
Introduction to Developing Domain Specific
Languages with XMF

Tony Clark

Ceteva Ltd (www.ceteva.com)

TOOLS Europe 2008

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Outline

1 Domain Specific Languages: technologies; approaches.
2 XMF
3 Case Study
4 Specification
5 Implementation: syntax and semantics.
6 Variations:

1 Static Checking
2 Dynamic Checking
3 Arbitrary Expressions (guards)
4 A Control Language
5 Parameters
6 XML Generation
7 Code Generation

7 Conclusion

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Domain Specific Languages

Languages are the essential technology of Software
Engineering.
One size fits all - problems:

Large and complex (Ada, UML)
Lowest common denominator (UML)
Not accessible to non-experts.

Domain Specific Languages (DSLs):

Direct representation of domain concepts.
Reduces the ’representation chasm’.
Increased quality through domain specific checking.
Increased utility through domain specific processing.
(Potentially) accessible to non-experts.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Types of DSL

Tony Clark Introduction to Developing Domain Specific Languages with XMF

DSL Technologies

UML and Model Driven Architecture (MDA).
Eclipse, EMF and GMF
Visual Studio (Software Factories).
MetaEdit+
OpenArchitectureWare
XMF, XMF-Mosaic
Ruby, Java
Roll-your-own.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Executable Textual DSLs: A Method

Process
1 Model input and output.
2 Derive abstract program

model via engine-as-relation.
3 Flatten relationship to produce

step-by-step engine.
4 Introduce any implementation

and efficiency features.
5 Design concrete

representation for program.
6 Proceed with:

1 Direct implementation.
2 Export to external engine.
3 Code generation.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

XMF

An Engine for Model/Language Driven Development.
Consists of:

VM in Java.
XCore (equivalent of MOF).
OCL (90% complete).
XOCL (compiles to VM in terms of XCore).
Grammars for LOP.
Features: XML generators; XML parsers; Model Walkers;
Daemons; Java interface; Ecore interface; Code
Generation.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

XCore

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Case Study

Example taken from Martin Fowler.
Presentation at JAOO 06:
www.infoq.com/presentations/domain-specific-languages

Simple problem: process raw customer, product and
transaction data.
Data format changes regularly.
Many different formats in raw input.
Fowler argues raw code, libraries and frameworks are not
optimal.
Use a DSL approach.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Example

Input Data

CSTM001Alan Brown
PROD001100.99
CSTM002Alan Smith
PROD002001.99
TRAN001001999
TRAN001001000

Result Data
Customer[
id=1,
name=Alan Brown]

Product[
id=1,
price=100.99]

Customer[
id=2,
name=Alan Smith]

Product[
id=2,
price=1.99]

LegalTransaction[
custId=1,
prodId=1,
amount=999]

NullTransaction[
custId=1,
prodId=1,
amount=0]

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Specification: Approach

Need to define a DSL that specifies how to turn raw data
into records.
An executable DSL can be defined as a 3-way relationship.
Set up a representation for the 2 knowns.
Use relationship definitions to force a representation for the
unknown.
Analyse relationship for a suitable machine definition.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Specification: Representation

Sequences:
empty: []
elements: [e1, . . .]
concatenation: s1 + s2

Sets:
empty: ∅
elements: {e1, . . .}
union: s1 ∪ s2

Input lines:
t(s), example: PROD(001100.99).
input is sequence of lines.

Strings: s[i , j], example: 001100.99[0,2] is 001.
Tables:

sets of maplets k 7→ v .
look-up in table t by t(k).

Records: r(F) type r and maplets F .

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Specification: Inducing the Program

Specification is a relationship: input , program ` result
Using representations for input and result, induce the
program.
Typical requirement:

PROD001100.99, ??? ` Product({id 7→ 001, cost 7→ 100.99})

What are the variable parts?
Need program to map:

input tag to record type
specific fields of input string
name each field.

Therefore, we might have:

??? = Map(PROD 7→ Product , id 7→ [0, 2], cost 7→ [3, 8])

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Specification: Definition

Specify execution for a singleton mapping:

[t(s)] + i ,Σ, [n] ` [r(
⋃

f 7→[i,j]∈F

f 7→ s[i , j])], i

when Σ(n) = Map(t 7→ r , F)

Specify execution for the degenerate case:

i ,Σ, [] ` [], i

Specify execution for a sequence of mappings:

i1,Σ, p1 ` r1, i2
i2,Σ, p2 ` r2, i3

i1,Σ, p1 + p2 ` i3

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Flattening

perform([t(s)] + i , [n] + p) = [r(
⋃

f 7→[i,j]∈F

f 7→ s[i , j])] + perform(i , p)

when Σ(n) = Map(t 7→ r , F)

perform([], []) = []

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Abstract Syntax and semantic domain

EMF can be used with XMF.
Generate the EMF model.
Input model into XMF.
Export model as XMF code.
XMF export to EMF too.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Working with EMF

[1] XMF> importer := Import::Ecore::EcoreImporter();
<Root>
[1] XMF> importer.importFile("@reader1/model",

"reader.ecore");
<Package readers>
[1] XMF> importer.initAll();
true
[1] XMF> importer.deployAll("c:/tmp");
true
[1] XMF>

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Deploy EMF to XMF
parserImport XOCL;
import XOCL;
import readers;
context ! readers
@Class Reader extends Syntax, Container, NamedElement
@Attribute maps : Seq(Map) (?,!,+,-) end
// A named-element uses symbols as names. The
// easy way to force a symbol is to use setName...
@Constructor(name) !

self.setName(name)
end
// A container must implement add and contents.
// We will just be adding Maps to a reader...
@Operation add(e:Element)

if e.isKindOf(Map)
then self.addToMaps(e)
else super(e)
end

end
// Return the contents of the container...
@Operation contents()

maps
end

end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

XMF Models

An XMF program is a collection of definitions in files.
Definitions are named elements added to a name-space.
Definitions may be packages, classes, operations etc.
Typical example:

context Root
@Class C
@Attribute a : String end

end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Manifests

Programs are built and loaded via manifests.
A Manifest lists the files and sub-program units.
A manifest has the following structure:

@Manifest ManifestName
@File file end
@Ref subModule end

do
someOptionalAction

end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Records Manifest

parserImport XOCL;
parserImport Manifests;
@Manifest readers
p = @File readers end
@File Field end
@File Map end
@File Reader end

do p
end;

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Concrete Syntax

XMF provides a grammar language XBNF.
Classes can define a grammar to become a syntax-class.
Reference the class via @ in programs.
parserImport is used to import all syntax-classes in a
name-space.
DEMO: simple expression language

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Expressions Grammar

context Root
@Class MyLang
@Grammar
MyLang ::=

a = Atom (Tail^(a) | { a }).
Tail(left) ::=

’+’ right = MyLang { left + right }
| ’*’ right = MyLang { left * right }.
Atom ::= Int | ’(’ a = MyLang ’)’ { a }.

end
end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Expressions Parsing

MyLang.grammar.parseString("1");
MyLang.grammar.parseString("1 + 2");
MyLang.grammar.parseString("1 + 2 * 5");
MyLang.grammar.parseString("(1 + 2) * 5");

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Performable Syntax

XMF execution process.
Parser is hi-jacked using
@.
DEMO: modify MyLang to
produce syntax.

Pretend to use concrete
syntax using quasi-quotes.
DEMO: modify MyLang to
use quasi-quotes.

Protect abstract syntax
using XOCL::Syntax
DEMO: implement own
AST and perform.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Expressions Parser Modification (1)

import OCL;
context Root
@Class MyLang

@Grammar
MyLang ::= e = Exp ’end’ { e }.
Exp ::=

a = Atom (Tail^(a) | { a }).
Tail(left) ::=

’+’ right = Exp { BinExp(left,"+",right) }
| ’*’ right = Exp { BinExp(left,"*",right) }.
Atom ::=

i = Int { IntExp(i) }
| v = Name { Var(v) }
| ’(’ a = Exp ’)’ { a }.

end
end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Expressions Parser Modification (2)

context Root
@Class MyLang

@Grammar
MyLang ::= e = Exp ’end’ { e }.
Exp ::=

a = Atom (Tail^(a) | { a }).
Tail(left) ::=

’+’ right = Exp { [| <left> + <right> |] }
| ’*’ right = Exp { [| <left> * <right> |] }.
Atom ::=

i = Int { i.lift() }
| v = Name { Var(v) }
| ’(’ a = Exp ’)’ { a }.

end
end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Expressions Abstract Syntax

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Expressions Parser Modification (3)

import exps;
context Root
@Class MyLang

@Grammar
MyLang ::= e = Exp ’end’ { e }.
Exp ::=

a = Atom (Tail^(a) | { a }).
Tail(left) ::=

’+’ right = Exp { BinExp(left,"+",right) }
| ’*’ right = Exp { BinExp(left,"*",right) }.
Atom ::=

i = Int { exps::IntExp(i) }
| ’(’ a = Exp ’)’ { a }.

end
end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Writing an Interpreter

context Exp
@AbstractOp perform():Integer end

context BinExp
@Operation perform():Integer

@Case op of
"+" do

left.perform() + right.perform()
end
"*" do
left.perform() * right.perform()

end
end

end
context IntExp
@Operation perform()

value
end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Case Study: Concrete Syntax

Look at the structure of the abstract syntax.
What are the containership relationships?
What needs to be named?
Single or multiple language features?
What ’noise’ will make it easy to read?
Will it be owned by its containing structure?
How does the enclosing binding context fit in?
What is being defined and what is being used?

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Reader Concrete Syntax

@Reader X
@Map Customer(CSTM -> Customer)

id = [4,6]
name = [7,20]

end
@Map Product(PROD -> Product)

id = [4,6]
price = [7,12]

end
@Map Transaction(TRAN -> Transaction)

custId = [4,6]
prodId = [7,9]
amount = [10,12]

end
end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Reader Grammar

parserImport XOCL;
parserImport Parser::BNF;
context Reader

@Grammar extends OCL::OCL.grammar

// The reader grammar inherits from the OCL grammar to
// reference Exp. This allows the @Map ... end language
// construct to be nested inside a @Reader ... end
// construct.

// A reader language construct just parses the contents
//and add them to a newly created reader object...

Reader ::= n = Name maps = Exp* ’end’ {
maps->iterate(m r = Reader(n) |

r.add(m))
}.

end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Map Grammar

parserImport XOCL;
parserImport Parser::BNF;
context Map

@Grammar

Map ::= n = Name ’(’ t = Name ’->’ r = Name ’)’
fields = Field* ’end’ {
fields->iterate(f m = Map(n,t,r) |

m.add(f))
}.

Field ::= n = Name ’=’ ’[’ s = Int ’,’ e = Int ’]’ {
Field(n,s,e)

}.

end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Execution Engine

Execution engine must implement the specification.

Input text is provided by a Data class.

Singleton rule is implemented by Map::process and
Field::process.

Sequence of maps is implemented by
Reader::processMaps.

Visit Reader aspect

Derive input from a file using Reader::processFile.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Variation 1: Static Checking

Programs that are syntactically correct may have semantic
errors.
Two types of semantic error:

static
dynamic

Example static errors: Map(t 7→ r , f 7→ [3, 1], f 7→ [4, 10])

Specifications: ∀Map(t 7→ r , F) ∈ Σ:

∀f 7→ [i , j] ∈ F • i < j
∀f1 7→ [i , j], f2 7→ [m, n] ∈ F • f1 = f2 =⇒ i = m ∧ j = n

Tony Clark Introduction to Developing Domain Specific Languages with XMF

XMF Constraints

Static checks are implemented as XMF constraints.
What can you do with XMF constraints?

Check an object satisfies some conditions.
Produce a test report.
Produce an HTML report.

Basic structure:

context SomeClass
@Constraint Name
OCLExpression

fail StringExpression
end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

OCL in XMF

OCL is an OMG standard. XMF implements most of OCL.
OCL consists of:

basic expressions.
iteration: collect; select; reject; iterate.
quantification: forAll; exists

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Case Study Constraints

Define constraints as an aspect on model.
Use X.checkConstraints() to produce a constraint
report.
Check satisfaction using
ConstraintReport::satisfied.
Get text report using
ConstraintReport::reportString()

Get HTML report using
ConstraintReport::writeHTML(path:String)

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Variation 2: Dynamic Checking

Extend the language with typed fields:

[t(s)] + i ,Σ, [n] ` [r(
⋃

f 7→τ [i,j]∈F

f 7→ τ(s[i , j]))], i

when Σ(n) = Map(t 7→ r , F)

Rest of specification/flattening is same.
Type errors occur when τ(s)is not defined.
Changes to DSL:

Modify Field to include type.
Modify Field grammar to parse type.
Modify engine to perform conversion.
Throw exception when error occurs.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Exceptions

try-catch in XMF
Exceptions package with some examples.
Defining your own.
What happens when you throw them.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Checking Types

Modify:

Data to perform field conversion.
Field to have a new component - type.
Map language construct.

DEMO.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Variation 3: Adding Guards

Specification:

[t(s)] + i ,Σ, [n] ` [r(e)], i

when Σ(n) = Map(t 7→ r , F , g)

e =
⋃

f 7→τ [i,j]∈F

f 7→ τ(s[i , j])

g(e)

Modifications to engine:

Need a language for boolean expressions.
Can now have multiple mappings with the same name.
Distinguish between mappings based on guard satisfaction.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Expressions and Evaluation

XCore::Performable interface:

compile(env:Compiler::Env,frame:Integer,isLast:Boolean,saveSource:Boolean):Seq(Instr)
eval(target,env:Seq(Binding),imports:Seq(NameSpace))
FV():Set(String)

Environments represented as sequences of pairs.

Use Exp from OCL grammar to embed expressions in
languages.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Case Study Modification

Add guards to Map language construct.
Implement a Map::satisfied operation.
Use Map::satisfied to select the correct mapping in Reader.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Variation 4: A Control Feature

Programs often consist of definitions and some control.
We have mapping definitions.
Our control is currently a sequence of mapping names.
More useful to allow:

Optional formats in input.
Arbitrary repetition.
Sequences of control.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Specification: Optional Input Formats

Want to achieve the following for the same program p:

[t(s)] + i ,Σ, p ` [r(e)], i

[t ′(s′)] + i ,Σ, p ` [r ′(e′)], i

Generalize to:

i1 + i2,Σ, p ` r , i2

i ′1 + i2,Σ, p ` r ′, i2

Design a construct that contains two alternative controls.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Specification: Repetition

Want to achieve a sequence of arbitrary length:

[t(s)] + i ,Σ, p ` [r(e)], i

[t(s), t(s′)] + i ,Σ, p ` [r(e), r(e′)], i

[t(s), t(s′), . . .] + i ,Σ, p ` [r(e), r(e′), . . .], i

Degenerate case:

[] + i ,Σ, p ` [], i

Design a construct that consumes sequences of input.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Specification

Specify execution for a singleton mapping:

[t(s)] + i ,Σ, n ` [r(e)], i when . . . as before

Specify execution for the degenerate case:

i ,Σ, ε ` [], i

Specify execution for a sequence of mappings:

i1,Σ, p1 ` r1, i2
i2,Σ, p2 ` r2, i3
i1,Σ, p1p2 ` i3

Alternatives:

i1,Σ,p1`r ,i2
i1,Σ,p1|p2`r ,i2

i1,Σ,p2`r ,i2
i1,Σ,p1|p2`r ,i2

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Abstract Syntax

Need a new language structure.
Define an EMF model for the commands:

And
Star
Or
Call
OK

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Command Engine

process(ok , i , s, f) = s([], i , f)

process(n, [t(s)] + i , s, f) = s([r(e)], i , f) when . . .
= f () otherwise

process(c1c2, i , s, f) = process(c1, i , s′, f)
where s′(v1, i , f) =

process(c2, i , s′′, f)
where s′′(v2, i , f) =

s(v1 + v2, i , f)

process(c1, | c2, i , s, f) = process(c1, i , s, f ′)
where f ′() = process(c2, i , s, f)

process(c∗, i , s, f) = process((cc∗) | ok , i , s, f)

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Backtracking

Alternatives require a new execution mechanism:

Try one alternative.
If it fails, try the other from the same point in the input.

Modify Data to support backtracking.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Execution Engine

Implement engine in XMF

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Concrete Syntax

A new language construct that can be embedded in XMF
programs:

context Root
@Operation test1()
@Read(X <- "@reader/tests/test1.txt")

(Customer | Product | Transaction)*
end

end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Variation 5: Parameters and Locals

Add Parameters to Mapping Definitions.
Exercise left to reader.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Variation 6: Generating XML

Use the PrintXML language feature:

parserImport XML::PrintXML;
...
@XML(out)
<TAG ATTS>

...
</TAG>

end
...

Tony Clark Introduction to Developing Domain Specific Languages with XMF

XML Generation for Reader

parserImport XOCL;
parserImport XML::PrintXML;
import readers;
import IO;
context Reader
@Operation toXML(out:OutputChannel)
@XML(out)

<Reader name=name>
@For map in maps do

map.toXML(out)
end

</Reader>
end

end

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Variation 7: Code Generation

Generate Framework Code from Reader Definition.
Exercise left to reader.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

Conclusion

XMF is an engine for modelling/prototyping systems.
XMF supports a Language Oriented Approach.
Domain Specific Languages offer advantages.
XMF is open-source (www.ceteva.com).
Many examples described in Superlanguages: Developing
Languages and Applications with XMF.

Tony Clark Introduction to Developing Domain Specific Languages with XMF

