Title: Value of Information and Geometry of Optimal Decision-making and Learning Speaker: Roman V. Belavkin Abstract: Mathematical theory of optimal decisions under uncertainty is based on the idea of maximization of the expected utility functional over a set of lotteries. This view appears natural for mathematicians, who consider these lotteries as probability measures on some common algebra of events, and linear structure of the space of measures leads to the celebrated in game theory result of von Neumann and Morgenstern about the existence of a linear or affine objective functional - the expected utility. Behavioural economists and psychologists, on the other hand, have demonstrated that people consistently violate the axioms of expected utility, and this includes professional risk-takers such as stockbrokers. In this talk I will show how these paradoxes can be explained if, apart from utility, one also considers the value of information that a decision-maker receives. This will be a good opportunity to introduce the value of information theory, which was developed by Rouslan Stratonovich in the 1960s as an amalgamation of theories of optimal decision-making and information. I will also outline a new geometric approach to the value of information, which will allow us to see that some properties of the optimal value function are independent of a specific definition of information. We shall extend this approach to a dynamical system, in which decisions with information constraints are made sequentially, and define a frontier corresponding to an optimally learning system. I will show how this theory gives new insights into parameter control of learning and optimization algorithms. There are slides available here: https://acdl2018.icas.xyz/wp-content/uploads/sites/5/2018/04/Roman-rvb-acdl18-lect2.pdf