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Procedures

set-up the topology of a 1D bump-attractor network (2-4
connectivity) with 100 cells;

use a set of deterministic spike sources, ranging from 1 to
40 inputs, using a unitary step;

simulations have been run with a different combinations of
positive and negative weights, varying from 0.05 to 0.10 (step
equal to 0.01);

the computational run-time used is 300ms;

the simulation are computed with the neuromorphic
hardware (SpiNNaker 4-Chips board system - Petrut’s
seminar Feb 21st)
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The experimental settings

Investigating criticalities

the critical limits are special number of spike sources and the
weights combinations

the questions that are investigated are

1) if the network ignites and
2) if it does, do the spike trains have either a stable
persistence, a splitting shape or a divergent pattern?

=⇒ What are the patterns the network emerges?
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Towards critical limits ...

Example of limits

Set

Ex Weights = 0.08
In Weights = 0.08

Increase inputs

from 1 to 40

splitting patterns
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1st critical limit:
Minimal sources to ignite the bump attractor network

E-I Weights 0.05 0.06 0.07 0.08 0.09 0.1
0.05 4 4 4 4 5 /

0.06 2 2 2 2 2 2

0.07 2 2 2 2 2 2

0.08 2 2 2 2 2 2

0.09 2 2 2 2 2 2

0.1 1 1 1 1 1 1
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2nd critical limit:
Minimal sources to split the network dynamics in 2 streams

E-I Weights 0.05 0.06 0.07 0.08 0.09 0.1
0.05 13 13 12 / / /

0.06 15 13 13 12 11 11

0.07 D 15 14 13 13 12

0.08 D 17(+D) 15(+D) 13 13 13

0.09 D D D 15(+D) 15(+D) 15

0.1 D D D D D D
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3rd critical limit:
Minimal sources to split the network dynamics in 3/4
streams

E-I Weights 3S 4S
0.06-0.05 25 37

0.07-0.06 26 39

0.08-0.06 26 (+D) na

0.08-0.07 23 (+D) na

0.08-0.08 25 39

0.09-0.08 27 (+D) na

0.09-0.09 25 (+D) na

e.g., 0.09-0.08
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Propositons about the starting firing

Ignition can be achieved by a few inputs.

It is not enough to ignite the network with only one spike
source, except when the excitatory weight has high values, as
0.10.

Propositions about 2S splitting and diverging

The splitting behaviour with two streams is related to
similar weights or with greater negative weights than
positive ones (ihinbition matters).

To the contrary, the diverging behaviour is related to
greater positive weights than negative ones (excitation
matters).
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Propositons about 3S/4S splitting with divergence

The spike train patterns with multiple streams (3 and 4)
seem related with the size of the input window.
=⇒ The more inputs ignite the bump network, the more
(could be) the streams within the splitting behaviour

The weights that determine the streaming with divergence
are at the boundary between the weight condition underlying
the splitting and the divergent patterns.
=⇒ It’s an intermediate situation close to both the pattern
possibilities.
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Next directions

Different 1D topologies, e.g., line, ring, knots

From 1D to 2D, 3D or nD network

Neural model with adaptation

From static weights to learning

Bump Attractor with Hopfield network

Thermodynamics in dynamical systems

=⇒ Description vs Explanation
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Cheers

Thank you for the attention!

Reference for other details

Vergani and Huyck 2020

Critical Limits in a Bump Attractor Network of Spiking Neurons

Preprint on Researchgate

Useful links

Images of simulation results

Playlist video on Youtube
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https://www.researchgate.net/publication/338897700_Critical_Limits_in_a_Bump_Attractor_Network_of_Spiking_Neurons
http://www.albertovergani.eu/presentations.html
https://www.youtube.com/watch?v=Idio4bRLopc&list=PLUi8A1prJ51EMWQ-zvRFfoAtqea7xhhIm&index=2
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