
Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

An Overview of DSLs

Tony Clark

School of Engineering and Information Sciences University of Middlesex

November 24, 2010

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

Outline

1 Domain Specific Languages
What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

2 Two Types of Language Engineering
λ− Calculus
Modelling

3 Technologies for Language Engineering
The XMF Family
Language Factories

4 DSM-ing as Theory Building

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

What Are Domain Specific Languages?

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

Types of Domain Specific Languages

Internal A host language is extended with sub-languages that
are used for a specific aspect of the application. The
host language is the glue.

External An application consists of modules for different
aspects. Each module is written in a different
language.

Textual A programming language or a domain specific
configuration file.

Graphical Using icons and graphical layout to represent ’initial’
elements.

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

An Example DSL: Domain (due to Martin Fowler)

SVCLFOWLER 10101MS0120050313

SVCLHOHPE 10201DX0320050315

SVCLTWO x10301MRP220050329

USGE10301TWO x50214..7050329

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

An Example DSL: A Framework

public void ConfigCallReader(Framework f) {

f.registerStrategy(ConfigureServiceCall());

f.registerStrategy(ConfigureUsage());

}

private ReaderStrategy ConfigureServiceCall() {

ReaderStrategy r =

new ReaderStrategy("SVCL",ServiceCall);

r.addFieldExtractor(4,18,"CustomerName"));

r.addFieldExtractor(19,23,"CustomerID"));

r.addFieldExtractor(24,27,"CalltypeCode"));

r.addFieldExtractor(28,35,"DataOfCallString"));

return r;

}

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

An Example DSL: Language To Configure the Framework

@Reader CallReader

map(SVCL,ServiceCall)

4-18:CustomerName

19-23:CustomerID

24-27:CallTypeCode

28-35:DataOfCallString

end

map(USGE,Usage)

4-8:CustomerID

9-22:CustomerName

30-30:Cycle

31-36:ReadDate

end

do

ServiceCall

Usage

end
Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

Frameworks: Inversion of Control

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

What are DSLs?
An Example DSL
A Word about Frameworks
General Properties

Benefits and Drawbacks

Benefits:

Speed of application development.

Domain specific tools: quality.

Ease of maintenance.

Drawbacks:

DSL development effort.

Lack of tool support.

DSL development expertise.

DSL maintenence expertise.

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

λ− Calculus: A Terminal Candidate

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

λ− Calculus Definition

E ::= V variables

| fun(V) E functions

| E E applications

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Simple DSL

class Circle(x,y,r) {

meth xin(x’) { ret [x-r,x+r].contains(x’); }

meth yin(y’) { ret [y-r,y+r].contains(y’); }

meth in(x’,y’) { ret self.xin(x’) & self.yin(y’); }

}

class Doughnut(x,y,r,r’) extends Circle {

var c = new Circle(x,y,r’);

meth xin(x’) { ret super.xin(x’) & !c.xin(x’); }

meth yin(y’) { ret super.yin(y’) & !c.yin(y’); }

}

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

What Do Run-Time Values Look Like?

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

λ− Calculus Extensions: Definitions

E ::= V variables

| fun(V) E functions

| E E applications

| let D top-level definitions

D ::= V = E value definitions

| V(V) = E function definitions

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Translation: Class Definitions

class Circle(x,y,r) { ... }

class Doughnut(x,y,r,r’) ... { ... }

let Circle(x,y,r) = fun(self) ...

let Doughnut(x,y,r,r’) = fun(self) ...

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

λ− Calculus Extensions: Records

E ::= V variables

| fun(V) E functions

| E E applications

| let D top-level definitions

| let D in E local definitions

| { D* } records

| E + E addition (overloaded)

| E.V field ref

D ::= V = E value definitions

| V(V) = E function definitions

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Translation: Class Bodies

let Circle(x,y,r) = fun(self) {

xin(x’) = ...;

yin(y’) = ...;

in(x’,y’) = ...

}

let Doughnut(x,y,r,r’) = fun(self)

let super = Circle(x,y,r)(self)

in let c = ...

in super + {

xin(x’) = ...

yin(y’) = ...

}

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

λ− Calculus Extensions: Recursion

E ::= V variables

| fun(V) E functions

| E E applications

| let D top-level definitions

| let D in E local definitions

| { D* } records

| E + E addition (overloaded)

| E.V field ref

| Y E fixed point: (Y(E))(E’) = E’

D ::= V = E value definitions

| V(V) = E function definitions

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Translation: Method Bodies

let Circle(x,y,r) = fun(self) {

xin(x’) = [x-r,r+x].contains(x’);

yin(y’) = [y-r,r+y].contains(y’);

in(x’,y’) = (self.xin)(x’) & (self.yin)(y’)

}

let Doughnut(x,y,r,’) = fun(self)

let super = Circle(x,y,r)(self)

in let c = Y(Circle(x,y,r’))

in super + {

xin(x’) = (super.xin)(x’) & !c.xin(x’)

yin(y’) = (super.yin)(y’) & !c.yin(y’)

}

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

λ-calculus: Conclusion

Design a domain specific language (e.g. classes, methods etc)

Translate it onto the basic λ-calculus.

Invent:

syntax extensions for λ (e.g. records, definitions, Y).
evaluation extensions for λ (not shown, but SECD is a good
place to start).

Each to implement directly or use a blueprint for translation.

To start: write an interpreter for λ and extend it.

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Objects: A Terminal Candidate

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Modelling Languages

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

A Simple Modelling Language: Abstract Syntax

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

A Simple Modelling Language: Semantic Domain

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

A Simple Modelling Language: Concrete Syntax

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Semantic Mapping

context Class inv instance_has_all_slots:

attributes.name = instances.slots.name

context Class inv instance_satisfies_constraints:

constraints->forAll(c |

instances->forAll(o | c.satisfiedBy(o)))

context Class inv instances_conform_to_super:

parents->forAll(c |

c.instances->includesAll(instances))

context Object inv slot_values_are_type_correct:

slots->forAll(s |

s.value oclIsTypeOf(Object) implies

s.value.type.instance->includes(s.value)

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Syntax Mapping

context Class inv display_name:

classBox.className.text.text = name

context ClassBox inv name_at_top:

className.x = x and

className.y = y and

className.width = width

context ClassName min_height:

height >= text.getHeight()

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

A Language Extension: Default Instances

context ClassWithDefault inv default_is_instance:

instances->includes(default)

context ClassWithDefault inv default_well_formed:

slotDescriptor.name->subSet(default.slots.name)

context ClassWithDefault inv defaul_slots_OK:

slotDescriptor->forAll(d |

default.slots->exists(s |

s.name = d.name and s.value = d.value))
Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

λ − Calculus
Modelling

Object Modelling: Conclusion

Design a language in terms of models for abstract syntax,
concrete syntax amd semantic domain.

Define mappings between them.

Know about:

class-models (modelling languages often extend this).
object-models (a universal semantic domain).

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

XMF

XMF language definition features:

Reflexive: Meta-Obejct Protocol (MOP)

Language definition features: internal and external languages.

Access to abstract syntax.

Libraries for language processing.

XMF-Mosaic:

Modelling IDE built using XMF.

Graphical languages modelled using meta-models.

Tool Models.

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

XMF Example: State Machine Syntax Class

@Class StateMachine

@Grammar extends OCL.grammar

StateMachine ::= ’(’ n=Name ’)’ es=Exp* {

[| StateMachine(<n>,<es>) |] }.

end

end

@Class Transition

@Grammar extends OCL.grammar

Transition ::= ’(’ sn=Name ’,’ tn=Name ’)’ {

[| Transition(<sn>,<tn>) |] }.

end

end

@Class State

@Grammar extends OCL.grammar

State ::= n=Name { [| State(<n>) |] }.

end

end
Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

XMF Example: State Machine Use

@Class StateMachineGenerator

@Attribute counter:Integer end

@Operation mkStateMachine()

self.counter := counter + 1;

@StateMachine(Off)

@State Off end

@State On end

@Transition(On,Off) end

@Transition(Off,On) end

end

end

end

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

Language Factories

A component-based approach to the definition and
construction of languages, tools.

Language Factories aim to support:

Reuse of common language components.
Agile language engineering.
Language refactoring.
Language analysis including impact analysis.

Product Lines for Languages

Users:

Language Factory Developers
Language Factory Users
Application Developers
Application Users

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

A Language Factory

lang:

ast: ...

grammar: ...

semantics eval(env): ...

semantics java: ...

constraints: ...

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

Example Language

component Landing_gear(height:int, speed:float) {

stm {

state Moving_Up

state Moving_Down

state Deployed

state Stowed

transition up from Deployed to Moving_Up

height_change[height>500ft and speed>100kn/s]

transition down from Stowed to Moving_Down

deploy

}

}

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

XPL: A Calculus for DSL Analysis

E ::= V variables

| fun(V) E functions

| E E applications

| { R* } grammars

| intern E { S } language use

R ::= ... syntax synthesizers

S ::= ... strings

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

Other Technologies

UML and Profiles

EMF, GMF

XText

Converge

MetaEdit+

View based language environments.

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

The XMF Family
Language Factories

Research Problems

Modularity and reuse.

Text-based systems and parsing.

Type systems.

Tooling and complexity.

Interoperability.

Code generation vs models at run-time.

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

Peter Naur: Programming as Theory Building

Naur’s Thesis:

Programmers design theories then map them to
implementations.

Theories allow questions to be asked (wider scope than a run).

The theories are the things that capture the domain.

Don’t change the program directly, change the theory and
calculate the impact.

Actually multiple theories for different viewpoints.

The initial theory is unattainable, but can be incrementally
approximated.

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

DSM-ing as Theory Building

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

DSL Architecture

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

Theory Modelling

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

Example: Influencing Models

Tony Clark An Overview of DSLs

Domain Specific Languages
Two Types of Language Engineering

Technologies for Language Engineering
DSM-ing as Theory Building

Conclusion

Domain Specific activities are about theory building and
theory transformation.

To be effective you need to know your terminal theory well.

Terminal theories known to be effective (and universal):

λ-calculus
object models.

Other, less universal, targets are just as effective (e.g. Java).

Practical issues:

really translate (code generation)
simulate the transformation (interpret the model)

General problems:

tools to support the process.
up-front resource and expertise.

Tony Clark An Overview of DSLs

	Domain Specific Languages
	What are DSLs?
	An Example DSL
	A Word about Frameworks
	General Properties

	Two Types of Language Engineering
	-Calculus
	Modelling

	Technologies for Language Engineering
	The XMF Family
	Language Factories

	DSM-ing as Theory Building

