
Testing Programming Aptitude

Saeed Dehnadi

School of Computing Middlesex University, UK
s.dehnadi@mdx.ac.uk

Abstract.

An initial cognitive study of early learning of programming aimed to extract ex-
perimental test data to establish novices’ understanding process has been carried out
by us [1]. This empirical study was inspired by the notion that different people bring
different patterns of knowledge in any new learning process, and demonstrated that
how each student tackles the problem in a different way based on their mental model.
The initial study suggests that success in the first stage of an introductory program-
ming course is predictable, by noting consistency in use of the mental models which
students apply to a basic programming problem even before they have had any con-
tact with programming notation, but the consistency/inconsistency measurement was
somewhat subjective. In this paper I present an objective marking method which hope
will lead us to more precise and more finely-graduated predictions. This method is be-
ing trialed in at least one experiment, and we hope that by the time of the conference I
will be able to describe the results .

1. Introduction
An initial cognitive study of early learning of programming aimed to extract ex-

perimental test data to establish novices’ understanding process is described in [1].
We believe that different people bring different patterns of knowledge to any new
learning process, and learning programming is not exempted from this common fact.
Each student tackles the problem in a different way based on their mental model.

The study started with the hypothesis that “we are able to identify small number of
groups to represent novice programmers by looking at their problem solving methods
and techniques.” We were looking for any sub-populations which are likely to achieve
success. Our intention was to observe the mental models that students used when
thinking about assignment instructions and short sequences of assignments and we
hoped to be able to find out what those models are. We administered a test at the very
beginning of their course before the students had begun to be taught about assignment
and sequence, and then a second time to the same subjects after the topic had been
taught. We correlated the results of these two administrations with each other and we
found three groups: consistent using a single mental model (44%), inconsistent using

several mental models (39%) and blank not answering (8%), and an apparent correla-
tion between the consistent group and students who successfully passed the test.

The result demonstrated that the success in the first stage of an introductory pro-
gramming course may be predictable, by examining the way that students approach to
a basic programming problem even before they have had any contact with progra m-
ming notation.

In our previous study the decision that led us to assign students to each particular
group was rather subjective. We looked for repeated use of the same or related mo d-
els, but we did not assign thresholds or describe patterns of relationships. Introducing
an objective marking mechanism, one which will perhaps allow mechanical marking
of the test and is free of any biases such as markers’ prejudice, has become a high pri-
ority, particularly when we received offer from an Australian and a Canadian institu-
tion to replicate our experiment. I present here an objective marking method which I
hope will lead us to more precise and more finely-graduated predictions. This method
is being trialed in at least one experiment, and we hope that by the time of the confer-
ence we will be able to describe the results. This method also allows us to graduate
levels of consistency. In this paper I describe the method, its interpretation algorithms
and speculate on its potential advantages. With a bit of luck before September I shall
be able to prepare a data analysis report with Australian and/or Canadian data and
present it to the conference.

2. Related Work
An initial cognitive study of early learning of programming aimed to extract ex-

perimental test data to establish novices’ understanding process is described in [1].
We believe that different people bring different patterns of knowledge to any new
learning process, and learning programming is not exempted from this common fact.
Each student tackles the problem in a different way based on their mental model.

The study started with the hypothesis that “we are able to identify small number of
groups to represent novice programmers by looking at their problem solving methods
and techniques.” We were looking for any sub-populations which are likely to achieve
success. Our intention was to observe the mental models that students used when
thinking about assignment instructions and short sequences of assignments and we
hoped to be able to find out what those models are. We adminis tered a test at the very
beginning of their course before the students had begun to be taught about assignment
and sequence, and then a second time to the same subjects after the topic had been
taught. We correlated the results of these two administrations with each other and we
found three groups: consistent using a single mental model (44%), inconsistent using
several mental models (39%) and blank not answering (8%), and an apparent correla-
tion between the consistent group and students who successfully passed the test.

The result demonstrated that the success in the first stage of an introductory pro-
gramming course may be predictable, by examining the way that students approach to
a basic programming problem even before they have had any contact with program-
ming notation.

In our previous study the decision that led us to assign students to each particular
group was rather subjective. We looked for repeated use of the same or related mo d-
els, but we did not assign thresholds or describe patterns of relationships. Introducing
an objective marking mechanism, one which will perhaps allow mechanical marking
of the test and is free of any biases such as markers’ prejudice, has become a high pri-
ority, particularly when we received offer from an Australian and a Canadian institu-
tion to replicate our experiment.

I present here an objective marking method which I hope will lead us to more pre-
cise and more finely -graduated predictions. This method is being trialed in at least
one experiment, and we hope that by the time of the conference we will be able to de-
scribe the results . This method also allows us to graduate levels of consistency. In this
paper I describe the method, its interpretation algorithms and speculate on its potential
advantages. With a bit of luck before September I shall be able to prepare a data
analysis report with Australian and/or Canadian data and present it to the conference.

3. Study on Learners
An initial cognitive study of early learning of programming aimed to extract ex-

perimental test data to establish novices’ understanding process is described in [1].
We believe that different people bring different patterns of knowledge to any new
learning process, and learning programming is not exempted from this common fact.
Each student tackles the problem in a different way based on their mental model.

The study started with the hypothesis that “we are able to identify small number of
groups to represent novice programmers by looking at their problem solving methods
and techniques.” We were looking for any sub-populations which are likely to achieve
success. Our intention was to observe the mental models that students used when
thinking about assignment instructions and short sequences of assignments and we
hoped to be able to find out what those models are. We administered a test at the very
beginning of their course before the students had begun to be taught about assignment
and sequence, and then a second time to the same subjects after the topic had been
taught. We correlated the results of these two administrations with each other and we
found three groups: consistent using a single mental model (44%), inconsistent using
several mental models (39%) and blank not answering (8%), and an apparent correla-
tion between the consistent group and students who successfully passed the test.

The result demonstrated that the success in the first stage of an introductory pro-
gramming course may be predictable, by examining the way that students approach to

a basic programming problem even before they have had any contact with progra m-
ming notation.

In our previous study the decision that led us to assign students to each particular
group was rather subjective. We looked for repeated use of the same or related mo d-
els, but we did not assign thresholds or describe patterns of relationships. Introducing
an objective marking mechanism, one which will perhaps allow mechanical marking
of the test and is free of any biases such as markers’ prejudice, has become a high pri-
ority, particularly when we received offer from an Australian and a Canadian institu-
tion to replicate our experiment.

I present here an objective marking method which I hope will lead us to more pre-
cise and more finely -graduated predictions. This method is being trialed in at least
one experiment, and we hope that by the time of the conference we will be able to de-
scribe the results . This method also allows us to graduate levels of consistency. In this
paper I describe the method, its interpretation algorithms and speculate on its potential
advantages. With a bit of luck before September I shall be able to prepare a data
analysis report with Australian and/or Canadian data and present it to the conference..

Predictors of Success
Cross [2] and Mayer & Stalnaker [3] attempted to use occupational aptitude tests to

predict successful candidates for software industry employers. In [4] Cross admits
that they had not been very successful in predicting work adjustment in the computer
programming occupation through personality and interest measures . He had relied
rather heavily on aptitude tests, which also have not been entirely satisfactory. Mayer
& Stalnaker administered a variety of tests such as IBM's Programmer Aptitude Test
(PAT), the Wonderlic Personnel Test, and the test of Primary Mental Abilities (PMA)
on 580 U.S firms and 98 Canadian users. Surprisingly, in the follow-up survey very
little substantive information was obtained. McCoy, Burton [5] indicated good
mathematical ability as a success factor in beginners’ programming but this claim has
not been supported by any objective validation. In [6] Wilson & Shrock claimed three
predictive factors in order of importance: comfort level, math, and attribution to luck
for success/failure (based on students’ beliefs about their reasons for success or fail-
ure). The result was weak, hasn’t been validated for an individual factor and was bi-
ased to a number of subjectivities. Beise et al examine correlations among age, race
and sex as predictors of success in a first programming course, particularly for com-
puter science and information systems . Statistical analysis of their data indicates that
neither sex nor age is a good predictor of success in the first programming class [7].
Nathan Rountree et al claimed that the students most likely to succeed are those who
are expecting to get an ’A’ grade and are willing to say so. They rely on students’
conscious, believing that a student’s expectations may have at least as strong an asso-
ciation [8] [9]. Raymond Lister, et al [10] in a multi-national research project reported
that incapability of students’ in entry-level programming is lack of the ability to prob-

lem solving. The full initial report on this study is published as a technical report by
Fincher et al [11] and followed by more detail on each component of the study, giving
a full analysis of the data and justification of the conclusions by de Raadt, et al [12];
Simon, et al [13]; Tolhurst et al [14]. Simon [15] presents a broad overview of this
study’s aims, method and conclusion in a separate paper. He explains that there is no
accepted measure of programming aptitude therefore we cannot find correlations be-
tween performance on simple tasks and programming aptitude.

Psychology and Mental Models
Johnson-Laird was the first to point out that psychology is everywhere, even in

programming. His notion of ‘mental model’ lies behind this study, and most research
on learners [16]. Kessler and Anderson [17] and Mayer [18] all stressed on the sig-
nificance of mental models in learning. Benedict and du Boulay catalogued the diffi-
culties that novices experienced and highlighted some fairly distinctive views of
teaching programming using a mechanistic analogy [19]. Pennington looked at the
way that expert programmers understand problem domains and programs and their
bottom-up approach to build program [20]. Vikki Fix, at el differentiated mental mo d-
els of novices and experts [21] Perkins and others described novice learners’ problem-
solving strategies as “stoppers”, and “movers” [22]. Mayer described existing knowl-
edge as a "cognitive framework” and how new information is connected to existing
knowledge [23]. Michael V. Doran , David D. Langan used a cognitive-based ap-
proach and observed distinctive attributes of the learning process [24]. Dyck and
Mayer emphasised on clear understanding of the underlying virtual machine in nov-
ice’s learning process. [25]. Putnam et al studied impact of novices’ misconceptions
about the capabilities of computers[26]. Van Someren found that mechanical under-
standing of the way the language implementations is the key to success[27].

Misconceptions/Bugs/Common Mistakes
Soloway and Spohrer found that just a few types of bug cover almost all those that

occur in novices’ programs . They introduced “programming goals/subgoals/plans”
[28]. In [29] same authors studied novice’s background knowledge and the type of
their misconceptions. Adels on and Soloway reported that domain experience affects
novices’ ability to understand the sort of programming [30]. Jeffrey Bonar , Elliot So-
loway found that skill in natural language seemed to have a great deal of impact on
their conceptions and misconceptions of programming [31]. In [32] the same authors
explained impact of prior knowledge of one on novices’ attempts to program in a
second language. Shneiderman blamed the different uses of variables. [33]. Samurcay
looked at different ways variables are assigned values through assignment statements
and describes how how internal variables like initialisation and updating is harder for
novice programmers [34]. Benedict and Du Boulay [19] identified misconceptions
about variables based upon the analogies used in class, misconception of linking vari-
ables by assigning them to each other, misunderstanding of temporal scope of vari-
ables, forgetting about initializations. Perkins and Simmons talked about a miscon-
ception that students may have about the names of variables [35]. Adamzadeh, at el

look at debugging. They surprisingly found that less than half of the good program-
mers are good debuggers [36]

4. Preliminary Result
In [1] we reported on a preliminary study of 60 subjects. We summaris e that report

here. The subjects answered a questionnaire, with questions as illustrated in Fig. 1.
and Fig. 2. Each question gives a sample Java program, with two variable declarations
and one, two or three assignment instructions. The multiple -choice list is based on our
initial notion of the mental models that a novice might employ when answering the
question. We allowed for 8 models and in subjects’ responses we found evidence for
3 more .

1. Read the following
statements and tick the
box next to the correct an-
swer in the next column.

int a = 10;
int b = 20;
a = b;

The new values of a and b are:
0 a = 30 b = 0
0 a = 30 b = 20
0 a = 20 b = 0
0 a = 20 b = 20
0 a = 10 b = 10
0 a = 10 b = 20
0 a = 20 b = 10
0 a = 0 b = 10
0 If none, give the correct values:
 a = b =

Use this column for your
rough notes please

Fig. 1. Sample question with one assignment

Our intention was to discover the mental models that students used when thinking
about assignment instructions. We expected that novices would display a wide range

4. Read the following

statements and tick the box
next to the correct answer in
the next column.

int a = 10;
int b = 20;
a = b;
b = a;

 The new values of a and b are:

0 a = 0 b = 20
0 a = 20 b = 20
0 a = 10 b = 0
0 a = 10 b = 10
0 a = 30 b = 50
0 a = 0 b = 30
0 a = 40 b = 30
0 a = 30 b = 0
Any other values for a and b:
 a = b =
 a = b =
 a = b =

Use this column for your
rough notes please

Fig. 2. sample question with multiple assignments

of mental models, and that as time went on the ones who were successfully learning
to program would converge on a ‘correct’ mental model that corresponds to the way

that a Java program works. We anticipated that we would administer the questionnaire
early in the course and then again to the same subjects after the assignment and se-
quence topic had been taught. We wanted further to correlate the results of our ques-
tionnaire with the students’ marks in a final course test or examination.

In the first test we could hardly expect that students would choose the Java model
of assignment, but it rapidly became clear that despite their various choices of model,
in the first administration they divided into three clear groups:

• About a half used the same model for all, or almost all, the questions. This
was the consistent group.

• About a third used different models for different questions. This was the in-
consistent group.

• About a sixth refused to answer all or almost all of the questions. This was
the blank group.

 Fig. 3. first test versus official course result

 Fig. 4. first test result versus more stringent in-course exam

Consistency and success

0

2

4

6

8

10

12

14

16

E D C B A

Consistent

Inconsistent/Blank

0

1

2

3

4

5

6

7

8

0–9 10–19 20–29 30-39 40-49 50-59 60-69 70-79 80-89 90+

Inconsistent/Blank

Consistent

In the second administration most subjects became consistent and only one (a non-
attender) inconsistent. That is, students learnt to answer the questions in our test.

When we correlated the results of the first test with the official course results, we
found the result shown in Fig. 3. There is clearly some separation of populations – the
consistent hump is centred on B, the rest on C/D. But exam results are subject to
fudging, especially to make it easier for weak students to pass. When we correlated
the same test with the more stringent of the official in-course exams, we found the
distributions (Fig. 4): a wider separation of humps but a more complex picture, which
we hesitate at this stage to explore any further since the number of subjects is still
relatively small.

Model Description
 Answer/s

M1

The value of b is given to a and b changes its value to zero.
a <- b b <- 0

a = 20 b = 0
3rd Answer

M2

The value of b is given to a and b keeps its original value.
a <- b // b unchanged

a = 20 b = 20
4th Answer

M3

The value of a is given to b and a changes its value to zero.
b <- a a <- 0

a = 0 b = 10
8th Answer

M4

The value of a is given to b and a keeps its original value.
b <- a // a unchanged

a = 10 b = 10
5th Answer

M5

The sum of a and b is given to a, and b keeps its original
value. a <- (a + b) // b unchanged

a = 30 b = 20
2nd Answer

M6

The sum of a and b is given to a, and b changes its value to
zero. a <- (a + b) b <- 0

a = 30 b = 0
1st Answer

M7

The sum of a and b is given to b, and a keeps its original
value. b <- (a + b) // a unchanged

a = 10 b = 30
not predicted

M8

The sum of a and b is given to a, and b changes its value to
zero. B <- (a + b) a <- 0

a = 0 b = 30
not predicted

M9

a and b keep their original values.
a unchanged // b unchanged

a = 10 b = 20
6th Answer

M10

Assignment is a simple equation, and then all equal values of a
and b are acceptable.

a = 10 b = 10
And
a = 20 b = 20

M11

a and b swap their values simultaneously.
a <- b -> a gets b’s value

b <- a -> b gets a’s value

a = 20 b = 10
7th Answer

Fig. 5. Mental model of a java assignment a = b

5. Towards an objective analysis
The consistent / inconsistent / blank assignment which is the basis of our prelimi-

nary result was rather subjective. When we received offers from an Australian and a
Canadian institution to replicate our experiment, it became necessary to find a more
objective means of assessment. I have prepared three tools of assessment: a list of
mental models; an answer sheet, associating mental models with subjects’ answers;
and a mark sheet which displays a subject’s overall performance. All these materials
are available to view in my website [1].

Mental Models of Single Assignment
The models we observe are shown in Fig. 5. Model M10 (equality) overlaps with

models M2 (right-to-left copy) and M4 (left-to-right copy): the difference is detected
by noting multiple answers (see Fig. 6).

Mental Models of Multiple Assignment
Multiple assignment questions require a mental model of sequential / independent /
simultaneous execution, exemplified in.

Models Description

Example

Sequence

M1 applies sequentially through both statements:
L1) a < -b and b<-0 then a = 20 b = 0
L2) b < -a and a<-0 then b = 20 a = 0

Single answer
a = 0 b = 20

Independent

M1 I (M1+Independent)
Model is M1 that applies independently for each individual
line.
(L1)The value of b is given to a and b changes its value to
zero. L1) a <- b and b <- 0
(L2)The value of a is given to b and a changes its value to
zero. L2) b <- a and a <- 0

Multiple
answers
a = 20 b = 0
a = 0 b = 10

Spontaneous-
single

M1 Ss (M1+Simultaneous+single) Same as (M1
I) subjects only interested on Left -hand-side values of
statements and ignores the right-hand-side values.
The value of b in (L1) and value of a in (L2) are
ignored.

L1) a <- b and b <- ignores
L2) b <- a and a <- ignores

Single
Answer
a = 20 b = 10

Fig. 6. Additional mental models for a question with multiple assignments

Answer Sheet for Single Assignment Questions
In the answer sheet for Q1-Q3 (single assignment questions) there are ten single-

tick boxes (M1 to M11) and one double-tick box (M10). If the subject gives one tick,
we use a single-tick box. If they give two ticks in the positions specified, we use the
double-tick box. We can't interpret anything else (Fig. 7).

Question Answer/s Model/s

a = 20 b = 0 M1
a = 20 b = 20 M2
a = 0 b = 10 M3
a = 10 b = 10 M4
a = 30 b = 20 M5
a = 30 b = 0 M6
a = 10 b = 30 M7
a = 0 b = 30 M8
a = 10 b = 20 M9
a = 20 b = 10 M11

1.

int a = 10;
int b = 20;

a = b;

a = 20 b = 20
a = 10 b = 10

M10

Fig. 7. Answer sheet to single question

Answer Sheet for Multiple Assignment Questions
In multiple assignments (Q4 onwards) there is more complexity. The answer sheet of
question 4 demonstrates in Fig. 8. First some of the models are decorated with
I(Independent) or Ss(Simultaneous + single) that explained in Fig. 6. Independent (I)
models have very rarely been observed in novices’ papers while Ss(Simultaneous +
single) appears more frequently.

Question Answer/s Model/s

a = 0 b = 20 M1
a = 20 b = 10 M1 Ss / M2 Ss / M3

Ss / M4 Ss / M11 Ss
a = 20 b = 20 M2
a = 10 b = 0 M3
a = 10 b = 10 M4
a = 30 b = 50 M5
a = 30 b = 30 M5 Ss / M6 Ss / M7

Ss / M8 Ss
a = 0 b = 30 M6
a = 40 b = 30 M7
a = 30 b = 0 M8
a = 10 b = 20 M9 / M11
a = 20 b = 20
a = 10 b = 10

M10 / M2 I / M4 S

a = 20 b = 0
a = 0 b = 10

M1 I / M3 I

a = 30 b = 20
a = 10 b = 30

M5 I / M7 I

a = 30 b = 0
a = 0 b = 30

M6 I / M8 I

a = 10 b = 30
a = 30 b = 20

M7 I

4.

int a = 10;
int b = 20;

a = b;
b = a;

a = 20 b = 10
a = 20 b = 10

M11 I

Fig. 8. Answer sheet to multiple questions

Mark Sheet
We present here an objective marking method which we hope will lead us to more

precise and more finely-graduated predictions. This method is being trialled in at least
one experiment, and we hope that by the time of the conference we will be able to de-
scribe the results . The new mark sheet is illustrated in Fig.9. Each column here repre-
sents a single model, when joins to an adjacent column with a common logical per-
ception, creates more general and less specific concept of joined models.

Joining the models that we think are relatively close and carrying similar percep-
tion is still remains some subjectivity about our prejudice that how we interpret the
relatively close models. The way that I design the mark sheet I believed that M1 and
M2 models are relatively close while some on else could see the M1 and M3 models
comparatively closer. We should bear on mind that prejudice in some sense is a part
of us and we do what we believe. Also this study is still in its initial stage and has
long way to go and lots to discover. We tick the mark sheet’s according the detected
models in the answer sheet. For Q1-Q3 (single assignment questions) we tick the
relevant model and for multiple assignments (Q4 onwards) instead of just ticking the
corresponding model column on the mark sheet, we put the “I” or “Ss” next to the
tick. The logical explanation of these marks illustrated in Fig. 7. We didn't make
any use of that decoration in our analysis so far, but we thought somebody might do
one day. Second, some of the single-tick boxes give alternative models. In this case
we ticked all of the alternative models on the mark sheet. Then, when we've marked
all the questions, try to maximise the coherence of the subject's answers by inking in
on of the pencil ticks on each row, so as to maximise the numbers in the summary
row (labelled C0 on the mark sheet). Subjective marking is needed to decide what to
do with not-entirely-blank scripts. In that time we thought of having our first rule.

Rule 1: A consistent response to Q1- Q3 (all the ticks in a single column or in two
adjacent columns) can be considered non-blank, but if all we get is three ticks all
over the place and nothing else, it's blank. If we could get consistent responses to all
the double-assignments or the triple-assignments, then that was non-blank too.

Using joined columns; we can investigate four different levels of consistency in the
rows that represent by labels C0, C1, C2 and C3. Level C0 contents of the 11 single
models and demonstrates the highest rate of consistency while sliding toward level C3
leads to lower rate and poorer sign of consistency.

Level C1 contents of 4 columns that each is created by joining two adjacent mo d-
els, logically carried common concepts. M1 and M2, M3 and M4, M5 and M6, M7
and M8. Each of these new columns logically approved Assignment, assigning value
to the left or to the right. Level C2 contents 2 columns that each is created by joining 4
adjacent models, logically carried common concepts. M1 and M2 and M3 and M4,
M5 and M6 and M7 and M8. Each of these new columns logically approved Assign-
ment, assigning value to the left and to the right. Level C3 contents of a single column
that created by joining 8 other models, logically carried common concepts. M1 and
M2 and M3 and M4 and M5 and M6 and M7 and M8. The new column logically ap-
proved assignment.

Fig. 9. Mark Sheet

Interpretation of mark sheet
Two different algorithms have been considered to interpret the mark sheet and

make an objective decision on subjects’ level of consistency. In the first method in
order to identify the C level we look at the pattern of subject’s adapted models (ticks)
in the mark sheet. Fig. 11 illustrates the tree structure of this algorithm. According to
this instruction the consistency level in the sample illustrated in Fig. 10 is C3, as 5
different models (M1 to M5) have been used by subject that leads the tree to it’s forth
level (C3).

In the second method we use mode analysis of the numeric figures accumulated in
C0 to C3 (Fig.11). In each C row, the mode of the accumulated figures represents the
numeric value for graduate level of consistency. Mode of figures in level C0 (0, 1, 3,
5) is 5 and in C1 (0, 1, 3, 8) is 8. This increases in C2 and C3 to 11 and 12 respec-
tively. This is a typical scenario that we should expect to happen during the marking
more frequently. While the mode value in both C2 and C3 is relatively high, choosing
one or another can create subjectivity that should be clarified by an explicit rule. I in-
troduced the following protocol to keep this decision process objective.

Assignment
No
ef-
fect

Equa
l sign

Swap
val-
ues

Assign-
to-left

Assign-
to-right

Add-
Assign-to-

left

Add-
Assign-to-

right
Q

M1
Ss
I

M2
Ss
I

M3
Ss
I

M4
Ss
I

M5
Ss
I

M6
Ss
I

M7
Ss
I

M8
Ss /
I

M9
Ss
I

M10
Ss
I

M11
Ss
I

Remarks

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1
C0 5 4 2 0 1 0 0 0 0 0 0
C1 9 2 1 0
C2 11 1
C3 12

0

Fig. 10. Tree structure of models in mark sheet

Rule 2: Any C level can be considered as subject’s level of consistency if:
Mode value in C level >= abs (no. of answered questions * 80%) and
no. of answered questions >= abs (no. of questions * 80%)

According to the above rule the subject in the sample is consistent in C1 level. This

method creates around 20% flexibility in C level of subject’s that answered 80% of
the questionnaire, while in tree method there isn’t any space for subject’s mistakes.
These methods are still debatable and open to new ideas.

6. Further work
We are looking for receiving fresh data in our new mark sheet from Australia and

Canada. Surely, the fresh data analyses, will tell us more about joined columns and in-
terpretation algorithms introduced in this mark sheet. The result can effect our instru-
ments in the series of test that will be administered widely at the beginning of the next
academic year in Middlesex University with more than 250 participations in introduc-
tory to programming course. Any possible of subjectivity in marking method will be
monitored closely. While a mechanical marking system has always reckoned as an
ideal solution but never been materialised, design and implantation a software to read
the mark sheet and evaluates the subject’s C level is desirable.

7. Conclusion
The result of our preliminary study demonstrated that our categorisation method is

more likely to be used as a reasonable predictor of success in introductory program-
ming. There were few issues of subjectivity in interpretation of our result that I have
identified and attempted to clarify. I can say that the test instruments now are highly
objectified and prepared for the next experimental phase of this study. This study also
suggests more exploration of other possible tools and instruments to capture the same
categorisation, in order to examine success prediction. I emphasis on clear under-
standing of novice’s mental models that is a key element to build empirical tools to
measure programming ability.

References

1. Dehnadi, S. and R. Bornat. The camel has two humps. in Little PPIG 2006. Coventry,

UK: http://www.cs.mdx.ac.uk/research/PhDArea/saeed/.
2. Cross, E. The behavioral styles of computer programmers. in Proc 8th Annual

SIGCPR Conference. 1970. Maryland, WA, USA.
3. Mayer, D.B. and A.W. Stalnaker. Selection and Evaluation of Computer Personnel –

the Research History of SIG/CPR. in Proc 1968 23rd ACM National Conference,.
1968. Las Vegas, NV, USA.

4. Cross, E., M. , Behavioral styles of computer programmers - revisited, in Proceed-
ings of the ninth annual SIGCPR conference. 1971, ACM Press: Illinois, United
States.

5. McCoy, L.P. and J.K. Burton, The Relationship of Computer Programming and
Mathematics in Secondary Students. Computers in the Schools, 1988. 4(3/4): p. 159-
166.

6. Wilson, B.C. and S. Shrock, Contributing to success in an introductory computer sci-
ence course: a study of twelve factors, in Proceedings of the thirty-second SIGCSE
technical symposium on Computer Science Education. 2001, ACM Press: Charlotte,
North Carolina, United States.

7. Besie, C., et al., An Examination of Age, Race, and Sex as Predictors of Success in
the First Programming Course. Journal of Informatics Education Research, 2003. 5:
p. 51-64.

8. Rountree, N., et al., Interacting factors that predict success and failure in a CS1
course, in Working group reports from ITiCSE on Innovation and technology in com-
puter science education. 2004, ACM Press: Leeds, United Kingdom.

9. Rountree, N., et al. Predictors For success in studying CS. in Proceedings of the 35th
SIGCSE technical symposium on Computer science education. 2004. Norfolk, Vir-
ginia, USA: ACM Press.

10. Lister, R., et al., A Multi-National Study of Reading and Tracing Skills in Novice
Programmers. 2004.

11. Fincher, S., et al., Programmed to succeed?: a multi-national, multiinstitutional study
of introductory programming courses , in Computing Laboratory Technical Report 1-
05, C. University of Kent, UK., Editor. 2005.

12. de Raadt, M., et al., Approaches to learning in computer programming students and
their effect on success. Higher Education in a changing world: Research and Devel-
opment in Higher Education, 2005. 28: p. 407-414.

13. Simon, et al. The ability to articulate strategy as a predictor of programming skill. in
Proc Eighth Australasian Computing Education Conference,. 2006. Hobart, Austra-
lia.

14. Tolhurst, D., et al. Do map-drawing styles of novice programmers predict success in
programming? A multi-national,multi-institutional study. in Proc Eighth Australasian
Computing Education Conference. 2006. Hobart, Australia.

15. Simon, et al., Predictors of success in a first programming course. Eighth Austral-
asian Computing Education Conference, Hobart, 2006.

16. Johnson-Laird, P.N. and W. P.C., Thinking Reading in Cognitive Science. First ed.
1977: Cambridge University Press.

17. Kessler, C.M. and J.R. Anderson, Learning flow of control: Recursive and iterative
procedures. Human-Computer Interaction, 1986. 2: p. 135-166.

18. Mayer, R.E., Thinking, Problem Solving, Cognition. 2 ed. 1992, New York: W. H.
Freeman and Company Second Edition ISBN 0716722151.

19. Benedict, J.H. and B. Du Boulay, Some difficulties of learning to program. Journal of
Educational Computing Research, 1986. 2(1): p. pp. 57-73.

20. Pennington, N., Stimulus structures and mental representations in expert comprehen-
sion of computer programs. Cognitive psychology, 1987. 19: p. 295-341.

21. Fix, V., S. Wiedenbeck, and S. Jean, Mental representations of programs by novices
and experts, in Proceedings of the SIGCHI conference on Human factors in comput-
ing systems. 1993, ACM Press: Amsterdam, The Netherlands.

22. Perkins, D.N., et al., Conditions of Learning in Novice Programmers. Studying the
Novice Programmer. E. Soloway and J. C. Spohrer. Publishers: Hillsdale, NJ, Law-
rence Erlbaum Associates, 1989: p. 261-279.

23. Mayer, R.E., The psychology of how novices learn computer programming. In E. So-
loway and J.C. Spohrer, editors, Studying the Novice Programmer. Publishers: Law-
rence Erlbaum Associates, Hillsdale, 1989.

24. Doran, M.V. and D.D. Langan, A Cognitive-Based Approach to the implementation
of the introductory Computer Science Courses: lesson learned. Proceeding of the
twenty-six SIGCSE technical symposium on Computer Science Education, 1995.
1995: p. 218-222.

25. Dyck Jennifer, L. and E. Mayer Richard, BASIC versus natural language: is there
one underlying comprehension process?, in Proceedings of the SIGCHI conference
on Human factors in computing systems. 1985, ACM Press: San Francisco, Califor-
nia, United States.

26. Putnam, R.T., et al., A Summary of Misconceptions of High School Basic Program-
mers. Journal of Educational Computing Research, 1986. 2(4).

27. Someren, V. and W. Maarten, What's Wrong? Understanding beginners' problems
with Prolog. Instructional Science, 1990. 19(4/5): p. pp 256-282.

28. Spohrer, J., C. and E. Soloway, Novice mistakes: are the folk wisdoms correct?
Commun. ACM, 1986. 29(7): p. 624-632.

29. Soloway, E.a.S., Some Difficulties of Learning to Program. In book studying the Nov-
ice Programmer. Publishers : Lawrence Erlbaum Associates 1989, 1989: p. pp 283 -
299.

30. Adelson, B. and E. Soloway, The role of domain experience in software design. IEEE
Trans. Softw. Eng., 1985. 11(11): p. 1351-1360.

31. Bonar, J. and E. Soloway, Uncovering principles of novice programming, in Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages. 1983, ACM Press: Austin, Texas.

32. Bonar, J. and E. Soloway, Pre-Programming Knowledge: A Major Source of Miscon-
ceptions in Novice Programmers. Human-Computer Interaction, and fall, 1985. 1(2):
p. 133-161.

33. Shneiderman, B., When Children Learn Programming: Antecedents, Concepts and
Outcomes. The Computing Teacher , 1985. 12(5): p. 14-17.

34. Samurcay, R., The Concept of Variable in Programming: Its Meaning and Use in
Problem-Solving by Novice Programmers. Education Studies in Mathematics, 1985.
16(2): p. 143-161.

35. Perkins, D.N. and R. Simmons, Patterns for Misunderstanding: An Integrative Model
for Science, Math, and Programming. Review of Educational Research, 1988. 58(3):
p. 303-326.

36. Ahmadzadeh, M., D. Elliman, and C. Higgins, An analysis of patterns of debugging
among novice computer science students , in Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education. 2005, ACM
Press.

