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Summary. Concurrent separation logic is a development of Hoare logic adapted
to deal with pointers and concurrency. Since its inception it has been enhanced
with a treatment of permissions, to enable sharing of data between threads, and a
treatment of variables as resource alongside heap cells as resource. An introduction
to the logic is given, with several examples of proofs, culminating in a treatment of
Simpson’s 4-slot algorithm, an instance of racy non-blocking concurency.

1.1 Introduction

Computing is the offspring of an historic collision, starting in the 1930s and
continuing to this day, between mechanical calculation and formal logic. Mech-
anical calculation gave us hardware, formal logic gave us programming.

Programming is hard, probably just because it is formal,1 and never seems
to get any easier. Each advance in formalism, for example when high-level lan-
guages were invented, or types were widely introduced, and each methodolo-
gical improvement, for example structured programming, or Dijkstra’s treat-
ment of concurrent programming discussed below, is taken by programmers as
an opportunity to extend their range rather than improve their accuracy. Ad-
vances in formalism and improvements in methodology are intended to help
to prevent bugs and to make the programmer’s life easier, but programmers’
response has always been to write bigger and more complicated programs with
about the same number of bugs as their previous smaller, simpler programs.
There may be grounds to say that programming is just exactly as hard as we
dare make it (but, of course, no harder!).

For some time now, perhaps ever since the late 1960s, concurrent program-
ming has been the hardest kind of programming. At the moment there is a
great deal of scientific interest in the subject. New approaches – in particular,
1 Our programs are executed by machines which do not and could never understand

our intentions. The executions of our programs are entirely determined by the
arrangement of symbols we write down. This is a very severe discipline indeed.
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non-blocking algorithms [20] and transactional memory [14] – are being tried
out. New theoretical advances are beginning to give formal treatments to old
problems. And hardware designers, in their relentless search for speed, are
providing us with multiprocessor chips, forcing us to confront the problems of
concurrent and parallel programming in our program designs. At once we are
being pressed to solve a problem that we haven’t been able to solve before,
at the same time as we are developing enthusiasm that we might be able to
make a dent in it. These are exciting times!

In the strange way that computer science has always developed, theoreti-
cians are both behind and ahead of the game. This paper looks at some classic
problems – the unbounded buffer, readers and writers, and Simpson’s 4-slot
algorithm – which are beginning to yield to pressure.

1.2 Background

The difficulties of concurrent programming are easily illustrated. Suppose that
there are two programs executing simultaneously on two processors, making
two concurrent processes, and we intend them to communicate. One way to
do so is via a shared store. Process A might write a message into a shared
area of the store, for example, for process B to read. If this is the means
of communication, B can’t know when A has communicated – notification is
communication! – and so must read the store every now and then to see if
A’s said anything new. Then if A writes at about the same time that B reads,
they may trip over each other: depending on the order that the various parts
of the message are written and read, B may read part of what A is currently
writing, and part of what it wrote previously, thus retrieving a garbled mes-
sage. Miscommunication is clearly possible, and really happens: you can read
the wrong time, for example, if the hardware clock writes a two-word value
into the store and you aren’t careful about the way you read it.

The problem is just as acute if the processes are running in a multiprogram-
ming system, not actually simultaneously but with parts of their execution
interleaved: A runs for a while, then B, then A, and so on. Unless we carefully
control communications, A can be interrupted part way through sending a
message, or B part way through sending one, and miscommunication can as
easily result as before. And we can get tied into just the same knots if we
consider threads within a single process.

Once, back in the prehistory of concurrent programming, people thought
that they would have to reason about the speed of concurrent processes and
prove that communication collisions couldn’t happen. That’s effectively im-
possible in the case of multiprogramming pseudo-concurrency, and – not for
the last time – Dijkstra had to put us right:

“We have stipulated that processes should be connected loosely; by
this we mean that apart from the (rare) moments of explicit intercom-
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munication, the individual processes themselves are to be regarded as
completely independent of each other.” [12]

He then provided us with the first effective mechanism for concurrent pro-
gramming, using semaphores and critical sections, but he didn’t provide us
with a formalism in which we could reason about concurrent programs. His
injunction provides us with the basic plank of a programming framework,
though: we have to separate consideration of communication from considera-
tion of what happens between communications.

Once we recognise that we need some special mechanism to communicate
reliably, all kinds of new difficulties arise: deadlock (everybody waiting for
somebody to move first); livelock (everybody rushing about, constantly miss-
ing each other); and problems of efficiency. Those are interesting difficulties
questions, but my focus will be on safety, showing that if communication does
happen, it happens properly.

The problem is eased, but not solved, by going for more tractable means of
communication, like message-sending. Message-sending has to be implemented
in terms of things that the hardware can do, which means worrying about who
does what when with which physical communications medium. And the other
issues, of deadlock, livelock and efficiency, somehow manage to keep poking
through.

1.2.1 Related work

Concurrent separation logic, as we shall see, is about partial-correctness spe-
cifications of threads executed concurrently. The seminal work in this area
was Susan Owicki’s. In her thesis [26] she tackled head-on the problems of
‘interference’, where two processes compete for access to the same resource,
and she dealt with some significant examples, including the bounded buffer,
a version of readers-and-writers, dining philosophers, and several semaphore
programs. Sometimes referred to as the Owicki-Gries method, following the
papers she wrote with her supervisor [23, 24], it proved capable of verifying
really difficult algorithms [13]. But it wasn’t without its drawbacks: it didn’t
deal well with pointers, and in general each instruction in every thread had
to be shown not to interfere with any of the assertions expressed in any other
thread. Her RPL language, using conditional critical regions (described in
section 1.5), was more tractable, but restricted.

Jones’s rely-guarantee [19] is the best-known of the later developments.
Jones introduced thread-global ‘rely’ and ‘guarantee’ conditions in addition
to pre- and postconditions. Rely conditions state what a thread can assume
about the state of shared data, essentially constraints on the action of other
threads. Guarantee conditions state what a thread must maintain in the state
of shared data. Whilst more modular than Owicki’s method, it is still the
case that a proof must check the maintenance of guarantee conditions by each
instruction of a thread.
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There’s also temporal logic, for example [29, 1, 25]. Temporal logic can
deal with liveness; separation logic, as we shall see, can deal only with safety.
(Owicki characterised the difference as “safety is that bad things don’t happen;
liveness is that good things do happen”.) But temporal logic approaches so
far aren’t as modular as separation logic.

1.3 Hoare logic

Separation logic uses Hoare triples, a mechanism of Hoare logic [15]. In Hoare
logic you make classical-logic assertions about the state of the computer’s
store, and you reason about programs in terms of their effect on that store: the
triple {Q}C {R} is a specification of the command (program) C: if you execute
C in a store which satisfies precondition Q, then it is certain to terminate, leav-
ing a store which satisfies R. Hoare logic works with a programming language
which is rather like Pascal or Algol 60: assignments to variables and arrays,
sequences of commands, choices (if-then-else), loops (while-do), and procedure
calls. Its greatest glory is the variable-assignment axiom {R[E/x]}x := E {R},
which converts difficult semantic arguments about stores into simple substitu-
tion of expression E for occurrences of variable x in the postcondition formula
R, thus reducing large parts of formal program verifications to syntactic cal-
culation. Its most evident complexity is the use of invariants to describe loops
but, as we have learned to accept, that’s not a fault of the logic – loops really
are that difficult to understand.

One difficulty in Hoare logic is aliasing. It arises in a minor way with the
assignment axiom – if you have more than one name for a program variable,
then you can’t use simple substitution for the single name used in the assign-
ment. That difficulty could perhaps be overcome, or variable aliasing could be
outlawed as it was in Ada, but there’s a worse problem in array-element ali-
asing. To make array-element assignment work in the logic, arrays are treated
as single variables containing an indexed sequence. The array-element assign-
ment a[I] := E is treated as if it writes a new sequence value into the variable
a which is the same as the sequence before the assignment, except that at
position I it contains E. That’s all very well, but if, for example, i + 2 = j,
then elements a[i+1] and a[j−1] are aliases, so that assignment to one affects
the other and vice-versa. There is no possibility of outlawing this problem,
and as a consequence program verifications turn, more often than not, on
arithmetical arguments about array indices.

Array variables aren’t the end of the difficulty. The program heap, in which
dynamically-allocated data structures live, is really a very large array indexed
by addresses – ‘pointers’ or ‘references’ – and the practical problems of aliasing
in the heap have bedevilled Hoare-logic reasoners from the start. Following
the success of structured programming in abolishing the goto, some people
would have us abandon use of pointers. Hoare himself opined
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“References are like jumps, leading wildly from one part of a data
structure to another. Their introduction into high-level languages has
been a step backward from which we may never recover.” [17]

Gotos have almost disappeared nowadays, but pointers/references have proved
more durable. One of the most popular programming languages, Java, depends
almost entirely on references. The heap, like concurrency, won’t go away just
because we can’t reason very well about it. To recover we shall have to tame
pointers rather than banish them.

1.4 A resource logic for the heap

One possible solution is to exploit separation. If, for example, there are two
lists in the heap which don’t share any cells, then changes to one don’t af-
fect the other, and we can reason about operations on one independently of
operations on the other. This was first noted by Burstall [9]. I managed to
prove some graph algorithms using a Hoare logic augmented with an oper-
ation which asserted separation of data structures [3], but the proofs were
very clumsy. Separation logic [22, 30], which began by building on Burstall’s
insight, does it much more elegantly.

Notice, first, that each variable-assignment instruction in a program affects
only one store location, and Hoare’s variable-assignment axiom is beautiful
just because it captures that simplicity in a purely formal mechanism. The
same is true of heap-cell assignment: we can only assign one cell at a time,
and if that cell is separate from the cells used by other parts of the program,
then we can have a single-cell heap assignment axiom. In separation logic
we write E 7→ F (E points to F ) to assert exclusive ownership of the heap
cell at address E with contents F . E is a positive integer expression and, for
simplicity, F is an integer expression. To avoid getting tangled up in aliasing,
E and F must be ‘pure’ expressions not depending on the heap – that is,
involving only variables and constants. We write E 7→ to express ownership
without knowledge of contents (it’s equivalent to ∃k · (E 7→ k)), we write [E]
(pronounced ‘contents of E’) to describe the value stored at address E, and
we have a heap assignment axiom

{E 7→ } [E] := F {E 7→ F} (1.1)

– provided we exclusively own the cell at address E before the assignment, we
can put a new value into it and be confident that we would find that value in
the cell if we looked, and we still own that cell afterwards. We only need to
own one cell to be able to assign it.

There’s a similar heap-access assignment axiom

{F = N ∧ E 7→ F}x := [E] {x = N ∧ E 7→ N} (1.2)
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These two forms of assignment are the only way to deal with the heap in the
logic, and it’s easy to see how more complicated patterns of access and assign-
ment can be compiled into sequences of variable assignment, heap assignment
and heap access. There’s a weakest-precondition version of these axioms, but
I’m going to stick to forward reasoning in simple examples and won’t need it.

In non-concurrent separation logic {Q}C {R} is a no-fault total-correctness
assertion: if you execute C in a situation whose resources are described by Q
then it will terminate leaving resources described by R and its execution won’t
go outside the resource footprint described (that is, use a cell that it doesn’t
own). As we shall see, C can acquire or release resources during its operation,
thus increasing or reducing its footprint, but the specification says that it will
never exceed the footprint it has at any time.

We won’t always be dealing with single heap cells, so we need a logical
mechanism to handle combination of resources. Separation logic’s ‘star’ does
that: A ? B says that we own resources described by A and at the same time
but separately, resources described by B. It follows that

E 7→ F ? E′ → F ′ ⇒ E 6= E′ (1.3)

– separation in the heap is separation of addresses. We allow address arith-
metic: E 7→ F1 ,F2 is shorthand for E 7→ F1 ? E + 1 7→ F2 . The normal
conjunction A ∧B has a resource interpretation too: we own resources which
are described by A and at the same time described by B. There’s a resource
implication −? as well, but I’m not going to use it. And that’s it so far as
logical assertions go: separation logic uses classical logic with a separating
conjunction and resource implication.

With no more than that logical machinery it’s possible to describe how,
for example, a list is represented in the heap. Lists are non-cyclic and end
in nil (a special non-pointing pointer value); ever since the invention of LISP
they have been a sequence of two-cell records the first cell of which contains
a head value, the second a pointer to the rest of the list. The heap predicate
listE βs says that E points to a list in the heap containing the sequence of
head-values βs (it’s true just exactly when the heap contains such a list and
nothing else: combination of this heap with other heaps using ? then expresses
separation of the list from other data structures).

list x 〈 〉 def= x = nil ∧ emp
list x (〈α〉++βs) def= ∃x′ · (x 7→ α, x′ ? list x′ βs)

(1.4)

The first line says that an empty sequence is represented by nil and doesn’t
take any space: emp asserts ownership of nothing and is a zero, i.e. A ?
emp ⇐⇒ A. The second line says that to represent a sequence which starts
with α we have to start with a record that contains α and points to the rest
of the list, which is contained in an entirely separate area of the heap. This
captures precisely the separation of the head record from the rest of the list
– and, recursively, separation of cells within the rest of the list. Notice also
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that the assertion x 7→ α, x′ contains a ‘dangling pointer’ x′: we may think we
know it’s a pointer but we don’t know, within that assertion, what it points
to. Separation logic embraces the dangling pointer, and that’s the source of
some of its power. In the conjunction x 7→ α, x′ ? listx′ βs we can see what x′

points to, but in x 7→ α, x′ alone we don’t know that it points to anything at
all.

We can use a similar definition to describe how to represent a binary tree,
with values at the nodes.

tree x ( ) def= x = nil ∧ emp
tree x (α, λ, ρ) def= ∃l, r · (x 7→ l, α, r ? tree l λ ? tree r ρ)

(1.5)

An empty tree is nil; the root is separate from the left and right subtrees.
The most important inference rule of separation logic is the frame rule.

{Q}C{R}
{P ? Q}C{P ? R}

(modifies C ∩ vars P = ∅)
(1.6)

If we can prove {Q}C {R}, and if P is separate from Q, then execution of
C can’t affect it: so if we start C in a state described by P ? Q, it must
terminate in P ?R. There’s a side condition on the use of variables: C mustn’t
alter variables so as to alter the meaning of P . (A treatment of variables as
resource – see section 1.7 – eliminates that side condition, but for the time
being it’s easiest to take it on board.)

Reading upwards, the frame rule enables us to focus on the minimum
resources required by a program, and in particular it allows elegant axioms
for new and dispose (similar to C’s malloc and free).

{emp}x := new() {x 7→ } (1.7)
{E 7→ } dispose E {emp} (1.8)

In order to work with the frame rule, new must give us a pointer to a cell that
isn’t in use anywhere else in the program. That’s easy to implement: new has
a heap of cells, initially we have none, and each call to new merely transfers
one from its heap to our own. Dispose pulls the reverse trick, and crucially,
just as in real life, it leaves a dangling pointer – or maybe hundreds of dangling
pointers – to the cell which we used to own. Crucially again, because of the
frame rule, that cell can’t be referred to in any assertion in the program. And,
because new isn’t constrained to give us brand-new cells, it may, just as in
real life, give us a pointer to a cell which we used to own and to which there
are dangling pointers. Heap programmers must learn to deal with that, just
as they always have.

Now it’s possible to show a first example. Disposetree disposes of a tree,
guarantees to leave nothing behind, and doesn’t put a foot outside the tree you
give it – i.e. {tree E τ} disposetree E {emp}. Figure 1.1 shows the procedure,
and figure 1.2 its proof. The proof is a tedious calculation for such a small
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result, but it is something that a compiler could follow, and indeed Berdine
and Calcagno’s Smallfoot tool [2] can guess this proof, given the definition of
the tree predicate and the pre- and postconditions of disposetree.

disposetree x =
if x = nil then skip else

local l, r; l := [x]; r := [x + 2];
disposetree l; disposetree r;
dispose x; dispose(x + 1); dispose(x + 2)

fi

Fig. 1.1. Tree disposal

disposetree x =
{tree x τ}
if x = nil then
{x = nil ∧ emp}
{emp}
skip
{emp}

else
{∃l, r · (x 7→ l, α, r ? tree l λ ? tree r ρ)}
local l, r; l := [x]; r := [x + 2];
{x 7→ l, α, r ? tree l λ ? tree r ρ}
Framed:

˙
{tree l λ} disposetree l {emp}

¸
;

{x 7→ l, α, r ? emp ? tree r ρ}
Framed:

˙
{tree r ρ} disposetree r {emp}

¸
;

{x 7→ l, α, r ? emp ? emp}
Framed:

˙
{x 7→ l} dispose x {emp}

¸
;

{emp ? x + 1 7→ α, r ? emp ? emp}
Framed:

˙
{x + 1 7→ α} dispose(x + 1) {emp}

¸
;

{emp ? emp ? x + 2 7→ r ? emp ? emp}
Framed:

˙
{x + 2 7→ r} dispose(x + 2) {emp}

¸
;

{emp ? emp ? emp ? emp ? emp}
{emp}

fi

Fig. 1.2. Tree disposal is safe

This approach to pointers gets us quite a long way, but as the examples
in [4] show, it’s not an immediate panacea. There is perhaps more to be wrung
out of pointer problems, but the truth is that concurrency is so much more
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exciting that the separation-logic research community has for the time being
turned its attention there.2

1.5 A resource logic for concurrency

Since binary trees consist of three separate parts, there’s no reason in principle
why we shouldn’t dispose of those three parts in parallel. I can show that the
procedure in figure 1.3, which does just that, is safe. The disjoint-concurrency
rule is

{Q1}C1 {R1} . . . {Qn}Cn {Rn}
{Q1 ? · · · ? Qn}

(
C1 . . . Cn

)
{R1 ? · · · ? Rn}

( (
modifiesCj ∩
(varsQi ∪ varsRi)

)
= ∅

)
(1.9)

– essentially, if you start concurrent threads with separated resources, they
stay separated, and they produce separated results. The side condition on
the use of variables says that threads can’t modify variables free in each
other’s pre- and postconditions: for the time being it’s simplest to imagine
that C1 . . .Cn each have their own variables.

disposetree x =
if x = nil then skip else

local l, r; l := [x]; r := [x + 2];`
disposetree l disposetree r dispose(x, x + 1, x + 2)

´
fi

Fig. 1.3. Tree disposal in parallel

The relevant part of the parallel disposetree proof is in figure 1.4. It isn’t an
industrial-strength example, but the point is in the simplicity of the reasoning.
Parallel mergesort, and even parallel quicksort, can be proved safe in the same
way (see [21]).

{x 7→ l, α, r ? tree l λ ? tree r ρ}0@ {tree l λ}
disposetree l
{emp}

{tree r ρ}
disposetree r
{emp}

{x 7→ l, α, r}
dispose(x, x + 1, x + 2)
{emp}

1A
{emp ? emp ? emp}

Fig. 1.4. Safety of the parallel section of parallel disposetree

2 In fact, as I write, attention has turned back to heap-and-pointer problems. An
automatic safety verification of a version of malloc has been completed, and the
same techniques are being applied to finding bugs in Windows device drivers.
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Concurrency without communication would be pretty boring. Separation
logic uses a version of Hoare’s conditional critical region (CCR) mechan-
ism [16], which is easy to reason about but hard to implement, and then uses
that to describe atomic actions that are easier to implement, like semaphores
and CAS instructions. A program contains a number of resource names3, each
of which owns some heap. Each resource name r has an invariant Ir. The rule
which sets up the resource is

{Q}C {R}
{Ir ? Q} let resource r : Ir in C ni {R ? Ir} (1.10)

(The formula Ir has to be ‘precise’ (i.e. pick out at most a single sub-heap
in any heap: see [8]), but that’s a minor technical point – program specific-
ations are naturally precise for the most point.) Then the CCR command
with r when G do C od waits for exclusive access to resource name r: when it
gets it, it evaluates the guard G; if the guard is false, it releases r and tries
again; if the guard is true it executes C using the resources of the program
plus the resources of Ir, finally re-establishing Ir and releasing r. The rule
says just that, implicitly depending on the condition about exclusive access:

{(Q ? Ib) ∧G}C {R ? Ib}
{Q}with r when G do C od {R} (1.11)

The variable-use side-condition on this rule is so horrid that it’s normally hid-
den, and I’ll follow that tradition because I shall show in section 1.7 how to
eliminate it. Much more important is to note that now we are into partial cor-
rectness: a proof in the antecedent that command C executes properly doesn’t
establish that the CCR command as a whole is ever successfully executed, be-
cause it might never be possible to get exclusive access to r when G holds.
It only proves that if the CCR command is executed, then it transforms Q
into R. So in concurrent separation logic including this rule, {Q}C {R} is a
no-fault partial-correctness assertion: C, given resources Q will not go wrong
(exceed its resource footprint, use a cell it doesn’t own) and if it terminates,
it will deliver resources R. Partial correctness restricts the range of the logic,
as we shall see, but it leaves plenty of interesting questions.

There’s a nice example which shows how it all works. Suppose for the
moment that we can implement a CCR command. Then the program in figure
1.5 can be shown to be safe. It allocates a heap cell in the left-hand thread,
which it passes into the resource buf , from where the right-hand thread takes
it out and disposes it. Of course the heap cell doesn’t move: what moves
is ownership of that cell. Once it has put it in the resource, the left-hand
thread can’t use that cell, because it doesn’t own it anymore (see (1.2)), it
can’t modify it for just the same reason (see (1.1)) and it can’t dispose it (see

3 I think they should really be called resource bundles, because separation logic is
about resource and resources in various forms, but history is hard to shake off.
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(1.8)). We have, in effect, zero-cost execution barriers between threads so far
as heap space is concerned – or we shall have, once we produce compilers that
can carry out the necessary static checks.

local full , b; full := false;
let resource buf : (full ∧ b 7→ ) ∨ (¬full ∧ emp) in0BBBB@

local x;
x := new();
with buf when ¬full do

b := x; full := true
od

local y;
with buf when full do

y := b; full := false
od;
dispose y

1CCCCA
ni

Fig. 1.5. A pointer-transferring buffer (adapted from [21])

The pointer-transferring program is unremarkable, no more than a single-
place buffer transferring a pointer value. It’s the separation-logic treatment
that makes it special. Figure 1.6 gives the proof and shows how the left thread
is left with nothing once ownership is transferred into the buffer, and con-
versely the right thread gets a cell ownership from the buffer. Each side starts
with emp and finishes with emp; this proof doesn’t show that the buffer
resource finishes with emp too, but it does (see [21] for a proof). The trick-
ery is all in the lines that deal with attachment and detachment of Ibuf in
the CCR commands. On the left we know on entry ¬full , so we know that
the invariant reduces to ¬full ∧ emp; on exit we know full , so the invariant
reduces to b 7→ ∧ full , which we can provide – but there isn’t any heap left
over, so the thread is left with emp. Proof in the right thread is similar, but
in the other direction.

{emp}
x := new();
{x 7→ }
with buf when ¬full do
{x 7→ ? (¬full ∧ emp)}
{x 7→ ∧ ¬full}
b := x;
{x 7→ ∧ ¬full ∧ b = x}
full := true
{x 7→ ∧ full ∧ b = x}
{(b 7→ ∧ full) ? emp}

od
{emp}

{emp}
with buf when full do
{emp ? (full ∧ b 7→ )}
{full ∧ b 7→ }
y := b;
{full ∧ b 7→ ∧ y = b}
full := false
{¬full ∧ b 7→ ∧ y = b}
{(¬full ∧ emp) ? y 7→ }

od;
{y 7→ }
dispose y
{emp}

Fig. 1.6. Safety of pointer-transferring buffer
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1.5.1 Dealing with semaphores

Semaphores are hard to reason with, so the more tractable CCRs and mon-
itors [7] were invented. But separation logic has opened up the possibility
of modular reasoning about semaphores. Crucially, we treat semaphores as a
kind of CCR resource, reversing history, and in an inversion of the usual view
treat them as come-in stores rather than keep-out locks.

Semaphores were invented to be guards of ‘critical sections’ of code, like
railway signals at the ends of a block of track, with hardware mutual exclu-
sion of execution guaranteed on P and V instructions. P(m), with a binary
semaphore m, blocks – i.e. the executing thread is suspended – when m = 0;
when m 6= 0 it executes m := 0 and proceeds. V (m) simply executes m := 1.
Then P (m) can be used to guard the entrance to a critical section, and V(m)
will release it on exit. The effect, with careful use of semaphores, is to pro-
duce software mutual exclusion of execution of separate critical sections each
guarded by the same semaphore – i.e. bracketed with P(m) and V(m) for the
same m. Consider, for example, the example in figure 1.7, which contains a
parallel composition of lots of copies of a couple of critical sections, the first
of which increments a heap cell, the second decreasing it. If all the uses of
semaphore m are those shown, then there can be no interference – no ‘races’
– between the instructions which access the heap cell. But it is one thing to
be sure that this is so, and quite another to prove it in a way that a formal
tool such as a compiler can check your proof – or, better still, find a proof for
itself.

local x, m, c; x := new(); [x] := 0; m := 0;
let semaphore m : (m = 0 ∧ emp) ∨ (m = 1 ∧ x 7→ ) in0BBBBBBBB@

P(m);
c := [x]; c ++; [x] := c;

V(m);
. . .
P(m);

c := [x]; c−−; [x] := c;
V(m)

. . .

P(m);
c := [x]; c ++; [x] := c;

V(m);
. . .
P(m);

c := [x]; c−−; [x] := c;
V(m)

1CCCCCCCCA
ni

Fig. 1.7. Example critical sections

P(m) for a binary semaphore m is in effect with m when m = 1 do m :=
0 od, and V(m) is with m when true do m := 1 od – note the pun in each
case on the resource-name m and the semaphore-variable name m. Then in
separation logic the semaphore must have an invariant: in figure 1.7 I’ve shown
it as (m = 0 ∧ emp) ∨ (m = 1 ∧ x 7→ ). It’s possible then to prove, using the
CCR rule, that P(m) retrieves ownership of the heap cell x from the semaphore
(figure 1.8) and V(m) restores it (figure 1.9 – the simplification between the
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first and second lines of the braced proof is possible since x 7→ ? x 7→ is
false because of (1.3)).

{emp}

P(m) :

8>>>>>>>><>>>>>>>>:

{(emp ? ((m = 0 ∧ emp) ∨ (m = 1 ∧ x 7→ ))) ∧m = 1}
{emp ? (m = 1 ∧ x 7→ )}
{m = 1 ∧ x 7→ }

m := 0
{m = 0 ∧ x 7→ }
{(m = 0 ∧ emp) ? x 7→ }
{((m = 0 ∧ emp) ∨ (m = 1 ∧ x 7→ )) ? x 7→ }

9>>>>>>>>=>>>>>>>>;
{x 7→ }

Fig. 1.8. P retrieves heap cell x from semaphore m in figure 1.7

{x 7→ }

V(m) :

8>>>>>>>><>>>>>>>>:

{(x 7→ ? ((m = 0 ∧ emp) ∨ (m = 1 ∧ x 7→ ))) ∧ true}
{x 7→ ? (m = 0 ∧ emp)}
{m = 0 ∧ x 7→ }

m := 1
{m = 1 ∧ x 7→ }
{(m = 1 ∧ x 7→ ) ? emp}
{((m = 0 ∧ emp) ∨ (m = 1 ∧ x 7→ )) ? emp}

9>>>>>>>>=>>>>>>>>;
{emp}

Fig. 1.9. V replaces heap cell x in semaphore m in figure 1.7

Then the reasoning which lets us conclude that threads don’t collide in
critical sections is based on separation logic’s separation principle: if threads
start out with separated resources, if resource-names have separate invariants,
and if all threads play by the rules, staying within their own separate resource
footprints and communicating through CCR commands, then their resources
are separate at every instant. After successfully executing P(m), a thread has
x 7→ , and it keeps hold of that cell until it executes V(m). No other thread
can own or access that cell, by the separation principle. So, throughout the
critical section, a thread has exclusive ownership of the cell pointed to by x,
and there can’t be a race. And that’s local reasoning: we don’t have to worry
about what other threads are doing, merely that they are obeying the rules
(that is, they are staying within their own local resource footprint). We have
provable software mutual exclusion.

Before I show any more of the mechanisms of separation logic, I want
to deal with an example of the sort of program that got semaphores a bad-
reasoning name. O’Hearn’s version of the unbounded buffer is shown in figure
1.10. A sample state of the buffer is shown in figure 1.11: producer and con-
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sumer share a counting semaphore n; the buffer always holds a list of exactly
n cells; the consumer has a (dangling) pointer to the front of the buffer list,
and the back of the list always (danglingly) points to a cell owned by the pro-
ducer. Because the algorithm works in terms of two-cell records I’ve used cons
and uncons rather than new and dispose, and I’ve supposed there’s a produce
function and a consume procedure to deal with the values communicated.

8>>>>>>>>>>>><>>>>>>>>>>>>:

CONSUMER

while true do
tc := front ;
P(n);
front := [front + 1];
consume[tc];
uncons tc

od

BUFFER

semaphore n := 0

PRODUCER

while true do
[back ] := produce();
tp := cons();
[back + 1] := tp;
V(n);
back := tp

od

1CCCCCCCCCCCCA
Fig. 1.10. An unbounded buffer (adapted from [21])

backfront

n=3

tc

tp

Fig. 1.11. A sample state of the unbounded buffer

The most startling thing about this algorithm is that there are no critical
sections. Only the consumer Ps, and only the producer Vs. Nevertheless we
shall see that because producer and consumer work at opposite ends of the
buffer list, there is effective separation – even though, when the buffer list is
empty, the consumer’s dangling pointer points to the producer’s private cell.

The details of the proof require some more information. First, because n
is a counting semaphore, P(n) is with n when n 6= 0 do n := n−1 od and V(n)
is with n when true do n := n + 1 od – only a little harder to implement in
mutual exclusion than a binary semaphore. Second, in order to describe the
resource held by the semaphore, I have to define a list segment – a straight-
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line section of a list that doesn’t necessarily end in nil and doesn’t loop back
on itself:

listseg n x y
def=

(n = 0 ∧ x = y ∧ emp) ∨
(n > 0 ∧ x 6= y ∧ ∃x′ · (x 7→ , x′ ? listseg (n− 1) x′ y)))

(1.12)

(note that in listseg n E F , E always points to the front of the segment, unless
it’s empty, but F is the pointer at the end of the segment, not the address of
its last cell). Finally, I have to use two ‘auxiliary variables’ – variables put in
for the purposes of the proof, whose values don’t affect the operation of the
program. I need a variable f that always points to the front of the buffer-list-
segment, and a variable b that always tracks the pointer at the end of that
segment. From now on I’ll highlight auxiliary variables like this – f , b – as a
reminder that they don’t really exist.

Now the consumer’s loop-invariant is front = f ∧ emp; the producer’s is
back = b ∧ back 7→ , , and the counting-semaphore invariant is listseg n f b .
P(n) has to move f forward, to allow the consumer to take possession of the
first cell in the list – it can do so instantaneously, because f doesn’t really
exist – and becomes with n when n 6= 0 do n := n−1; f := [f +1] od; similarly
V(n) becomes with n when true do n := n + 1; b := [b + 1] od.

With those preparations the proof is straightforward, shown in figure 1.12
and figure 1.13. By reducing n and moving f one place forward, the P(n)
operation leaves an orphaned cell, which is pointed to by front in the producer.
By increasing n and moving b one place forward, the V(n) operation absorbs
the producer’s private cell into the buffer list (it takes an induction, which
I’ve omitted, to show that a list can be extended at its tail in that way).

If you’ve been paying really close attention you will have noticed some-
thing fishy. In the last example the auxiliary variables f and b were shared
between the producer/consumer threads and the buffer, and the buffer opera-
tions altered them even though they appear also in the loop invariants of the
threads. It’s more than a little unclear that the variable-use side conditions on
the CCR rule are being obeyed. Actually they are, but it takes a little more
logical machinery to show it.

1.6 Permissions

Dijkstra’s methodology for concurrency was to make processes/threads loosely
coupled, apart from moments of synchronisation. To achieve that we are sup-
posed to divide the variables used by a thread into three groups:

• those used exclusively by the thread, which can be read or written;
• those shared with other threads, which can only be read;
• those read and written in mutual exclusion (e.g. in critical sections, or in

CCR commands).



16 Richard Bornat

{front = f ∧ emp}
tc := front

{tc = front ∧ front = f ∧ emp}

P(n) :

8>>>>>>>><>>>>>>>>:

{((tc = front ∧ front = f ∧ emp) ? listseg n f b) ∧ n 6= 0}
{tc = front ∧ front = f ∧ (∃x · (f 7→ , x ? listseg (n− 1) x b))}

n := n− 1
{tc = front ∧ front = f ∧ (∃x · (f 7→ , x ? listseg n x b))}

f := [f + 1]
{tc = front ∧ (front 7→ , f ? listseg n f b)}
{(tc = front ∧ front 7→ , f ) ? listseg n f b)}

9>>>>>>>>=>>>>>>>>;
{tc = front ∧ front 7→ , f }

front := [front + 1]
{tc 7→ , f ∧ front = f }

consume[tc]
{tc 7→ , f ∧ front = f }

uncons tc
{front = f ∧ emp}

Fig. 1.12. Consumer loop invariant is safely preserved

{back = b ∧ back 7→ , }
[back ] := produce()

{back = b ∧ back 7→ , }
tp := cons()

{back = b ∧ (back 7→ , ? tp 7→ , )}
[back + 1] := tp

{back = b ∧ (back 7→ , tp ? tp 7→ , )}

V(n) :

8>>>>>>>><>>>>>>>>:

{(back = b ∧ (back 7→ , tp ? tp 7→ , )) ? listseg n f b}
n := n + 1

{(back = b ∧ (back 7→ , tp ? tp 7→ , )) ? listseg (n− 1) f b}
b := [b + 1]

{(listseg (n− 1) f back ? back 7→ , tp ? tp 7→ , ) ∧ b = tp}
{(listseg n f tp ? tp 7→ , ) ∧ b = tp}
{listseg (n− 1) f b ? (tp 7→ , ∧ b = tp)}

9>>>>>>>>=>>>>>>>>;
{tp 7→ , ∧ b = tp}

back := tp
{back = b ∧ back 7→ , }

Fig. 1.13. Producer loop invariant is safely preserved

I’ve been describing a logic which deals with concurrent use of heap cells rather
than variables, but the principle is the same. E 7→ F (exclusive ownership)
corresponds to the first case, and the use of resource-name invariants allows
me to deal with the third. But so far there is nothing in heap cells that
corresponds to read-only shared variables.

The solution, as Boyland pointed out in [6], is to realise that ownership is
licence to do anything we like with a cell (read, write, dispose), but that this
can be cut up into a number of fractional permissions, each of which allows
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only read access. Some of the consequences of this idea are explored in [4]:
since that paper we’ve gone beyond the initial idea of fractional permissions,
and some of our newer ideas will emerge in later examples.

With simple ownership E 7→ ? E 7→ is simply false: you can’t split a
heap so that both halves contain the same cell, so you can’t give exclusive
ownership of a cell in the disjoint-concurrency rule (1.9) to two threads. But
you can give each thread a fractional permission, via which it can read but
not write or dispose. We write E 7−→z F for a fractional permission, and we
have

E 7−→
1

F ⇐⇒ E 7→ F (1.13)

E 7−→z F ⇒ 0 < z ≤ 1 (1.14)

E 7−→z F ? E′ 7−−→
z′ F ′ ⇒ E = E′ ⇒ (F = F ′ ∧ z + z′ ≤ 1) (1.15)

E 7−→z F ∧ 0 < z′ < z ⇐⇒ z ≤ 1 ∧ (E 7−−−−→
z−z′ F ? E 7−−→

z′ F ) (1.16)

– 7−→
1

means total ownership; we can only use non-zero fractions; we can com-
bine permissions provided we don’t exceed a 7−→

1
permission; we can split per-

missions indefinitely. Only total ownership allows writing – i.e. we still use the
axiom of (1.1) – whereas reading is allowed with fractional ownership of any
size (including, of course, total ownership):

{F = N ∧ E 7−→z F}x := [E] {x = N ∧ E 7−→z N} (1.17)

Permissions are no more ‘real’ than ownership: they are artefacts of a proof,
ignored by the machine but clear to the prover. In practice, apart from the
restrictions applied by inter-process hardware address barriers, any instruction
in a program can access any part of the heap. Like types, permissions are
something we can check to be sure that our instructions only access the parts
of the heap that we want them to.4 Permissions aren’t types, though: they
alter dynamically as a program executes and they can be connected to the
values of program variables.

All this means that we can deal with shared heap cells. But that’s by no
means all, because we can apply the same treatment to variables.

1.7 A resource logic for variables

Concurrent separation logic, as I’ve described it so far, deals with heap cells as
resource, and accounts for their ownership and transfer during the operation of
a program. But in some programs ownership of variables has to be accounted
for as well. At a deeper level, the frame rule, the disjoint-concurrency rule
4 There’s an analogy in the real world: in canon law an unfrocked priest is capable

of celebrating marriage but forbidden to do so (Marek Sergot, talk on logics of
permission and belief; see also Daily Telegraph, 21/vi/93).
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and the CCR rule have variable-use side conditions. If we treat variables as
resource, those side conditions go away, and the entire load is carried by the
separating conjunction (?).

In conventional non-concurrent programs use of variables is controlled by
scoping rules, and these work well except when you get aliasing between ref-
erence parameters and global variables in procedure calls. (Separation logic
can deal with that problem too, though I’m not going to address it here.) But
in concurrent programs ownership of variables gets transferred into and out
of resource-holders – semaphores or CCRs or whatever – and that complic-
ates things. Consider, for example, the unbounded buffer of figure 1.10. The
auxiliary variable f is referred to in the invariants of the semaphore n and
of the consumer. If each could have a half permission for that variable, that
sharing could be formally legitimated – each partner can read f , neither has
a total permission so neither can write. But f is written by the consumer
when it executes P(n), which looks like a contradiction. There is in fact no
contradiction: when the CCR command is executed, the permissions of the
consumer and the invariant of the semaphore are combined (Q ? In in the
CCR rule), two halves make a whole, and it’s possible both to read and write
that variable for the duration of that instruction.

In order to preserve the simplicity of Hoare logic’s treatment of variables
as far as possible, it’s necessary to split ownership assertions from assertions
about the values of variables, rather like lvalues and rvalues but unlike the 7→
connective used to talk about the heap. Ownership of a variable can be de-
scribed by a predicate Own, which can be subscripted like 7→ to describe frac-
tional ownership. To simplify the notation we gather all the ownership predic-
ates together, separate them from the rest of the assertion with a turnstile (),
and then don’t bother to write Own at all. An assertion is then ‘well-scoped’ if
on the left of the turnstile it claims ownership of all the variables mentioned to
the right of the turnstile. So, for example, the consumer’s loop invariant in the
program of figure 1.10 is front , tc, f 0.5  front = f ∧emp: it owns front and tc
exclusively and it owns half of f , so it can state the relationship between front
and f legitimately. The semaphore invariant is f 0.5, b0.5  listseg n f b : it
owns half each of f and b , so it can use their values to delimit the list. The
producer’s loop invariant is back , tp, b0.5  back = b ∧ back 7→ , , claiming
ownership of back and tp and half (i.e. read) permission for b .

To assign to a variable you need total permission:

{Γ, x  R[E/x]}x := E {Γ, x  R} (1.18)

This axiom needs the side-condition that both assertions are well-scoped. An
initial version of the logic is in [5]. A later version, which eliminates even that
side condition, is in [27].

It is possible to deal with access to semaphores using permissions – the
semaphore keeps a permission to read and write its own value, clients get
permission to P and V it – but in this paper I’ll spare you the details, and
ignore the fact that semaphores are really variables.
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Treating variables as resource is very fiddly, but it is essential to explain
the operation of some very famous algorithms like readers and writers.

1.7.1 Readers and writers

The readers-and-writers algorithm of figure 1.14 shows how a shared variable
(or any shared data structure) may be given either many simultaneous readers
or a single writer (we don’t need to avoid races between readers, but we
mustn’t race readers and writers, or writers and writers). It’s a very succinct
algorithm, but it has quite a tricky proof. It has three visible critical sections,
but the ‘reading happens’ part isn’t one of them, because there can be many
readers in it at the same time. Nevertheless, that part is clearly executed
in software mutual exclusion with the ‘writing happens’ critical section. The
problem is to explain how this is so.

The easiest part of the solution is to recognise that the m semaphore owns
the c variable, which it uses to count the readers. It’s then impossible to read
or write c without first going through P(m) – not at all a scoping restriction.
Then clearly c counts the number of read permissions that have been handed
out, and that’s where the fun begins. It might be possible to track fractional
permissions, but not without unreasonable arithmetic agility (I certainly can’t
work out how to do it!) so instead I use a ‘counting permission’. The idea is
that you have a permission which is like a flint block, from which you chip away
read permissions rather like flake arrowheads. Each flake can, in principle, be
glued back into the block, and each time you chip away a flake you still have
a block in your hand.

E N7−−→ F , with N above the arrow to distinguish it from a fractional per-
mission, is a block from which you have chipped away exactly N counted read
permissions; E � F is a counted read permission. For simplicity I suppose
that the counted read permissions can’t be fractionally subdivided.

E 07−→ F ⇐⇒ E 7→ F (1.19)

E N7−−→ F ⇒ N ≥ 0 (1.20)

E N7−−→ F ⇐⇒ E N+17−−−−→ F ? E � (1.21)

– 07−→ is a total permission; you can’t have a negative counting permission; you
can always chip away a new counted permission or recombine one with its
source.

We can do counting permissions for variables too, and we superscript them
by analogy with heap counting permissions: xN corresponds to N7−−→ and x>

to �. For simplicity I suppose that the readers and writers are competing
for access to a single shared variable y. In the algorithm we start with a total
permission for y in the w semaphore, which has the invariant

( w = 0) ∨ (y  w = 1) (1.22)
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READERS WRITER

prologue:

0BB@
P(m);
c++;
if c = 1 then P(w) else skip fi;
V(m);

1CCA
P (w);

..... .....
reading happens writing happens

..... .....
V (w);

epilogue:

0BB@
P(m);
c−−;
if c = 0 then V(w) else skip fi;
V(m)

1CCA
Fig. 1.14. Readers and writers (adapted from [11])

– when w = 0 the y-permission has been lent out; when w = 1 it’s safely locked
away. That’s enough to explain how any thread can P(w) to gain exclusive
access to the ‘writing happens’ critical section, and then do what it likes with
y until it executes V (w).

A first guess at the invariant for semaphore m might be

( m = 0) ∨ (c  m = 1 ∧ c = 0) ∨ (c, yc  m = 1 ∧ c > 0)

– when m = 0 everything has been lent out; when m = 1 either there are
no readers, in which case the y permission is either with a writer or in the w
semaphore, or there are c readers and it has permission for y from which it
has chipped off exactly c read permissions. That’s plausible, but it isn’t quite
right. It allows me to prove that the prologue gives a read permission for
variable y – { true} prologue {y>  true} – but it doesn’t let me prove that
the epilogue takes it back – {y>  true} epilogue { true}. The reason for the
failure is quite subtle: we can’t deduce from ownership of a read permission y>

that c > 0. In practical terms, a rogue writer could check out total y ownership
from the w semaphore, chip away a read permission, and then present that to
the readers’ epilogue: nothing in the algorithm stops it from doing so! The net
effect would be to produce c = −1, and the m semaphore’s invariant would
be destroyed.

The solution is ingenious. We use an auxiliary variable t to make tickets
that are handed out by the reader prologue, and which have to be handed in
at the epilogue. The variable doesn’t appear in the program at all, so it’s the
most splendidly auxiliary addition, just like f and b in the unbounded buffer.
The invariant is then

( m = 0) ∨ (c, t  m = 1 ∧ c = 0) ∨ (c, tc, yc  m = 1 ∧ c > 0) (1.23)
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Now it is possible – see figure 1.15 – to prove {y>, t>  true} epilogue {
true}. With the ticket, the epilogue works perfectly, and without the ticket,
a rogue writer can’t bust in (or rather, if it does, we can’t prove that the
epilogue will work properly). In combining the semaphore invariant with the
precondition, we can eliminate the first alternative because m = 1, we can
eliminate the second because t ? t> implies t−1, which is false, and we are
left with the last alternative, which tells us that c > 0. Reasoning is then
straightforward until the conclusion of the if-then-else, which generates a dis-
junction: either we have yc or we don’t. That disjunction is just what is needed
when splitting off the semaphore invariant at the end of V(m). Proof of the
prologue is similar but more straightforward, since the ticket is generated but
plays no significant rôle.

It’s possible to do more complicated examples than figure 1.15 – in [5],
for example, there’s a proof of a version of readers-and-writers which avoids
starvation of either group – but they don’t give any extra illumination. What’s
happening is very close resource accounting, showing that separate threads
can’t possibly interfere with each other in their use of variables or the heap.
This is useful, and to complain that it’s tediously intricate is to miss the point.
It’s conceivable that this sort of approach may lead to programming tools that
can do this kind of resource accounting, either automatically or with minimal
hints from the programmer. Tools are good at tedious intricacy. Who would
not say, for example, that the derivation of the type of map in the Hindley-
Milner type system is not tediously intricate? It is, but we don’t care because
the compiler does the calculation for us. Maybe, one day, a compiler will do
our resource accounting too. ‘Resourcing’ may, perhaps, be the new typing.

1.8 Non-blocking concurrency

I’d be dishonest if I pretended that everything in the separation logic pond
is plain sailing. We have reached a point where we can make a good fist of
the proofs of some race-free concurrent algorithms, but there are always more
challenges. People nowadays, for example, are getting very excited about so-
called ‘non-blocking’ concurrency [20], in which concurrent threads attempt
to make updates to a shared data structure at exactly the same time, backing
off and trying again if their attempt fails, rather in the way that database
transactions have been dealt with for some time now. This is claimed to have
efficiency advantages – modern processors hate to block, and if you have more
than one processor concurrently acting, it makes sense to let it try to make
progress – and programming advantages too, in the shape of the ‘atomic’
construct of the software-transactional-memory approach [14]. It’s beyond the
scope of this paper to consider whether transactional memory and/or non-
blocking concurrency is the wave of the future. It’s enough to say that it’s a
hot research topic, and one that separation logic might hope to pick up.
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{y>, t>  true}

P(m) :

0BBBBBBBBBB@

8<:
(y>, t>  true ∧m = 0 ∧m = 1) ∨
(y>, t>, c, t  true ∧m = 1 ∧ c = 0 ∧m = 1) ∨
(y>, t>, c, tc, yc  true ∧m = 1 ∧ c > 0 ∧m = 1)

9=;
{y>, t>, c, tc, yc  m = 1 ∧ c > 0}
{c, tc−1, yc−1  m = 1 ∧ c > 0}

m := 0
{c, tc−1, yc−1  m = 0 ∧ c > 0}
{(c, tc−1, yc−1  c > 0) ? ( m = 0)}

1CCCCCCCCCCA
{c, tc−1, yc−1  c > 0}

c−−
{c, tc, yc  c ≥ 0}

if c = 0 then
{c, tc, yc  c ≥ 0 ∧ c = 0}
{c, t , y  c = 0}

V(w) :

0BBBBBBB@


(c, t , y, y  c = 0 ∧ w = 1 ∧ true) ∨
(c, t , y  c = 0 ∧ w = 0 ∧ true)

ff
{c, t , y  c = 0 ∧ w = 0}

w := 1
{c, t , y  c = 0 ∧ w = 1}
{(c, t  c = 0) ? (y  w = 1)}

1CCCCCCCA
{c, t  c = 0}
{c, tc  c = 0}

else
{c, tc, yc  c ≥ 0 ∧ c 6= 0}
{c, tc, yc  c > 0}

skip
{c, tc, yc  c > 0}

fi
{(c, t  c = 0) ∨ (c, tc, yc  c > 0)}

V(m) :

0BBBBBBBBBBBBBBBBBBBBBBBB@

8>>>>>><>>>>>>:

(c, t  c = 0 ∧m = 0 ∧ true) ∨
(c, t , c, t  c = 0 ∧m = 1 ∧ c = 0 ∧ true) ∨
(c, t , c, tc, yc  c = 0 ∧m = 1 ∧ c > 0 ∧ true) ∨
(c, tc, yc  c > 0 ∧m = 0 ∧ true) ∨
(c, tc, yc, c, t  c > 0 ∧m = 1 ∧ c = 0 ∧ true) ∨
(c, tc, yc, c, tc, yc  c > 0 ∧m = 1 ∧ c > 0 ∧ true)

9>>>>>>=>>>>>>;


(c, t  c = 0 ∧m = 0 ∧ true) ∨
(c, tc, yc  c > 0 ∧m = 0 ∧ true)

ff
m := 1
(c, t  c = 0 ∧m = 1 ∧ true) ∨
(c, tc, yc  c > 0 ∧m = 1 ∧ true)

ff


( true) ?

„
(c, t  c = 0 ∧m = 1) ∨
(c, tc, yc  c > 0 ∧m = 1)

« ff

1CCCCCCCCCCCCCCCCCCCCCCCCA
{ true}

Fig. 1.15. Proof of safety of the reader epilogue
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In joint work with Matthew Parkinson, I have helped to find a proof for a
particularly small and simple non-blocking algorithm (Parkinson has a neater
invariant, but in the interests of intellectual honesty, I give my own here).
We have also been able to show that proofs like this can be made modular,
in the sense that the racy interference necessary to make inter-thread com-
munication can entirely be confined to the internals of the operations which
implement that communication. That is, communications can be treated as
black-box operations with conventional pre- and post-conditions, and the rest
of the code of a thread can be handled independently, as Dijkstra recommen-
ded [28]. This is in contrast to other approaches to racy concurrency, such
as rely-guarantee [19], in which the whole of a thread’s proof is affected by
interference. But on the other hand, again in the interests of intellectual hon-
esty, I have to say that our proofs don’t go far enough, and we hope to learn
from rely-guarantee and temporal logic so as to be able to extend our logic
and make modular proofs which are more readable and understandable and
so more convincing.

Despite those caveats, we do have some proofs, and it isn’t really necessary
to apologise if work at the frontier of science is at first a little scrappy. New
approaches, new avenues, new thoughts: all are likely to be more than a little
messy at first. I press on.

Simpson’s 4-slot algorithm [31] is shown in figure 1.16. It’s a remarkable
mechanism: it has absolutely no synchronisation instructions at all and, unlike
most non-blocking algorithms, it doesn’t have a loop-and-try-again structure.
It implements a kind of shared variable: a single writer thread puts values
into one of the slots of the shared array data, and a single reader thread later
retrieves it. If they act at exactly the same time, then the reader gets a value
that the writer put there earlier. The reader always sees a value which is no
earlier than the latest value written at the instant it starts the read procedure,
but it can be overtaken by the writer as often as maybe, so the value it reads
can be somewhat out-of-date.

Simpson’s algorithm relies for its correctness, as do all non-blocking al-
gorithms, on serialisation of store operations. A shared memory will be able
to read or to write but not both at the same time, nor even to overlap two
operations of the same kind in the same area. ‘Word’-sized operations are
serialised, and synchronisation problems arise because we want to commu-
nicate using more than a single word. Simpson makes certain that most of
his variables will have serialised access by making them single-bit; only the
elements of the data array can be larger and cannot therefore be assumed to
be hardware-serialised. In figure 1.16 the operations that we need to worry
about are boxed: every other assignment involves only a single-bit access or
a single-bit update to shared variables. In effect, the hardware makes those
accesses and updates mutually exclusive, and we can treat them as if they
were CCR commands for a single resource-name which owns all the shared
store, both variables and array.
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var readcol := 0, latest := 0 : bit
slot : array bit of bit := {0, 0}
data : array bit of array bit of datatype

procedure write (item : datatype);
var col , row : bit ;
begin

col := not(readcol);
row := not(slot [col ]);

data[col , row ] := item ;

slot [col ] := row ;
latest := col

end;

procedure read : datatype;
var col , row : bit ;
begin

col := latest ;
readcol := col ;
row := slot [col ];

read := data[col , row ]

end;

Fig. 1.16. Simpson’s 4-slot algorithm (adapted from [31])

Essentially that’s the way the proof works. Writing ‘atomic{C}’ as short-
hand for ‘with shareddata when true do C od’, and adding auxiliary variables
writecol to indicate the column the writer is working in and readrow for the
row the reader is looking at, the code of the algorithm is shown in figure
1.17. It’s easy to see that each atomic instruction reads or writes exactly one
one-bit global variable (note that each procedure has its own local variables
col and row) or one element from the bit-array slot . (In separation logic slot
is a pointer to two heap cells and slot [col ] is really [slot + col ], and simil-
arly data[col , row ] can be translated into a pointer operation, but I’ve left the
array notation in the program and the proof, for simplicity’s sake.)

Just as in the unbounded buffer, ownership of a variable or a heap cell can
be part in a thread, part in the shared resource. Some variables never need to
be written – the slot and data pointers, for example – but all three components
need to refer to them, so ownership can be split three ways. Ownership of those
which are written in an atomic operation – latest , for example – can be split
between a thread and the shared data invariant: then the other thread can
read that variable in an atomic instruction, but not write it.

The proof depends on the fact that the writer uses a slot in the writecol
column, and the reader uses the readrow row of the readcol column. These
slots, we shall see, don’t overlap. The pre- and post-condition of the write
procedure is
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var readcol := 0, latest := 0 : bit
slot : array bit of bit := {0, 0}
data : array bit of array bit of datatype

auxvar writecol := −1, latest := −1 : twobit

procedure write (item : datatype);
var col , row : bit ;
begin

atomic{col := not(readcol); writecol := col};
row := not(slot [col ]);

data[col , row ] := item ;

atomic{slot [col ] := row ; writecol := −1};
atomic{latest := col}

end;

procedure read : datatype;
var col , row : bit ;
begin

atomic{col := latest};
atomic{readcol := col};
atomic{row := slot [col ]; readrow := row};
read := data[col , row ] ;

atomic{readrow := −1}
end;

Fig. 1.17. Simpson’s 4-slot algorithm with ‘atomic’ annotations and auxiliary vari-
ables

latest0.5, slot0.5, data0.33, writecol 0.5, col , row  writecol = −1 ∧ slot 7−−−→
0.5

,

(1.24)
– it shares latest , slot and writecol with the shared invariant, and data with
the shared invariant and the reader; and it shares the content of the slot array
with the shared invariant. When writecol is 0 or 1 inside the procedure, the
writer also owns data[writecol ,not(slot [writecol ])].

The reader is slightly simpler because it doesn’t refer to the slot array:

readcol0.5, readrow 0.5, data0.33, col , row  readrow = −1 (1.25)

– it shares readcol and readrow with the shared invariant, and data with the
shared invariant and the reader. When readrow is 0 or 1, the reader also owns
data[readcol , readrow ]. By the separation principle, this can’t be the same as
the data[writecol ,not(slot [writecol ])] slot which the writer owns. To show
that everything works, it’s only necessary to show that the atomic operations
which allocate slots to the writer and the reader can always do their job and
allocate separate slots.

The invariant of the shared data resource is shown in figure 1.18. It’s pos-
sible to express this invariant more succinctly, as Parkinson does, but I’ve
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latest0.5, readcol0.5, slot0.5, data0.33, writecol 0.5, readrow 0.5



0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

slot 7−−−→0.5 , ?

if writecol ≥ 0 ∧ readrow ≥ 0 then
if writecol = readcol then

data[not(writecol ), slot [not(writecol )]] 7→ , ?
data[not(writecol ), not(slot [not(writecol )])] 7→ ,

else
data[readcol , not(readrow )] 7→ , ? data[writecol , slot [writecol ]] 7→ ,

fi
elsf writecol ≥ 0 then

data[writecol , slot [writecol ]] 7→ , ?
data[not(writecol ), slot [not(writecol )]] 7→ , ?
data[not(writecol ), not(slot [not(writecol )])] 7→ ,

elsf readrow ≥ 0 then
data[readcol , not(readrow )] 7→ , ?
data[not(readcol), slot [not(readcol)]] 7→ , ?
data[not(readcol), not(slot [not(readcol)]] 7→ , )

else
data 7→ , , , , , , ,

fi

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
Fig. 1.18. The shared data invariant

chosen to do it as an enumeration of states because that illuminates the way
that the algorithm works. The resource owns matching permissions for the
variables that the threads part own, and shares the slot array with the writer.
When the writer is communicating (lines 2 and 3 of the write procedure)
writecol is 0 or 1, and similarly readrow is 0 or 1 when the reader is commu-
nicating (lines 3 and 4 of the read procedure). Either both threads are com-
municating – in which case the shared invariant owns the slots the threads
don’t own – or one or the other is communicating – in which case it owns
the slots the communicating thread doesn’t use – or neither is communicating
– in which case it owns the whole array. In the case that both threads are
communicating there are two possibilities: either they are working in separate
rows of the same column (this can happen if the reader is overtaken by the
writer), or they are working in separate columns. To emphasise that the slots
of the data array can’t be written atomically, I’ve made them two heap cells
each.

Proof of separation for the writer is summarised in figure 1.19. In its first
step it extracts ownership of the slot it is going to assign, and this step is
shown in detail in figure 1.20. Entering with writecol = −1, the data array
splits into those parts which the reader might own (the readcol column), and
those it does not (the not(readcol) column). The writer picks one of the ones
that the reader doesn’t at the moment seem to require, splits the invariant off,
and exits with the slot it wants. The writecol := col action can be crammed
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into the same atomic action since it only affects an auxiliary variable, and
therefore doesn’t really happen.


latest0.5, slot0.5, data0.33, writecol 0.5, col , row

 writecol = −1 ∧ (slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5 )

ff
atomic{col := not(readcol); writecol := col};8<:
latest0.5, slot0.5, data0.33, writecol 0.5, col , row

 writecol = col ∧
„

slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5 ?

data[writecol , not(slot [writecol ])] 7→ ,

« 9=;
row := not(slot [col ]);8>><>>:
latest0.5, slot0.5, data0.33, writecol 0.5, col , row


(writecol = col ∧ row = not(slot [col ])) ?„

slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5 ?

data[writecol , not(slot [writecol ])] 7→ ,

«
9>>=>>;

data[col , row ] := item;8<:
latest0.5, slot0.5, data0.33, writecol 0.5, col , row

 writecol = col ∧
„

slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5 ?

data[writecol , not(slot [writecol ])] 7→ item

« 9=;
atomic{slot [col ] := row ; writecol := −1};
latest0.5, slot0.5, data0.33, writecol 0.5, col , row

 writecol = −1 ∧ (slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5 )

ff
atomic{latest := col}
latest0.5, slot0.5, data0.33, writecol 0.5, col , row

 writecol = −1 ∧ (slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5 )

ff
Fig. 1.19. The writer proof summarised

Nothing else the writer does in figure 1.19 is so complicated. The second
step is not even atomic (the writer already has half permission for the contents
of the slot array, and row and col are local); the third step writes into the
slot of the data array owned since the first step; the fourth step alters the slot
array and returns the borrowed data slot; the final step, as we shall see, is
irrelevant to this proof.

Proving separation in the reader is a little more intricate, but hardly more
complicated. Figure 1.21 shows the summary. The first two steps pick a value
for readcol , and the third step claims a slot. Figure 1.22 shows that step in
detail.

There is an uncertainty at the beginning of the reader’s third step, because
nothing provides that readcol and writecol are different at that instant. But
whichever is true, no problem: if the variables are the same then the reader
claims the slot in writecol that the writer isn’t using, and if they are different
then there’s no possibility of a clash. In both cases, separation is preserved.
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latest0.5, slot0.5, data0.33, writecol 0.5, col , row

 writecol = −1 ∧ slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5

ff
atomic{8>>>>>>>>>><>>>>>>>>>>:

latest , readcol0.5, slot , data0.66, writecol ,col , row



0BBBBBBBB@

writecol = −1 ∧ slot 7→ , ?
data[not(readcol), slot [not(readcol)]] 7→ , ?
data[not(readcol), not(slot [not(readcol)])] 7→ , ?
if readrow ≥ 0 then data[readcol , not(readrow )] 7→ ,

else

„
data[readcol , slot [readcol ]] 7→ , ?
data[readcol , not(slot [readcol ])] 7→ ,

«
fi

1CCCCCCCCA

9>>>>>>>>>>=>>>>>>>>>>;
col := not(readcol);8>>>>>>>><>>>>>>>>:

latest , readcol0.5, slot , data0.66, writecol ,col , row



0BBBBBB@
writecol = −1 ∧ col = not(readcol) ∧ slot 7→ , ?
data[col , slot [col ]] 7→ , ? data[col , not(slot [col ])] 7→ , ?
if readrow ≥ 0 then data[readcol , not(readrow )] 7→ ,

else

„
data[readcol , slot [readcol ]] 7→ , ?
data[readcol , not(slot [readcol ])] 7→ ,

«
fi

1CCCCCCA

9>>>>>>>>=>>>>>>>>;
writecol := col8>>>>>>>>>><>>>>>>>>>>:

latest , readcol0.5, slot , data0.66, writecol ,col , row
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writecol = col ∧ col = not(readcol) ∧ slot 7→ , ?
data[writecol , slot [writecol ]] 7→ , ?
data[writecol , not(slot [writecol ])] 7→ , ?
if readrow ≥ 0 then data[readcol , not(readrow )] 7→ ,

else

„
data[readcol , slot [readcol ]] 7→ , ?
data[readcol , not(slot [readcol ])] 7→ ,

«
fi

1CCCCCCCCA

9>>>>>>>>>>=>>>>>>>>>>;8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

latest , readcol0.5, slot , data0.66, writecol ,col , row
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writecol = col ∧ col = not(readcol) ∧ slot 7→ , ?
data[writecol , not(slot [writecol ])] 7→ , ?0BB@

if writecol ≥ 0 then data[writecol , slot [writecol ]] 7→ ,

else

„
data[writecol , slot [writecol ]] 7→ , ?
data[writecol , not(slot [writecol ])] 7→ ,

«
fi

1CCA ?

0BB@
if readrow ≥ 0 then data[readcol , not(readrow )] 7→ ,

else

„
data[readcol , slot [readcol ]] 7→ , ?
data[readcol , not(slot [readcol ])] 7→ ,

«
fi

1CCA

1CCCCCCCCCCCCCCA

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
};8<:

latest0.5, slot0.5, data0.33, writecol 0.5, col , row

 writecol = col ∧
„

slot [0] 7−−−→0.5 ? slot [1] 7−−−→0.5 ?

data[writecol , not(slot [writecol ])] 7→ ,

« 9=;
Fig. 1.20. The writer’s first step in detail
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readcol0.5, readrow 0.5, data0.33, col , row  readrow = −1 ∧ emp

¯
atomic{col := latest};˘
readcol0.5, readrow 0.5, data0.33, col , row  readrow = −1 ∧ emp

¯
atomic{readcol := col};˘
readcol0.5, readrow 0.5, data0.33, col , row  readrow = −1 ∧ readcol = col ∧ emp

¯
atomic{row := slot [col ]; readrow := row};
readcol0.5, readrow 0.5, data0.33, col , row

 readrow = row ∧ readcol = col ∧ data[col , row ] 7→ ,

ff
read := data[col , row ];
readcol0.5, readrow 0.5, data0.33, col , row

 readrow = row ∧ readcol = col ∧ ∃i · (data[col , row ] 7→ i ∧ read = i)

ff
atomic{readrow := −1}˘
readcol0.5, readrow 0.5, data0.33, col , row  readrow = −1 ∧ emp

¯
Fig. 1.21. The reader proof summarised

1.8.1 What has been proved?

The four-slot algorithm does not really need a formal proof, because it can
be completely model-checked – Simpson himself did so in [32]. But not all
difficult concurrent algorithms have such a small state space, and if we are
ever to have a ‘verifying compiler’ for concurrent programs, we shall have
to deal with problems like this one. The techniques employed here – shared-
data invariant, atomic operations containing a single serialised shared-store
operation – have already been employed to deal with a shared-stack problem
too large to model-check [28].

This proof is also rather small compared with the hundred-page refinement
development in [10], which uses rely-guarantee techniques. One of the reasons
for that is that the separation logic proof need only deal with interference
inside the read and write procedures, using logical techniques that I don’t have
space to go into here but which are dealt with in [28]. The aim of separation
logic developments is to increase modularity in proofs, and in this case we’ve
managed that rather well.

All the ingenuity in this proof is in the choice of the auxiliary variables
readrow and writecol and in the shared-data invariant. After that it really is
a matter of tedious calculation, not all of which I have detailed. I think that
is a strength: if ‘resourcing’ is to be as successful as typing, we must make
algorithmic the steps which connect user-supplied assertions to the program,
so that a compiler or the like can carry them out. I don’t pretend that we
have reached that stage, nor do I pretend that the hints that a user would
have to give to a formal programming tool can yet be simple enough to be
popularly acceptable.

But there’s a more important sense in which this proof might be con-
sidered unsatisfactory: it doesn’t show that the reader and writer actually
communicate. The slot array and the latest variable are used by the writer to
point the reader to the most recent value written. Indeed it’s possible to see



30 Richard Bornat˘
readcol0.5, readrow 0.5, data0.33 readrow = −1 ∧ readcol = col ∧ emp

¯
atomic{8>>>>>>>>>>>><>>>>>>>>>>>>:

latest0.5, readcol , slot0.5, data0.66, readrow , writecol 0.5, col , row



0BBBBBBBBBB@

(readrow = −1 ∧ readcol = col) ∧ slot 7−−−→0.5 , ?

if writecol ≥ 0 then
data[writecol , slot [writecol ]] 7→ , ?
data[not(writecol ), slot [not(writecol )]] 7→ , ?
data[not(writecol ), not(slot [not(writecol )])] 7→ ,

else
data 7→ , , , , , , ,

fi

1CCCCCCCCCCA

9>>>>>>>>>>>>=>>>>>>>>>>>>;
row := slot [col ];8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

latest0.5, readcol , slot0.5, data0.66, readrow , writecol 0.5, col , row



0BBBBBBBBBBBB@

(readrow = −1 ∧ readcol = col ∧ row = slot [col ]) ∧0BBBBBBBBBB@

slot 7−−−→0.5 , ?

if writecol ≥ 0 then
data[writecol , slot [writecol ]] 7→ , ?
data[not(writecol ), slot [not(writecol )]] 7→ , ?
data[not(writecol ), not(slot [not(writecol )])] 7→ ,

else
data 7→ , , , , , , ,

fi

1CCCCCCCCCCA

1CCCCCCCCCCCCA

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
readrow := row8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

latest0.5, readcol , slot0.5, data0.66, readrow , writecol 0.5, col , row



0BBBBBBBBBBBB@

(readcol = col ∧ row = slot [col ] ∧ readrow = row) ∧0BBBBBBBBBB@

slot 7−−−→0.5 , ?

if writecol ≥ 0 then
data[writecol , slot [writecol ]] 7→ , ?
data[not(writecol ), slot [not(writecol )]] 7→ , ?
data[not(writecol ), not(slot [not(writecol )])] 7→ ,

else
data 7→ , , , , , , ,

fi

1CCCCCCCCCCA

1CCCCCCCCCCCCA

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
}

readcol0.5, readrow 0.5, data0.33, col , row
 readrow = row ∧ readcol = col ∧ data[col , row ] 7→ ,

ff
Fig. 1.22. The reader’s third step

that the reader will not read a value written earlier than the last one written
before it begins to execute a read operation. All we have been able to show so
far is that reader and writer do not collide, not that effective communication
occurs. It ought to be possible, in this particular example which only uses true
in the guards of its CCR commands, to do a little better.
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1.9 Conclusion

Separation logic is a step forward in the search for modular proofs of safety
assertions. As a partial-correctness logic, it cannot deal with questions of
liveness and termination. But since it can deal easily with pointers, safety
properties of a wider range of programs than before are now practically spe-
cifiable and verifiable. The examples in this paper show that the frontier is
now much farther forward than was envisaged when work on the logic began.
Active work is going on to incorporate this advance into practical program-
ming tools, and to extend the logic’s range even further by dealing with some
properties that at present need global proof, by incorporating some of the
insights of rely-guarantee and/or temporal logic. Watch this space!
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