
Mental models, Consistency and Programming Aptitude

Richard Bornat1 Saeed Dehnadi1 Simon2

1 School of Computing Science, Middlesex University, LONDON NW4 4BT, UK
Email: {R.Bornat,S.Dehnadi}@mdx.ac.uk

2 School of Design, Communication, and Information Technology, University of Newcastle, Australia
Email: Simon@newcastle.edu.au

Abstract

Learning to program is notoriously difficult. Substan-
tial failure rates plague introductory programming
courses the world over, and have increased rather than
decreased over the years. Despite a great deal of re-
search into teaching methods and student responses,
there have been to date no strong predictors of success
in learning to program.

Two years ago we appeared to have discovered an
exciting and enigmatic new predictor of success in a
first programming course. We now report that after
six experiments, involving more than 500 students at
six institutions in three countries, the predictive effect
of our test has failed to live up to that early promise.
We discuss the strength of the effects that have been
observed and the reasons for some apparent failures
of prediction.

Keywords: Programming aptitude

1 Introduction

Despite numerous counterexamples, it appears nor-
mal to believe that with careful teaching, adequate
motivation and sufficient time, anybody can learn
anything. Some teachers would make an exception
for mathematics, others for music or art, while many
programming teachers would make an exception for
programming. The ability to read and write programs
is widely held to be essential for study in computer
science, but a significant proportion of those attempt-
ing a first university course in programming fail to
learn these skills.

Part of the problem is that the subject is not
widely taught at school, so undergraduates arrive
without having being streamed into those who can
do well and those who can’t. A reasonable predictor
of success in learning to program would be invalu-
able here – just as, before computer science gradu-
ates became widely available, a reasonable predictor
of programming ability would have been invaluable
when recruiting workers for the computer industry.
The need has been obvious throughout the entire half
century or so that the industry has existed and the
four decades or so that the subject has been taught,
yet, despite considerable research, no adequate pre-
dictors have yet emerged.

The problem is that there is not a simple dis-
tribution of ability, some being merely better than
others. It really seems that a significant proportion

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Tenth Australasian Computing Education
Conference (ACE2008), Wollongong, Australia, January 2008.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 78, Simon and Margaret Hamilton, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

never learn to program during their university course,
as reported by McCracken et al. (2001), for exam-
ple. A strongly bimodal distribution of marks in the
first programming course is frequently reported anec-
dotally, and corresponds to our experience in several
different academic institutions over a considerable pe-
riod of time.

Attempts to predict programming success often
begin with the intuitions of individual researchers,
among whom Soloway was a pioneer. Adelson &
Soloway (1985) reported that familiarity with the
problem domain helps novices to understand the pro-
gramming problems that they are asked to solve. Per-
haps less obviously, Soloway & Spohrer (1989) con-
cluded that skill in natural language seemed to have a
great deal of impact on students’ conceptions and mis-
conceptions of programming. In a result that some
would find counter-intuitive, Bonar & Soloway (1985)
put forward evidence to support the startling theory
that prior knowledge of one programming language
has a negative impact on novices’ attempts to pro-
gram in a second language. Other researchers (van
Someren 1990, Mayer 1992, Canas et al. 1994) con-
cluded that people who know how their programs
work are more successful than those who do not.

Hand in hand with the search for predictors of suc-
cess was the more pragmatic approach of developing
techniques or tools to make programming easier for
all novices. Some, for example Bornat (1986), chose
to teach programming by way of formal reasoning.
If expert programmers could justify their programs,
perhaps novices could be taught to program by first
learning to formalise their reasoning. Others devised
integrated development environments (IDEs) in the
hope that a point-and-click environment would free
novices from the minutiae and leave them to concen-
trate on the algorithms (Kölling et al. 2003, Vaughan-
Nichols 2003). Yet others devised ways of measuring
the relative difficulty of different programming lan-
guages (Green 1997), or designed whole new program-
ming languages, for example LOGO (Papert 1980)
and Miranda (Turner 1985), intended to simplify the
task of programming. Despite massive efforts in all of
these directions, there is no evidence that these initia-
tives have had any significant impact on the success
rate among novices.

Another approach involved studying the problems
encountered by novice programmers, either categoris-
ing the problems explicitly and discovering that they
fall into a handful of types (Bonar & Soloway 1983)
or, at a more abstract level, categorising the deeper
domains in which the mistakes lie (du Boulay 1986).

A final approach explored the way in which novices
and/or experts go about solving problems. Putnam
et al. (1986) found that novices’ misconceptions about
the capabilities of computers could have a massive
negative impact on their success at programming.
Pennington (1987) discovered that, despite the ad-

monition of the computer science establishment to
construct programs top down, experts build them
bottom-up. Perkins et al. (1989) described different
problem-solving strategies used by novices. Murnane
(1993) related programming to psychological theories,
specifically Chomsky’s notion of natural language ac-
quisition and Piaget’s theories of education.

Johnson-Laird (1975) contributed the idea of men-
tal models to the study of people’s competence in de-
ductive reasoning, proposing that individuals reason
by carrying out three fundamental steps:

1. They imagine a state of affairs in which the
premises are true – i.e. they construct a men-
tal model of them.

2. They formulate, if possible, an informative con-
clusion that is true in the model.

3. They check for an alternative model of the
premises in which the putative conclusion is false.
If there is no such model, then the conclusion is
a valid inference from the premises.

Johnson-Laird & Steedman (1978) implemented the
theory in a computer program that made deductions
from singly-quantified assertions, and its predictions
about the relative difficulty of such problems were
strikingly confirmed: the greater the number of mod-
els that have to be constructed in order to draw the
correct conclusion, the harder the task. Johnson-
Laird concluded that comprehension is a process of
constructing a mental model (Johnson-Laird 1981),
and set out his theory in an influential book (Johnson-
Laird 1983). Since then he has applied the idea to
reasoning about Boolean circuitry (Bauer & Johnson-
Laird 1993) and to reasoning in modal logic (Johnson-
Laird & Bell 1997).

This paper does not seek to explain the difficulties
faced by novices, neither does it propose a remedy.
Instead we investigate a possible predictor of success
in a first programming course – which, as pointed out
by Simon et al. (2006), is the only effective measure of
programming aptitude that is available in large-scale
educational experiments.

Our predictor is based on a study of mental models
of simple program operations. We find some regular-
ity in the way that these models are used, even in
students not previously exposed to programming or
to programming languages. Our first results showed
a surprising correlation between this regularity and
scores in programming examinations.

In what follows we describe the test and its admin-
istration, and explore the results of six experiments.

2 The test

From experience it appears that there are two ma-
jor hurdles which trip up novices in a first course on
imperative programming.1 In the order they are in-
troduced in a conventional imperative-programming
course they are:

1. assignment and sequence;

2. recursion / iteration;

There are other hurdles between and beyond these
two, but it is at these that novices most obviously
stumble. The second hurdle surprises nobody: recur-
sion is conceptually difficult, and the proper treat-
ment of iteration is mathematically complicated. As-
signment and sequence, on the other hand, hardly

1Functional and logical programming novices face different hur-
dles. We focus on imperative programming because it is the ma-
jority experience at present.

look as if they should be hurdles at all: storage
of/remembering information and doing one thing af-
ter another are part of everyday patterns of life and
thought, and you might have expected (as at first
do most teachers) that students’ experience could be
analogised into some kind of programming expertise.
Not so: it is a real hurdle, which many fail to sur-
mount, and it comes at the very beginning of most
programming courses. We decided to investigate it.

Our first intention was to observe the mental mod-
els that students used when thinking about assign-
ment instructions and short sequences of assignments.
We did not use Johnson-Laird’s theories of deductive
reasoning directly, but we assumed that our subjects,
in answering questions about a computer program,
would necessarily use a mental model of the activity
described by the program. We hoped to be able to
find out what those models are, and to track changes
over time.

We expected that our novices would initially dis-
play a wide range of mental models, but that as time
went by the ones who were successfully learning to
program would converge on a model that corresponds
to the way that a program actually works in the lan-
guage that they are being taught. So we planned to
administer a test just after the students had begun to
be taught about assignment and sequence, near the
beginning of their course, then a second time to the
same subjects after the topic had been dealt with, and
then a third time just before the examination. We ex-
pected to correlate the results of these three admin-
istrations with each other and also with the subjects’
marks in the official end-of-course examination.

Dehnadi devised a test, with questions as illus-
trated in figure 1. Each question gives a sample Java
program, declaring two or three variables and exe-
cuting up to three variable-to-variable assignment in-
structions. We had some prior notion, from our teach-
ing experience, of the ways that a novice might un-
derstand the programs, and Dehnadi devised mental
models accordingly (see table 1).

When a question includes more than one assign-
ment, as in figure 2, things are more complicated. In
addition to a model of assignment, subjects must use
a model of statement juxtaposition. We have encoun-
tered only three, shown in table 2. Model S1 is the
normal model of imperative programming. Models S2
and S3 are widely used by novices, though.

To accommodate the combination of assignment
and juxtaposition models, there are many plausible
answers for questions with multiple assignments. The
answer sheet for such a question, shown in figure 3,
is correspondingly complicated. Note that S1, the
default model, is represented by a blank (so, for ex-
ample, M1 in the first row means assignment model
M1 with juxtaposition model S1). There are a num-
ber of multi-tick answers, because for example a re-
spondent diligently using model M10 (equality) would
tick the seventh box (a = b = c = 5) and would also
write in additional outcomes of a = b = c = 3 and
a = b = c = 7. In addition, some of the single-tick
answers correspond ambiguously to several possible
models.

In order to resolve that ambiguity in interpreting
answers, we use the mark sheet shown in figure 4.
This summarises all the information about a subject.
Notionally we mark ambiguous replies in pencil, later
inking the marks that maximise membership of a sin-
gle column. We also mark the use of juxtaposition
models. Once again, S1 is unmarked.

All the current test instruments are available from
Dehnadi (2006). Students are allowed as long as they
want to complete the test. We have found that they
generally finish within 10 or 15 minutes.

1. Read the following statements and

tick the box next to the correct answer

in the next column.

int a = 10;

int b = 20;

a = b;

The new values of a and b are:

! a = 10 b = 10

! a = 30 b = 20

! a = 0 b = 10

! a = 20 b = 20

! a = 0 b = 30

! a = 10 b = 20

! a = 20 b = 10

! a = 20 b = 0

! a = 10 b = 30

! a = 30 b = 0

Any other values for a and b:

 a = b =

 a = b =

 a = b =

Use this column for your

rough notes please

Figure 1: A test question with a single assignment

Table 1: Anticipated mental models of assignment a=b

M1. Value moves from right to left (a←b and b←0 – eighth line in figure 1).

M2. Value copied from right to left (a←b – fourth line of figure 1, and the ‘correct’ answer in Java).

M3. Value moves from left to right (b←a and a←0 – third line of figure 1).

M4. Value copied from left to right (b←a – first line of figure 1, a reversed version of the ‘correct’
answer).

M5. Right-hand value added to left (a←a+b – second line of figure 1).

M6. Right-hand value extracted and added to left (a←a+b and b←0 – tenth line of figure 1).

M7. Left-hand value added to right (b←a+b – ninth line of figure 1).

M8. Left-hand value extracted and added to right (b←a+b and a←0 – fifth line of figure 1).

M9. Nothing happens (sixth line of figure 1).

M10. A test of equality (first and fourth lines of figure 1).

M11. Variables swap values (seventh line in figure 1).

Table 2: Anticipated mental models of statement juxtaposition

S1. [sequence] The first assignment has its effect with initial values, then the second with the values
produced by the first. (One effect is reported; the corresponding box is ticked.)

S2. [simultaneous, multiple] Each assignment takes effect using the initial values of variables. (All
effects are reported; the boxes corresponding to each effect are ticked.)

S3. [simultaneous, single] Each assignment takes effect using the initial values of variables, but only the
effects on the destination side are reported. (One overall effect is reported; the corresponding box
is ticked.)

2.1 Assessment of consistency

The object of the test is to assess consistency in the
use of assignment models. For that reason we at-
tempt to maximise the number of marks in a single
column by helpful interpretation of ambiguous an-
swers. Then, in the row labelled C0, we total the
marks in each column. A subject who has more than
eight marks in a single column is assessed consistent
at level C0. In an attempt to accommodate lower
levels of consistency, we allow some variation across
what we judge are cognitively similar models. Thus
models M1 and M2, which differ only in whether the
source variable becomes zero, are combined at level
C1, and similarly other pairs of models. C2 combines
four related models, and finally C3 distinguishes be-
tween the eight assignment-related models and the
three others.

A subject who scores eight or more in one col-
umn of Cn, but not at Cn-1, is assessed consistent
at Cn. We note that it is possible for a respondent
to be classified as C3 by giving eight answers that
comprise eight different models, so this is clearly an
extremely weak measure of consistency. However, al-
though in discussing our experiments we do mention
levels C1-C3, the results that we present in this paper
distinguish only students consistent at level C0.

Our current analysis pays little attention to which
model of sequence is used by a consistent student,
except to distinguish the group CM2, which has the
correct Java models of assignment and sequence (see
section 3.2 for a discussion of this group).

2.2 A test of invention

Notwithstanding our original intention of mapping
the change in subjects’ models, after seeing our initial
results we decided to administer the test to subjects
who have, ideally, no prior exposure to programming
or to programming languages. We do expect, how-
ever, that they have encountered secondary-school al-
gebra and are familiar with algebraic formulae.

We do not seek with this test to judge respon-
dents according to the model they use. Rather, we
test how they respond to questions which are about
a mathematical system – a programming language –
that they have not encountered before. No explana-
tion is given about the meaning of the questions. The
decision of the Java designers to use the equality sign
‘=’ to indicate assignment,2 as in column 1 of the
questions, means that apart from the word ‘int’ and
the various semicolons, the formulae employed will be
reasonably familiar to anybody who has encountered
secondary-school algebra. That is, our respondents
will have some notion of what x=y might mean, and
will use that knowledge in guessing what box to tick
in column 2. Incidentally, in the middle column the
equality sign is used algebraically rather than Jav-
ishly.

Viewed strictly as algebra the programs are pretty
nonsensical. But the question asks what the ‘new val-
ues’ of variables might be, and many subjects seem to
respond by regarding the program as something that
produces a change. Thus we are measuring the abil-
ity (and the inclination) to guess an answer. The test
is unusual, we believe, in that to the complete novice
the questions are strictly meaningless yet each has
only a limited number of systematic answers, using
the models listed in the tables.

2As computer scientists we normally excoriate this appalling
design decision, but here we are able to benefit from it.

3 Experiments

3.1 Experiment 1: Barnet College and Mid-
dlesex University

The test was first administered by Dehnadi to about
30 students on a further-education programming
course at Barnet College. As the initial intention was
to track changes in subjects’ mental models, Dehnadi
decided to first investigate these models before the
students had received any programming teaching what-
soever – that is, in week 0 of the course. In the early
version of the test that was used for this experiment,
two models – M7 and M8 – were accidentally omit-
ted from the questions and the analysis; assessment
of consistency was subjective; previous programming
experience, education, age and sex weren’t recorded;
and the overall assessment was into three categories
(consistent, inconsistent and blank). Dehnadi inter-
viewed half of the students before admission, and
taught them all. It was his impression (though in
this experiment the questionnaire did not record the
necessary details) that few if any had any previous
contact with programming, and that all had enough
school mathematics to make the equality sign famil-
iar.

The same test was then administered to about 30
students in the first-year programming course at Mid-
dlesex University, once again before they had received
any programming teaching. They were mostly male,
aged about 18-20, from the middle range of educa-
tional attainment in the UK. Dehnadi tutored them
but did not teach the course. It was his impression
(again without any recorded evidence) that they had
had little or no contact with programming but had re-
ceived school mathematics teaching. The data from
the second Middlesex experiment (experiment 3, sec-
tion 3.3) suggests that this may be a mistaken as-
sumption.

This experiment is reported in Dehnadi (2006), so
here we will briefly summarise its findings. Because
the test asked subjects about the effects of simple pro-
grams, at a stage when they hadn’t encountered any
programs at all, we did not expect that they would be
using the models of assignment and juxtaposition that
they would later be taught. We discovered instead a
subdivision into three groups in the first administra-
tion of the test.

• 27 subjects (44%) used the same models for all,
or almost all, of the questions. We call this the
consistent group (C).

• 24 subjects (39%) used different models for differ-
ent questions. We call this the the inconsistent
group (I).

• The remaining five subjects (8%) failed to answer
all or almost all of the questions. We call this the
blank group (B).

We did not interview our subjects to determine
anything about their group membership, so we do
not know whether students chose consciously or un-
consciously to follow one strategy or another, nor how
conscious choices (if any) were motivated, nor what
any particular choice meant to a subject who made
it.

For reasons addressed in Dehnadi (2006), we de-
cided to investigate the correlation between respon-
dents’ categorisation (C/I/B) in the consistency test
and their marks in the second in-course exam.

The pass/fail statistics for this experiment are
shown in table 3. Overall the failure rate was 37%,
but in the consistent group it was only 11%, in the in-
consistent group it was 65%, and in the blank group

7. Read the following statements and

tick the box next to the correct answer

in the next column.

int a = 5;

int b = 3;

int c = 7;

a = c;

b = a;

c = b;

The new values of a and b and c are:

! a = 3 b = 5 c = 5

! a = 3 b = 3 c = 3

! a = 12 b = 14 c = 22

! a = 8 b = 15 c = 12

! a = 7 b = 7 c = 7

! a = 5 b = 3 c = 7

! a = 5 b = 5 c = 5

! a = 7 b = 5 c = 3

! a = 3 b = 7 c = 5

! a = 12 b = 8 c = 10

! a = 10 b = 8 c = 12

! a = 0 b = 0 c = 7

! a = 0 b = 0 c = 15

! a = 3 b = 12 c = 0

! a = 3 b = 5 c = 7

Any other values for a and b and c :

 a = b = c =

 a = b = c =

 a = b = c =

Figure 2: A test question with three assignments

Question Answer(s) Model(s)

a = 0 b = 0 c = 7 M1
a = 7 b = 5 c = 3 M1 S3 / M2 S3 / M11 S3
a = 7 b = 7 c = 7 M2
a = 3 b = 5 c = 5 M3, M4
a = 3 b = 7 c = 5 M3 S3 / M4 S3
a = 12 b = 14 c = 22 M5
a = 12 b = 8 c = 10 M5 S3 / M6 S3
a = 0 b = 0 c = 15 M6
a = 8 b = 15 c = 12 M7
a = 10 b = 8 c = 12 M7 S3 / M8 S3
a = 3 b = 12 c = 0 M8
a = 5 b = 3 c = 7 M9
a = 3 b = 5 c = 7 M11
a = 5 b = 5 c = 5
a = 3 b = 3 c = 3
a = 7 b = 7 c = 7

M10

a = 7 b = 3 c = 0
a = 0 b = 5 c = 7
a = 5 b = 3 c = 3

M1 S2

a = 7 b = 3 c = 7
a = 5 b = 5 c = 7
a = 5 b = 3 c = 3

M2 S2

a = 0 b = 3 c = 5
a = 3 b = 0 c = 7
a = 5 b = 7 c = 0

M3 S2

a = 5 b = 3 c = 5
a = 3 b = 3 c = 7
a = 5 b = 7 c = 7

M4 S2

a = 12 b = 3 c = 7
a = 5 b = 8 c = 7
b = 3 c = 10

M5 S2

a = 12 b = 3 c = 0
a = 0 b = 8 c = 7
a = 5 b = 0 c = 10

M6 S2

a = 5 b = 3 c = 12
a = 8 b = 3 c = 7
a = 5 b = 10 c = 7

M7 S2

a = 0 b = 3 c = 12
a = 8 b = 0 c = 7
a = 5 b = 10 c = 0

M8 S2

7.

int a = 5;
int b = 3;
int c = 7;

a = c;
b = a;
c = b;

a = 7 b = 3 c = 5
a = 3 b = 5 c = 7
a = 5 b = 7 c = 3

M11 S2

Figure 3: Answer sheet, with ambiguous assessments

Assignment No
effect

Equal
sign

Swap
values

Assign-to-left Assign-to-right Add-Assign-to-
left

Add-Assign-to-
right Questions

Lose-
value
(M1)
/S2 /S3

Keep-
value
(M2)
/S2 /S3

Lose-
value
(M3)
/S2 /S3

Keep-
value
(M4)
/S2 /S3

Keep-
value
(M5)
/S2 /S3

Lose-
value
(M6)
/S2 /S3

Keep-
value
(M7)
/S2 /S3

Lose-
value
(M8)
/S2 /S3

Values
don't

change
(M9)

/S2

Assign
means
equal
(M10)

/S2

Swap
values
(M11)
/S2 /S3

Remarks (including participants’
working notes)

1
2
3
4
5
6
7
8
9

10
11
12

C0
C1
C2
C3

Figure 4: Mark sheet allowing for judgement of level of consistency

Table 3: Experiment 1: Consistency against pass/fail
results in second in-course exam

Pass Fail
Consistent 23 3 26

Inconsistent 8 15 23
Blank 6 4 10

37 22 59

40%. The correlation is significant by the χ2 test3

(p ≤ 0.001).
Pass/fail statistics can be distorted relatively eas-

ily by moving the mark boundary. An analysis of vari-
ance4 is fairer: it shows that the difference between
the groups is significant (p < 0.001), with R2 = 0.255,
that the C group is significantly different from the I
group (p < 0.001) and from the B group (p ≤ 0.016),
but that the I and B groups aren’t significantly dif-
ferent (p ≤ 0.445).

We might consider making an argument that an
R2 value of 0.255 is not to be sneezed at in an ed-
ucational context, where success and failure have so
many causes, but it does not trumpet success, and in
the experiments below we restrict our discussion to
the simpler χ2 test of significance. We note, however,
that the ANOVA significance measurements do not
in any instance contradict those which we report.

3The χ2 test is a standard statistical tool applied to data
counted into categories, as we have counted students into consis-
tent/inconsistent/blank and into pass/fail. Where the numbers in
the categories appear to be dependent, for example membership
of the consistent group appears related to membership of the pass
group, the test helps to decide whether this apparent dependence
is likely to be reflected in the whole population. The figure gen-
erally reported is p, a measure of the likelihood that the apparent
dependence is coincidental. The accepted standard to which we are
working is that a result is significant if p < 0.05; in loose terms,
there is less than 5% chance that the observed effect is coincidental.

4An analysis of variance, ANOVA, is a standard statistical tool
that determines whether there is a significant difference between
the means of two or more groups in a population. The figures gen-
erally reported are R2, a measure of the strength of the correlation
between group membership and the differing scores, and p, a mea-
sure of the significance of the difference. The accepted standard to
which we are working is that a difference is significant if p < 0.05;
in loose terms, there is less than 5% chance that the observed dif-
ference is coincidental. However, even a strong significance does
not tell us much if the correlation is weak.

Table 4: Expt 1: Pass/fail statistics for test 1 group-
ing and test 2 correctness

Test 1 (wk 0) Test 2 (wk 3) Pass Fail
consistent correct 20 0 20

blank correct 3 0 3
inconsistent correct 3 2 5
consistent incorrect 3 3 6

blank incorrect 3 4 7
inconsistent incorrect 5 13 18

37 22 59

3.1.1 Week 3 test

In an aside to experiment 1, the same subjects were
given the same test again in week 3 of the course, af-
ter assignment and sequence had been taught. There
were no blank returns; all but two of the consis-
tent group remained consistent; half of the other
groups became consistent. In this test we recorded
not only consistency but also correctness (use of M2
and S1 models). Table 4 shows that 93% of those
who scored correctly in this test passed the second
in-course exam, against only 35% of those who scored
incorrectly. An analysis of variance shows significance
as before p < 0.001) and the correct/incorrect classi-
fication explains more of the variance (R2 = 0.442).

3.2 Experiment 2: The University of New-
castle

The second experiment was carried out by Simon at
the University of Newcastle, Australia. During this
experiment the test instruments were refined and im-
proved, and questions about previous programming
experience, previous programming courses, age and
sex were added to the questionnaire.

The test was administered once, before the course
began. There were 90 subjects, of whom 19 withdrew
or failed to attend the examination, leaving 71 for
analysis.

3.2.1 Test results

43 subjects were assessed as C0 (eight questions or
more with a single model), four C1 (eight questions or
more with two related models), one C2 (four models),

Table 5: Experiment 2: Consistency against pass/fail
results

Pass Fail
consistent (CM2) 24 3 27
consistent (C0) 10 6 16

other 13 15 28
47 24 71

Table 6: Experiment 2: Consistency against pass/fail
results, split by previous programming experience

Programmed before = yes
Pass Fail

consistent (CM2) 20 2 22
consistent (C0) 6 5 11

other 3 10 13
29 17 46

Programmed before = no
Pass Fail

consistent (CM2) 2 1 3
consistent (C0) 2 0 2

other 9 5 14
13 6 19

five C3 (more than four models M1-M8), 17 inconsis-
tent and one blank. As in experiment 1, C0 was by
far the largest group. The most striking feature of the
data, however, is that in the C0 group 33 subjects out
of 43 used the correct models (M2, S1) of assignment
and juxtaposition before the course started. We shall
henceforth refer to this group as CM2. All but four of
the CM2 group indicated that they had had previous
programming experience.

3.2.2 Assessment of programming skill

We had access to all the course marks of the subjects:
two practical tests, two assignments, an examination
and a mark combining all of those. In our analysis
we used the combined mark. As well as a numerical
mark, the students were given grades of FF (fail),
P (pass), C (credit), D (distinction) and HD (high
distinction).

3.2.3 Data analysis

Correlating grades with fine consistency grading gives
a table too sparse to analyse: combining columns P,
C, D and HD into ‘Pass’ and rendering FF as ‘Fail’,
and separating out those who appear to have the cor-
rect models of assignment and sequence before start-
ing the course, gives table 5. There is χ2 significance
overall (p ≤ 0.001), but this disappears if the CM2
row is left out of the calculation (p ≤ 0.30).

But simply to ignore the CM2 group is not enough:
they are the successful fraction of those who have at-
tempted to learn to program before. What about the
unsuccessful fraction? If the result of the week 3 test
in the first experiment (section 3.1.1) is indicative,
those who have failed to learn the correct models for
assignment and sequence might be expected to fail at
this second attempt.

If we take into account subjects’ response to the
question about prior programming experience, we de-
rive the two tables in table 6 (67 subjects, because
four failed to report either way). The first table is
significant (p ≤ 0.001), and that shows the same re-
sult as in table 4: those who have tried to learn to
program but failed to learn the models of assignment

Table 7: Experiment 3: Consistency against pass/fail
results, split by previous programming experience

Programmed before = yes
Pass Fail

consistent (CM2) 8 0 8
consistent (C0) 6 2 8

other 11 7 18
25 9 34

Programmed before = no
Pass Fail

consistent (C0) 8 4 12
other 18 7 25

26 11 37

and sequence aren’t likely to do well. The second ta-
ble cannot be subjected to χ2 analysis, because num-
bers are too small.

We get similar results if we further refine the data
by looking at the answer to the question about prior
instruction in programming: out of the four sub-
groups, the only one to show significance is those who
have programmed and have taken a prior course (31
subjects, p ≤ 0.044), but the other groups are too
small for χ2 analysis. Intriguingly, but insignificantly
because of the size of the sample, the group who re-
port prior experience in programming but no prior
instruction split perfectly: all four inconsistent fail,
all nine consistent pass (including seven CM2).

At first sight the discovery that two-thirds of the
subjects have prior programming experience, leaving
too few inexperienced subjects for proper analysis,
might suggest that there is nothing to learn from this
experiment. Certainly we can’t use it to support our
hypothesis that consistency in our test predicts suc-
cess in the course. But we can see, in measuring those
with prior experience, that mental models of assign-
ment and sequence do seem to have something to do
with the matter.

3.3 Experiment 3: Middlesex University

Dehnadi administered the refined test instrument to
118 subjects at Middlesex University in September
2006. The test was administered once, before the
course began.

3.3.1 Test results

41 subjects (35%) were rated C0; three (2.5%) were
C1; ten (8.5%) were C2; eighteen (15%) were C3; 28
(24%) were inconsistent and 18 (15%) blank. Eleven
of the C0 group (27% of the group, 9% of the total)
already had the correct models of assignment and jux-
taposition (CM2).

As in the first experiment we have analysed the
results of the second, more technical, in-course exam-
ination. This examination was taken by 75 students,
the remainder having withdrawn from the course. Ta-
ble 7 sets out the results in the same form as the
second experiment.

These results seem a blow against our hypothesis
that consistency in the test predicts novices’ success
in the course. There is no significance in the results
of those without experience (indeed, the failure rates
are almost identical for the two groups). The other
group does show significance in ANOVA (p < 0.0005,
R2 = 0.496), which disappears when the CM2 group
is removed, once again supporting the hypothesis that
mastery of assignment and sequence is predictive of
success.

Table 8: Experiment 4: Consistency against pass/fail
results, split by previous programming experience

Programmed before = yes
Pass Fail

consistent (CM2) 8 0 8
consistent (C0) 7 1 8

other 0 1 1
15 2 17

Programmed before = no
Pass Fail

consistent (CM2) 2 2 4
consistent (C0) 22 1 23

other 7 7 14
31 10 41

3.4 Experiment 4: University of Sheffield

The refined test was administered to 58 subjects
by Peter Rockett (p.rockett@sheffield.ac.uk). Twelve
students were CM2, 31 C0, 2 C3, 12 inconsistent and
1 blank. Unlike other experiments, which were all in
computer science departments, this test was carried
out in an electrical engineering department.

Pass/fail data is shown in table 8. One notable
feature is the low failure rate overall (21%). Because
of the low failure rates we cannot rely on χ2 signifi-
cance (p < 0.014 for the yes group, p < 0.003 for the
no group): an ANOVA analysis shows significance
(p < 0.055 and p < 0.007 respectively), but with low
explanation of variance (R2 = 0.339 and 0.233 respec-
tively).

3.5 Anomalous experiments

The first experimental result, without statistical anal-
ysis, was publicised on the web by Bornat and
Dehnadi, and in that publication they made strong
claims for its importance. In response to this and to
Dehnadi’s subsequent paper (Dehnadi 2006), several
people volunteered to try the test in their own insti-
tutions.

At the University of York, UK, Berbatov (2007)
tested 104 subjects, of whom all but 14 used the cor-
rect models before his course. No significant differ-
ences were found between consistency groups.

At the University of Aarhus, Caspersen et al.
(2007) tested 142 subjects, of whom 124 rated C0,
almost all of them CM2, and only six failed the exami-
nation. No significant differences were found between
consistency groups.

At the Royal School of Signals, UK, Wray (2007)
tested 19 subjects, five months after the end of their
programming course. All but one scored perfectly
CM2 (the one got one question wrong).

Each of these experiments essentially investigates
subjects who have experience of programming and
can answer the questions in our test with knowledge
of the programming language involved. These are not
the circumstances for which the test was devised, in
which only a minority have prior instruction or expe-
rience. We do not, therefore, feel that it is helpful to
examine their data in more detail.

4 Summary and discussion of significant re-
sults

In experiment 1, involving 60 subjects at Barnet Col-
lege and Middlesex University, we found significant
differences over the three groups C, B, and I, over
the two groups C and B, and over the two groups C

and I. We also found that our test, administered after
assignment and sequence had been taught, showed a
strongly significant difference between those who used
the correct models and those who did not.

In experiment 2, involving 71 subjects at the Uni-
versity of Newcastle, we discovered that most had pre-
vious programming experience. There was no signif-
icant effect of consistency in the 19 who reported no
prior experience; there was in the 46 who did claim
experience, essentially due to the CM2 subjects who
had the correct models before the course began.

In experiment 3, involving 75 students at Middle-
sex University, we found no significant differences.

In experiment 4, involving 58 students at the Uni-
versity of Sheffield, we found a significant effect of
consistency in those with no programming experience.

In experiments 5 and 6 all or almost all of the
participants had the correct models before the course
commenced, and hence our test was irrelevant.

Experiment 7 tested subjects after the course had
finished, revealing a commendable efficiency in pro-
gramming instruction but also making prediction im-
possible.

In experiments 1 and 3 we explored correlations
between consistency and students’ performance on an
assessment item which was a plausible surrogate for a
final course examination, while the other experiments
used final results in the course.

Apart from experiment 1, for which the informa-
tion is not available, we have used the same group-
ings (programming experience yes/no, consistency
CM2/C0/other) in each of the analyses.

5 Conclusions and further work

When we began this work we had high hopes that we
had found a test that could be used as an admissions
filter to reduce the regrettable waste of human effort
and enthusiasm caused by high failure rates in uni-
versities’ first programming courses. We can see from
the experiments reported above that our test doesn’t
work if the intake is already experienced, and in ex-
periment 3 didn’t work at all. We cannot claim to
be separating the programming goats from the non-
programming sheep: experiment 3 demolishes the no-
tion that consistent subjects will for the most part
learn well, and others for the most part won’t. And
even in the most encouraging of our results, we find a
50% success rate in those who don’t score C0 or CM2.

None the less, some of our results indicate that
there may be something going on with consistency.
There is a case for continuing our investigations.

In the meantime we present this work as a case
study in good science. Having some preliminary re-
sults that appeared extremely promising, we and col-
leagues have refined the test instrument, conducted
further experiments, and applied the appropriate
analysis. It is unfortunate that the outcome does not
live up to the initial promise, but it has not quite
closed the door on our explorations.

As well as continuing to investigate the phe-
nomenon of consistency, we intend in the future to
interview subjects, asking them why they answer the
questions as they do. In addition, we shall investigate
whether there is any significant difference between the
way male and female subjects answer the questions.

Acknowledgements

We are grateful to Middlesex University, Barnet Col-
lege, the University of Newcastle and the University
of Sheffield for giving us permission to test their stu-
dents, to them and to the subjects themselves for al-

lowing us access to their examination results, and to
our collaborators for administering the questionnaire.

We have benefited enormously from advice from
the statistical consultancy group at Middlesex Uni-
versity: David Jarrett, Jeff Evans, Gary Hearne and
Anne Humbert; and from Maureen Townley-Jones at
the University of Newcastle. Without their advice we
would not have discovered what our data contained
nor been able to give any coherent account of our
results.

References

Adelson, B. & Soloway, E. (1985), ‘The role of domain
experience in software design’, IEEE Transactions
on Software Engineering 11(November), 1351–
1360.

Bauer, M. & Johnson-Laird, P. (1993), How diagrams
can improve reasoning: Mental models and the dif-
ficult cases of disjunction and negation, in ‘Pro-
ceedings of the Annual Conference of Cognitive Sci-
ence’, Lawrence Erlbaum Associates, Boulder, Col-
orado.

Berbatov, D. (2007). private communication.

Bonar, J. & Soloway, E. (1983), Uncovering princi-
ples of novice programming., in ‘10th ACM POPL’,
pp. 10–13.

Bonar, J. & Soloway, E. (1985), ‘Pre-Programming
Knowledge: A Major Source of Misconceptions in
Novice Programmers’, Human-Computer Interac-
tion 1(2), 133–161.

Bornat, R. (1986), Programming from First Princi-
ples, Prentice/Hall International.

Canas, J. J., Bajo, M. T. & Gonzalvo, P. (1994),
‘Mental models and computer programming’, Jour-
nal of Human-Computer Studies 40(5), 795–811.

Caspersen, M. E., Bennedsen, J. & Larsen, K. D.
(2007), Mental Models and Programming Apti-
tude, in ‘Proceedings of ITICSE 2007’.

Dehnadi, S. (2006), Testing Programming Apti-
tude, in P. Romero, J. Good, E. A. Chaparro &
S. Bryant, eds, ‘Proceedings of the PPIG 18th
Annual Workshop’, pp. 22–37.
URL: http://www.ppig.org/papers/18th-
dehnadi.pdf

du Boulay, J. B. H. (1986), ‘Some difficulties of learn-
ing to program’, Journal of Educational Computing
Research 2(1), 57–73.

Green, T. (1997), Cognitive Approach to Software
Comprehension: Results, Gaps and Introduction,
in ‘Workshop on Experimental Psychology in Soft-
ware Comprehension Studies’, University of Limer-
ick.

Johnson-Laird, P. (1975), Models of deduction, in
R. Falmagne, ed., ‘Reasoning: Representation and
Process’, Erlbaum, Springdale, NJ.

Johnson-Laird, P. (1981), ‘Comprehension as the con-
struction of mental models’, Philosophical Transac-
tions of the Royal Society, Series B 295, 353–374.

Johnson-Laird, P. (1983), Mental Models, Cambridge
University Press, Cambridge.

Johnson-Laird, P. & Bell, V. (1997), A model theory
of modal reasoning, in ‘Proceedings of the Nine-
teenth Annual Conference of the Cognitive Science
Society’, pp. 349–353.

Johnson-Laird, P. & Steedman, M. (1978), ‘The
psychology of syllogisms’, Cognitive Psychology
10, 64–99.

Kölling, M., Quig, B., Patterson, A. & Rosenberg,
J. (2003), ‘The BlueJ system and its peda-
gogy’, Journal of Computer Science Education
13(4), 249–268.
URL: http://www.bluej.org/papers/2003-12-
CSEd-bluej.pdf

Mayer, R. E. (1992), Thinking, Problem Solving, Cog-
nition, 2 edn, W. H. Freeman and Company Second
Edition ISBN 0716722151, New York.

McCracken, M., Almstrum, V., Diaz, D., Guzdial,
M., Hagan, D., Kolikant, Y. B.-D., Laxer, C.,
Thomas, L., Utting, I. & Wilusz, T. (2001), A
multi-national, multi-institutional study of assess-
ment of programming skills of first-year CS stu-
dents, in ‘Working group reports from ITiCSE on
Innovation and technology in computer science ed-
ucation’, ACM Press, Canterbury, UK.

Murnane, J. (1993), ‘The Psychology of Com-
puter Languages For Introductory Programming
Courses’, New Ideas in Psychology 11(2), 213–228.

Papert, S. (1980), Mindstorms: Children, Computers,
and Powerful Ideas, Basic Books, New York, NY,
USA.

Pennington, N. (1987), ‘Stimulus structures and men-
tal representations in expert comprehension of com-
puter programs’, Cognitive psychology 19, 295–341.

Perkins, D., Hancock, C., Hobbs, R., Martin, F.
& Simmons, R. (1989), Conditions of Learning in
Novice Programmers, in E. S. Spohrer & J. C., eds,
‘Studying the Novice Programmer ’, Lawrence Erl-
baum Associates, Hillsdale, NJ, pp. 261–279.

Putnam, R. T., Sleeman, D., Baxter, J. A. & Kuspa,
L. K. (1986), ‘A Summary of Misconceptions of
High School Basic Programmers’, Journal of Ed-
ucational Computing Research 2(4).

Simon, Fincher, S., Robins, A., Baker, B., Box,
I., Cutts, Q., de Raadt, M., Haden, P., Hamer,
J., Hamilton, M., Lister, R., Petre, M., Sutton,
K., Tolhurst, D. & Tutty, J. (2006), Predictors of
success in a first programming course, in ‘Proc.
Eighth Australasian Computing Education Confer-
ence (ACE2006)’, ACS, pp. 189–196.

Soloway, E. & Spohrer, J. C. (1989), Some Difficul-
ties of Learning to Program , in E. Soloway &
J. C. Spohrer, eds, ‘Studying the Novice Program-
mer’, Lawrence Erlbaum Associates, Hillsdale, NJ,
pp. 283–299.

Turner, D. A. (1985), Miranda: a non-strict func-
tional language with polymorphic types, in ‘Proc.
of a conference on Functional programming lan-
guages and computer architecture’, Springer-Verlag
New York, Inc., New York, NY, USA, pp. 1–16.

van Someren, M. W. (1990), ‘What’s wrong? Un-
derstanding beginners’ problems with Prolog’, In-
structional Science 19(4/5), 256–282.

Vaughan-Nichols, S. J. (2003), ‘The Battle over the
Universal Java IDE’, Computer 36(4), 21–23.

Wray, S. (2007), SQ Minus EQ can Predict Program-
ming Aptitude, in ‘Proceedings of the PPIG 19th
Annual Workshop’.
URL: http://www.ppig.org/papers/19th-Wray.pdf

