SE el ia (H=Hd< Tl =V = Tsy) A
e = i =
I : E <aa:=l[a]> Ar+ H%Sz s V <as:=[a+l]>
3 - _
~ 3 | aa = Ar | | as = Sz |
IN
return EMPTY ~ a=AANh=HAaa=Ar ANas =Sz \

|3V ((H = Hd < TI =V = Tsp) x Ar + H%Sz = V) |

ae:=aa+th%as
a=ANh=HAae=Ar+ H%Sz A
— 3V ((H = Hd < TV = Tsp) x Ar+ H%Sz = V) |

tv:=[ae]

3V<tv=V/\h:H§T/\‘T§ Tl/\(H:Hd<Tl:V=TsH)D

ctrl+isync (r/rw barrier)

b:=CAS (&Hd, h, h+1)
h=HA(b=tv= Ts, A Hd=H))
if —b

(then) | | (else) h=HAtv= Ts, A S| Hd = H] |

goto 1

return twv

Figure 4: Formal proof of steal()

executions rather than instructions, so the goto doesn’t simply loop back to the head of the diagram. What
follows it is another instance of the whole diagram, and we have to be concerned about interactions between
successive instances. Because of dependencies and the read/write barrier, only the CAS could migrate from
the first into the second; because of the read/read and read/write barriers, only <h:=Hd> could migrate from
the second into the first. Because they are accessing the same memory location, each stops the other going
any further. We don’t need any more barriers.

We expected to derive Michael et al.’s three barriers in steal () — read Hd before T1; read Hd before



void expand() {
local Task tv;
1a: <a = Ta>;

void put(Task tv) { 1b: <aa = [a]>;

1: <h = Hd>: 1c: <s = [a+1]>.; Task take() {
2j <t — TI>', 2a: a’ = new SizedTaskArray(2xs); local Task tv;
Sé' <a j= Ta>!' 2b: <aa’ = [a’]>; 1: <h = Hd>;
3b: <s " [a+%]>' 2c: s" = 2x%S; 2: <F = Tl>;
30_' if t — h+s th’en{ 3a: <i := Hd>; 3a: if h=t then {
3d.' expand(): 3b: ?t = Tl>; 3b:  return EMPTY
3e: goto 1 ’ 3c: if i=t then { 3c: };
3f_' } 3d:  goto 5a 4a: <a = Ta>;
4a-' <’aa — [a]>: 3e: }; ‘ 4b: <aa = [a]>;
4b: ae : aa+t°/,o3' 4a: ae = aa+i%s; 4c: <s = [a+1]>;
40_' [ae.] -ty ’ 4b: tv = [ae]; 4d: <ae = aa+h%s>;
T . 4c: ae’ = aa'+i%s’; 4e: tv = [ae];
--- write/write barrier (lwsync) --- 4d: [ae] = tv: 5: <Hd = h+1>:
gg; :eTt'ur: t+1> de i = i+ 6: return tv
) 4f: goto 3c; // od }
} 5a: --- write/write barrier (lwsync) ---
5b: <Ta = a’>;
5c: return

1
Figure 5: put(), expand() and take() with barriers

Ta; read the task value before executing the CAS — but we found an extra one — read 77 before [ae]. Our
abuction method, though, is very unlikely to be minimal: We can’t say that because the invariants, pre- and
post-conditions which we have chosen suggest particular barriers, those barriers are required; there might be
a different, cheaper, set which would do the job. We can, however, show a bug without the barrier: with only
program order between <t:=Tl> and <tv:=[ae]>’ the reads can happen in any order, which means that the thief
can read the task value before it reads 71. A thread diagram in figure 3(b) shows the pattern of reads and
writes, assuming initial values of O for index values and array elements and put(1) from the owner: despite
the Iwsync barrier in put (see §4.2), the thief reads an initial, invalid, task value from the array. Figure 4
shows that the extra barrier provably fixes that problem, preventing the bug.

In each case the argument which led to placing of a barrier was an abduction: there was something
we needed to prove on a particular ribbon in the diagram, which we couldn’t prove without connecting it
to another ribbon using a barrier. We didn’t have to say what nasty things could happen if the barrier was
missing: nastiness arguments are particularly convoluted in the line 1/ line 4 ordering case, but by contrast
it’s clear when there is something we need for the proof which we can’t guarantee without an ordering.

4.2 Orderings in put(), expand() and take()

There isn’t room to show the analysis of put(), expand() and take() in as much detail as was given to steal ().
The code with its barriers is in figure 5: We abduce the same orderings as in figure 1, produced by one
write/write barrier (lwsync) in each of put() and expand() and no barriers at all in take(). In put() the barrier
ensures that the write which puts the new task into the array must be finished before the index-update begins,
which is necessary to ensure that action (6) preserves invariant (1); a concurrent programmer would know
straight away that the barrier is needed, but the formal proof confirms that we need no more. The treatment
of expand() is quite similar: its barrier ensures that the writes which create and initialise the new array are
completed before its existence is publicised to the world by assignment to Ta. The proof of take() follows
the TIoSE dependencies and, as in figure 1, it needs nothing more.

7 On Power there is a control dependency between lines 2 and 5d, but in the case of a pair of reads that makes no difference.



S Propagation effects

Interference between threads is caused by writes to shared locations. Threads must read in (global) coher-
ence order from each location: a local uncommitted write is later in coherence order than any committed
write since it hasn’t been committed yet. So the hardware can read locally first from an uncommitted write
and commit / propagate later. Different threads may therefore have different views of shared data.® Our
reasoning so far has dealt with the local view, ensuring that invariants are preserved in each thread’s view
of shared data. This is valid when reasoning about the interference of other threads, which was what led
to the three barriers in steal (). The barriers in put() and expand() are different: they were implicit in the
specification, ordering actions to preserve invariants, but the specification was written that way because of
shared data concerns: no thread should see the effect of a write to the array before it sees the effect of an
update to 71, for example. To argue that those barriers which preserve invariants in the view of the owner
also preserve them in the views of thieves will require consideration of the way that writes are committed
and propagated and the way that they interact with barriers. We shall see that the barriers we have placed do
have effects that we require, but that we need more barriers still to make the algorithm work.

In this paper a stable assertion is a predicate on a thread’s view
of shared data whose truth can’t be undermined by the interference of

Iwsync
other threads — i.e. by the arrival of writes from other threads. In Tl tels
RGSep [28, 27] stable assertions are global: if holds in one thread ~ ~TTTTTTTTTTTTTTOO
and is stable, then holds in every thread. That’s not so in a relaxed- Co take()
memory setting. But some assertions are universal and hold in every ;<h= Hd\i ;tt ™
thread: in our example all threads must agree about the value of elements if het
of the task sequence, though they may disagree about its length. Both AW
sync and lwsync barriers convert shared assertions to universal assertions <Hd = h+1>

because they are cumulative: every update that a thread makes, or reads
from, before such a barrier will be committed and propagated to other
threads before the barrier completes. If is stable before a cumulative
barrier, based on the updates the barring thread has made or seen, then
after the barrier all threads will have seen those updates and will be
valid and stable in their views. We have to be careful about what it means
for a barrier to ‘complete’: a sync completes before the next instruction
execution, an lwsync before the next write.

This reasoning explains how the message passing paradigm of Power
programming, using an lwsync between writing a message value and set-
ting a flag or an index to publicise the message, works in logical terms.
The Iwsync in put() converts the stable assertion

<h := Hd> <t:=Tl> <a:=Ta>

b
<s :=[a+1]>
— §

if t =h+s

- expand() j ------------------- )
a' := new TaskArrayWithSize(2*s)

l

[aeT] :=tv

Iwsync
To =ANTI=TANA~— Ar,Szxtrue x Ar + T%Sz — V| (11) &~
into a universal assertion, and we can be sure that the update <Tl:=t+1>, [‘Te] =
wsync ——

given t = T, will effect action (6) in the view of every thread; it also en-
sures that it won’t violate invariant (3) in any other thread’s view. Similar
reasoning shows that <Ta:=a’> in put() effects (9) everywhere and pre-
serves (1).

We have to be careful. Iwsync provides a universal assertion which

Figure 6: selected memory
events in put(); take(); ...; put()

holds until the next write of the barring thread, which may undermine it. If <Tl:=t+1> is the next write

8 RGSep [28, 27] deals with shared memory, but in the model of [25] the memory is abstracted away. There is, however, shared
data.



propagated from the owner to a potential thief after the lwsync in put() then it will be seen in a state in
which (11) holds; but because of out-of-order execution and committal / propagation effects it might not be
propagated first. Suppose the owner executes put(); take(); ...; put() — at least one take(), possibly more,
between two put() s, the second of which may invoke expand(), as in figure 6. None of the writes up to the next
Iwsync undermine (11): [ae]:=tv in a subsequent put() writes to a different location; the writes in expand() are
to a different array; <Hd:=h+1> in take() is to a variable not mentioned. So whenever <Tl:=t+1> is committed
and propagated, which must be before the end of the next Iwsync, it will be received in a state described by
(11), and similarly it won’t violate (3).

Hi=0 «. Tl=2  Arl>1122 The case of <Ta:=a’> in expand() is similar, but simpler.
P \r\ The instructions which allocate and initialise the new array
take() ---eeeeqeee o LI steal) ~ come before an Iwsync; the whole of the new array, together
: A(HAo \ A0 :  with any uncommitted updates to Hd and 7 which make
( lr,)o) ; (40 i up the owner’s view, will be propagated to all threads before
R(TI2) / : ctiisync | the assignment <Ta:=a’> switches arrays; and the switching
je 5 : assignment itself, together with the [ae]:=tv which is part of
R(AM1) \ RETI2) i the enclosing put(), will be propagated before <Tl:=t+1>; and

| po it ' i so on round again.
R([(Ar+1.1) : ctriisync So much for the lwsyncs; but we haven’t finished. Be-
| PO i tween the lwsync of the first put() and the first lwsync of the
. Wd ) N last there are various writes but no barriers. Because com-

: R([Ar],3) : . o ) :
, / :  mittal and propagation is only constrained by barriers, those
writes, in the view of other threads, are unordered, apart

R(HA. 1) Mo upd Hd in th hich will i
Lo | : updates to Hd 1r1. the take()s, which will be seen in
R(TL2) rf R([Ar+1],1) :  program order. The write caused by <Tl:=t+1> can be prop-
l, . / i agated safely at any time, and likewise the writes which ini-
W(A13) 50 tialise and populate the new array in expand(); it remains to
| po : : consider the writes caused by [ae]:=tv in put() when there
W(Ar+1],3) N\ R(Hd,0//W(Hd,1) : 1S no expand() and the writes caused by <Hd:=h+1> in take().

...} Each of those writes are guarded by a conditional branch.

Figure 7: the overwriting bug [ae]:=tv is only committed if » + s > ¢, which implies

Hd+ [Ta+1] > Tl (12)

in the owner’s view — i.e. the owner can see an empty slot in the array. But do other threads see the same
slot as empty? (12) is a universal assertion after the first lwsync in our example execution, but <Tl:=t+1>
undermines it. To ensure that [ae]:=tv is well-received by thieves requires

Hd +[Ta +1] > Tl = U(Hd + [Ta + 1] > TI) (13)

where (U)(P) means ‘P holds universally’. This is a universal assertion after the first lwsync in figure
6, because (12) is, and it isn’t undermined by <Tl:=t+1>, which can only make the antecedent false. It is,
however, undermined by <Hd:=h+1>, which may make the antecedent true without affecting the consequent.
That can be remedied by inserting a conditional barrier: after <Hd:=h+1> in take() add “if h+s=t then lwsync”.

Without that barrier the update to Hd can happen after the write to [ae], and a thief can be stealing from
a particular array element at the same instant that an owner is writing. Given an array of single-word tasks
their writes will be serialised, and a thief could retrieve a task that isn’t yet part of the queue, reading from
the tail before 71 is updated. That might not matter, perhaps: but with multi-word task values it can retrieve
part of the newly-written task and part of the old: see figure 7.

The other guarded update is <Hd:=h+1> in take(): it is only executed if A < T, which is required to ensure
invariant (2) locally. Immediately after the first lwsync in figure 6 we have H = Hd < Tl = U(H+1 < TI).
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It’s undermined by <Tl:=t+1> which may make the antecedent true but does not affect the consequent. This
can be fixed with a conditional barrier if h=t then lwsync at the end of put(). Without that barrier a thief can
go wrong, seeing Hd > Tl and stealing an uninitialised value: see figure 8. But in this case we can do
better: if we make (2) a local invariant in the owner only, and make thieves check A > ¢ instead of h = t,
the bug is more cheaply solved (find that, automated methods!).

6 Coda
Abduction on dependency graphs found all of the orderings Hi=0  TI=0  Arl->00
from [20], plus one extra. We have confidence that there are . i /
no more dependency orderings to be found, because of the f "
. put(1) ------c--f\--e rf

formal proofs. Those proofs are not yet formally linked to a : / :
model of the Power processor, but that ought to be possible, ; R(Hd.0) :
and it should also be pqssible to mechanise the proofs and R(Tﬂ OF;O J—
perhaps even the abduction. ; | c :

A semi-formal treatment of propagation effects, using W([A],1) :
invariants but reasoning semantically, found two additional P} lweyne e steal() ;
necessary orderings. We have some confidence that we W(T'”'\ ; R(Hd,1) .
have found all of these orderings too, by showing that un- l po : l ctrlisync
guarded actions are always well-received in other threads, take() -] f R(TLO) :
and guarded actions sometimes need protection. We're R(Hd‘%)o l ctrlisync
fairly confident that there aren’t more propagation bugs to R (#I’ " AA110)
be discovered in this algorithm, but it would be nice if this ! I o
treatment could be made completely formal and eventually | Rqarg.1) \\ l ctrlisyne
automated. E ) Po +* R(Hd,1)/W(Hd,2)

This paper reports work in progress. It may be that there | W(Hd1) e
are better ways of reasoning about the placing of barriers, 777
but the history of our subject suggests that formal reasoning Figure 8: the overwriting bug

of some sort will be the way forward. It remains to be seen,
when IWSQ is tested on Power, whether experiment finds the bugs that we have identified, or it finds some
that we have missed, and whether it suggests a cheaper set of adequate barriers.
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3a:<a = Ta>

1:<h ;= Hd> 2:<t:=Tl> ,

void put(Task tv) { d d
1: <h:= Hd>; \ / \ s N
2: <t = Tis; d \ 3bi<s:=[a+l]>  4a:<aa = [al>
3a: <a = Ta>;
3b: <s = [a+1]>; /l's = a.size \ / /\‘ d
3c: if t =h+sthen{ e iz mee then olee 4b ae = aa+t%s
3d:  expand(); coirt=
3e: goto 1 \ d
y
3f: }; 4c [ae] :==tv
4a: <aa = [a]>; /| aa:= a.array 3d: expand(
4b: ae = aa+t%s; /I ae = &(a.array[t%a.size])
4c: [ae] = tv; /I a.array[t%a.size] = tv po
Ba: <Tl i= t+1>; / Sa: <T/' =tt>
5b: return 3e: goto 1 po
} y .
5b: return
(a) code (b) dependency graph

Figure 9: FIFO put

A Orderings in put

Analysis of steal is intricate because it could be interfered with by the owner via put, expand and take, as well
as by other thieves. The owner is much less interfered with: thieves can only increase Hd with action (7).
Figure 9(a) shows the code for put; figure 9(b) shows the implied execution orderings.

This time there are two writes. The control dependencies between the conditional on line 3c and the
writes (though strictly there’s a dependency from lines 1 and 2 as well) is upon their commitment : i.e.
propagation of the writes to other threads. Although the writes can be speculated before the branch, the
proof dependency remains: we can rely on the result of the branch as a precondition on the write. The writes
can’t be propagated to other threads until the conditional is resolved, but they don’t have to be propagated
immediately, so writes to other addresses can overtake them. Although we only show a program-order
dependency, it’s obvious that there is an ordering issue between instruction executions in put and the enclosed
expand(), dealt with that in §2?.

The idea is clearly that line 4c should effect action (5) and line 5a action (6). That means there must be
a precondition on line 5a that the array, at position 71%Sz, contains the next queue value T's 7; in order to
preserve invariant (1).

We don’t appear to need any more barriers. After line 1 we know instantaneously h = Hd < Tl and
stably h < Hd < TI; after line 2 we know ¢ = TI, which is stable; after line 3a we know a = Ta, which
is stable; after line 3b we know ¢ = Ta A Ta +— _, s, which is stable. So at line 3c if ¢t # h + s we
know that 71 < Hd + [Ta + 1], which is stable; if ¢ = h + s we know that the array was full because
Tl = Hd + [Ta + 1] held at the instant we read Hd. The revised code is in figure 5 and the formal proof in
figure 10.

B Orderings in expand

Figure 11 shows expand() recast to use single-memory-access commands. As with put(), only the value of
Hd is unstable, and it can only increase. The dependency graph is shown in figure 12: it’s more complicated
than any so far, because it shows two iterations of a loop. There are so many entangled dependencies that

° That’s guaranteed because CAS(&Hd,h,h+1) is guaranteed to increase Hd by 1. It has nothing to do with barriers.



_IV,A T, Ar, Sz

tv=V A Ta=ANTl=TANNA— Ar,Szxtruex Ar + T%Sz — _
<h:=Hd> <t:=T1l> <a:=Ta>
= % ]" ]" a:A/\tv:V/\‘Ta:AAAHAr,Sz*true*Ar+Tl%SzHi‘
- ~ ~
iu ] > > a=AN a=ANtv=V A a=AN
S,U? = =3 3 A+1— Sz Ta = ANAw—s Ar, Sz x true x A Ar)
- g > I Il Ar + TI%Sz — _
NEEE = S| <s:i=(a+11> <aa:=[a]>
«
T
& ] s =52 aa = Ar
~— =
S~— >\
if t=h+s ae:=aa+t%s
> 3z o a=ANae=Ar+T%SzNtv =V A
‘ S iz 8 ‘Ta:A/\TZ:T/\A>—>Ar,Sz*true*Ar#»T%Sz*—)_‘
=3 .
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U AR
T;EQ 5> a=ANae=Ar+T%Sz Ntv =V At=T A
ﬂ; ‘Ta:A/\leT/\A»—)A7'7Sz*true*A7'+T%SZb—>V‘
~— lwsync (w/w barrier)
AN I
expand () <Tl:=t+1>
goto 1
tv = V/\‘ Tl=T+1ATaw Ar,Szxtruex Ar + T%Sz — V
Figure 10: Formal proof of put
void expand() {
local Task tv;
1a: <a = Ta>;
1b: <aa = [a]>;
1c: <s = [a+1]>;
2a: a’ = new SizedArray(2xs);
2b: <aa’ := [a’]>;
2¢: 8’ = 2%S;
3a: <i = Hd>; /I for i in Hd..TI-1 do
3b: <t = Tl>;
3c: if i=t then {
3d: goto 5a
3e: };
4a: ae = aa+i%s;
4b: tv = [ae]; /I tv = Ta.array[i%Ta.size]
4c: ae’ = aa'+i%s’;
4d: [ae’] = tv; // a’.array[i%a.size] := tv
de: i = i+1;
4f: goto 3c; // od
5a: <Ta = a’>;
5b: return

}

Figure 11: FIFO expand with single-memory-access commands
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! |
|
! 1b: <aa := [ta]>; |
1 1c: <s = [ta+1]>; 1
| 2a:a':= new TaskArrayWithSize(2*s); 1
l :
l :

3a: <i ;= Hd> m\
- / /

| a
2b: aa' :=[a]; \ / g
__2f:_s_:_=_2_s_ _______________ 3c: if i=t then else d
\/ c
N .
d ! . o 1
! 4a:ae = aa+i%s  4eri=i+l g
1 ! )
: | a [
! 4c: ae' ;= aa'+i%s' v d !
! AN 4b: tv := [ae] !
: a ’ / :
° i LS 3c: if i=t then el i \
i 4d: [ae] = v c: if i=t then ese:

}
4a: ae = aa+i%s  4eri =i+l i
4c: ae' == aa'+i%s' a: / E/

4d:[ae] =tv 3c: if i=t then else

1
1
1
1
i
| \d 4b: tv := [ae] d_—
1
1
1
1
1
1
1

ba:<Ta:=a>
I
po

5b: return

etc.

Figure 12: dependencies in FIFO expand

we’ve simplified by collecting the initialising assignments on lines 1a—2c into a dotted box at top left —
each is data-dependent on its predecessor, so they will be executed in program order — and we’ve shown
data dependencies from the box rather than its individual commands. Initialisation of the loop is top right,
followed by the first test for termination; the first iteration is shown below, and the second below that. It’s
obvious that the first iteration data-depends on the initial assignment to ¢ and the second iteration on the
incremented value of ¢ set during the first. There’s not much ordering inside the loop, and in particular the
write on line 4c has no successors, other than that it is a program-order predecessor of the return on line 5b.

All this complexity strains to produce very little. We don’t have to order i:=Hd and t:=TI because the
environment can only increase Hd and if it does we will merely copy some unnecessary task(s) into the new
array. We do need a write/write barrier somewhere between lines 2a and 4d on one side and line 5a on the
other to ensure that when line 5Sa is executed the record which a points to is initialised, the queue values are
in place in the array and invariant (1) is preserved. If we put the barrier after line 4c it will be executed on
each execution of the loop; if we put it after the loop exit it’s executed only once. Barriers are expensive
instructions so we insert it at line Sa.

The modified code is shown in figure 5. The number of dependencies mean that a formal proof of
the final dependency graph would be tangled and not very illuminating: apart from the loop structure it is
extremely similar to the formal proof of put().
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Task take() {

local Task tv;

1: <h := Hd>;

2: <t = Tl>;

3a: if h=t then {

3b: return EMPTY

3c: };

4a: <a = Ta>;

4b: <aa = [a]>; // aa:= a.array

4c: <s = [a+1]>; // s = a.size

4d: <ae = aa+h%s>; // ae = &a.array[h%a.size]
4e: tv = [ae]; /I tv = a.array[h%a.size]
5: <Hd = h+1>;

6: return tv

}

(a) code

3b: return EMPTY

d
\ 5: <Hd := h+1>

1:<h ;= Hd> 2:<t:=Tl>
\ ,
d

3a: |f h_t then else

4a:<a = Ta>

4b: <aa —[a]> 4c: <s —[a+1]>

/

4d: <ae _aa+h%s>

a
4

4e:tv = [ae]

~
po

d
S~ VY

6: return tv

(b) dependency graph

Figure 13: FIFO take

aH,T(\Hd:HA Ta= AN TZ:T/\AHA’r',Sz*true*V*i(HSi<T:>A7'+i%Szb—>Tsi))
__JdA H,T, Ar, Sz
<t:=T1> <h:=Hd> <a:=Ta>
~ > =
Il I I — AN Ta =ANTI=TNAw— Ar, Sz xtrue x
~ = CT MY Ri(H <i < T = Ar+i%52 — Ts;)
> > >
f m@%’: a=AN a=AN a=AN
N l:/; % Il A Ar) Ta = ANA— Ar, Sz xtrue x A+1— Sz
5| Vxi(H <i<T = Ar +i%Sz — Ts;)
~ <aa:=[a]> <s:=[a+1l]>
! aa = Ar s= Sz
if h=t ae:=aatt%s
(then) = T?j a=ANh=HANae= Ar + H%Sz A
S| Hd =TI IN m@/ H<HINTa=AANTI=TNAw— Ar,Sz x true x
= Vxi(Hd <i<T = Ar+i%Sz — Ts;)
AN
return EMPTY =
<Hd=h+1> tv:=[ae]
Hdi=H+1 tv=Tsy
return tv

Figure 14: Formal proof of take

C Orderings in take

The single-memory access code for take is in figure 13(a) and the execution dependency graph in figure
13(b). It doesn’t seem to need any barriers: before the write on line 5 we need to know that h < T, and we
do, for the usual reasons (environment can’t change 77; at line 3a we have h # ¢t = h <t At = Tl). The
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program-order dependencies from line 3a to lines 3b and 6 are just to remind us that speculated executions
of instructions in program order following the returns will be accepted or abandoned according to the result
of the h = ¢ test.

The read on line 4e can happen before or after the write on line 5: indeed it can happen after the return,
and we know that we will always get the same value, because only the owner can alter the array, and if it
does so then the read will precede a subsequent write by memory ordering. No need for a barrier on that
account.

The formal proof is in figure 14. The context for action (8), required in the proof of steal, is that the
element indexed by Hd must have been in place beforehand whenever Hd is decreased. That isn’t obvious
from this proof, and to make it obvious would require lots more space. But we can argue as follows:
if, at the instant when Hd := h + 1 is executed, H + 1 < Hd then, since Hd < TI, it follows that
H + 1 < Tl = T; and then, from the fact that 77 is invariant throughout the execution, we know that
Ar + (H + 1)%Sz — Tsp41, and similarly for any other values in the range H + 1..Hd — 1.

We have the same result as Michael et al.: no barriers in take.

D Thread diagrams in more detail

In the text we gave an abbreviated diagrams of interactions between owner and thief for the empty steal
bug, and no diagrams at all for overwriting and overtaking. Here are the large versions of those diagrams, in
figure 15 (cf. figure 3(b)), figrefoverwritebug and figure 17.



\

<h = Hd>;

<t :=Tl>;

<a = Ta>;

<s :=[a+1]>;

if t = h+s then
expand();
goto 1

fi;

<aa = [a]>;

ae = aa+t%s;

[ae] :=tv;

WRITE/WRITE

<Tl :=t+1>

return

R(Hd,0)
R(T1,0)
R(Ta,A)
R([A+1],2)

|
|
|
|
|
|
i
|
|
|
!
|
if 0=2 '
|
|
|
|
|
I
|
|
I
|
|

R(A,Ar)
ae:=A+0

TI=0

Ta=A
Al->Ar, 2

Hd=0

Ar |-> rubbish, rubbish

rf

rf

<h = Hd>
READ/READ
<t:=Tl>
if h=t then

return EMPTY
fi
<a :=Ta>
<aa :=[a]>
<as =[a+1]>
ae := aa+h%as
tv :=[a€]
READ/WRITE

<b := CAS(&Hd, h, h+1)>

if =b then
goto 1

fi

return tv;

R(Hd,0)
ctrlisync
R(TI,1)
if 1=0

R(Ta,A)
R([A],Ar)
R([A+1],2)
ae:=A+0
R([Ar],rubbish)
ctrlisync

R(Hd,0)//W(Hd,1)

if =true

return rubbish

Figure 15: The ‘empty steal’ bug without a Tl/Ta barrier

vi



/Hd=0
TI=2

rf \
Ta=A

Al->Ar, 2

rf

Ar I->Xa,Xb,Ya,Yb

OWNER
take()
1:  <h:=Hd>; R(Hd,0)
2. <t:=Ti>; R(Tl1,2)
3a: if h=tthen if 0=2
3b: return EMPTY
3c: fi;
4a: <a:=Ta>; R(Ta.A)
4b: <aa :=[a]>; R([A],Ar)
4c: <s:=[a+1]>; R([A+1],2)
4d: ab := aa+h%s; ae = &Ar
4e: tv :=[ab]; R([Ar],Xa)
R([Ar+1,Xb)
5:  <Hd :=h+1>; W(Hd,1)

6: returntv

rf

N

[}
I
I
[}
I
I
[}
I
I
[}
I
I
[}
I
I
[}
I
I
[}
I
I
[}
I
I
[}
I
I
[}
I
I
i
: put(IZ.a,Z\Q] = Hd>;
i 2. <t=Ti>;
| 3a: <a:=Ta>;
I 8b: <s:=[a+1]>;
! 3c: ift=h+sthen
! 3d: expand();
| 3e: goto 1
' 3f: i

: 4a: <aa :=[a]>;

! 4b: ae = aa+t%s;

| 4c: [ae] :=tv;

' WRITE/WRITE
! ba: <Tl:=t+1>

! 5b: return

I

[}

I

I

[}

I

I

[}

I

I

[}

I

I

[}

Figure 16: The overwrite bug without a barrier after <Hd:=h+1>

/ return (Xa,Xb)

R(Hd,1)
R(T1,2)
R(Ta,A)
R([A+1],2)
if 3=2

R(A,Ar)

ae = &Ar
W([Ar],Za)
W([Ar+1],Zb)
lwsync
W(TL,3)

rf

steal()

<h := Hd>
READ/READ
<t :=Tl>
if h=t then
return EMPTY
fi
<a:=Ta>
<aa :=[a]>
<as = [a+1]>
ae = aa+(h%as)*2
tv :=[ae]

READ/WRITE

<b := CAS(&Hd, h, h+1)>

if =b then
goto 1

fi

return tv;

R(Hd,0)
ctrlisync
R(T1,2)
if 0=2

I

I

I

I

i

ae = &Ar !
R([Ar],Za) I
R([Ar+1],Xb) \
ctrlisync '
R(Hd,0)//W(Hd,1) :
if ~true |
i

I

I

I

I

|

return (Za,Xb)
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Hd=0

\

rf TI=0
Ta=A
Al->Ar, 2
of Ar |-> lots of uninitialised rubbish
] o
! OWNER | !
| 1
| put(X) AN
I
| 11 <hi=Hd>; R(Hd,0) ! !
| 2: <t:=Tl>; R(TI,0) I '
! 3a: <a:=Ta> R(Ta,A) 1 .
! 3b: <s:=[a+1]>; R([A+1],2) | |
! 3c: ift=h+sthen if 0=2 ! |
I 3d: expand(); I '
' 3e:  goto1 | '
L3k fi ! |
' 4a: <aa:=[a]>; R(AAr ! \
| 4b: ae = aa+t%s; | '
! 4c: [ae] =tv; W(AX) | !
: WRITE/WRITE lwsync | i
1 Bar <Th=t+1> W(TL1) ! \
! 5b: return \ '
| A
X oo
! take() ! |
11t <h:=Hd>; R(Hd,0) / \
| 2: <t:=Tl>; R(TI,1) 1 '
' 3a: ifh=tthen if 0=1 : !
! 3b: return EMPTY \ |
! 3c: fi; ! '
| 4a: <a :=Ta>; R(Ta.A) '
! 4b: <aa:=[a]>; R(ALAr) L
! Zg <E = [a+1r]]>/; R([A+1],2) | ! steal)
1 : ab := aa+h%s; !
| 4e tv:=[ab]; ROAMLX) i h o Hd R(Hd
' 5. <Hd:=h1s; W(Hd,1) 7 | <h-=ro> (Hd,1)
' 6 return tv return X! ! READ/READ ctrlisync
i N 120
———————————————————————————— : , : ifh= if 1=
! 3a: return EMPTY
| 3b: fi
\ 4: <a:=Ta> R(Ta,A)
' 5a: <aa:=[a]> R([A],Ar)
! 5b: <as:=[a+1]> R([A+1],2)
I 5c: ae :=aa+h%as
| 5d: tv :=[ae] R([Ar+1],rubbish)
' READ/WRITE ctrlisync
! 6a: <b:= CAS(&Hd, h, h+1)>  R(Hd,1)/W(Hd,2)
I 6b: if =b then if mtrue
| 6c:  goto1
| 6d: fi
: 7. return tv; return rubbish
I

Figure 17: The overtaking bug with the Istinlineh=t test in steal ()
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