
A Theoretical and Empirical Study of EFSM Dependence

Kelly Androutsopoulos1, Nicolas Gold1, Mark Harman1, Zheng Li1 and Laurence Tratt2

1King’s College London, CREST, Department of Computer Science, Strand, London, United Kingdom.
2Bournemouth University, Poole, Dorset, BH12 5BB, United Kingdom.

Abstract

Dependence analysis underpins many activities in soft-

ware maintenance such as comprehension and impact anal-

ysis. As a result, dependence has been studied widely for

programming languages, notably through work on program

slicing. However, there is comparatively little work on de-

pendence analysis at the model level and hitherto, no em-

pirical studies. We introduce a slicing tool for Extended

Finite State Machines (EFSMs) and use the tool to gather

empirical results on several forms of dependence found in

ten EFSMs, including well-known benchmarks in addition

to real-world EFSM models. We investigate the statistical

properties of dependence using statistical tests for correla-

tion and formalize and prove four of the empirical findings

arising from our empirical study. The paper thus provides

the maintainer with both empirical data and foundational

theoretical results concerning dependence in EFSM mod-

els.

Keywords: EFSM, Slicing, Dependence Analysis

1 Introduction

Dependence analysis is the name given to a class of tech-

niques that have repeatedly proved to be useful as underly-

ing support for a number of software maintenance activities.

Through dependence analysis, the software maintainer can

approach the problem of understanding the potential and ac-

tual interactions between parts of a system. These interac-

tions may be subtle, complex and non-obvious. However,

because a change potentially has an impact upon the tran-

sitively dependent parts of the system, understanding these

dependences is a valuable part of the process of assessing

and managing the maintenance and evolution process.

Hitherto, the overwhelming majority of work on depen-

dence analysis for maintenance has concerned the imple-

mentation level of abstraction [6, 31]. This has produced

a great many of empirical and theoretical results and appli-

cations to Software Maintenance, including program com-

prehension [10], impact analysis [11], dependence cluster

analysis [16], testing and debugging [17], reintegration of

changed version of a system [7], refactoring [20], and re-

verse engineering [9].

However, there is comparatively little work on depen-

dence analysis and slicing at the model level of abstraction

and even less concerned with slicing of state based mod-

els. This creates a need for the literature on theoretical and

empirical results to catch up with development practice; de-

velopers’ interest is increasingly tending to move up the ab-

straction chain to design levels of abstraction. This migra-

tion is driven, inter alia, by the growing popularity of model

based development methods, architectures and testing tech-

niques and the need to control size and complexity.

As the software maintenance community knows only

too well, today’s new development technique is tomorrow’s

maintenance problem. This observation is also true of work

on maintenance for model based levels of abstraction, with

much work in the maintenance community concerned with

maintenance of modelling notations [14]. Since dependence

analysis has provided a valuable suite of maintenance tech-

niques at the implementation level, there is no reason to be-

lieve that it will not also provide useful information to the

maintainer, working at the model level.

However, the paucity of empirical results on dependence

for state based models means that the software maintainer

has little base line data on dependence in state based mod-

els, leaving a gap in the existing literature. This paper aims

to address this gap. It provides empirical results on slicing

and dependence for a set of state based models, including

text book benchmark systems as well as real world pro-

duction industrial systems. The results show some inter-

esting statistical correlations and relationships between dif-

ferent techniques for assessing dependence. These empir-

ical observations are analyzed, first using statistical tests,

and then formalized as theorems about state based model

dependence. The empirical data, together with the proof of

the theorems, establishes practical and theoretical underpin-

nings to the dependence analysis of state based systems.

In order to produce the results in this paper, we imple-

mented an EFSM slicing tool, the CREST EFSM slicer,

that supports various forms of forward and backward EFSM

slicing, according to several previously introduced defini-

tions of data and control dependence for EFSM and reac-

tive systems. Like program slicing, EFSM slicing is a de-

pendence analysis based on a user-specified slicing crite-

rion. The criterion captures the transition and variables of

interest within the EFSM, while the process of slicing con-

sists of following dependencies to locate those states and

transitions that are relevant to the slicing criterion. Trac-

ing the dependencies from the slicing criterion to parts of

the EFSM that could be affected when the criterion tran-

sition is changed is called forward slicing. This has ap-

plications to the software maintenance problems of impact

analysis and ripple effect computation [29]. On the other

hand, tracing the dependence from the criterion to those

states and transitions that could potentially affect the cri-

terion is called backward slicing. This has applications to

the software maintenance problems of comprehension, re-

integration and refactoring [22].

In this paper we present results for both forward and

backward slices of state based models for several recently

introduced formulations of control dependence. Using the

CREST EFSM slicing tool, we construct all possible slices

of a suite of ten EFSMs, taken from text book benchmark

examples and real world production EFSM models. The

primary contributions of the paper are as follows:

1. Because they are design level abstractions, state based

models can be considerably smaller than the programs that

implement them. However, our empirical findings reveal

that current definitions of dependence lead to slice sizes that

are notably larger than the existing benchmark data for pro-

gram slice size [4]. This suggests that more work may be re-

quired to find alternative definitions of dependence for state

based models.

2. Forward slice sizes tend to be larger than backward

slice size for EFSMs. This also appears to suggest differ-

ences in dependence at the model level compared to studies

of dependence at the program level of abstraction [3].

3. Four of the novel findings arising from the empirical

results are formalised and proved.

2 Slicing State-based Model

Slicing of EFSMs involves dependence analysis, in par-

ticular control and data dependence. One of the chal-

lenges with slicing EFSMs is how to correctly account for

control dependence. This is because EFSMs can be non-

terminating (i.e. without an EXIT state) which breaks tradi-

tional control depedence used in program dependence anal-

ysis. Moreover, there is a choice of whether control depen-

dence should be sensitive or insensitive to non-termination.

This decision determines whether slicing may remove any

non-termination. This has lead to numerous definitions of

control dependence [2].

For this empirical study, we consider Ranganath et

al. [27, 28] definitions of control dependence, i.e. Non-

termination Sensitive Control Dependence (NTSCD), and

Non-termination Insensitive Control Dependence (NTICD),

which have been adapted and given in terms of transitions of

EFSMs, rather than nodes of a Control Flow Graph (CFG).

Also, we have defined a new control dependence definition

in [2], called Unfair Non-termination Insensitive Control

Dependence (UNTICD) that overcomes the limitation’s of

NTICD.

In this section, we first define the syntax of EFSMs. Then

we define three types of paths that are used in the three def-

initions of control dependence. We also define data depen-

dence and out notion of a slice.

2.1 Extended Finite State Machine

An Extended Finite State Machine (EFSM) M is a tuple

(S, T, E, V) where S is a set of states, T is a set of transitions,

E is a set of events, and V is a store represented by a set of

variables. Transitions have a source state source(t) ∈ S, a

target state target(t) ∈ S and a label lbl(t). Transition la-

bels are of the form e1[g]/a where e1 ∈ E, g is a guard (we

assume a standard conditional language) and a a sequence

of actions (we assume a standard expression language in-

cluding assignments). All parts of a label are optional.

EFSMs are possibly non-deterministic. States of S are

atomic. Actions can involve store updates. A self-looping

transition is a transition t where the source of t is the same

as the target of t. A set of distinct transitions may have an

identical source and an identical target. Transitions which

share the same source state are said to be siblings. A final

transition is one whose target is an EXIT state that has no

outgoing transitions. An ε transition is one with no event,

guard or action.

2.2 Paths in EFSM

Since a path is commonly presented as a (possibly infi-

nite) sequence of nodes, a node is in a path if it is in the

sequence. A transition is in a path if its source state is in the

path and its target state is both in the path and immediately

follows its source state. There are three types of paths that

can be used to define different kinds of control dependence.

Definition 1 (Maximal Path). A maximal path is any path

that terminates in a final transition, or is infinite.

Sink-bounded paths are given in terms of control sinks.

Definition 2 (Control Sink). A control sink in an EFSM is

a set of transitions K that form a strongly connected com-

ponent (SCC) such that, for each transition t inK each suc-

cessor of t is also in K.

Definition 3 (Sink-bounded Path). A maximal path π is

sink-bounded iff (i) there exists a control sink K such that

K ∩ π 6= ∅ and, (ii) if π is infinite, then all transitions in K
occur infinitely often.

The second clause of Definition 3 defines a form of fairness

and hence we refer to it as the fairness condition.

Definition 4 (Unfair Sink-bounded Path [2]).

A maximal path π is unfair sink-bounded iff there exists a

control sink K such that: π contains a transition from K.

The definition of Unfair Sink-bounded Paths drops the fair-

ness condition in Definition 3. For non-terminating systems

this means that control dependence can be calculated within

control sinks.

2.3 Dependence Analysis of EFSM

The following definition specifies control dependence in-

dependently of any of the specific definitions of paths from

Section 2.2. The PATHs function can be substituted with

the three types of paths defined therein, yielding different

types of control dependence.

Definition 5 (Control Dependence (CD)).

Ti
CD

−→ Tj means that a transition Tj is control dependent

on a transition Ti iff Ti has at least one sibling Tk such

that:

1. for all paths π ∈ PATHs(target(Ti)), the source(Tj)
belongs to π;

2. there exists a path π ∈ PATHs(source(Tk)) such that

the source(Tj) does not belong to π.

Table 1 shows the corresponding relations between the

path type and control dependences. For example, NTSCD

is given in terms of maximal paths, so by replacing PATHs

with the MaximalPath function, Definition 5 will yield the

corresponding NTSCD definition.

Table 1. Types of control dependence
Name Path type

Non-Termination Insensitive Con-

trol Dependence (NTSCD)

Maximal Path

Non-Termination Sensitive Control

Dependence (NTICD)

Sink-bounded

Path

Unfair Non-Termination Insensitive

Control Dependence (UNTICD)

Unfair Sink-

bounded Path

Definition 6 (Data Dependence (DD)).

Ti
DD

−→ Tj means that transitions Ti and Tj are data depen-

dent with respect to a variable v if:

1. v ∈ D(Ti), where D(Ti) is a set of variables defined

by transition Ti, i.e. variables defined by actions and

by the event of Ti;

2. v ∈ U(Tj), where U(Tj) is a set of variables used in

a condition and actions of transition Tj;

3. there exists a path in an EFSM from the source(Ti) to

the target(Tj) whereby v is not modified by any of the

intermediate transitions.

To illustrate these definitions consider Figure 1 which is

an EFSM of the door control component of an elevator con-

trol system [30]. The door component controls the elevator

door: it opens the door, waits for the passengers to enter or

leave the elevator, and then shuts the door. All the control

dependencies for this EFSM using the three types of control

dependence are given in Figure 2.

NTSCD T3→ T4, T5, T6 T5→ T9, T10
T6→ T7, T8 T8→ T9, T10
T10→ T11, T12 T12→ T4, T5, T6

NTICD No dependences

UNTICD T5→ T9, T10 T6→ T7, T8
T8→ T9, T10 T10→ T11, T12
T12→ T4, T5, T6

DD T1→ T2, T3 T2→ T2, T3
T5→ T11 T8→ T11
T11→ T11

Figure 2. Dependence for Figure 1.

2.4 EFSM Slicing

Slices for an EFSM are constructed based on dependence

analysis with respect to a slicing criterion. A slicing crite-

rion is a pair (t, v) where transition t ∈ T and variable set

v ⊆ V . It designates the point in the evaluation immediately

after the execution of the action contained in transition t.

Definition 7 (Slice).

A slice of an EFSM M , is another EFSM M ′, some of whose

transitions may be ε−transitions. The transitions that are

not ε−transitions are in the set of transitions that are di-

rectly or indirectly (transitive closure) data and control de-

pendent on the slicing criterion c.

Slices are computed by gathering transitions by way of a

backward traversal of the EFSMs dependence graph, start-

ing at the slicing criterion t. Therefore, these slices are re-

ferred to as backward slices (denoted by
←−
S (M, t), where

M is an EFSM and t is the transition from the slicing cri-

terion). A forward slice (denoted by
−→
S (M, t)) consists of

all transitions dependent on the slicing criterion, which is

constructed by way of a forward traversal of EFSM’s de-

pendence graph.

3 Empirical Study

3.1 Motivation

For EFSM slicing to be considered of practical use, it

is important to establish that the slices produced from the

current types of dependence analysis are not so large as to

confer no advantage over understanding the whole of the

original model being analysed. Three types of control de-

pendence have been defined for EFSMs in Section 2, each

of which produces different types of slices, capturing dif-

ferent features of EFSMs. Comparison of the size of these

types of slices is an appropriate method to examine the ef-

fects on size of different types of dependence. This leads to

two research questions:

1. What is the typical forward and backward slice size us-

ing different types of control dependence for EFSMs?

T1:setTimer/ t imer:=5

T2:wai tT imer[t imer>0] / t imer:=t imer - 1

T3: ready [t imer==0]

T4:closing

T11:openTimer[t imer>0] / t imer:=t imer-1

T12:t imeout T10:ful lyOpened

T9:opening

T5:but tonInterrupt / t imer:=3

T8:open/ t imer:=10T6:fullyClosed

T7:closeTimer

start wai t opening

closed

opened

closing

Figure 1. An EFSM specification for the door control of the elevator system.

2. Is there a correlation between the slice size observed

using different types of control dependence for EF-

SMs?

3.2 Metrics

This section formalizes the metrics used in the paper to

measure slice size in terms of the percentage of transitions

that transitively depend upon a criterion. Dependence could

be either control dependence or data dependence or both.

Data dependence includes the data dependence for all vari-

ables in the criterion. For a model M , t′ is a transition de-

pendent on t (i.e., t′ ∈ T ∧ t −→ t′), the size of slice with

respect to t is:

|S(M, t)| =

∑
t′

|M |

Note that the slicing criterion t is in the slice S(M, t) iff

t is dependent on itself. This is slightly different to program

slicing where the criterion is always in the slice. For exam-

ple, if a variable is defined and used in t, there exists a self-

looping data dependence on t. Certainly, it is also possible

that t is transitively control dependent on itself. If no tran-

sition is dependent on t, then |S(M, t)| = 0. To remove the

effect of size-zero slices, the average slice size for a model

is computed only for transitions that have a non-empty set

of dependences.

For a model M , NT is subset of transitions of M

with non-zero slice size (i.e., NT ⊆ T and ∀t ∈
NT, |S(M, t)| > 0) .Thus, the average slice size of M is:

Avg(M) =

∑

t∈NT

|S(M, t)|

|NT |
(1)

3.3 Subjects

The ten EFSM models employed as subjects are de-

scribed in Table 2. The table provides each model’s size

in terms of the number of transitions and the number of

states. It also provides a brief description of each subject.

The penultimate column separates the six models known to

contain EXIT states from the four known to be free of EXIT

states.

The models are drawn from a variety of sources. The first

six models were used in the research of model-based slicing

with traditional dependence analysis introduced by Korel et

al. [23], which requires models to contain both a START

state and an EXIT state, and where every path must end in

an EXIT state. The last four models are free of EXIT states.

INRES [8] and Lift [30] come from previous model-based

studies. TCP [33] and TCSbin are extracted from SDL

specifications, and TCSbin is an industry model from Mo-

torola. A simplification is adopted in the EFSM extraction

for these two models that includes the omission of History

State and All state defined in SDL.

Inspection of the models’ state machines reveals that

their structure varies even if they share some common char-

acteristics such as all containing EXIT states. Typically,

only one of the first six models, FuelPump, has a CFG-like

structure, i.e., all transitions from the START state to the

EXIT state almost form a straight line, while the other five

of the six models contain a few SCCs. Generally models

free of EXIT states contain large control sinks. All transi-

tions of the Lift model, illustrated in Figure 1, apart from

T1, T2 and T3, form a large control sink. All transitions of

the INRES, TCP, TCSbin models, apart from one transi-

tion from the START state, also form a large control sink.

A transition from the START state has no event, condition

or action as it indicates only the initial state of a model.

Two groups are defined based on control sinks. M ′ =
{ATM, Cashier, CruiseControl, FuelPump, PrinTok,

VendingMachine}, where all models are free of control

sinks. M ′′ = {INRES, TCP, TCSbin}, where all mod-

els are large control sinks except for the transition from the

START state. Note that Lift is not in M ′ or M ′′.

3.4 Implementation and Tool

Slices with respect to each transition in a model are

computed based on control dependence (using one of the

three definitions) and data dependence. To help draw out

the effect of the three types of control dependence, slices

are also computed using only NTSCD, NTICD, UNTICD

and data dependence respectively. Additionally, both for-

ward and backward slicing are considered in the compu-

Table 2. Experimental Models.
Number of Number of Number of EXIT Brief

Models States Transitions Variables State Description

ATM 9 23 8 Yes Automated Teller Machine [23]

Cashier 12 21 10 Yes Cashier Machine

CruiseControl 5 17 18 Yes Cruise Control System [21]

FuelPump 13 25 12 Yes Fuel Pump System [21]

PrinTok 11 89 5 Yes Print Token

VendingMachine 7 28 7 Yes Vending Machine system

INRES 8 18 8 No INRES protocol [8]

TCP 12 57 31 No TCP Standard(RFC793) [33]

TCSbin 24 65 61 No Telephony Control Protocol (Motorola)

Lift 6 12 1 No Lift System [30]

Total 107 355 161

tation. Therefore, there are 14 types of slices constructed

for each transition over ten models, i.e., {forward, back-

ward} × {NTICD, UNTICD, NTSCD, DD, DD+NTICD,

DD+UNTICD, DD+NTSCD}.
A tool has been developed using Python to implement all

three types of control dependence analysis and data depen-

dence analysis, construct the dependence graph for a model,

and compute the slice with respect to a criterion. The statis-

tical package SPSS is used for statistical analysis.

4 Results and Discussion

In this section the empirical results related to the forward

and backward slice over all ten subjects are discussed. Also,

four novel findings arising from the empirical results are

formalised and proved.

4.1 Slice Size

Table 3. Average slice size.
Forward Slices Backward Slices

Dependence # T Avg # T Avg

DD+NTSCD 276 87.45% 345 70.46%

DD+NTICD 220 61.99% 278 49.48%

DD+UNTICD 267 83.20% 335 66.83%

DD 161 35.67% 174 33.15%

NTSCD 205 86.10% 336 53.63%

NTICD 92 78.67% 167 44.59%

UNTICD 190 82.21% 313 51.00%

Table 3 presents the results of average slice size for 14

types of slices for all transitions over all ten subjects. In the

table, #T is the number of transitions with non-zero slice

size and Avg is the average slice size of all transitions over

all ten models.

Note that the average forward slice size for all transi-

tions (including transitions with size-zero slice) is the same

as that of backward slices, because forward and backward

slicing are dual operations. Thus, if Ti is in the backward

slice taken with respect to Tj then Tj is in the forward slice

taken with respect to Ti. However, the average of forward

slices and backward slices measured by Avg is not equal, as

the number of non-zero forward slices is different than the

number of non-zero backward slices.

Table 2 shows that there are 355 transitions in total over

all ten subjects. In Table 3, it can be seen that some tran-

sitions do not have forward slices and some do not have

backward slices, but it is very uncommon that a transition

has neither a forward slice nor a backward slice. Inspec-

tion of the data reveals three exceptions, which are the three

transitions from the START state to initial state of the three

models in M ′′. The only function of these three transitions

is the initialisation of initial state of a model.

The average slice size reported in Table 3 shows that the

average slice size using NTICD is smaller than that using

UNTICD or NTSCD. Further inspection of the data reveals

that the slice using NTICD is contained within the slice us-

ing UNTICD with respect to the same criterion. This result

reflects the formally-proved property that the transitive clo-

sure of NTICD is contained in the transitive closure of UN-

TICD [2]. Furthermore, the average slice size using UN-

TICD is smaller than that using NTSCD, suggesting a new

property that the transitive closure of UNTICD is contained

in the transitive closure of NTSCD.

Studies of backward program-based slice size indicate

that a typical backward slice may be as much as a third of

the program [5]. In Table 3, over all ten models, the smallest

average backward slice size using DD+NTICD slices con-

tains over half of the original program. As Avg measures

the average slice size for those non-zero slice transitions,

the value is larger than the average slice size for all possible

transitions. It may be unfair to compare model-based Avg

to average backward program-based slice size. Therefore,

the average backward model-based slice size for all possible

transitions over all ten subjects is measured. Numerically,

they are 38.42%, 67.99% and 62.58% for DD+NTICD,

DD+UNTICD, and DD+NTSCD respectively. The small-

est (i.e. 38.42% for DD+NTICD) is slightly larger than a

typical backward slice size (i.e., one third of the program).

The other two types of slices are significantly larger, as UN-

TICD and NTSCD capture more dependencies within con-

trol sinks which NTICD does not capture.

Let us now consider the slice size difference between

forward slicing and backward slicing. The data in Table 3

shows that the average slice size using forward slicing is

larger than the average slice size using backward slicing,

but the number of transitions have forward slice is smaller

than that of backward slice. That is, more transitions tend

to have backward slice rather than forward slice, but once a

transition has a forward slice, the size tends to be large.

Binkley and Harman [3] reported that the distribution of

small forward slice is larger than the distribution of small

backward slice for programs. This is not contrary to the

conclusion presented in this paper, because Avg only in-

volves non-zero slices in this paper. Binkley and Har-

man [3] also pointed out that there must be a few large for-

ward slices in programs, but these tend to be uninteresting

slices, since they occur primarily when the slicing criterion

is near the entry to a procedure. However, these large for-

ward slices may be interesting in state-based models, as the

slice criterion producing a large forward slice could occur

anywhere in a state machine. This is because an EFSM does

not to have an entry and an exit node, as is required for pro-

gram’s CFGs. Also, the structure of an EFSM used to spec-

ify reactive systems is often just a control sink. In this case,

a transition with a large forward slice would be interesting

as it is not necessary for it to occur near the START state

and it could also have a large impact on the model.

Figure 3 presents the average slice size for each model.

Different types of control dependences and slice directions

are considered in slice construction. Thus, Figure 3 shows

six bar charts {forward, backward} × {NTICD, UNTICD

and NTSCD}. For each bar chart, separate slices are con-

structed (in the following order) for: both data and control

dependence; control dependence only; and data dependence

only. Therefore, for each model the three bars represent the

Avg of three types of slices.

Some interesting results emerge from Figure 3. For each

model, the average backward slice size is less than or equal

to the forward slice size. FuelPump has the smallest slice

size when using only control dependence in slice construc-

tion. As explained in Section 3.3, the state machine of Fu-

elPump has a CFG-like structure which results in small

slice size. This also provides evidence that SCCs in mod-

els tend to increase the slice size. PrinTok has the largest

forward slice size, close to 100%, i.e. all transitions are for-

ward transitive control dependent upon each other. In such a

case, forward slice can not reduce the model size. A further

discussion and analysis is presented in Section 4.2.

In Figure 3, it can be observed that the properties for-

mally shown in [2] are true for all ten models.

• The average slice size of slices using only NTICD

for models in M ′′ is 0 that confirms that there is no

NTICD in control sink, as each model m′′ in M ′′ is a

large control sink.

• The average slice size of slices using only NTICD is

the same as that of slices using only UNTICD for M ′

that confirms that UNTICD is the same as NTICD out

of control sinks, as all models in M ′ do not contain

control sinks.

• The average slice size of slices using only NTSCD is

the same as that of slices using only UNTICD for M ′′

that confirms that UNTICD is the same as NTSCD in

control sinks, as each model m′′ in M ′′ is a large con-

trol sink.

4.2 Correlation of Slice Sizes

To provide more rigour, a statistical analysis of the cor-

relation between different types of slices was conducted in

this section.

Table 4 reports the Pearson correlation between the slice

size with respect to each transition using only control de-

pendence for all models. NTICD, UNTICD and NTSCD

are considered respectively. The value in the table is a cor-

relation coefficient (R value) and ranges from -1.0 to 1.0.

Where -1.0 is a perfect negative (inverse) correlation, 0.0 is

no correlation, and 1.0 is a perfect positive correlation. If

R=1 then two slice sizes have a linear correlation. As both

forward slices and backward slices are measured, if two

sets of slices are constructed using two different types of

control dependence in a model, and R=1 for both forward

and backward slicing, the two slice sizes for each transition

must be equal.

The result in Table 4 shows that the R value between the

slices using NTICD and UNTICD is 1 for both forward and

backward slicing for models in M ′. That is for each tran-

sition t in m′, where m′ ∈ M ′, slice size is the same using

NTICD as that using UNTICD. This reflects the property

that UNTICD and NTICD dependences for transitions out-

side of control sink are the same. Similarly, the R value of

1 between the slices using UNTICD and NTSCD for both

forward and backward slicing for models in M ′′ reflects the

property that UNTICD and NTSCD dependence for transi-

tions within control sink are the same.

It is also interesting that CruiseControl and PrinTok

have R value of 1 for all slices using three types of control

dependence, which indicates that the sizes of slices taken

with respect to each transition using only NTICD, UNTICD

and NTSCD are the same. Inspection of the data reveals

that they are actually identical. Furthermore, the two mod-

els have similar structure, i.e. each state has a transition

leading to an EXIT state. Such transitions generally handle

errors (i.e., in any state of a model, if an error occurs, go to

the EXIT).

CruiseControl and PrinTok represent typical SDL mod-

els in which a type of state, All State, represents all possible

Forward Backward

TCSbinTCPLiftINRESVending
Machine

PrinTokFuelPumpCruise
Control

CashierATM

A
v
e
ra

g
e
 S

li
c
e
 S

iz
e

100%

80%

60%

40%

20%

0%

Data
NTICD
Data-NTICD

A
v
e
ra

g
e
 S

li
c
e
 S

iz
e

100%

80%

60%

40%

20%

0%
TCSbinTCPLiftINRESVending

Machine
PrinTokFuelPumpCruise

Control
CashierATM

Data
NTICD
Data-NTICD

TCSbinTCPLiftINRESVending
Machine

PrinTokFuelPumpCruise
Control

CashierATM

A
v
e
ra

g
e
 S

li
c
e
 S

iz
e

100%

80%

60%

40%

20%

0%

Data
UNTICD
Data-UNTICD

TCSbinTCPLiftINRESVending
Machine

PrinTokFuelPumpCruise
Control

CashierATM

A
v
e
ra

g
e
 S

li
c
e
 S

iz
e

100%

80%

60%

40%

20%

0%

Data
UNTICD
Data-UNTICD

TCSbinTCPLiftINRESVending
Machine

PrinTokFuelPumpCruise
Control

CashierATM

A
v
e
ra

g
e
 S

li
c
e
 S

iz
e

100%

80%

60%

40%

20%

0%

Data
NTSCD
Data-NTSCD

TCSbinTCPLiftINRESVending
Machine

PrinTokFuelPumpCruise
Control

CashierATM

A
v
e
ra

g
e
 S

li
c
e
 S

iz
e

100%

80%

60%

40%

20%

0%

Data
NTSCD
Data-NTSCD

Figure 3. Average forward slice size for all models based on NTICD, NTSCD and UNTICD respectively

states in the model. A typical SDL model will contain the

exception handling using All State, but in most case studies,

All State is ignored. The result presented reveals that for

any model with exception handling using All State, slices

using NTICD, UNTICD and NTSCD would be the same.

Note that the average forward slice size of PrinTok is almost

100%. The investigation reports a worst case for forward

slicing, as in such model, each transition forward controls

all other transitions. A further inspection of the state ma-

chine of PrinTok reveals that if the EXIT state is removed

as well as all transitions from each state to EXIT state, the

remaining transitions form a large control sink except the

transition from START state.

4.3 Properties of Control Dependence

From the empirical studies and subsequent data analysis,

we have observed the following:

1. For a self-looping transition T in any of the ten EFSM

models, the forward slice with respect to T using only

NTSCD, NTICD or UNTICD is null.

2. In any of the ten EFSM models M , if two transi-

tions Ti and Tj have the same source and target states

(i.e., source(Ti) = source(Tj) and target(Ti) =
target(Tj)), then the forward slice using NTSCD with

respect to Ti will be the same as the forward slice us-

ing NTSCD with respect to Tj . Similarly for forward

slicing with NTICD and UNTICD.

3. In any of the ten EFSM models, if Tj is directly con-

trol dependent (either NTSCD, NTICD or UNTICD)

on Ti, then the source state of Tj is always in the short-

est path from the set of paths from Ti. The shortest

path from a set of paths PATHs denotes the path with

the minimum sequence of nodes.

4. For each transition T in the CruiseControl and

Table 4. Pearson correlation between the slice size for each model.
Forward Backward

Model Dependence NTICD UNTICD NTSCD NTICD UNTICD NTSCD

NTICD - 1.000 .652 - 1.000 .941

ATM UNTICD 1.000 - .652 1.000 - .941

NTSCD .652 652. - .941 .941 -

NTICD - 1.000 .898 - 1.000 1.000

Cashier UNTICD 1.000 - .898 1.000 - 1.000

NTSCD .898 .898 - 1.000 1.000 -

NTICD - 1.000 1.000 - 1.000 1.000

CruiseControl UNTICD 1.000 - 1.000 1.000 - 1.000

NTSCD 1.000 1.000 - 1.000 1.000 -

NTICD - 1.000 .786 - 1.000 -.509

FuelPump UNTICD 1.000 - .786 1.000 - -.509

NTSCD .786 .786 - -.509 -.509 -

NTICD - 1.000 1.000 - 1.000 1.000

PrinTok UNTICD 1.000 - 1.000 1.000 - 1.000

NTSCD 1.000 1.000 - 1.000 1.000 -

NTICD - 1.000 .360 - 1.000 .224

VendingMachine UNTICD 1.000 - .360 1.000 - .224

NTSCD .360 .360 - .224 .224 -

NTICD - x x - x x

INRES UNTICD x - 1.000 x - 1.000

NTSCD x 1.000 - x 1.000 -

NTICD - x x - x x

Lift UNTICD x - .813 x - 1.000

NTSCD x .813 - x 1.000 -

NTICD - x x - x x

TCP UNTICD x - 1.000 x - 1.000

NTSCD x . - x 1.000 -

NTICD - x x - x x

TCSbin UNTICD x - 1.000 x - 1.000

NTSCD x 1.000 - x 1.000 -

PrinTok models, the slices, either forward or back-

ward, using NTICD, UNTICD or NTSCD with respect

to T are the same. Both of these models have a sim-

ilar structure, where each state, except for the START

state, has a transition that leads to the EXIT state.

We generalise each observation to a corresponding prop-

erty and provide a proof. These four properties can simplify

the model graph and thus reduce the cost of computing con-

trol dependence for large models. For example, Proposi-

tion 4.3 helps by not computing control dependence for any

transition whose source state is not on the shortest path from

the slicing criterion.

Proposition 4.1. For an EFSM M , if Ti ∈ M is a self-

looping transition, then there is no transition Tj that is con-

trol dependent (NTSCD, NTICD or UNTICD) on Ti.

Proof. If Ti is a self-looping transition in M and Tk is a sib-

ling of Ti, then source(Tk) = source(Ti) = target(Ti)
(by definition of sibling and self-looping transition), and

thus PATHs(source(Tk)) = PATHs(target(Ti)). As-

sume there is a transition Tj that is control dependent (either

NTSCD, NTICD or UNTICD) on Ti. Then, source(Tj)
belongs to all PATHs(target(Ti)) (by clause 1 of Defini-

tion 5), and there exists a path in PATHs(source(Tk)) that

source(Tj) does not belong to (by clause 2 of Definition 5).

However, PATHs(source(Tk)) = PATHs(target(Ti))
and hence clause 2 of Definition 5 will always be false.

Therefore, we have shown by contradiction that there is no

such Tj that is control dependent on a self-looping transi-

tion Ti.

Proposition 4.2. For an EFSM M , if two transitions Ti and

Tj have the same source and target states, and Ti
CD

−→ Tl

(using NTSCD, NTICD or UNTICD) then Tj
CD

−→ Tl (using

NTSCD, NTICD or UNTICD respectively).

Proof. Let Ti and Tj be two transitions in an EFSM

M , where source(Ti) = source(Tj) and target(Ti) =
target(Tj), and if Tk is a sibling of Ti, then Tk is also

the sibling of Tj . Assume that there exists a transition Tl

where Ti
CD

−→ Tl, by Definition 5, and not Tj
CD

−→ Tl. Since,

Ti
CD

−→ Tl, the target(Tl) is on all PATHs(target(Ti)) and

there exists a path from Tk where source(Tl) does not be-

long to. However, Ti and Tj have identical source and target

states, so the PATHs(target(Ti)) = PATHs(target(Tj)),
and identical sibling transition Tk, thus both clauses in the

Definition 5 are true for Tj , that is Tj
CD

−→ Tl. Therefore, we

have shown by contradition that if Ti and Tj have the same

source and target states, and Ti
CD

−→ Tl then Tj
CD

−→ Tl.

Proposition 4.3. For an EFSM M , if Ti
CD

−→ Tj (either

NTSCD, NTICD, or UNTICD), source(Tj) must belong to

the shortest path of type PATH in PATHs(target(Ti)).

Proof. If Ti
CD

−→ Tj , then the source(Tj) belongs to all

PATHs(target(Ti)), by Definition 5. Since, the short-

est path from target(Ti) of type PATH also belongs to

PATHs(target(Ti)), source(Tj) must also belong to the

shortest path in PATHs(target(Ti)).

Proposition 4.4. For an EFSM M , if all states s ∈ M
where s 6= START have a transition Ti where source(Ti) =
s and target(Ti) = EXIT, then the set of transitions that are

directly control dependent on Ti are the same for all types

of control dependence, i.e. NTSCD, NTICD and UNTICD.

Proof. Assume an EFSM M with all states s ∈ M ,

where s 6= START, and each has a transition Ti where

source(Ti) = s and target(Ti) = EXIT. Then, for each

state s, the shortest maximal path, the shortest sink-bounded

path and the shortest unfair sink-bounded path are the same,

i.e. the path {Ti}. Since all types of PATHS are the same,

then the control dependences produced for NTICD, UN-

TICD and NTSCD are the same, by Definition 5.

5 Related Work

Androutsopoulos et al. [2] briefly surveyed the defi-

nitions of control dependence for slicing finite machines

(FSM). Heimdahl et al. [19, 18] were the first to present a

control dependence definition for RSML, a tabular notation

that is based on hierarchical FSMs. It differs from the tra-

ditional notion as it defines control flow in terms of events

rather than transitions. Korel et al. [23] give a definition of

control dependence for EFSMs in terms of post dominance

that requires execution paths to lead to an EXIT state. Ran-

ganath et al. [27, 28] give two versions of control depen-

dence for non-terminating programs: NTSCD and NTICD.

The difference between these definitions lies in the choice

of paths. Labbé et al. [24] adapt Ranganath et al.’s NTSCD

definition for communicating automata [12]. Oja [25] also

adopts Ranganath et al.’s definition of control dependence,

i.e. NTSCD, and decisive order dependence.

To the best of our knowledge, no empirical results have

been obtained by testing these different control dependence

definitions and analysing their effect on the size of slices.

Approaches for slicing state-based models that include

some experimental results are discussed. Ramesh et al. [26]

present two static backward slicing algorithms that compute

slices of Esterel programs (FSM language) and VHDL pro-

grams used for developing synchronous reactive systems.

The slicing criterion is an event or a set of events. Besides

the standard control (i.e. given with respect to an exit state)

and data dependence, Ramesh et al. introduce novel de-

pendencies that arise due to concurrency and event gener-

ation: signal dependence, interference control dependence

and time dependence. The Esterel and VHDL slicers have

been tested by applying them to a number of programs in or-

der to observe the amount of reduction due to slicing. The

experimental results indicate that the size of the slices (mea-

sured by number of statements) depends on the slicing cri-

terion, i.e. if different slicing criteria are chosen then the

size of slices will be different.

Guo and Roychoudhury [13] present an approach for de-

bugging Statecharts [15] by using dynamic slicing. First

Java code is automatically generated from the statecharts

while using appropriate tags to store the model-code as-

sociation information. Then, subject to an error being de-

tected, dynamic slicing, using the JSlice [32] tool, is applied

to the Java code. The resulting slice is then mapped back

to the statechart model, while maintaining the hierarchical

and concurrent structure. They experimentally test the size

of the slices, both at the code (measured by lines of code)

and model (measured by number of model elements) levels,

produced by dynamic slicing. The sizes of the model slices

are significantly smaller, because a single model element

requires a couple of lines of code to implement.

6 Summary and Future Work

This paper is geared toward providing empirical results

on slicing and dependence for state based models that to be

useful for understanding and analysing large and complex

models. Three types of control dependence that tackle the

issue of non-termination in EFSMs are empirically studied.

The results over ten EFSMs show that the slice size of EF-

SMs is notably larger than that for program slice size. The

analysis of the empirical data also reveals new properties

of control dependence and the corrsponding formal proofs

are given. A typical EFSM with All State where all slices

with respect to a transition constructed using three types of

control dependence are identical. A specific structure of

EFSM with the worst case of forward slicing is also pre-

sented, where the forward slice with respect to any transi-

tion is the whole EFSM.

Amtoft [1] has recently presented a new control depen-

dence definition, called Weak Order Dependence (WOD),

that can be applied to irreducible CFGs and argues that it

also captures traditional control dependence. We plan to

implement this definition and experimentally test how big

the slice sizes are when slicing is applied.

Acknowledgements

This research work is supported by EPSRC Grant

EP/F059442/1. The authors also wish to thank Bogdan Ko-

rel for providing some of the case study models. Author

order is alphabetical.

References

[1] T. Amtoft. Slicing for modern program structures: a the-

ory for eliminating irrelevant loops. Inf. Process. Lett.,

106(2):45–51, 2008.

[2] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and

L. Tratt. Control dependence for extended finite state ma-

chines. In M. Chechik and M. Wirsing, editors, Funda-

mental Approaches to Software Engineering (FASE), volume

5503 of Lecture Notes in Computer Science, pages 216–230.

Springer, 2009.

[3] D. Binkley and M. Harman. Forward slices are smaller than

backward slices. In 5
th IEEE International Workshop on

Source Code Analysis and Manipulation, pages 15–24, Los

Alamitos, California, USA, 2005. IEEE Computer Society

Press.

[4] D. W. Binkley, N. Gold, and M. Harman. An empirical study

of static program slice size. ACM Transactions on Software

Engineering and Methodology, 16(2):1–32, 2007.

[5] D. W. Binkley and M. Harman. A large-scale empirical

study of forward and backward static slice size and context

sensitivity. In IEEE International Conference on Software

Maintenance, pages 44–53, Los Alamitos, California, USA,

Sept. 2003. IEEE Computer Society Press.

[6] D. W. Binkley and M. Harman. A survey of empirical results

on program slicing. Advances in Computers, 62:105–178,

2004.

[7] D. W. Binkley, S. Horwitz, and T. Reps. Program integration

for languages with procedure calls. ACM Transactions on

Software Engineering and Methodology, 4(1):3–35, 1995.

[8] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Au-

tomatic executable test case generation for extended finite

state machine protocols protocols.

[9] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-

gram slicing. Information and Software Technology Special

Issue on Program Slicing, 40(11 and 12):595–607, 1998.

[10] K. Gallagher and L. Layman. Are decomposition slices

clones? In 11
th International IEEE Workshop on Pro-

gram Comprehension (IWPC’03), pages 285–286. IEEE,

May 2003.

[11] K. B. Gallagher and J. R. Lyle. Using program slicing in

software maintenance. IEEE Transactions on Software En-

gineering, 17(8):751–761, Aug. 1991.

[12] C. Gaston, P. L. Gall, N. Rapin, and A. Touil. Symbolic

execution techniques for test purpose definition. In Proc.

Testing of Communicating Systems, pages 1–18, 2006.

[13] L. Guo and A. Roychoudhury. Debugging statecharts via

model-code traceability. In Leveraging Applications of For-

mal Methods, Verification and Validation, Third Interna-

tional Symposium, ISoLA 2008, pages 292–306, Port Sani,

Greece, 2008.

[14] H. Gustavsson, B. Lings, B. Lundell, A. Mattsson, and

M. Beekveld. Simplifying maintenance by using XSLT to

unlock UML models in a distributed development environ-

ment. In IEEE International Conference on Software Main-

tenance (ICSM’07), pages 465–468, Paris, France, 2007.

[15] D. Harel. Statecharts: A visual formalism for complex sys-

tems. Science of Computer Programming, 8(3):231–274,

June 1987.

[16] M. Harman, D. Binkley, K. Gallagher, N. Gold, and

J. Krinke. Dependence clusters in source code. ACM Trans-

actions on Programming Languages and Systems. to appear.

[17] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and

J. Wegener. The impact of input domain reduction on search-

based test data generation. In ACM Symposium on the Foun-

dations of Software Engineering (FSE ’07), pages 155–164,

Dubrovnik, Croatia, September 2007. Association for Com-

puter Machinery.

[18] M. P. E. Heimdahl, J. M. Thompson, and M. W. Whalen.

On the effectiveness of slicing hierarchical state machines:

A case study. In EUROMICRO ’98: Proceedings of the 24th

Conference on EUROMICRO, pages 10435–10444, Wash-

ington, DC, USA, 1998. IEEE Computer Society.

[19] M. P. E. Heimdahl and M. W. Whalen. Reduction and slic-

ing of hierarchical state machines. In Proc. Fifth ACM SIG-

SOFT Symposium on the Foundations of Software Engineer-

ing. Springer–Verlag, 1997.

[20] R. Komondoor and S. Horwitz. Semantics-preserving proce-

dure extraction. In Proceedings of the 27th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages (POPL-00), pages 155–169, N.Y., Jan. 19–21 2000.

ACM Press.

[21] B. Korel, G. Koutsogiannakis, and L. H. Tahat. Model-

based test prioritization heuristic methods and their evalu-

ation. In A-MOST ’07: Proceedings of the 3rd international

workshop on Advances in model-based testing, pages 34–43,

New York, NY, USA, 2007. ACM.

[22] B. Korel and J. Rilling. Dynamic program slicing in under-

standing of program execution. In 5
th IEEE International

Workshop on Program Comprenhesion (IWPC’97), pages

80–89, Los Alamitos, California, USA, May 1997. IEEE

Computer Society Press.

[23] B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing of state

based models. In IEEE International Conference on Soft-

ware Maintenance (ICSM’03), pages 34–43, Los Alamitos,

California, USA, Sept. 2003. IEEE Computer Society Press.

[24] S. Labbé and J.-P. Gallois. Slicing communicating automata

specifications: polynomial algorithms for model reduction.

Formal Aspects of Computing, 2008.

[25] V. Ojala. A slicer for UML state machines. Technical Re-

port HUT-TCS-25, Helsinki University of Technology Lab-

oratory for Theoretical Computer Science, Espoo, Finland,

2007.

[26] S. Ramesh, A. Kulkarni, and V. Kamat. Slicing tools for syn-

chronous reactive programs. SIGSOFT Softw. Eng. Notes,

29(4):217–220, 2004.

[27] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and

J. Hatcliff. A new foundation for control-dependence and

slicing for modern program structures. In ESOP, pages 77–

93, 2005.

[28] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and

M. B. Dwyer. A new foundation for control dependence and

slicing for modern program structures. ACM Trans. Pro-

gram. Lang. Syst., 29(5):27, 2007.

[29] X. Ren, O. Chesley, and B. G. Ryder. Identifying fail-

ure causes in java programs: An application of change im-

pact analysis. IEEE Transactions on Software Engineering,

32(9):718–732, 2006.

[30] F. Strobl and A. Wisspeintner. Specification of an elevator

control system – an autofocus case study. Technical Report

TUM-I9906, Technische Univerität München, 1999.

[31] F. Tip. A survey of program slicing techniques. Journal of

Programming Languages, 3(3):121–189, Sept. 1995.

[32] T. Wang and A. Roychoudhury. JSlice: dynamic slicing tool

for Java.

[33] R. Y. Zaghal and J. I. Khan. EFSM/SDL modeling of the

original tcp standard (RFC793) and the congestion control

mechanism of TCP Reno. Technical Report TR2005-07-

22, Internetworking and Media Communications Research

Laboratories, Department of Computer Science, Kent State

University, March 2005.

