
 

  ICITST 2008 

Monitoring Security and Dependability in
Mobile P2P Systems

George Spanoudakis, Department of Computing, City University, London

Kelly Androutsopoulos, Department of Computing, City University, London

Abstract
Ensuring the dependability and security of mobile P2P systems is an intricate task
due to the autonomous and decentralised nature of such systems. In this paper, we
present a framework that provides increased support for security and dependability
properties by monitoring the compliance of the operation of mobile P2P applications
with them at runtime. The framework performs monitoring driven by policies specified
for the individual peers in a P2P application and decouples the monitoring process
from the operation of the application, to increase its resilience and avoid adverse
effects on its performance.

Keywords
Runtime security and dependability monitoring, mobile P2P systems

1 INTRODUCTION
The proliferation of advanced wireless access infrastructures, and advances in
hardware miniaturisation, enable software-based Internet applications of increasing
complexity to find their way into mobile devices such as mobile phones and PDAs.
Equipped with such applications, a mobile device can become a business tool,
allowing its user to perform various complex tasks whilst on move. And as high-
speed ad-hoc connectivity becomes readily available, mobile software applications
are becoming a significant driving force behind the adoption of a mobile phone as a
mobile computing platform.

In this realm, peer-to-peer software applications − i.e., applications in which there is
no distinction between clients and servers and every participating entity can play the
role of a client, a server and a router at the same time − become important due to
their inherent capability of distributing content and computations over a network of
mobile devices. Furthermore, P2P architectures enable higher scalability due to their
decentralised structure [1]. Thus, several mobile P2P applications have emerged
recently including, P2P wireless positioning [31], mobile P2P file sharing [32] and
enterprise instant messaging applications [21, 30].

Despite the benefits which arise from the decentralised and dynamic nature of
mobile P2P applications, however, this very nature is also posing some significant
challenges for security and dependability. To appreciate these challenges consider
the case of enterprise P2P instant messaging applications. Typically such
applications provide platforms for building communities with common financial
interests that can use P2P messaging to exchange information about financial
markets, trading news etc. Monitoring the availability of the peers that provide the
authentication service to a P2P messaging network at runtime, for instance, is
important in order to avoid the presence of unauthorised nodes in the network.
Monitoring is also important for detecting denial of service attacks. Such attacks may
be caused by flooding the authorisation peers with network admission requests
making them and, consequently, the whole service unavailable to legitimate peers.
Also, giving individual peers the capability to restrict or totally prevent interactions
with other peers, which are not considered trustworthy, is important for their own
integrity and confidence in the P2P service.

Runtime checks may, of course, be implemented by the P2P application itself but
this approach is not flexible enough to cope with the evolution of the P2P network
and changes in the requirements of individual peers which may arise due to this
evolution. Thus, relying on built-in checks is likely to require costly extensions in the
implementation of the P2P application. An alternative solution to this problem is to

 

  ICITST 2008 

monitor security and dependability requirements of individual peers at runtime using
external monitors. Runtime monitoring has been proposed as a technique that
complements static verification and testing and several approaches have been
developed to support it including [2, 9, 11, 16, 27]. Typically, a runtime monitoring
framework provides mechanisms for capturing events during the operation of a
system and checking whether the captured events satisfy specific properties. Most of
the existing runtime monitoring frameworks, however, focus on computing platforms
where resource scarcity is not a significant constraint, systems which are not as
dynamic and decentralised as mobile P2P applications or on monitoring network
communications rather than an application level operations To this end, they do not
address adequately some essential issues for monitoring and controlling mobile P2P
systems, notably:

 the need to have a monitoring service that is not deployed on the same machine
as the peers that it monitors, in order not to drain the computational and power
resources of mobile devices;

 the need to support dynamic negotiations between mobile peers at runtime in
order to enable the activation of monitoring activities on them;

 the secure emission of events from mobile P2P systems required for monitoring;
and

 the dynamic execution of actions to prevent or rectify detected violations of the
monitored properties during the execution of peer applications.

In this paper, we present a mobile peer verification framework (referred to as MPVF
henceforth), which we have developed to provide the above monitoring and control
capabilities for mobile P2P systems. MPVF’s operation is driven by monitoring
policies which are specified for individual peers to express application level
properties that should be monitored at runtime and control actions that should be
taken when the properties are violated. A peer monitoring policy specifies properties
that should be monitored on the peer itself and/or other peers interacting with it
within a P2P network. A policy also specifies permissions that a peer is willing to give
to its collaborators to enable them to monitor and control its own activities.
Furthermore, MPVF supports the negotiation and activation of monitoring policies
across peers, the collection of events which are required for monitoring from
individual peers, the transmission of these events to monitors and the application of
control actions when violations of specific properties are detected. MPVF is part of a
runtime platform that has been developed to secure the operations of mobile P2P
systems as part of the EU research project PEPERS. In addition to the monitoring
capabilities of MPVF, this platform provides support for identity management, data
communication confidentiality, peer authentication and access control (see [14] for a
full account of these features which are beyond the scope of this paper).

In the rest of this paper we focus on MPVF. More specifically, in Section 2 we
present the architecture of MPVF; in Section 3 we introduce the language for
specifying MPVF policies; in Section 4 we discuss policy activation and control; in
Section 5 we discuss related work; and, finally, in Section 6 we provide conclusions
and plans for future work.

2 Architecture of MPVF
Architecturally, MPVF has two key characteristics. The first characteristic is that it
decouples monitoring from event capturing and control giving individual peers
responsibility for the latter two activities and an external monitor responsibility for the
former activity. The second characteristic is that it deploys a publish/subscribe
notification infrastructure in order to transmit monitoring events from individual peers
to the external monitors and monitoring results in the opposite direction. Figure 1
shows the overall architecture of MPVF which consists of three types of components,
namely monitoring-enabled peers (MEPs), monitors and event brokers (EBr).

 

  ICITST 2008 

Figure 1. Architecture of MPVF

Monitoring enabled peers are peers that incorporate a peer verification controller
(PVC). PVC collects events during the operation of the peer and publishes them to
event brokers, so that they can be distributed to appropriate monitors. It also has
responsibility for receiving notifications of results of the monitoring process and
taking control actions on the individual peer as required by these results (e.g.,
dropping messages that exchanged between a peer and its collaborators before they
reach their destination). As shown in Figure 2, PVC is provided as part of the basic
runtime infrastructure that enables the formation of peer networks (e.g. peer
registration, authentication and discovery) and the communication between the
individual peers in these networks. Thus, when a peer application is built using this
infrastructure, it automatically incorporates PVC. PVC internally consists of a
controller, a policy parser and a negotiation manager.

The PVC controller intercepts all the incoming and outgoing messages, which are
exchanged between its host peer and other peers, and publishes these messages in
the form of encrypted events to the event broker of the MPVF, if necessary. The
messages that need to be published to event brokers are determined by the
monitoring policy that has been defined for the specific host peer and agreements
that this peer may have made with other peers for exposing events that would enable
their monitoring activities. After sending a message to an event broker, the controller
may block it until it receives a notification that the message does not violate any rule
or permit its transmission, and wait for the asynchronous notification of monitoring
results. Subsequently, when it receives the monitoring results that relate to the
message, the PVC controller applies the actions required by the active monitoring
policies.

The policy parser of PVC is responsible for parsing the monitoring policy of the host
peer and creating a repository with information about the types of events that should
be intercepted, the properties that should be checked for these events and the
actions that should be taken if properties are violated. Finally, the negotiation
manager of PVC enables it to negotiate with external peers and agree or not the
receipt and exposition of events that are necessary for checking the active
monitoring policies at each side. The negotiation process is driven by the monitoring
policies of the involved peers. PVC comes pre-assembled with the peer
communication infrastructure and signed off so that it cannot be circumvented or
tampered with.

The monitor in MPVF is a reasoning engine that checks whether the rules in a
monitoring policy are satisfied by the events which are generated by the peers at
runtime. A monitor may undertake monitoring tasks on behalf of several peers
depending on its operational capacity and MPVF may use more than one monitor,
each having responsibility for different nodes in a peer network. In this way, MPVF
can provide more efficient and resilient to failure monitoring. When a peer appoints a
monitor M, it subscribes M to the event broker so that to receive the events which are
necessary for checking the rules assigned to it and notify rule violations to the event
broker so that the interested PVCs will be informed about them. After detecting rule

MEP

PVC

application

MEP

PVC

application

MEP

PVC

application

MEP

PVC

application
Event
Broker

(EBr)

Monitor Monitor

Authentication Service

 Seet

Monitoring results
Events

Inter-peer messages

 

  ICITST 2008 

violations, monitors “publish” them to event brokers which subsequently forward the
violation notifications to the PVCs of the relevant peers subject to existing
subscriptions. A detailed description of the monitors is beyond the scope of this
paper and may be found in [26].

Figure 2. Peer verification controllers

The event broker (EBr) offers the publish/subscribe infrastructure needed for
transmitting events from peers to monitors and monitoring results from monitors to
peers. The use of the publish/subscribe event reporting infrastructure in MPVF has
been due to the need to keep the verification framework separate from the actual
P2P service and not to overload the peer communication infrastructure with the
event transmissions required for monitoring. It is also adequate for systems where
peers may come and go quickly and unpredictably. To preserve confidentiality, EBr
manipulates encrypted publications, without having access to their actual contents.
This is achieved through the use of secret tokens which act as aliases to the actual
information exchanged. These tokens give EBr enough information to manage
subscription and publication messages without knowing what they refer to.

3 Specification of monitoring policies
The operation of PVC at runtime is driven by the monitoring policy of its host peer.
Policies are specified using an XML version of the language shown in Figure 3 and
define:

 monitoring rules which specify the properties that should be monitored on the
peer that owns the policy or external peers which may interact with it (the
applicability of a rule to different types of peers is specified by the AppliesTo
clause in the policy)

 assumptions which are used to derive information about the state of the peers
which are being monitored and is necessary for monitoring

 the types of events that the peer is allowed to expose to other peers for their
monitoring needs (see event exposition element in Figure 3),

 a timeout value which determines the maximum time that an event can be
blocked whilst a PVC waits for monitoring results about it, and

 a lifetime value which determines for how long the policy will be valid.

The logic language that MPVF uses to specify monitoring rules and assumptions
within policies is Event Calculus (EC) [24]. More specifically, rules and assumptions
in monitoring policies are specified as logical formulas of the form B1 ∧ … ∧ Bn ⇒ H
where Bi are atomic predicates forming the body of the formula and H is an atomic
predicate forming the head of it. The meaning of a rule formula of this form is that
when the predicates Bi in its body evaluate to true, the predicate H in its head must
also evaluate to true. The meaning of assumption formulas is that when the
predicates Bi in the body of an assumption evaluates to true, the predicate H in its
head can be derived by deduction.

P2P Runtime Infrastructure

 

PVC

 

P2P Application

Encryption
Module

Mobile Peer A

Peer Message Exchange Module

Controller
events

messages

messages
messages

Policy
Parser policy

repository

Negotiation
Manager

Peer B

EBr

notifications

conditions

Authentication
Module

Monitoring Policy

 

  ICITST 2008 

Policy policy_name
 [Rule RuleID String RuleFormula <formula>
 Assumptions
 [AssumptionID String
 AssumptionFormula <formula>]*
 AppliesTo <peer-list-type>*
 [Action <action-type>]*
]+
 [EventExposition <event_exposition_type>]* Key:
 Timeout Duration [drop|forward] [x]*: 0 or more occurences of x
 Lifetime [until Date | permanent] [x]+: 1 or more occurences of x
 [x|y]: x or y

Figure 3. Monitoring policy specification language

The predicates in the bodies and heads of rule or assumption formulas express
events that happen at runtime (e.g., the receipt or dispatch of a peer message),
conditions which are initiated or terminated by these events known as fluents, or
conditions about attributes of the events or the peers that generate them. More
specifically, event occurrences are represented by the predicate
Happens(e,t,ℜ(t1,t2)). This predicate denotes that an instantaneous event e occurs at
some time point t that is within the time range ℜ(t1,t2). An event e is specified by the
term event(_id, _sender, _receiver, _sig, _source) where (i) _id is the unique
identifier of the event, (ii) _sender is the identifier of the peer that sends the
message, (iii) _receiver is the identifier of the peer that receives the message, (iv)
_sig is the signature of the message that the event refers to, and (v) _source is the
identifier of the peer from which the message is captured.

Policy policy-1

 Rule RuleID Rule_1 RuleFormula
 Happens(e(_eID1, _A, _self, _mes, _self), t1, R(t1,t1)) ∧
 mnt:divide1(t1, PDUR) = _TL ∧ HoldsAt(PeriodRequests(_A, _self, _TL, _MesNum), t1)
 ⇒ _MesNum < MaxReq
 Assumptions
 AssumptionID A1 AssumptionFormula
 Happens(e(_eID2, _A, _self, _mes, _self), t1, R(t1,t1)) ∧ mnt:divide1(t1, PDUR) = _TL ∧
 HoldsAt(PeriodRequests(_A, _self, _TL, _Req1), t1) ⇒
 Initiates(e(_eID2, _A, _self, _mes, _self), PeriodRequests(_A, _self, _TL, mnt:add(_MesNum, 1)), t1+1)
 AppliesTo _self
 Actions notify(_eID1, _self)

 Rule RuleID Rule_2 RuleFormula
 Happens(e(_eID1, _self, _A, _mes, _self), t , R(t,t)) ⇒
 (t ≤Tmin) and (Tmax≤t)
 AppliesTo _self, TradingPeer
 Actions drop(_eID1, _self)

 EventExposition
 Timeout 1000 drop
 Lifetime permanent

Figure 4. Policy example

The initiation or termination of a fluent f due to the occurrence of an event e at some
time t is expressed by the predicates Initiates(e,f,t) and Terminates(e,f,t),
respectively. Two additional predicates, namely Initially(f) and HoldsAt(f,t), are used
to denote that a fluent f holds at the start of the operation of a system and that f holds
at time t, respectively. In the MPVF policy language, fluents are specified as
<relation>(v1,…,vm) where each vi is a typed variable or constant value and
<relation> is the name of the relation.

An example of a monitoring policy specified in the MPVF policy language is shown in
Figure 4. Rule_1 in this policy checks if the total number of requests which are sent
to a peer _self by the same external peer _A over a time period of length PDUR does

 

  ICITST 2008 

not exceed a preset threshold value MaxReq1. The fluent PeriodRequests(_A, _self,
_TL, _MesNum) in this rule keeps the number of messages (_MesNum) that a peer
_A has sent to _self in the time period _TL. The value of this fluent is updated when
new messages are sent by _A to _self using the assumption A1. More specifically,
according to A1 when a new message is sent to _self by _A within a particular period
_TL, the value of the fluent PeriodRequests(_A, _self, _TL, _MesNum) is increased
by 1 (by virtue of initiating the fluent to the increased value). After the fluent
PeriodRequests(_A, _self, _TL, _MesNum) is initiated to a new _MesNum value, the
monitor will be able to deduce the predicate HoldsAt(PeriodRequests(_A, _self, _TL,
_MesNum), t1) at runtime using an axiom of EC which states that a fluent will hold at
any time point after its latest initialisation (unless it has been terminated in between).

MPVF policies also specify control actions that should be executed by the PVC when
specific rules are violated. MPVF supports two types of control actions, namely drop
and violation notification actions. Drop actions prevent the dispatch or receipt of the
peer message that has caused the violation of a rule and are specified as drop(eID,
peerID1, …, peerIDn), where eID is the identifier of the event that is involved in the
violation of the rule, and peerID1, …, peerIDn are the identifiers of the peers that
should be notified of the dropped message. Violation notification actions have as a
result the dispatch of a message that notifies a given set of peers of the violation of a
rule. These actions are specified as ViolationNotification(evID, peerID1, …, peerIDn)
where evID and peerID1, …, peerIDn have the same meaning a in the case of the
drop action above. In the policy of Figure 4, for example, a notification action is
specified for Rule_1 and, thus, when this rule is violated, PVC should send a
message to notify the violation to the peer that owns the policy. In the case of
Rule_2, the action to be applied is to drop the relevant message.

4 Activation of monitoring policies and control
The monitoring policy specified in a given peer is activated as soon as the operation
of the peer starts. At this point, the PVC of the peer checks for the existence of a
policy on the peer and if such a policy exists, it identifies a monitor and an event
broker, sends the rules that the policy specifies for the peer to the monitor, and
creates subscriptions in the event broker than will enable the transmission of events
that it will generate to the monitor and the monitoring results that the monitor will
generate in the opposite direction. At this point the PVC also creates the list of
events that it should capture from its peer during its operation and send to the
monitor, as well as the actions that should be applied to the events that violate a rule.

As discussed in Section 3, MPVF allows peers to specify in their policies rules that
should be monitored not only on themselves but also on other peers. This is possible
by declaring the roles of other peers that a rule should be monitored on using the
AppliesTo clause in a rule specification. This capability is useful when peers want to
ensure themselves that their coordinators do not violate rules which are important to
them. It is also useful in cases where certain peers in a P2P network are positioned
to undertake special responsibilities which require them to oversee certain
interactions between all other peers in the network. Peers with special
responsibilities may exist due to the use of some form of hierarchy in the peer
network (e.g. some peers may act as authorisation entities controlling the admission
of other peers to the network) or due to organisational structures that are reflected in
the peer network (special peers, for example, may represent team leaders or
managers in the real world, who are expected to maintain a higher authority inside
the P2P service).

In our example of the enterprise IM application, the manager of a team of normal
trader peers may, for instance, wish to monitor rules requiring that none of these
normal peers is allowed to send any message during peek trading hours or send
trading screens to peers outside its own group of traders. Monitoring such rules in
MPVF is possible by including the rules in the policy of the peer which is the group
leader and declaring that these rules apply to the roles of the other peers in the
   
1 The current period is identified by the execution of the built-in function of the monitor mnt:divide1(t1,PDUR) which

returns the ceiling of the result of dividing the timestamp t1 of the event by the duration of the periods over which
the number of requests is measured (PDUR).

 

  ICITST 2008 

relevant group. Rule_2 in Figure 4 is an example of such a rule. This rule can be
used to monitor message exchanges within peek trading hours as it would be
violated if a trading peer sends any message to another peer within the time period
from Tmin to Tmax. It should be noted, however, that the specification of the external
peers which the rules in the policy of a given peer should be applied to is not by itself
sufficient for enabling external monitoring. External peer monitoring also requires that
the external peers agree to capture and send all the events which are relevant for the
given policy to the relevant monitor. This agreement can only result from a
negotiation between the involved peers. The peer negotiation process is realised by
MPVF as described below.

A peer P1 starts the negotiation process with another peer P2 if it needs events from
P2 in order to monitor rules in its own policy that apply to the role of P2. The
negotiation process between the two peers will be triggered the first time that P1
becomes aware of the existence of P2 in the P2P network. This happens when P1
receives a message from P2 for the first time. When this happens, the PVC of P1 will
identify the rules in its policy that apply to the role of P2, and then the events that it
will need from P2 in order to check these rules. It will also retrieve the actions that
should be executed if the rules are violated. Using this information, the PVC of P1 will
construct a condition list of the form
[(ev-typei, ((rule1, (action11, …, action1L)), …,
 (rulen, (actionn1, …, actionnM))))] (i=1,…,k)

(1)

and send it to P2 for approval. An element i in this list indicates the type of events of
P2 that will be required (ev-typei), the rules against which events of this type will be
checked (rule1,….,rulen), and the actions that should be executed if one of these
rules is violated (e.g., action11,…,action1L for rule1). After receiving the condition list,
the PVC of P2 will check it against the event exposition specification of its own policy
and, if this specification permits the acceptance of the conditions of P1, P2 will
confirm the acceptance of the conditions and update its internal active policy so as to
send the required events to P1.

Continuing with our previous example, assuming that the role of P2 is TradingPeer,
P1 will need to monitor whether the operation of P2 is compliant with Rule_2. From
this rule, it will construct the following condition list and send it to P2 for negotiation:
[(e(_eID1, P2, _A, _mes, P2), ((Rule_2, (drop(_eID1, P2, P1))))]

This list will be generated from Rule_2 after extracting the events referenced by the
rule and replacing the variable _self in the rule with the identifier of P2 as the latter
peer will become the subject of monitoring in this case. Also in the drop action of the
rule the id of P1 will be added by default since P1 needs also to be notified by
violations of the rule in P2. Following the receipt of the above condition list, if the
event exposition specification in P2’s policy is
EventExposition (e(_id,_self,_any,MSGT1,_self), [TraderGroupLeader], [drop(_mes, ANY)])

P2 will not accept the condition list of P1 and negotiation will fail. This is because,
according to its exposition specification, P2 will be able to send only messages of
type MSGT1 to peers of the role TradingGroupLeader (and, therefore, P1) but not
any event as requested by P1. If, however, P2’s exposition list had allowed the
exposition of all the messages send by it to an external peer, the negotiation would
have been completed successfully.

After the conditions are accepted in the negotiation process, P1 will establish two
confidential communication channels to allow the PVC of P2 to send the events
required for monitoring to the monitor of P1 and the monitor to notify the results of the
monitoring process back to P1 and P2. In MPVF these communication channels are
identified by tokens generated by P1. MPVF assumes that event brokers are not
trusted entities and therefore they should be able to manage the subscriptions and
publications of events and monitoring results without having access to their contents.
To achieve this, the events and monitoring results are encrypted and the necessary
keys for the decryption of this information are generated outside the event broker
and are not made available to it. The event broker gets only tokens that identify the

 

  ICITST 2008 

notification channels and enable it to distribute the encrypted messages to the
appropriate subscribers. Tokens essentially provide aliases to the actual information
exchanged, giving the event broker sufficient information for managing subscriptions
and routing publications, without knowing what a token refers to and being able to
deduce the actual type of the transmitted messages or other information from it. The
protocol for creating the tokens and decryption keys and establishing the event and
notification reporting channels is based on SSL [11]. A detailed discussion of this
protocol is beyond the scope of this paper and may be found in [18].

After the activation of a policy in a peer, its PVC controller catches the messages
sent to and from it and finds the set of rules that need to be checked for each of
these messages and have a drop action defined for it. If there is no rule with a drop
action for the message, the controller transmits an event representing the message
to the event broker without waiting for any monitoring results. If, however, there are
rules with drop actions, then the controller must ensure that all these rules are
satisfied before allowing the message to be transmitted to its destination. Thus, the
controller blocks the message and waits for notifications of monitoring results from
the monitor (via the event broker). Whilst waiting for these notifications, if a timeout
occurs, the controller forwards the message to its destination peer. In the case,
however, whwre a violation of a rule with a drop action for the message is notified
before a timeout, the controller drops the message and stops waiting for any further
notifications of monitoring results for the message as these can be handled by the
notification handling process of PVC in an asynchronous mode. The PVC controller
will release a message that is checked against rules with drop actions only when it
receives notifications from the monitor confirming that none of the relevant rules has
been violated so far and cannot be violated by the message in the future.

5 Related work
The work that we have presented in this paper is related to research on security and
monitoring of P2P systems and approaches developed to support runtime verification
in general.

Relevant strands of work in the former area are related to: (a) P2P system security
and trust, including frameworks for computing peer reputation ratings [8,15,25],
admission control schemes [10,22], techniques for P2P data exchange encryption
[28], and decentralised key management [29], and (b) approaches supporting the
monitoring of resources in P2P networks [12]. Some of these frameworks and
techniques deploy specialised forms of monitoring focusing mainly on the existence,
extent of use and sharing of resources in P2P networks [3,12,15] or detecting
application-specific traffic in P2P networks [22] rather than checking the compliance
of runtime P2P system operations with specific properties as MPVF does. We
should also note that MPVF-based monitoring could be used to generate peer
reputation ratings and enforce admission and access control policies in P2P
systems.

In the area of runtime verification, there are approaches that support monitoring on
different implementation platforms including, for example, Java programs [4, 5, 7, 16,
17] or BPEL workflows [13, 19, 27]. None of these approaches, however, focuses
explicitly on mobile P2P systems or provides a framework that can support
effectively the verification of such systems by including mechanisms for: (a)
generating events from such systems without having to change their code, (b)
negotiating monitoring conditions between peers in order to activate monitoring when
a P2P system evolves with the admission and departure of peers, and (c) applying
control actions in response to certain types of violations. Thus, the framework
presented in this paper is novel in addressing exactly these aspects.

6 Conclusions and future work
In this paper, we presented a framework (called MPVF) that we have developed to
enable the monitoring of policies of application level security and dependability

 

  ICITST 2008 

properties for mobile P2P systems. In addition to monitoring, this framework supports
the automatic negotiation between peers at runtime in order to enable the activation
of monitoring, the emission of events required for monitoring from peers to the
monitors, and the dynamic execution of actions following the detection of property
violations.

MPVF has been implemented using the SIENA event notification service [6] and has
two implementations: one that is based on JSE v1.5 and a version for mobile phones
based on JME-CDC 1.0 which has been tested on Sony Ericsson’s P990i. MPVF can
be used by P2P applications built upon the PEPERS peer communication
framework. To deploy MPVF, developers need to write policies that drive the
monitoring activity during the operation of a P2P system and provide information
about EBr and the monitor(s) that may be used at runtime as part of a configuration
file. However, there is no need for developers to add any extra code to their
application unless they want to notify end-users of the monitoring results or take
some application specific action in response to them.

Currently, we are investigating the possibility of extending MPVF with a monitor
discovery service. In this service, monitors will be treated as a special type of peers
that could be discovered dynamically using appropriate P2P protocols.

ACKNOWLEDGEMENTS
The work reported in this paper has been funded by the European Commission
under the Information Society Technologies Programme as part of the project
PEPERS (contract IST-026901).

REFERENCES
1. Androutsellis-Theotokis S., and Spinellis D. (2004), A survey of peer-to-peer

content distribution technologies. ACM Computing Surveys, 36(4):335–371

2. Barringer H., Goldberg A., Havelund K., and Sen K. (2004), Rule-Based Runtime
Verification, In Proc. of 5th Int. Conf. on Verification, Model Checking, and
Abstract Interpretation

3. Binzenhofer A., Kunzmann G. and Henjes, R. (2006), A scalable algorithm to
monitor chord-based p2p systems at runtime, In Proc. of 20th Int. Parallel and
Distributed Processing Symposium.

4. Brörkens M. and Möller M. (2002a), Dynamic event generation for runtime
checking using the JDI, In Proc. of the Federated Logic Conf. Satellite
Workshops, Electronic Notes in Theoretical Computer Science, 70 (4)

5. Brörkens M. and Möller M. (2002b), Jassda trace assertions, runtime checking
the dynamic of Java programs, In Proc of Int. Conf. on Testing of Communicating
Systems, Berlin, Germany, 39-48

6. Carzaniga A., Rosenblum D. S., and Wolf A. L. (2000), Achieving scalability and
expressiveness in an internet -scale event notification service, In Proc. of 19th
ACM Symposium on Principles of Distributed Computing

7. Chen F. and Roşu G. (2007), MOP: an efficient and generic runtime verification
framework. In Proc. of the 22nd ACM SIGPLAN Conf. on Object Oriented
Programming Systems and Applications, 569-588

8. Damiani E., di Vimercati D., Paraboschi S., Samarati P., and Violante F., (2002),
A reputation-based approach for choosing reliable resources in peer-to-peer
networks, In Proc. of 9th ACM Conf. on Computer and Communications Security,
207 – 216

9. D'Amorim M., Havelund K. (2005), Event-based runtime verification of Java
programs, In Proc. of 3rd Int. Works. on Dynamic Analysis (WODA'05)

 

  ICITST 2008 

10. Fenkam P., Dustdar S., Kirda E., Reif G. and Gall H., (2002), Towards an
access control system for mobile peer-to-peer collaborative environments, WET
ICE 2002 – Int. Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises

11. Freier A. O., Karlton P., and Kocher P. C. (1996), The SSL Protocol Version 3.0,
Internet draft, available at: http://wp.netscape.com/eng/ssl3/draft302.txt

12. Gedik B. and Ling L. (2003), PeerCQ: A Decentralized and Self-Configuring
Peer-to-Peer Information Monitoring System, In Proc. of 23rd Int. Conf. on
Distributed Computing Systems, 490- 499

13. Ghezzi C., and Guinea S. (2007), Runtime Monitoring in Service Oriented
Architectures, In Test and Analysis of Web Services, (eds) Baresi L. & di Nitto E.,
Springer, 237-264.

14. Groce V., Maggio M., Ficano I., Siveroni I., and Androutsopoulos K. (2007),
Framework and Security Verification Tools, Deliverable D6, PEPERS, FP6-
26901

15. Gupta M., Judge P., and Ammar M. (2003), A reputation system for peer-to-peer
networks. In Proc. of the 13th Int. Works. on Network and Operating Systems
Support For Digital Audio and Video

16. Havelund K., and Roşu G. (2004), An Overview of the Runtime Verification Tool
Java PathExplorer, Formal Methods Syst. Des. 24: 189-215

17. Kim M., Kannan S., Lee I., Sokolsky O. and Viswanathan M. (2001), Java-mac: a
run-time assurance tool for Java programs, In Electronic Notes in Theoretical
Computer Science, 55. Elsevier Science Publishers

18. Koulouris T, Tsigkritis T. and Spanoudakis G. (2006), Dynamic Verification
Support Framework, Deliverable D4, PEPERS Project, IST-2004-026901

19. PEPERS, www.pepers.org

20. Pistore M. and Traverso P. (2007), Assumption Based Composition and
Monitoring of Web Services, In Test and Analysis of Web Services, (eds) Baresi
L. & di Nitto E., Springer Verlang, 307-335.

21. Reuters Messaging, http://about.reuters.com/productinfo/messaging/?user=1&

22. Saxena N., Tsudik G., and Yi J.H. (2003), Admission control in Peer-to-
Peer: design and performance evaluation, In Proc. of 1st ACM Workshop on
Security of Ad Hoc and Sensor Networks, 104-113

23. Sen S., Spatscheck O., and Wang D. (2004), Accurate, scalable in-network
identification of p2p traffic using application signatures. In Proc. of the 13th Int.
Conf. on World Wide Web

24. Shanahan M.P. (1999), The Event Calculus Explained, Artificial Intelligence
Today, LNAI 1600:409-430

25. Song S., Hwang K., Zhou R. and Kwok Y. (2005), Trusted P2P Transactions with
Fuzzy Reputation Aggregation. IEEE Internet Computing, 9(6):24-34.

26. Spanoudakis G. and Mahbub K. (2006), Non Intrusive Monitoring of Service
Based Systems, International Journal of Cooperative Information Systems,
15(3):325-358

27. Mahbub K., and Spanoudakis G. (2007), Monitoring WS-Agreements: An Event
Calculus Based Approach, In Test and Analysis of Web Services, (eds) Baresi L.
& di Nitto E., Springer Verlang, 265-306.

28. Xiaolin Catania, B. and Kian-Lee T. (2003), Securing your data in agent-based
P2P systems, In Proc. of 8th Int. Conf. on Database Systems for Advanced
Applications, 55- 62

 

  ICITST 2008 

29. Law Y.W., Corin R., Etalle S. and Hartel P. (2003), A Formally Verified
Decentralized Key Management Architecture for Wireless Sensor Networks,
Personal Wireless Communications, LNCS 2775: 27-39

30. Mobile P2P messaging, http://www.ibm.com/developerworks/wireless/library/wi-
p2pmsg/#9 (last seen on 27/2/08)

31. Navizon, P2P Wireless Positioning, http://www.navizon.com/ (last seen on
27/2/08)

32. PeerBox, http://www.peerboxm.com/Default.aspx? (last seen on 27/2/08)

