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a b s t r a c t

Ambient intelligence is an emerging discipline that brings intelligence to our everyday
environments and makes those environments sensitive to us. Ambient intelligence (AmI)
research builds upon advances in sensors and sensor networks, pervasive computing,
and artificial intelligence. Because these contributing fields have experienced tremendous
growth in the last few years, AmI research has strengthened and expanded. Because AmI
research is maturing, the resulting technologies promise to revolutionarize daily human
life by making people’s surroundings flexible and adaptive.
In this paper, we provide a survey of the technologies that comprise ambient

intelligence and of the applications that are dramatically affected by it. In particular,
we specifically focus on the research that makes AmI technologies ‘‘intelligent’’. We also
highlight challenges and opportunities that AmI researchers will face in the coming years.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Computer science is a relatively new branch of science and as such it has gone through rapid and yet important
transformations during the first decades of its existence. Those transformations have produced a very interesting mix of
available experiences, and expectationswhich aremaking possible the creation and deployment of technology to ultimately
improve thewayour environments help us. This technical possibility is being explored in an area calledAmbient Intelligence.
Here we survey the field of Ambient Intelligence. Specifically, we review the technologies that led to and that support
research in AmI. We also provide an overview of current uses of AmI in practical settings, and present opportunities for
continued AmI research.

1.1. Emergence of AmI

The European Commission first charted a path for AmI research in 2001 [1]. A significant factor in this birth of the field of
AmI is the evolution of technology. Computers were initially very expensive as well as difficult to understand and use. Each
computer was a rare and precious resource. A single computer would typically be used by many individuals (see Fig. 1). In
the next evolutionary step, many users no longer needed to take turns to use a computer as many were able to access it
simultaneously. The PC revolution in the 80s changed the ratio to one user per computer. As industry progressed and costs
dropped, one user often was able to access more than one computer. The type of computational resources that we have at
our disposal today is dramatically more varied than a few decades ago.
Today, access to multiple computers does not necessarily just mean owning both a PC and a laptop. Since the minia-

turization of microprocessors, computing power is embedded in familiar objects such as home appliances (e.g., washing
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Fig. 1. A shift in people-computing power ratio.

machines, refrigerators, and microwave ovens), they travel with us outside the home (e.g., mobile phones and PDAs), and
they help guide us to and from our home (e.g., cars and GPS navigation). Computers that perform faster computation with
reduced power and tailor the computation to accomplish very specific tasks are gradually spreading through almost every
level of our society. This widespread availability of resources sparked the realization of Ambient Intelligence.
Possessing the necessary supporting technology is not enough for an area of science to flourish. User’s experiences with

computers over recent decades have created an interesting context where expectations of these systems are growing and
people’s fear of using them has decreased. Concomitantly with this difference in the way society perceives technology there
is also a change in the way services are handled. An important example of this is the decentralization of health care and
development of health and social care assistive technologies. Because governments and health professionals are departing
from the hospital-centric health care system, theway is paved for AmI systems to support caring for patients closer to home,
within their communities. Developments, competencies and drivers are converging at the same time in history and all of
the necessary components are in place: the need to distribute technology around us, the will to change the way our society
interacts with technology, the available technological knowledge and all the elements to satisfy the demand.
The idea of Ambient Intelligence is not new, but what is new is that we can now seriously think about it as a reality and as

a disciplinewith a unique set of contributions.Most of us have come across science fictionmovieswhere doors openedwhen
someone approached or computers were able to identify the interlocutor without their name being explicitly mentioned.
Some of those features were far fetched for the technology available at the time, but gradually some features that indicate
sensible autonomy on behalf of the system were targeted by industry, and AmI was born.
Technically, many of us today live in homes that were considered ‘‘smart’’ by 1960s standards, and for a very reasonable

cost. Thermostats andmovement sensors that control lighting are commonplace. Now the bar hasmovedmuch higher: even
the ability to link movement sensors to a security alarm for detecting intruders will not impress a society which regularly
interacts with such facilities.
Recent computational and electronic advances have increased the level of autonomous semi-intelligent behavior

exhibited by systems like smart homes so much that new terms like Ambient Intelligence started to emerge [2,1,3]. The
basic idea behind Ambient Intelligence (AmI) is that by enriching an environment with technology (e.g., sensors and devices
interconnected through a network), a system can be built such that acts as an ‘‘electronic butler’’, which senses features
of the users and their environment, then reasons about the accumulated data, and finally selects actions to take that will
benefit the users in the environment.

1.2. What is AmI?

Ambient Intelligence has been characterized by researchers in different ways. These definitions, summarized in Table 1,
highlight the features that are expected in AmI technologies: sensitive, responsive, adaptive, transparent, ubiquitous, and
intelligent.
From these definitions, and the features that we are using (summarized in Table 1) to characterize Ambient Intelligence,

we can see how the discipline compares and contrasts with fields such as pervasive computing, ubiquitous computing, and
artificial intelligence. The fact that AmI systems must be sensitive, responsive, and adaptive highlights the dependence that
AmI research has on context-aware computing.
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Table 1
Features of Ambient Intelligence captured by AmI definitions. Features include Sensitive (S), Responsive (R), Adaptive (A), Transparent (T), Ubiquitous (U),
and Intelligent (I).

Definition S R A T U I

A developing technology that will increasingly make our everyday
environment sensitive and responsive to our presence [4].

√ √

A potential future in which we will be surrounded by intelligent objects
and in which the environment will recognize the presence of persons and
will respond to it in an undetectable manner [1].

√ √ √ √

‘‘Ambient Intelligence’’ implies intelligence that is all
around us [5].

√ √

The presence of a digital environment that is sensitive, adaptive, and
responsive to the presence of people [6].

√ √ √

A vision of future daily life . . . contains the assumption that intelligent
technology should disappear into our environment to bring humans an
easy and entertaining life [7].

√ √ √

A new research area for distributed, non-intrusive, and intelligent
software systems [8]

√ √

In an AmI environment people are surrounded with networks of
embedded intelligent devices that can sense their state, anticipate, and
perhaps adapt to their needs [9].

√ √ √ √ √

A digital environment that supports people in their daily lives in a
nonintrusive way (Raffler) [10].

√ √

Similarly, the AmI feature of transparency is certainly aligned with the concept of the disappearing computer. This
methodological trend was envisioned by Weiser [11], who stated:

‘‘The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they
are indistinguishable from it’’.

A recent description of the state of the art in this area of research is provided by Streitz and Nixon [12].
The notion of a disappearing computer is directly linked to the notion of ‘‘Ubiquitous Computing’’ [13], or ‘‘Pervasive

Computing’’ as IBM later called it [14]. Some technical publications equate Ubiquitous Computing, Pervasive Computing, or
Everyware Computing [15] with Ambient Intelligence. The nature of Ubiquitous or Pervasive Computing is captured in part
by the Oxford Dictionary definition of ubiquitous:

Ubiquitous: adj. present, appearing, or found everywhere [16]

and of pervasive:
Pervasive: adj. (esp. of an unwelcome influence or physical effect) spreading widely throughout an area or a group of
people [16].

Note that while Ambient Intelligence incorporates aspects of context-aware computing, disappearing computers, and
pervasive/ubiquitous computing into its sphere, there is also an important aspect of intelligence in this field. As a result, AmI
incorporates artificial intelligence research into its purview, encompassing contributions from machine learning, agent-
based software, and robotics. As Maeda and Minami point out, AmI research can include work on hearing, vision, language,
and knowledge, which are all related to human intelligence, and there is where AmI differs from ubiquitous computing [5].
By drawing from advances in artificial intelligence, AmI systems can be even more sensitive, responsive, adaptive, and
ubiquitous. We characterize AmI technologies as those that exhibit characteristics listed in Table 1 and we summarize the
above discussion by defining an Ambient Intelligence system as

‘‘a digital environment that proactively, but sensibly, supports people in their daily lives’’ [17].

The review that we offer in the next section of the paper summarizes advances that have beenmade in related areas that
contribute to the goal of AmI systems that we have set forth.

2. Contributing technologies

From its definition, we can see that AmI has a decisive relationship with many areas in computer science. We organize
the contributing technologies into five areas, shown in Fig. 2. A key factor in AmI research is the presence of intelligence.
We adopt the notion of an intelligent agent as defined by Russell and Norvig [18]. As such, the AmI algorithm perceives the
state of the environment and users with sensors, reasons about the data using a variety of AI techniques, and acts upon the
environment using controllers in such away that the algorithm achieves its intended goal. The process is illustrated in Fig. 3.
Hence, we focus on technologies that assist with sensing, reasoning, and acting.
On the other hand,while AmI draws from the field of AI, it should not be considered synonymouswithAI. The ISTAdvisory

Group lists five key technologies that are required to make AmI a reality [1]. Two of these technologies clearly fall outside
the typical scope of AI research and are addressed separately in this survey. These are human-centric computer interfaces
and secure systems and devices. Next we discuss recent work in these contributing areas that enhance development of AmI.
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Fig. 2. Relationship between AmI and contributing technologies.

Fig. 3. Ambient intelligent agent interaction with the environment. The agent perceives the state of the environment and residents using sensors. The
agent models and reasons about this information, ultimately using it to make a decision about how to act on the information. The state of the environment
is changed through actions such as powerline control of devices and robotic assistance.

3. Sensing

Because Ambient Intelligence is designed for real-world, physical environments, effective use of sensors is vital. Without
physical components that allow an intelligent agent to sense and act upon the environment, we end up with theoretical
algorithms that have nopractical use. Sensors are the key that link available computational powerwith physical applications.
Ambient Intelligence algorithms rely on sensory data from the real world. As Fig. 3 shows, the software algorithm

perceives the environment and uses this information to reason about the environment and the action that can be taken
to change the state of the environment. Perception is accomplished using a variety of sensors. Sensors have been designed
for position measurement [19], for detection of chemicals and humidity sensing [20], and to determine readings for light,
radiation, temperature, sound, strain, pressure, position, velocity, and direction, and physiological sensing to support health
monitoring [21,22]. Sensors are typically quite small and thus can be integrated into almost any AmI application.
Tracking and identifying people in an environment is an important issue in AmI systems. If the location of a person is

known, the system can serve the individual better by anticipating needs based on their preferences and delivering services
based on when they are commonly required. The technology which is often used to track individuals are motion sensors.
Motion sensors have been used as a backbone of security systems for decades. However, while they can detect movement
they cannot provide information to distinguish who (or what) produced the movement.
As an alternative, persons and items canwear a sensor that helps to track them. An example of this technology is RFID tags

that can be coupledwith an RFID reader tomonitor themovement of the tagged objects. This technology relies on individuals
and items being tagged. In addition, the sensitivity of the tags can introduce challenges for the system. For example, if an
RFID reader is positioned in a door frame to identify persons transitioning between rooms, the person can trigger the reader
if they get close to the door, without necessarily moving to the next room. Such ambiguities can be resolved by integrating
more than one technology. For example, motion sensors can be placed on each side of the door in combinationwith the RFID
reader to distinguish proximity from room transitions.
Yet another technology that can be used for tracking is the I-Button. I-Buttons [23] are devices that can be as small as

16mm. They contain a computer chip in a steel casingwith a real-time clock. Each I-Button has a unique registration number
and the receptor can communicate with a computer. This device can be used to identify objects or people carrying it when
the i-button is placed in the appropriate reader. This has the problem that the i-button has to be physically placed over the
reader to be effective which does not make it comfortable for everyday use in a house.
All these methods have limitations and cannot guarantee proper identification in all cases however they provide

interesting tools and it is up to the intelligence of the system to couple them with software techniques that achieve the
goal of identification and tracking. Other sensing devices that can be used to identify people are microphones (through the
way of speaking and verbal explicit identification) and video cameras (through face recognition or explicit identification
badges).



Author's personal copy

D.J. Cook et al. / Pervasive and Mobile Computing 5 (2009) 277–298 281

Table 2
Different sensing modes and their applications.

Sensing type Common uses

Strain and pressure Floors, doors, beds, sofas, scales
Position, direction, distance and motion Security, locator, tracking, falls detection
Light, radiation and temperature Security, location, tracking, health safety, energy efficiency
Solids, liquids and gases Security and health, monitoring, pool maintenance, sprinkler efficiency
iButton Used to identify people and objects
Sound Security, volume control, speech recognition
Image Security, identification, context understanding

Table 3
Contrasting characteristics of wired and wireless sensors.

Wired sensors Wireless sensors

Cheaper sensors More expensive
Pay for wiring No wiring
Robust Not as robust
Need power source Batteries

All of these described identification technologies pose privacy concerns, which we will address later in this paper. A
summary of the most common types of identification and tracking sensors is presented in Table 2.
Wireless sensor network research has become a popular area of research in recent years [24,25]. The sensor networks

community has explored applications such as environmental monitoring, situational awareness, and structural safety
monitoring [26–28]. A challenge that is prevalent particularly with wireless sensors and wireless sensor networks such
as the popular Motes platform [29] is resource management to support long-term data collection. Most work in sensor
networks has required battery power. For many applications, it is inconvenient to frequently replace batteries. Finding
effective alternatives to battery power for sensor networks, however, is an ongoing research direction. A summary of these
characteristics is presented in Table 3.
Making sense of sensor data is a complex task. Sensor data comes with unique features that challenge conventional data

analysis techniques. They generate large volumes of multidimensional data, defying attempts to manually analyze it. If the
sensors are imprecise the data can be noisy, and if a sensor fails there may be missing values. Sensor data often needs to be
handled on the fly or as streaming data [30], and the data may have a spatial or temporal component to it.
When analyzing sensor data, AmI systemsmay employ a centralized or distributedmodel [31]. Sensors in the centralized

model transmit data to a central server, which fuses and analyzes the data it receives. In the distributed model, each sensor
has onboard processing capabilities and performs local computation before communicating partial results to other nodes in
the sensor network. The choice of model will have a dramatic effect on the computational architecture and type of sensor
that is used for the task [32,33]. In both cases, sensor data is collected from disparate sources and later combined to produce
information that ismore accurate,more complete, ormore insightful than the individual pieces. Kalman filters are a common
technique for performing sensor data fusion [34]. Probabilistic approaches have also been effective formodeling sensors [35,
36] and combining information from disparate sources [37,38].
This processing which is focused on filtering, disambiguation and interpretation of sensed data before it is used by the

higher level decision-making modules usually happens at a level of the system referred to asmiddleware. There the various
elements of the distributed technology (sensors and devices interconnected through awireless or conventional network) are
integrated and the information coming from them is understood. Given the importance that this work has to maximize the
understanding of the environment through the sensed data significant effort has been directed in the scientific community
of this area in achieving efficient and robust middleware levels within their smart environment systems.
Ubila [39] was one of the pioneering national ubiquitous networks of projects for research and development funded by

the Japanese government. The objective of the project was to develop core technologies to realize smart environments
with cooperation of network, middleware and information processing technologies. UCN (Ubiquitous Computing and
Networking) [40] is a nationwide Korean project in which service convergence solutions have been developed to design
and manage human-centered composite services.
The European IST Amigo project [41] developed a networked home system enabling the AmI vision. Key features of the

Amigo architecture are the effective integration and composing of heterogeneous devices and services from the following
domains: personal computing, mobile computing, consumer electronics and home automation. One distinguishing feature
of the Amigo middleware architecture is that it poses limited technology-specific restrictions: interoperability among
heterogeneous services is supported through semantic-based interoperability mechanisms that are part of the Amigo
architecture.
The PERSONAproject (Perceptive Spaces prOmoting iNdepentent Aging) [42] aims at developing a scalable open standard

technological platform for building a broad range of Ambient Assisted Living (AAL) Services. The main technical challenge
is the design of a self-organizing middleware infrastructure allowing the extensibility of component/device ensembles. The
communication patterns of the infrastructure are based on distributed coordination strategies for service discovery and
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utilization. The components of a PERSONA system interfacewith each other using the PERSONAmiddleware,which allocates
a number of communication buses, each adopting specific and extendable communication strategies. Components linked
with the PERSONA middleware may register to some of these communication buses; instances of middleware find each
other and instances of the buses collaborate to enable interoperability among components using the middleware. Currently
four types of buses have been chosen tomodel an AAL-spacewithin PERSONA: the input bus, the output bus, the context bus,
and the services bus. PERSONA uses a connector based approach to implement an extendible communication mechanism
between distributed instances of the middleware (peers). The current prototype of the PERSONAmiddleware implemented
on the OSGi platform uses connectors based on UPnP, Bluetooth, and R-OSGi.

4. Reasoning

Sensing and acting provide links between intelligent algorithms and the real world in which they operate. In order to
make such algorithms responsive, adaptive, and beneficial to users, a number of types of reasoning must take place. These
include user modeling, activity prediction and recognition, decision making, and spatial-temporal reasoning.

4.1. Modeling

One feature that separates general computing algorithms from those that are responsive to the user is the ability tomodel
user behavior. If such a model can be built, it can be used to customize the behavior of the AmI software toward the user.
If the model results in an accurate enough baseline, the baseline can provide a basis for detecting anomalies and changes
in resident patterns. If the model has the ability to refine itself, the environment can then potentially adapt itself to these
changing patterns. In this overview we characterize AmI user modeling approaches based on three characteristics: (a) The
data that is used to build the model, (b) The type of model that is built, and (c) The nature of the model-building algorithm
(supervised, unsupervised).
Themost common data source formodel building is low-level sensor information. This data is easy to collect and process.

However, one challenge in using such low-level data is the voluminous nature of the data collection. In theMavHome smart
home project [43], for example, collected motion and lighting information alone results in an average of 10,310 events
each day. In this project, a data mining pre-processor identifies common sequential patterns in this data, then uses the
patterns to build a hierarchical model of resident behavior. Loke [44] also relies upon this sensor data to determine the
resident action and device state, then pulls information from similar situations to provide a context-aware environment.
Like theMavHome project, the iDorm research conducted by Doctor, et al. [45] focuses on automating a living environment.
However, instead of aMarkovmodel, theymodel resident behavior by learning fuzzy rules that map sensor state to actuator
readings representing resident actions.
The amount of data created by sensors can create a computational challenge for modeling algorithms. However, the

challenge is even greater for researchers who incorporate audio and visual data into the resident model. Luhr [46] uses
video data to find intertransaction (sequential) association rules in resident actions. These rules then form the basis for
identifying emerging and abnormal behaviors in an Intelligent Environment. Brdiczka, et al. [47] rely on speech detection
to automatically model interacting groups of individuals. Moncrieff [48] also employs audio data for generating resident
models. However, such data is combinedwith sensor data and recorded time offsets, then used to sense dangerous situations
by maintaining an environment anxiety level.
Identifying social interactions has been a common theme in AmI research. In addition to the work of Brdiczka, Laibowitz,

et al. [49] have also used wireless sensor networks to analyze social dynamics in large meetings. They have been able to
detect key interaction characteristics such as interest and affiliation from sensor data in groups of over 100 people.

4.2. Activity prediction and recognition

A second contribution that reasoning algorithms offer is the ability to predict and recognize activities that occur in
AmI environments. Much of this work has occurred in smart environments research, where the AmI application is focused
on a single environment which is outfitted with sensors and designed to improve the experience of the resident in the
environment [50]. Examples of such recognition tasks are listed in Table 4. Notice that each of these activity recognition
tasks are fairly basic services expected from the AmI systems listed in each case, still achieving recognition of those activities
to a highly satisfactorily level is a formidable challenge in each case. We will come back to these cases in future sections.
The Neural Network House [51], the Intelligent Home [52], the House_n [53] and the MavHome [54,55] projects

adaptively control home environments by anticipating the location, routes and activities of the residents (i.e., a person
moving within an AmI space). Prediction algorithms have been developed for both the single [56] and the multiple [57,58]
resident cases. Predicting resident locations, and even resident actions, allows the AmI system to anticipate the resident’s
needs and assist with (or possibly automate) performing the action [59].
Activity recognition is not an untapped area of research. Because the need for activity recognition technology is great,

researchers have explored a number of approaches to this problem. The approaches differ according to the type of sensor
data that is used for classification and the model that is designed to learn activity definitions.
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Table 4
Examples of task recognition problems in different environments.

Environment Activity to be recognized

Smart home Lifestyle patterns (e.g., adequate food intake and sleeping)
Hospital Medicine intake (e.g., ensure the right medicine is taken in the right quantity)
Smart office Use of resources (e.g., documents and meeting rooms)
Smart car Driving behaviour (e.g., to increase safety if driver is falling asleep)
Smart classroom Lecturer–student interaction (e.g., focus camera on a part of the whiteboard or on lecturer)
Street under surveillance Monitoring behaviour (e.g., focus on number plate of speeding car)

4.2.1. Sensor data
Researchers have found that different types of sensor information are effective for classifying different types of activities.

When trying to recognize actions that involve repetitive body motions (e.g., walking, running, sitting, standing, climbing
stairs), data collected from accelerometers positioned on the body has been used [60]. In contrast, other activities are not
as easily distinguishable by body position. In these cases, researchers such as Munguia-Tapia et al. [61] and Philipose et al.
[68] observe the smart home residents interaction with objects of interest such as doors, windows, refrigerators, keys, and
medicine containers. Munguia-Tapia et al. installed state-change sensors on key items to collect object interaction data,
while Philipose et al. put RFID tags on items and asked participants to wear gloves with RFID tag readers that recorded
when the individual was close to a key item. Other researchers, including Cook and Schmitter-Edgecombe [62], rely upon
motion sensors as well as item sensors to recognize ADL activities that are being performed.
In addition, some researchers such as Brdiczka et al. [63] video tape smart home residents and process the video to

recognize activities. While individuals have traditionally been resistant to at-home video monitoring [64], the acceptance
of this technology in the home is increasing. On the other hand, processing the video is very computationally expensive and
relies upon first tracking the resident before the correct video data can be captured and analyzed [65]. Because the many
individuals are reluctant to allow video data or to wear sensors, researchers also consider technology that makes use only
of passive sensors that could be installed in a smart environment.

4.2.2. Activity models
The number of machine learningmodels that have been used for activity recognition varies almost as greatly as the types

of sensor data that have been tested. Nave Bayes classifiers have been usewith promising results for activity recognition [63,
45,66,61]. Nave Bayes classifiers identify the activity that correspondswith the greatest probability to the set of sensor values
that were observed. These classifiers assume that the features are conditionally independent. However, when large amounts
of sample data are provided the classifiers yield good accuracy despite this assumption. Other researchers, includingMaurer
et al. [60] have employed decision trees to learn logical descriptions of the activities. This approach offers the advantage of
generating rules that are understandable by the user, but it is often brittle when high precision numeric data is collected. An
alternative approach that has been explored by other researchers is to encode the probabilistic sequence of sensor events
using Markov models, dynamic Bayes networks, and conditional random fields [62,67–69]. In our experiments we initially
tested a nave Bayes classifier for activity recognition because of the model simplicity and because a large amount of sample
data is available for these experiments.

4.3. Decision making

Over the last few years, supporting technologies for Ambient Intelligence have emerged, matured, and flourished.
Building a fully automated AmI application on top of these foundations is still a bit of a rarity. Automated decision making
and control techniques are available for this task. Simpson, et al. [70] discuss how AI planning systems could be employed to
not only remind individuals of their typical next daily activity, but also to complete a task if needed. Augusto andNugent [71]
describe the use of temporal reasoningwith a rule-based system to identify hazardous situations and return an environment
to a safe state while contacting the resident.
Few fully-implemented applications decision making technologies have been implemented. One of the first is Mozer’s

Adaptive Home [51], which uses a neural network and a reinforcement learner to determine ideal settings for lights and fans
in the home. This is implemented in a home setting and has been evaluated based on an individual living in the Adaptive
Home. Youngblood, et al. [72] also use a reinforcement learner to automate physical environments with volunteer residents,
the MavPad apartment and the MavLab workplace.
The iDorm project of Hagras, et al. [73] is another of these notable projects that has realized a fully-implemented

automated living environment. In this case, the setting is a campus dorm environment. The environment is automated using
fuzzy rules learned through observation of resident behavior. These rules can be added, modified, and deleted as necessary,
which allows the environment to adapt to changing behavior. However, unlike the reinforcement learner approaches,
automation is based on imitating resident behavior and therefore is more difficult to employ for alternative goals such
as energy efficiency.
Amigoni, et al. [74] employs aHierarchical TaskNetwork (HTN) planner to generate sequences of actions and contingency

plans that will achieve the goal of the AmI algorithm. For example, the AmI system may respond to a sensed health need
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Fig. 4. Detecting hazards in the kitchen.

by calling a medical specialist and sending health vitals using any available device (cell phone, email, or fax). If there is no
response from the specialist, the AmI system would phone the nearest hospital and request ambulance assistance.

4.4. Spatial and temporal reasoning

Very little can be donewithin an AmI systemwithout an explicit or implicit reference towhere andwhen themeaningful
events occurred. For a system to make sensible decisions it has to be aware of where the users are and have been during
some period of time. These insights, together with other information, will provide important clues on the type of activities
the user is engaged in and the most adequate response.
Spatial and temporal reasoning are two well established areas of AI [75]. They have been the subject of intense research

for a couple of decades and there are well known formalisms and algorithms to deal with spatial, temporal, and spatio-
temporal reasoning. Gottfried et al. [76] has shown how the traditional frameworks for spatial reasoning and for temporal
reasoning can be used to have a better understanding of the activities in an AmI application. In an environment such as an
airport or a home, for example, such reasoning can be used to analyze trajectories of people within a room and classify them
as ‘‘having a clear goal’’ or ‘‘being erratic’’ [77].
Both dimensions, space and time, are useful to understand key elements of a situation under development. For example,

lets assumewe are monitoring activities in order to prevent hazardous situations at home.Whenever someone turns on the
cooker and leaves it unattended for more than 10 units of time, then the system has to take action (turning off the cooker
automatically or warning the user,U). Consider a scenario inwhich the AmI environment sensed the cooker has been turned
on, after which a sequence of sensor signals (e.g., movement sensors combined with RFID sensors) was captured detecting
the location of U moving from the kitchen to a reception area and then into the bedroom. Finally, the bed occupancy sensor
(a pressure pad) detects the person is in bed. By the point at which the person is in bed the condition that more than 10
units have left the cooker unattended is satisfied. All the conditions will be fulfilled for the warning rule to be triggered. This
situation is pictured in Fig. 4.
Lets consider another situation in which the doorbell has been rung and the resident does not respond within 5 min.

However, the AmI system detects that the person is at home and knows the resident is not hearing impaired. This can be
identified as a potential emergency and may trigger a procedure where caregivers are notified and will try to contact the
individual visually or by telephone.
Situations of arbitrary complexity can be detected by using language which allows the specifications of situations

involving repetitions, sequences, frequencies and durations of activities related to the activities of entering to rooms or
moving from one room to the next one [78]. In [71] such a language is used to integrate both concepts in the same formalism
and to obtain spatio-temporal reasoning combined with active databases in the identification of interesting situations like
those described above.
An alternative formalism for reasoning about time is based on Allen’s temporal logic [80]. Allen suggested that it is more

common to describe scenarios by time intervals than by time points, and defined thirteen relations that comprise a temporal
logic: before, after, meets, meet-by, overlaps, overlapped-by, starts, started-by, finishes, finished-by, during, contains, and
equals. Jakkula, et al. [79] found that these temporal relations play a beneficial role in prediction and anomaly detection for
ambient environments. Consider, as an example, a medicine compliance tool that makes sure an elderly person consistently
takes pills right after eating food. The two activities are related by the ‘‘after’’ relationship.When the relationship is violated,
the system can respond with a reminder for the individual. The nine intervals that were used for prediction and anomaly
detection in Jakkula’s TempAl algorithm are shown in Fig. 5.

5. Acting

AmI systems tie reasoning to the real world through sensing and acting. Intelligent and assistive devices provide a
mechanism bywhich AmI systems can executive actions and affect the system users. Another mechanism is through robots.
Relationships between human and machines have been explored extensively in science fiction stories. However as Turkle
points out [81], watching children and the elderly now commonly interact tenderly with robot pets brings ‘‘science fiction
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Fig. 5. Boundary conditions for nine of Allen’s temporal intervals. These nine have been used for event prediction and anomaly detection [79]. Here X and
Y represent the duration of activities.

into everyday life and technophilosophy down to earth’’. Research in robotics has progressed to the point where users need
no longer wrestle with how to give them to move to a specified location, but instead can formulate requests such as ‘‘bring
me the medicine on the counter’’. Indeed, such robot assistants are already found in nursing homes [82] and provide an
outlet for nurturing contact for the elderly.
Robots are able to provide an even wider range of assistive tasks to support AmI. They canmonitor the vital signs of their

masters and provide conversational stimulation. Robots are now capable of exhibiting much more human-like emotions
and expressions than in the past [83] and can even influence human decision. One such case is the museum traffic control
project [84], where a robot generated cues that caused visitors to travel to portions of the museum that were normally
avoided. Robots provideAmI systemswith self-mobility andhuman-likeness,which facilitates human interaction and allows
the influence of AmI to more greatly pervade human culture.

6. Human–computer interaction

A characteristic that the IST Advisory Group highlighted as necessary to further societal acceptance of AmI [1] is that AmI
should be made easy to live with. This is further detailed as a need to define human-centric computer interfaces that are
context aware and natural. Here we highlight some recent advances in these areas.

6.1. Context awareness

Models of 21st century ubiquitous computing scenarios [11] depend not just on the development of capability-rich mo-
bile devices (such as web-phones or wearable computers), but also on the development of automated machine-to-machine
computing technologies, whereby devices interactwith their peers and the networking infrastructure, oftenwithout explicit
operator control. To emphasize the fact that devices must be imbued with an inherent consciousness about their current
location and surrounding environment, this computing paradigm is also called sentient [85] or context-aware computing.
‘‘Context (e.g., location and activity) awareness’’ is a key to building Ambient Intelligence and associated applications. If

devices can exploit emerging technologies to infer the current activity state of the user (e.g., whether the user is walking
or driving, whether he/she is at office, at home or in a public environment) and the characteristics of their environment
(e.g., the nearest Spanish-speaking ATM), they can then intelligently manage both the information content and the means
of information distribution. For example, the embeddedpressure sensors in theAwareHome [86] capture residents’ footfalls,
and the home uses these data for position tracking and pedestrian recognition.
Research in context-aware computing includes mechanisms of determine a user’s context even with imperfect

information [87] and designing context services as found in IBM’s Context Sphere [88]. Providing this type of context-
aware infrastructure makes it possible to design office spaces that smoothly move information between displays, walls, and
tables [89] and learn to customize lighting and temperature based on learned resident preferences [90]. Cheverst, et al. [91]
have built upon these capabilities to design a location-aware electronic tourist guide.
Context-awareness is a key feature of AmI systems and one that is dependent on the characteristics of the environment.

Some elements in these environments are more more recurrent than others across different applications. For example the
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location as well as the time and duration of states, events and activities are usually crucial to understand the key latest
developments in a specific environment. But then identifying the actors is usually also very relevant and as we discussed in
an early section this may not be a trivial task, even if combining more than one sensor (e.g., movement sensor and RFID).
An option is to add to the identification infrastructure, microphone and/or image processing, for example by analyzing the
images taken with a video camera andmatching it to other images of the expected occupants of a place. A context canmean
many different thingswith subtle qualifications. Let us consider for example thatwewant the system to take specific actions
(e.g., playing calming music) when ‘‘the place is noisy’’ or when ‘‘the occupant is sad’’. These contexts are hard to specify
(when a noisy environment is noisy enough?) and also difficult to detect with accuracy (how to know when a person is
sad?). Face recognition, facial gestures recognition, ‘‘body language’’ recognition can all contribute and be meaningful but
are still far from being robust.

6.2. Natural interfaces

An important aspect of AmI has to do with interaction. On one side there is a motivation to reduce the human–computer
interaction (HCI) [92]. The system is supposed to use its intelligence to infer situations and user needs from the recorded
activities, much as a butler observes activities unfold with the expectation of helping when (and only if) needed. This is
the idea of an ‘‘intelligent social user interface’’ [93]. On the other hand, a diversity of users may need or voluntarily seek
direct interaction with the system to indicate preferences, needs, etc. HCI has been an important area of study since the
inception of computers. Today, with so many gadgets incorporating computing power of some sort, HCI continues to thrive
as an important area that prevents AmI technologies from becoming ‘‘ubiquitous clutter’’ [94].
Although designers of Ambient Intelligence systems are encouraged by the progress that has beenmade in the field over

the last few years, much of this progress will go unused if the technologies are difficult or unnatural for residents. Abowd
and Mynatt [95] point out that explicit input must now be replaced with more human-life communication capabilities and
with implicit actions. The maturing of technologies including motion tracking, gesture recognition [96], facial expression
recognition [97] and emotion recognition [98], speech processing [99], and even whistle processing [100] facilitate natural
interactions with intelligent environments. In some cases, diverse interfacemechanisms are combined to formmulti-modal
interfaces [101–103].
Several large projects that focus on processing disparate yet complementary types of multimedia information in order

to pursue goals such as understand human–human communication, perform body tracking, and recognize gestures. Large
multimedia corpora have been collected by VACE [104], ISL [105], ICSI [106], NIST [107], and MM4 [108]. An example
Ambient Intelligence project that targets the goals of being unobtrusive, Ubiquitous, and adaptive is the DARPA DARPA
Cognitive Agent that Learns and Organizes (CALO) project [109]. CALO’s goal is to be an AI-based personal assistant. CALO
acquires knowledge on its own by learning associations among sources of information the user accesses (email, human
contact, web pages, appointments) and can use these discoveries to track topics, schedule tasks, and summarize information
for the user. The European project COGAIN [110] uses eye-based environmental control to support home automation.
User–home interaction is achieved as direct interaction. Integration between the eye tracking interfaces, or other interaction
modalities, and thewide variety of equipment thatmay be present in an intelligent house (appliances and devices) is granted
by a centralmodule for abstraction and harmonization calledHouseManager. It is based on the implementation of a Domotic
House Gateway that adopts technologies derived from the semantic web to abstract devices and to enable interoperability
of different automation subsystems.
Work on natural interfaces for Ambient Intelligence has taken AmI applications out of single rooms and buildings to

even richer settings. UCLA’s HyperMedia Studio project [111] adapts light and sound on a performance stage automatically
in response to performers’ positions and movements. The driver’s intent project at MIT [112] recognizes driver’s upcoming
actions such as passing, turning, stopping, car following, and lane changing by monitoring hand and leg motions. The use of
facial expression recognition enhances the automobile by recognizing when the driver is sleepy, or change the classroom
interaction when detecting that the students are bored or confused. New Songdo City, a ‘‘ubiquitous city’’ being built in
South Korea, is implementing many AmI ideas on a city-wide scale [113]. Such a large-scale sharing of data facilitates easy
access to city resources for residents.
Images also help assess a situation where safety can be compromised. The Wireless Sensor Networks Lab at Stanford

University uses a network of video cameras to infer a sequence of body postures (Fig. 6) and hence detect possible hazards
like a fall [114].
Images can be also used as in visual arts. Nowmore than ever, art can be ‘‘experienced’’. One example of the use of AmI to

transform thewaypeople relate andunderstand their environment is being implemented through theUNSEENproject [115].
A nature interpretation center set in eastern Québec where real-time images of native plants are examined and used by the
system to present the plants and their current state of development through challenging and original perspectives.

7. Privacy and security challenges

Ambient Intelligence offers great benefits to users by customizing their environments and unobtrusively meeting their
needs. As Brey points out [116], AmI potentially gives more control to humans by making their environments more
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Fig. 6. (a) Sample images from two cameras showing different postures. (b) Elliptical model representations with average motion vectors for the moving
body parts. Images provided by the Stanford Wireless Sensor Networks Lab.

responsive to intended actions, by supplying humanswith customized information, andby reducing the cognitive or physical
effort that is required to perform a task. At the same time, AmI can take away control when the environment performs the
wrong action, when it forces humans to perform extra or corrective actions, when it shares information with third parties,
and when it gives monitoring and data collection access to third parties.
Wright [117] argues that delivering personalized services opens up the possibility for the corresponding personal

information to be stored and shared. As Bohn, et al. [118] point out, the sayings that ‘‘the walls have ears’’ and ‘‘if these
walls could talk’’ have become a reality which is disturbing to many. In fact, in a 2003 survey [119], respondees indicated
that privacy protection wasmore important to them than any potential benefits provided by technologies found in Ambient
Intelligence applications. In addition,what is considered obtrusive andprivacy invading differs by age group and culture [64].
For example, one reason that U-City in Korea is developing so quickly is that there is a quicker acceptance of loss of privacy
by residents there [113].
The use of image processing through video cameras as a potential kind of sensor is a controversial area. Naturally the

amount of information that can be collected in that way is very valuable in terms of assessing a situation. On the other hand,
it raises clear issues of privacy and the ‘‘big brother’’ syndrome. Still there are applications where users think the benefits
out weight the drawbacks and are decided to accept it as part of the system that is build to benefit them. One such example
is the image processing system that recognizes hand based gestures that can be used to give orders to a system and control
several different appliances in an easy way without individual remote control units [120].
Not all image processing techniques compromise privacy. For example, in [121] a system is reported whichmonitors the

top of a cooking unit scanning with a camera capable to process images from a thermal perspective. If the cooker has been
left unattended for an important length of time and the image processing unit can classify the warmth emanating from the
cooker into a dangerous level it will trigger an alarm. It is important the way the image is used and the level of acceptance
the user has for the successful use of this technology. On the other hand, non-camera sensors do not necessarily perform a
better job of ensuring privacy. As Bohn, et al. [118] argue, individualmodels, even seemingly innocuous ones such aswalking
patterns and eating habits, can be combined to provide very detailed information on a person’s identify and lifestyle.
In addition to intentional privacy violations, Ambient Intelligence technologies can raise other security issues [122]. At the

sensor level, sensor reliability, handling errors, and installation errors can create security risks. To ensure security in sensor
networks, the designer must consider these factors together with sensor communication channel reliability and security,
and sensor data security. While encrypting collected data can address some of the data privacy issues, the challenge is to
implement the required security using minimal resources.
There is a great deal of research being investigated to mitigate the privacy and security risks of Ambient Intelligence.

Some of these projects focus on keeping sensed data such as location information private [123], while other projects are
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designing devices that can act as secure keys for providing and receiving personal information [124]. In lieu of transporting
specialized devices, biometric information can be used to access sensors and collected information [125].
As Joinson, et al. [126] reveal from their survey of potential AmI users, privacy is a preference that should be customizable

by users. There are situational aspects of AmI environments that trigger different privacy concerns in different people. As
a result, privacy should be a decision that is influenced by context. This type of approach is advocated by Preuveneers,
et al. [127], who are designing such context-driven privacy measures. Their solution is to obtain the minimal amount of
personal information that is needed to achieve the user’s goal. Detailed personal information can be reduced by inferring
needed information from previously-processed data, and the impact of obtaining personal information on the user’s goal
can be analyzed to determine whether the information should be obtained.

8. AmI applications

There are many settings in which Ambient Intelligence can greatly impact our lives. Some of these applications have
already been pursued by AmI researchers. In this section, we highlight current AmI applications. By summarizing existing
implementations, we also draw attention to the technologies that are necessary to create the implementations and the
challenges that AmI researchers still face. It is important to note that not all of the applications described in this section
embody the six features of AmI systems that we listed in Table 1. However, they all reflect a subset of the AmI features.
Perhaps even more importantly, the ideas presented in the applications themselves may spark the creation of future AmI
solutions that do reflect all of our defined AmI characteristics.

8.1. Smart homes

An example of an environment enriched with Ambient Intelligence is a ‘‘smart home’’. Several artifacts and items in
a house can be enriched with sensors to gather information about their use and in some cases even to act independently
without human intervention. Some examples of such devices are electrodomestics (e.g., cooker and fridge), household items
(e.g., taps, bed and sofa) and temperature handling devices (e.g., air conditioning and radiators). Expected benefits of this
technology can be: (a) increasing safety (e.g., bymonitoring lifestyle patterns or the latest activities and providing assistance
when apossibly harmful situation is developing), (b) comfort (e.g., by adjusting temperature automatically), and (c) economy
(e.g., by controlling the use of lights). This is a popular use of many technologies such as active badges [128] and indoor
positioning systems [129].
An example of a project that addressed intelligent use of energy for the well being of a house occupants is the Europen

project ALADIN—Ambient Lighting Assistance for an Ageing Population, [130]. It aimed to extend our knowledge about the
impact of lighting on the wellbeing and comfort of older people and translate this into a cost-effective open solution. The
adaptive lighting system consists of several components including an intelligent open-loop control, which can adapt various
light parameters in response to the psycho-physiological data it receives, as well as advice and biofeedback applications.
Adaptive lighting can contribute to healthy sleep (i.e., at appropriate durations, frequencies and times of the day), which are
essential to preserve and enhance people’s lifestyle.
In addition to investigating intelligent devices in a home, an example of Ambient Intelligence is allowing the home itself

to possess intelligence and make decisions regarding its state and interactions with its residents. There are several physical
smart homes that have been designedwith this theme inmind. TheMavHomeproject treats an environment as an intelligent
agent, which perceives the environment using sensors and acts on the environment using powerline controllers [131].
At the core of its approach, MavHome observes resident activities as noted by the sensors. These activities are mined to

identify repetitive patterns and compression-based predictors are employed to identify likely future activities. The results
from these two algorithms are employed in building a hierarchical Markov model of the resident and the environment,
based on which a policy can be learned for automating environmental control. Initially the approach was evaluated for its
ability to predict and automate daily interactions with the environment that the resident would typically performmanually
(e.g., turn on the overhead light when entering the apartment). From one month of data collected on a volunteer resident,
MavHome was able to reduce the needed daily interactions by 76%, on average [132].
The Gator Tech Smart House is built from the ground up as an assistive environment to support independent living

for older people and individuals with disabilities. The home is equipped with a large number of sensors and actuators,
and generates a large volume of data streams [133]. Data streams are filtered through an OSGi service bundle, providing
opportunity for data folding, modeling, and encryption [134].
The Gator Tech project currently uses a self-sensing service to enable remote monitoring and intervention caregivers of

elderly persons living in the house. The application is a classical example that demonstrates the tension found between two
noble goals: preserving privacy and providing useful smart environment benefits.
The University of Essex’s intelligent dormitory (iDorm) [45] is a real AmI test-bed comprised of a large number of

embedded sensors, actuators, processors and networks in the form of a two bed roomed apartment. It is a full-size domestic
apartment containing the usual rooms for activities such as sleep, work, eating, washing and entertaining.
A common interface to the iDorm and its devices is implemented through Universal Plug and Play (UPnP), and any

networked computer running a standard Java process can access and control the iDorm directly [73]. Fuzzy rules are learned
from observing resident activities [135] and are used to control select devices in the dorm room.
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The Aware Home [95] project has been developed by the Georgia Institute of Technology. This home consists of two
identical but independent living spaces, each one with: two bedrooms, two bathrooms, one office, kitchen, dining room,
living room and laundry room. There is also a shared basement with a home entertainment area and control room for
centralized computing services. The house has been built using standard construction techniques. Some of the technology
deployed in the house are humanposition tracking through ultrasonic sensors, RF technology and video, recognition through
floor sensors and vision techniques.
One of the applications of the tracking and sensing technologies in the Aware Home is a system for finding Frequently

Lost Objects such as keys, wallets, glasses, and remote controls. The system uses RF tags attached to each object the user
would like to track and a long-range indoor positioning system to track these objects. The user will interact with the system
via LCD touch panels. The system will guide the user to the lost object using spatialized audio cues (e.g., ‘‘your keys are in
the bedroom’’). Other tracking technologies in the house can assist with the task of locating objects.
The DOMUS lab is based at the Computer Science Department of the University of Sherbrooke (Quebec, Canada) and it

has been in operation since 2003. It is run by a multidisciplinary team and one of the main aims of the lab is to achieve an
implementation of smart homes based on pervasive assistants which can provide mobile orthosis [136].
The three main lines of investigation within DOMUS are [137]: (a) Pervasive Cognitive Assistant: provide assistance

adapted to specific cognitive deficits (memory, initiation, planning, attention,) (b) Cognitive Modeling: describe the specific
behaviors of the cognitive impaired people using descriptive representations, (c) Mobile Orthose: Help people to manage
their ADLs outside and allow caregivers to monitor them and collect ecological data on symptoms and medication side-
effects.
Recognizing the emerging popularity of smart homes and their benefits, several industry-led projects are also developing

smart homes. Siemens [138] has invested in smart homes that provide services to enhance entertainment, security and
economy. Energy saving, lighting control, networked home entertainment, and safety devices for themonitoring of children
are some of the features that Siemens advertises. Touch screens can be used to operate the central control unit and units
can be remotely activated and controlled, for example by using themobile phone. Areas of application for Siemen’s research
vary from adaptive offices and Smart Homes to intelligent cars [139].
Philips [140] has already developed smart homes for the market that highlight innovative technology on interactive

displays. For several years, the company has been overseeing the HomeLab at Eindhoven (NL) [141]. Research conducted at
the HomeLab has been focused on interaction and how the houses of today can increase their support to daily living from
three perspectives: (a) Need to belong and share experiences, (b) Need for thrills, excitement and relaxation, and (c) Need
to balance and organize our lives [142]. One important aspect of Philips research is the level of social awareness that has to
be embedded in the AmI system to be adequate and acceptable to users, in particular to elderly people [143]. The company
has been very active in the market [144].
Microsoft also has a laboratory devoted to the research on the interaction of humanswith systems and the use of artificial

intelligence to support daily life activities. Some of the topics that have been investigated are related to the availability of
users and the suitability of interrupting them [145].
These by no means are the only Smart Home projects being developed throughout the world and there are significant

developments inmany regions of theworld. There is a long list of projects being currently developed inmanyother countries,
especially Japan and Korea. We address the readers to other sources of literature (e.g., [146–149]) for more details (Fig. 7).

8.2. Health monitoring and assistance

There are many potential uses for an Intelligent Environment. Indeed, we anticipate that features of Intelligent
Environments would pervade our entire lives. They will automate aspects of our life, increase the productivity at work,
customize our shopping experiences, and accomplishing all of these tasks will also improve the use of resources such as
water and electricity. In this section we focus on one class of applications for Ambient Intelligence: health monitoring and
assistance.
One reason for singling out this topic is the amount of research activity found here, aswell as the emergence of companies

with initiatives to bring intelligent elder care technologies into the home [150–152]. Another reason is the tremendous need
for research on Ambient Intelligence to support the quality of life for individuals with disabilities and to promote aging in
place. The need for technology in this area is obvious from looking at our current and project future demographics. By
2040, 23% of the population will be 65+ [153] and over 11 million people will suffer from dementia related to Alzheimer’s
disease [154], with the long-term projected total losses to the US economy expected to be nearly 2 trillion dollars [155].
Given the costs of US nursing home care (approximately $ 40,000 a year with an additional $ 197 billion of free care being

offered by family members) [156] and the importance that Americans place on wanting to remain in their current residence
as long as possible [157], use of technology to enable individuals with cognitive or physical limitations to remain in their
homes longer may be more cost effective and promote a better quality of life. Placement in nursing homes may sometimes
be premature because of family concerns related to safety issues [158] and AARP reports [159] strongly encourage increased
funding for homemodifications that keep older adults independent in their own homes. The need for this technology is not
limited to the United States: The Commission of the European Communities [160] indicates that early patient discharge
from hospitals due to introduction of mobile health monitoring would save 1.5 billion Euros each year in Germany alone.
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Fig. 7. Example smart homes: theMavHome (upper left) iDorm (upper right), Gator Tech Smart House (middle), Aware Home (lower left), and Domus Lab
(lower right).

With thematuring of supporting technologies, at-home automated assistance can allow peoplewithmental and physical
challenges to lead independent lives in their own homes [161–163] and reduce the physical and emotional toll that is taken
on caregivers [164]. Some of these technologies focus on assurance, or making sure our friends and loved ones are safe and
healthy at home. AmI techniques for recognizing activities [165–167], monitoring diet and exercise [168,169], and detecting
changes or anomalies [170] support this goal.
The next category of health technologies targets the goal of providing support to individuals with cognitive or physical

impairments. AmI techniques can be used to provide reminders of normal tasks [171] or the sequence of steps that comprise
these tasks [172]. Use of devices such as the activity compass [173] can actually remind individuals of the route that will get
them back to a safe location if they have wandered off. For those with physical limitations, automation of their home and
work environment [174] can allow them to live independent lives at home.
AmI technologies can also be used to assess the cognitive limitations of individuals. Carter and Rosen [175] demonstrate

such an assessment based on the ability of individuals to efficiently complete kitchen tasks. Jimison, et al. [176] also provide
such an assessment. In their case, individuals are monitored while playing computer games, and assessment is based on
factors such as game difficulty, player performance, and time to complete the game.
Finally, AmI can be used to enhance the quality of life for individuals who would otherwise lead solitary lives at home.

Intel has created the ‘‘Proactive Health Group’’ which performs research and development of technologies that can increase
the quality of life of older adults [177]. One important aspect of older adults related to wellbeing is their social network.
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Intel has developed systems which using wireless sensors examines this particular aspect of the daily life of a person. Intel’s
technologies provide information to caregivers summarizing the social interactions the individual has had at home and
offers advice on how to improve that aspect of a person’s life.

8.3. Hospitals

While bringing health care to homes is an exciting development, hospitals are still needed for a variety of reasons.
The concentration of costly equipment and specialized professionals is valuable in many situations. Applications of AmI in
hospitals can vary from enhancing safety for patients and professionals to following the evolution of patients after surgical
intervention. Many of the AmI technologies found in smart homes can be adapted for use in specific rooms or areas of a
hospital [178].
At a different level, AmI can be used to improve the experience of hospital visitors. For example, the Lutheran General

Hospital in Chicago has built the Yacktman Children’s CT Pavilion where patients are entertained and helped by Ambient
Intelligence during their examination sessions [179]. Patients can select a topic of preference for their visit and as they enter
to the hospital their identity is read from their RFID-encoded cards. The system is then aware of their presence at the unit,
and also of their preferences, being able to tailor the lighting and wall/ceiling projections when they are in a particular
room. The images projected can be used to calm the anxiety of the patient but also to guide them. For example, if a child
is required to hold his breath during an examination a figure in the projection will do the same. The child’s fear may be
reduced by letting them understand the procedure they are about to undertake. Children waiting for a scan can use a small
scale toy scanner unit and scan toy animals, which are recognized by RFID sensors, and the toys will trigger the appropriate
images on a display.
Ambient Intelligence can also be used to link hospital care with smart home technology. As another example, the Ulster

Community Hospitals Trust of Northern Ireland [180] has set up the PathFinder project with the goal of caring for elderly
and vulnerable people in their homes. By eventually equipping 3000 homes in the community with sensors andmonitoring
their well-being, PathFinder can increase the level of autonomy, independence and safety for these individuals, particularly
if they have a medical condition which may be detrimental to their lifestyle.
Hospitals can increase the efficiency of their services by monitoring patients’ health and progress through analysis of

activities in their rooms. They can also increase safety by, for example, only allowing authorized personnel and patients
to have access to specific areas and devices. The latest issue of Consumer Reports [181] laments the status of assisted care
facilities in the US and the need in most for additional staffing. Ambient Intelligence capabilities can be used in this setting
to reduce the burden of staff nurses in assisted care facilities, and tomake them awaremore quickly of residents’ needs they
arise. In addition, tracking is used to find doctors or nurses in a hospital setting when they are urgently needed. This is the
most common use of many technologies such as active badges [182].

8.4. Transportation

Transport means are also valuable settings for AmI technologies. We spend a significant part of our life traveling in
different ways. Train stations, buses, and cars can be equipped with technology that can provide fundamental knowledge
about how the system is performing at each moment. Based on this knowledge, preventive actions can be applied and the
experience of people using that transport can be increased by using the systemmore effectively. Public transport can benefit
from AmI technology including GPS-based spatial location, vehicle identification and image processing to make transport
more fluent and hence more efficient and safe. As an example we can consider the I-VAITs project [183] aiming to assist
drivers by gathering important information through the way they use different elements of the car (pressure on breaks)
or their movements and image processing of the driver’s face expressions (as mood indicators). This can allow a system to
assist the driver more effectively when is help most needed, such as while executing tricky maneuvers.
Pentland, in partnership with Nissan Cambridge Basic Research, [184] has built a system that allows the car to ‘‘observe’’

the driver, continuously estimating the driver’s internal state and responding appropriately. An HMMmodel of the driver’s
hand and leg motions and associated actions (e.g., passing, turning, stopping, car following, lane change, or speeding up)
was built. This was used to classify real driver’s actions in relation to the artificial model. The system was able to accurately
identify what action the driver was beginning to execute. This detection can be done as soon as the action started with high
accuracy (97% within 0.5 s of the beginning an action, rising to over 99% accuracy within two seconds). This quick scenario
identification allow a real-time optimization of the car’s performance to suit a particular situation, and to warn the driver
about possible dangers.
Microsoft also employs AmI technologies for driver assistance by providing route planners. They also generate inference

about possible preferred routes and provide customized route suggestions for drivers [185,186].

8.5. Emergency services

Safety-related services like fire brigades can improve the reaction to a hazard by locating the site of an accident more
efficiently and also by preparing a route to reach the place in connection with street services. This can be realized using
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image processing and traffic monitoring as found in the e-Road project [187]. This service can also quickly locate a place
where a hazard is occurring or is likely to occur and prepare a better access to it for security personnel.
Similarly, the PRISMATICA project [188] uses cameras to monitor public transportation locations. By detecting situations

such as overcrowding, the presence of people or objects that are not moving, motion in a forbidden direction, and intrusion,
the environment and officials can respond quickly to ensure the safety of individuals using public transportation.

8.6. Education

Not only do students learn about technologies such as Ambient Intelligence in the classroom, but AmI can also help
improve the learning experience for these students. Education-related institutions can use technology to track students’
progression on their tasks and frequency of their attendance at key events. In the Georgia Tech Classroom2000 project [189],
Abowd provides human–computer interfaces through devices such as an interactive whiteboard that stores content in a
database. The smart classroom of Shi, et al. [190], also uses an interactive whiteboard, and allows lecturers to write notes
directly on the board with a digital pen. This classroom experience is further enhanced by video and microphones that
recognize a set of gestures, motions, and speech that can be used to retrieve information or focus attention on appropriate
displays and material.
The intelligent classroom at Northwestern University [191] employs many of these same devices, and also uses the

captured information to infer speaker intent. From the inferred intent the room can control light settings, play videos, and
display slides. In none of these cases is explicit programming of the Ambient Intelligence system necessary — natural actions
of the inhabitants elicit appropriate responses from the environment.
In their Reconfigurable Context Sensitive Middleware (RCSM) Project at Arizona State University [192], Yau provides

enhanced collaborative learning in smart classroom environments using PDAs to monitor the situation in terms of the
locations of PDAs, noise, light, andmobility activity. They use the current situation to trigger communication activity among
the students and the instructor for group discussion and automatic distribution of presentation materials. At San Francisco
State University [193] the smart classroom project focuses not only on supporting user interactions but also visualizing the
behaviors.
Targeting early childhood education, a Smart Table was designed as part of the Smart Kindergarten project at UCLA [194].

By automatically monitoring kids’ interaction with blocks on a table surface, the Smart Table enables teachers to observe
learning progress for children in the class. Children respond particularly well to such natural interfaces, as in the case of
the KidsRoom at MIT [195]. The room immerses children in a fantasy adventure in which the kids must work together to
explore the story. KidsRoom presents children with an interactive fantasy adventure. Only through teamwork actions such
as rowing a virtual boat and yelling a magic word will the story advance, and these activities are captured through cameras
and microphones placed around the room.

8.7. Workplaces

Facilitating interaction is particularly important in aworkplace environment, whereworkerswant to focus on the project
at hand without being tripped up by technology. The AIRE project [196], for example, has designed intelligent workspaces,
conference rooms, and kiosks that use a variety of mechanisms such as gaze-aware interfaces and multi-modal sketching
that the full meaning of a discussion between co-workers through the integration of captured speech and captured writing
on a whiteboard.
The Monica project [197] identifies gestures and activities in order to retrieve and project needed information in a

workplace environment. Similarly, the Interactive Room (iRoom) project at Stanford [198] enables easy retrieval and display
of useful information. Users can display URLs on a selected surface by simply dragging the URL onto the appropriate PDA
icon.
NIST Smart Space and Meeting Recognition projects are developing tools for data formats, transport, distributed pro-

cessing, and metadata which aid context-aware smart meeting rooms that sense ongoing human activities and respond to
them [199]. A cooperative effort from a network of Portuguese Universities [200] is developing a systemwhich is able to sup-
port Distributed DecisionMaking Groups through the use of an agent-based architecture. The system is able to exhibit intel-
ligent, and emotional-aware behavior, and supports argumentation, through interaction with individual persons or groups.
Production-centered places like factories are capable of self-organizing according to the production/demand ratio of

the goods produced. This demands careful correlation between the collection of data through sensors within the different
sections of the production line and the pool of demands via a diagnostic system which can advice the people in charge
of the system at a decision-making level. Production environments can be also enriched with AmI technology in order
to increase important aspects of the process, such as safety of the employees. The MOSES system [201] uses AmI to
infer where the personnel is located and what task are performing. The system relies upon RFID technology to recognize
positioning of the important elements of the environment. As workers are equipped with RFID readers, the system can
track the development of activities and therefore can advise the employee what tasks remain to be done. The iShopFloor
[202] provides an architecture for intelligent manufacturing process planning, scheduling, sensing, and control. The system
is based on three main agents: resource agents (manufacturing devices), product/part agents (parts), and service agents
(coordination of resource and parts agents).
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9. Final words

Humans have learned through the millennia how to benefit from their environments. Whether it was by obtaining food
or shelter we learned how different habitats can give us fundamental elements for our survival or comfort.
In search of security and predictability our modern society began to imbue their surroundings with technology in order

to more easily obtain essential elements for the functioning of society and in order to make key elements of survival and
comfort available to the masses. Until recently, this technology has been passive.
We have reached a pointwhere technology allows humanity tomake these technologiesmore active. The goal of ambient

intelligence is not only to provide such active and intelligent technologies, but to weave them seamlessly into the fabric of
everyday lives and settings and to tailor them to each individual’s specific needs.

9.1. Ongoing challenges

The area has produced a significant volume of work [203,204], still, systems which have to interact with humans face
important challenges. They differ in manyways from those that validate their usefulness only by accepting a well-delimited
input, computing a solution and displaying the result. AmI systems have to interact sensibly with the user in a variety of
sophisticated ways.
Crucially, AmI systems need to be aware of the users preferences, intentions, and needs. AmI systems should knowwhen

it is convenient to interrupt a user, andwhen tomake a suggestion but also when is more convenient to refrain frommaking
a suggestion. Sometimes acting may be essential to save a life or to prevent an accident. Too much intervention from the
system can be inadequate and even can make the system useless if the user get tired of it and decides not to pay attention
anymore. All that social tact that humans learn throughout life is not simple to achieve.
There aremany practical challenges that need to bemet in each of the contributing technological areaswe have surveyed.

For example, many AmI applications relying upon wireless sensors are at the mercy of the battery life for the sensors.
Researchers are starting to investigate batteryless approaches to sensing [68], but much work remains to be done to make
this approach robust and easy to use. In the area of user modeling and activity analysis, an ongoing challenge is to model
multiple residents in an environment.While this has been investigated for location tracking in a limited context [57], solving
the general problem of activity modeling, recognition, and prediction for multiple-resident settings is an open and very
difficult problem.
In this paper we discussed issues related to security and privacy for AmI systems. Some steps have been taken to better

understand privacy issues and to address these in AmI systems. The dependability of AmI systems has not been researched
to the same extent. An ongoing challenge for AmI researchers is to design self-testing and self-repairing AmI software that
can offer quantitative quality-of-service guarantees.
In addition, the IST Advisory Group has stated a goal that AmI facilitates human contact [1]. In contrast, current

AmI research has actually raised fears of isolationism [118]. A new direction that can be forged for AmI researchers
is to investigate mechanisms for supporting and enriching human socialization and interaction, and orient AmI toward
community and cultural enhancement.
Much study and experimentation is still needed to know what sensors, in which quantity and in which particular

distribution are needed to guarantee an acceptable level of service. As technology advances and provides new sensors the
line will be continually moving.

9.2. Conclusions

Ambient Intelligence is fast establishing as an area where a confluence of topics can converge to help society through
technology. We have summarized the flexibility of the idea, the current state of the art and current trends at research labs
and companies.
There are still many challenges ahead and improvements are needed at all levels: infrastructure, algorithms and

human–computer interaction for AmI systems to be widely accepted and more important of all, be useful to society. We
are conscious that the realization of the aims set up for AmI are not easily reachable but the field is gaining momentum.
Many important elements are advancing and we are optimistic that this will bring the synergy that is needed to materialize
the goal of Ambient Intelligence.
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