It’s in the script

John Platts, School of Computing Science, Middlesex University

Abstract

This paper reviews the script-based reasoning approach to building knowledge-based systems. In particular, a detailed account is given of how the script-based reasoning approach may be applied to the generation of fiction. A specific problem in the matching of scripts, concerned with aligning the vocabulary of object labels inside and outside scripts, is examined, and a solution is proposed using the FrameNet lexical resource.

Introduction

The term “script” has several meanings in computer science, but in this paper it will be used in the Schankian sense; in other words, in the sense that emerged from the work of the Yale AI Lab in the 1970s. Ashcraft (2006, p.335) defines the term thus: “the large-scale semantic and episodic knowledge structures that guide our interpretation and comprehension of daily experience”. We are therefore talking about knowledge structures, possessed by a large majority of the members of a particular culture, which these people use to interpret what they directly experience or what is presented to them as reports or as fiction. Schank & Abelson (1977, p.41) described a script in these terms: “A script is a structure that describes appropriate sequences of events in a particular context. A script is made up of slots and requirements about what can fill those slots. The structure is an interconnected whole, and what is in one slot affects what can be in another. Scripts handle stylised everyday situations. They are not subject to much change, nor do they provide the apparatus for handling totally novel situations. Thus, a script is a predetermined, stereotyped sequence of actions that defines a well-known situation. Scripts allow for new references to objects within them just as if these objects had been previously mentioned; objects within a script may take “the” without explicit introduction because the script itself has already implicitly introduced them.” Schank (1982) develops this as a theory of human memory.

Scripts are clearly a specific form of a more general, and older, psychological concept, namely schemata. Bartlett (1932) described a schema as “an active organisation of past reactions or past experiences”. The distinctive feature of scripts is that they describe episodes, rather than objects. They are concerned with data that essentially has a temporal aspect.

It might be asked whether there is evidence that scripts actually are a feature of human memory. A certain amount of experimental work in cognitive psychology has been done on this question, leading researchers to conclude that they are. Notable work in this field is that of Bower, Black & Turner, 1979; Graesser, 1981; Smith & Graesser, 1981; Graesser & Nakamura, 1982; Maki, 1989; Long, Golding, Graesser & Clark 1990; Schutzwohl, 1998; Hannigan & Reinitz, 2001; Hannigan & Reinitz, 2003.

What are scripts for?

The psychological evidence would seem to indicate that people use scripts to comprehend events, and reports of events, and to summarise events, and to remember events. “Comprehending fiction” should presumably be added to this list, since it is not dissimilar to comprehending reports of events. If one wishes to build a computer system that can do similar tasks, it would seem appropriate to equip it with something analogous to the scripts that seem to be found in the human mind. This suggests that knowledge-based systems might usefully be built, using a script library and a script-manipulation mechanism as major components, to perform the following tasks, among others:

· To explain events in the world (i.e., in the real world or in a fictional world)

· To explain and summarise an account of events in the real world, or a fictional world.

· To identify events of a particular kind, given a collection of such accounts.

· To generate accounts of events in the world.

· To generate a summary of the important points of an episode, given an extended account of such an episode.

· To complete a summary account of an episode, given an account of such an episode in which important details are missing.

· To generate a fictional episode, or an interconnected set of fictional episodes comprising a story.

· To retell a fictional story, or to retell an account of events in the real world as fiction, in such a way that although certain important features (actors, locations, actions, among others) are changed, in some sense the composition is still recognisably the same story.

· To generate analogies for episodes in the real or a fictional world.

Knowledge-based systems have been built to perform some, though not all, of these tasks. Schank and Riesbeck (1981) describes some influential early work in this field. An early, quite successful, attempt at story comprehension using this approach was Lehnert et al, (1983). In a more recent piece of work, Mueller (2004) presents a system that (with a reasonable degree of success) identifies particular types of terrorist incident in a large corpus of terrorist-incident news stories, and extracts specified details from these news stories.

The script-based generation of stories

The author’s current work is concerned with the second group of tasks and, in particular, with the generation of fictional stories. A system, Twister, is under construction that is intended to do this. It is envisaged that this task involves the creation of a storybase, consisting of:

· A collection of objects, representing entities that will normally be found in the real world, or the sort of fictional entities that approximate to entities normally found in the real world. These objects will be instances of a large number of types (e.g. fishmongers, churches, dogs), belonging to a number of classifications (people, places, animals etc), and each classification will have its own appropriate attributes.

· Since stories are inescapably concerned with episodes, and are therefore governed by temporal reasoning, it is necessary for these objects to be time-sliced, i.e. to be represented as a series of different versions, each with its own timestamp. Each of these separate versions will have its own attribute values, which may or may not differ from those of other objects in the series.

· Stories sometimes describe states that are not true, even in terms of the fictional world that the story depicts. Important examples are states that a character imagines, or mistakenly believes, or plans to bring about. Since objects are involved in these states, it is necessary for objects to carry a “reality stamp” as well as a time stamp.

· A collection of “shots”, meaning descriptions of events that take place at particular moments as the story proceeds. Each of these will be centred on a particular action, being an instance of a particular action-type, and will have a collection of objects associated with it, filling a variety of roles. As in the case of objects, each shot will have a time stamp and a reality stamp. An example would be a representation, shot 76, containing the information that <person56> entered <location21> at <moment: 100263>, and that this was a real event. The shot might contain more information than this: for instance, there might be more objects associated with this particular action, and it might be modified by a manner adverb.

Given a suitable mechanism, capable of generating the two sets of entities mentioned above, the final phase of story generating should be to convert each of the shots into natural language, taking account of the identities of the objects and any attributes that are explicitly highlighted. In effect, each shot or group of shots is to be turned into one or more English sentences. The actions will typically become verbs, the object identities will become names, noun phrases or pronouns, and the attributes will typically become adjectival phrases.

An elaboration of this process would be to suppress certain of the shots on the grounds that they are identifiable as uninteresting – that is, the shots would exist in the storybase, but they would not subsequently be rendered into English. Another elaboration would be to deliver some of the text out of sequence (as determined by the time-stamps in the shots), in much the same way that storytellers enliven their stories by using flashbacks and flash-forwards. However, the rules that would govern these two processes – identifying portions of the shotbase as suitable to elide, and others as suitable to deliver out of sequence – have not yet been explored.

How can script-based reasoning generate a storybase of objects and shots?

The script-based reasoning in question is partly concerned with the selection of a script from a script library, and partly with the instantiation of the script: how the script modifies and adds to the entities in the storybase. The selection process is based on some combination of the state of the objects in the storybase, and the “intentions” of a high-level component of the story-generation mechanism that I shall call the “authorial function”. The effect of choosing and instantiating a script is threefold: a) it imposes attribute values on objects that already exist in the storybase; b) it generates a series of shots, with suitable time and reality stamps; c) it generates objects, with suitable attributes, and time and reality stamps, and adds them to the storybase.

Turner’s work (1993; 1994), in writing the MINSTREL system, has demonstrated that script instantiation is an effective way to bridge gaps in stories. In other words, if there is a state of affairs at one point in story time, and a different state of affairs at a later point in story time, then, given an effective script selection mechanism, and an effective script instantiation mechanism, and a large enough script library, it should always be possible to “explain” how things got from one state to the other by generating one or more episodes that take things from the first state to the second. Similarly, it is possible to bridge gaps in the reverse direction, to an earlier point in story time.

This suggests a rather straightforward story-generation mechanism. Given a storybase containing no (or few) objects, and no shots, the authorial function (which can be a very simple mechanism) simply chooses a script and instantiates it. This will generate some objects and some shots. The storybase can then be extended by choosing a script that fits the conditions at its start, and instantiating that – in effect, the way things are at the start of the story is explained by recounting earlier events. Or the storybase can be extended by choosing a script that fits conditions at its end, and instantiating that – in effect, what happens after the end of the story is related as subsequent events. Or both things can happen. This process of extension in one or both directions is repeated for an arbitrary number of cycles. The result will be a story which makes sense at any given point in its development, but which probably doesn’t appear to be going anywhere. Readers are likely to find it unsatisfactory for that reason.

To generate a story with a more satisfactory form, it is probably essential to impose a top-down pattern on the story. One process that will do this is for the authorial function to pick a “master script” that represents the outline of a satisfactory story, and instantiate that. It has been observed since classical times (see, for instance, Aristotle 347 BC) that an effective story should have certain components – a beginning with certain (rather general) characteristics, a climax with certain characteristics, a denouement with certain characteristics, and so forth. Other more complex patterns have been proposed, or rather observed in the literary analysis of successful stories. The master script should specify key objects, having (rather general) attributes that fit the dictates of the story pattern, at these key moments in the story’s development. Having instantiated this master script, and thereby injected these objects with these characteristics into the storybase at various points, the authorial function should then pick scripts that will cause the objects in the internal parts of the story to have these attributes, and instantiate them. It should then bridge the gaps between these “islands” of script instantiation, by more script instantiation, so that events take the reader from the start, to various climactic points, and eventually to a denouement.

What form should scripts have?

It is central to this approach that the main function of a script, once chosen, is to make, destroy or change objects in the storybase. A script will dictate that certain objects (and this will typically mean instances of certain classifications and, within those classifications, certain types) must exist, and that they have certain attributes at the start of the script, and different attributes at the end. It may dictate that certain objects (with certain attributes) come into existence during this script, or go out of existence. It will also dictate that these objects feature in a succession of shots. Finally, it will dictate that the script as a whole, and the shots within it, have certain durations.

This suggests that the script should have the following components:

a) A title, and a hierarchical code, by which it can be identified.

b) A set of performants. These are the objects that must exist, each accompanied by a parameter that indicates whether it is present at both the start and finish of the script, or whether it comes into or goes out of existence during the script. The script will have an internal vocabulary, meaning that each of these objects has a name by which it is identified within this script.
c) A set of preconditions. These are the attributes that the various objects are required to have at the start of the script.

d) A set of postconditions. These are the attributes that the various objects are required to have at the end of the script.

e) A set of shot specifications, indicating the actions that take place, in succession, within this script. And, of course, the objects involved in these actions. “Description” is to be treated as a special sort of action – none of the objects actually does anything; instead, one or more of the attributes of a specified object is described.

f) A set of durations for the various shots (the sum providing the duration for the whole script).

It is desirable that the specifications for attribute values described above should have a certain flexibility. This will make it more likely that a script in the script library can be found, and make these scripts more like those that humans supposedly employ to interpret the world. Accordingly, the language in which scripts are written allows for attribute specifications incorporating modifiers that have a certain vagueness: rather than say that an object’s type must be X, it may say that it must be “like X” (which means that the type is X, or anything below it in a hierarchy of types). Rather than say that an attribute value must be 7 on a 9-point scale, it may say that it must be “over 5”. There are exceptions to this lax specification, however; there will be occasions when, for instance, the script insists that the gender of a person giving birth is female, and allows no variations.

It should be apparent from the discussion in the previous section that script selection needs to be quite flexible. Sometimes it will be necessary to choose a script on the basis of its preconditions, sometimes on the basis of its postconditions, sometimes on the basis of both. It may be necessary to specify the duration of a script. It is even possible to envisage script selection on the basis of shots – i.e., that, somewhere in the script, certain objects do something or have something done to them. However, in the interests of simplicity, this is not an approach that has been allowed in the system currently under development. Our assumption has been that if one knows a script’s preconditions, postconditions, and duration, one knows enough to decide whether it fits current circumstances and whether it will take the story to the desired target state. In Twister, script instantiation generates shots but, from the point of view of subsequent story development, they are a byproduct: they are not used until it is time to render the story into English.

Vocabularies internal and external to scripts

As mentioned above, the script has an internal vocabulary of object names. In order to match a script against the objects in the storybase (with a particular timestamp), and therefore decide whether the script can be selected, it is necessary to translate from the objects in the storybase, each of which has a unique identifier, to the objects in the script. Accordingly, it is possible to call a script – to attempt to match it and, if successful, to instantiate it – specifying a “cast”. The cast is a list of object names internal to the script, coupled with object identifiers as found in the storybase. Thus, the system might attempt to call the script “robbery” with the cast [robber … obj(person, 17), victim … obj(person 22)]. Script execution compares the records of these objects (with the appropriate time and reality stamps) to the specifications to be found in the script pre/postconditions. If any of the records can’t be matched with the corresponding specifications, matching fails, and another script is sought. Otherwise, instantiation proceeds, and, if any object in the performants list isn’t specified in the cast, script execution assumes that it doesn’t exist and creates it, with suitable attribute values.

This presents a serious problem. How can the authorial function know which object names to specify in the cast, when it calls a particular script (as part of the matching process), when these names are internal to the script? The master script may be concerned that person 22 should have a nasty experience at this point in the story, and being the “victim” in script “robbery” will certainly achieve that, but how can the master script specify [victim … obj(person 22)] without knowing the vocabulary used within script “robbery”?

This problem could perhaps be avoided for a simple system, by having the master script(s) store a range of object names (taken from scripts’ internal vocabularies) and use them when they specify a range of possible scripts to be executed at a particular point in the story-building process. For a system with a large script library, something more sophisticated will be needed. Essentially, the authorial mechanism needs a vocabulary of “universal types” that it applies to each part of each story that it generates. The master script that is selected and instatiated to provide the overall pattern of the story should determine which universal types should feature in this story. Scripts that are selected thereafter should either have been written with the universal types as their internal vocabulary, or there should be some means to translate the internal vocabulary of each script into the vocabulary of universal types.

 However, the scripts are necessarily hand-crafted. The system builder will have to construct each frame, with its six groups of components, based on his intuitions of what is happening in this particular architypal episode. An internal vocabulary will naturally suggest itself when this episode is considered. For instance, when one considers a wedding, it is natural to label one of the human participants “the bride”, another “the groom”, another “the officiator”, and to label one of the non-human participants “the ring” and so forth. It doesn’t particularly matter whether these labels would be recognised by anyone apart from the script-constructor, since they are only used within the script (though they must, of course, be used consistently there). But where is a vocabulary of universal types to come from?

A resource is available to fulfill this role. The Berkeley FrameNet Project (described in Baker, Fillmore, and Lowe, 1998; Ruppenhofer et al 2006; the software resources are available from Fillmore and Baker, 2007) is “creating an online lexical resource for English, based on frame semantics and supported by corpus evidence” (Ruppenhofer et al, ibid). Each of these frame descriptions is an account of how a particular lexical unit relates to other essential and non-essential frame elements, as a portrayal of how the lexical unit is used in English sentences. Equally important, the FrameNet team are currently working on ways “…to find a precise way to bind whatever names we give to the wide variety of frame elements in the numerous types of words dealing with some basic notions …” – in the domain of communication, they mention “…Speaker, Addressee, Topic, Message, Medium and the like.” (Fillmore and Baker, ibid).

The FrameNet Project has so far produced more than 900 frame descriptions of concepts that can be expressed in English words, and many of these are verbs. A script, in the Twister system, is essentially a semantic description of a complex action, and it can therefore be expressed as a verb or as a phrase having the function of a verb – indeed the hierarchical classification of scripts is integrated with the classification of actions in Twister. It is therefore contended that a “universal type vocabulary”, as described in the previous paragraph, already exists, or will soon exist. If script-writing is based on, i.e. is treated as a process of elaborating, the data currently available in FrameNet, it should be possible to ensure that we have a vocabulary of types that is recognizable within specific frames (e.g. “marriage”), and also within general, “master” scripts (e.g. “script in which a person, after many trials and tribulations, achieves happiness”).
Present status of the Twister project
The Twister system currently contains code that can generate objects of 21 different classifications (e.g. person, animal, place), with appropriate attributes. It contains code that can render shots into English sentences. Data files exist for more than 600 templates for types of action, more that 1000 templates for types of object, and more than 200 templates for types of attribute. Code is being written to match and instantiate scripts by forward, backward or mixed chaining. The next phase of the project will involve writing a library of scripts.

References

Aristotle (347BC) Poetics. In Fyfe, W H (transl.)(1932) Aristotle in 23 volumes, Vol.23. William Heinemann, London.

Ashcraft, Mark H (2006) Cognition [4th edition]. Pearson Prentice Hall, Upper Saddle River, NJ.

Baker, C F, Fillmore, C J and Lowe, J B (1998) The Berkeley FrameNet Project. In Proceedings of the COLING-ACL, Montreal, Canada. Also available at http://framenet.icsi.berkeley.edu/papers/acl98.pdf [accessed 31 March 2008]

Bartlett, F.C. (1932) Remembering: An Experimental and Social Study. Cambridge University Press, Cambridge.
Fillmore, C J and Baker, C F (2007) FrameNet. http://framenet.icsi.berkeley.edu/index.php [accessed 31 March 2008]

Lehnert, Wendy, Dyer, Michael, Johnson, Peter and Yang, C J (1983) Boris: an experiment in in-depth understanding of narratives. Artificial Intelligence, 20(1), pp.15-62.

Mueller, Erik T. (2004) Understanding script-based stories using common-sense reasoning. Cognitive Systems Research, 5(4), pp. 307-340.

Ruppenhofer, Josef, Ellsworthy, M, Petruck, M R L, Johnson, C R, and Scheffczyk, J (2006) FrameNet II: extended theory and practice. http://framenet.icsi.berkeley.edu/index.php?option=com_wrapper&Itemid=126 [accessed 31 March 2008]
Schank, Roger C., & Abelson, R. (1977). Scripts, plans, goals, and understanding. Lawrence Erlbaum Associates, Hillsdale NJ.

Schank, Roger C. (1982). Dynamic memory: a theory of reminding and learning in computers and people. Cambridge University Press, Cambridge.

Schank, Roger C. & Riesbeck, Christopher K. (1981) Inside computer understanding: five programs plus miniatures. Lawrence Erlbaum Associates, Hillsdale, NJ.

Turner, Scott R. (1993). MINSTREL: A computer model of creativity and storytelling. Doctoral dissertation, Artificial Intelligence Laboratory, Computer Science Department, University of California, Los Angeles.

Turner, Scott R. (1994). The creative process: a computer model of storytelling and creativity. Lawrence Erlbaum Associates, Hillsdale NJ.
Winograd, T and Flores, F (1987) Understanding computers and cognition. Addison-Wesley, Reading, MA.

Bower, Black & Turner, 1979

Graesser, 1981

Smith & Graesser, 1981

Graesser & Nakamura, 1982

Maki, 1989

Long, Golding, Graesser & Clark 1990

Schutzwohl, 1998

Hannigan & Reinitz, 2001

Hannigan & Reinitz, 2003

to follow

}

