
Language Factories

Tony Clark
Thames Valley University, St. Mary’s Road,
Ealing, London, W5 5RF, United Kingdom

tony.clark@tvu.ac.uk

Laurence Tratt
Bournemouth University, Poole, Dorset, BH12

5BB, United Kingdom
laurie@tratt.net

Abstract
Programming languages are the primary mechanism by
which software is created, yet most of us have access to only
a few, fixed, programming languages. Any problem we wish
to express must be framed in terms of the concepts the pro-
gramming language provides for us, be they suitable for the
problem or not. Domain Specific Languages (DSLs) suggest
an appealing escape route from this fate, but since there is no
real technology or theory underpinning them, new DSLs are
rare. In this paper we present the Language Factories vision,
which aims to bring together the theory and practice neces-
sary to realise DSLs in a systematic way. In so doing, we
hope to lower the barrier for language creation significantly,
ultimately allowing software creators to use the languages
most suited to them and their needs.

1. Introduction
10 years ago, in his influential OOPSLA talk [Steele 1999],
Guy Steele made the following statements:

...a good programmer in these times does not just
write programs. A good programmer builds a work-
ing vocabulary. In other words, a good programmer
does language design, though not from scratch, but
by building on the frame of a base language.
...from now on, a main goal in designing a language
should be to plan for growth.

These statements capture two notions. First, that program-
mers need more than is provided by existing programming
languages. Second, that programming language design has
generally made little to no attempt to cater for extensibil-
ity or customisability. Indeed, for most programmers, in
most programming languages, the only ‘language extension’

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward ’09 Oct., Orlando
Copyright c© 2009 ACM [to be supplied]. . . $5.00

mechanism available is the library1. Libraries have allowed
us to create systems of immense complexity and surprisingly
high reliability, but have the disadvantage that they are vis-
ibly second-class citizens to language primitives. Features
such as first-class functions and run-time meta-programming
allow programming languages to be bent in slightly differ-
ent directions, although the room for manoeuvre is still lim-
ited [Wilson 2005]. Whatever problem the user is trying to
express must ultimately be encoded in terms of the limited
set of features provided by the original language designer.
While we can push at the edges of the padded cells that
our programming languages provide us, the elasticity of the
walls is slight and, ultimately, there is no way out.

DSLs suggest an appealing escape route from the restric-
tions of programming languages, enticing us with the idea
of languages whose syntax and semantics can be customised
to our purposes. The motivation for DSLs is well under-
stood: they are customised languages which allow classes of
related problems to be more quickly and precisely realised
than with traditional techniques [Bentley 1986]. The poten-
tial use cases for DSLs are innumerable, ranging from tam-
ing the complexity of ‘enterprise’ systems (such as J2EE) to
allowing non-programmers to express tax law in a precise
fashion (as in Intentional Software’s tool). Unfortunately, in
practice, the overhead of creating DSLs is so significant that
the idea is generally watered down to mean the clever abuse
of existing language features to make ‘literate’ programming
interfaces; Hudak outlines the reasons for this [Hudak 1998],
while the Ruby community has embraced this approach with
vigorous enthusiasm. In other words, despite the hype, we
are basically stuck with libraries for language extension; pro-
gramming languages have restricted us to their cells, while
we incorrectly assumed we had new freedoms.

We have two fundamental contentions. Our first is that
DSLs, in their purest form, represent a desire for customis-
able languages, where syntax is as malleable as semantics,
and where we can choose the degree to which we are con-
strained (or not) by existing languages. Our second is that
DSLs are a desire lacking a philosophy. It is the latter is-

1 Lisp is the obvious counter-example. However, Lisp’s minimalistic syntax
is core to its approach, which then renders it unsuitable for many DSLs
which need to drastically manipulate syntax.

sue to which this paper addresses itself; until, and unless,
the underlying mechanisms for reasoning about and creat-
ing DSLs are improved, their potential cannot be realised. A
corollary of these two contentions is that, whilst DSLs are
the specific target of current interest, there is nothing which
fundamentally identifies a DSL as being distinct from other
classes of languages. The main difference is that few people
have a need to build ‘big’ languages, and those lucky few are
comfortable with traditional techniques; many more people
have a need for the ‘small’ languages that DSLs typically
represent. Thus, while this paper is motivated by DSLs and
we expect it to be most frequently applied to DSLs, the ap-
proach herein is applicable to languages in general, and we
frame most of our discussion in terms of generic languages.

1.1 Where we are today
We start this paper from the position that the status quo
is not an option, for two reasons. First, as Hudak notes,
virtually nobody builds ‘pure’ DSLs because the costs are
prohibitive [Hudak 1998]. Second, implicit in Steele’s talk,
is that languages tend to stop evolving as soon as they reach
a certain point (typically a ‘1.0 release’). We suggest that
the reason that languages stop evolving may be because: it’s
difficult to reason about the effects a change to a language
will cause to both it and existing programs; and, there is
little or no support for co-evolving programs with language
changes (the TXL language is a rare example of this; it was
designed specifically to allow programs written in the Turing
language to be automatically evolved for a new version of
the language [Cordy 2004]).

Asserting that the status quo is not an option is only use-
ful if there are signs that something better could emerge. In
recent years, several approaches have emerged which, while
not complete in and of themselves, do provide such signs.
We provide a more complete list in Section 6.2, but tech-
nologies such as Stratego/XT [Bravenboer and Visser 2004],
XMF [Clark et al. 2008], and Converge [Tratt 2008] (the last
two of these being by the authors of this paper) have shown
that relatively powerful DSLs can be implemented at rela-
tively low cost providing that the host language offers some
key language building technologies. All of these approaches
have seen some use in the real-world, although none has yet
had a major impact. However none of these various emerg-
ing technologies has any great conceptual consistency, and
none utilises any kind of theory about DSLs.

1.2 An outline of our proposal
This paper outlines our vision of Language Factories. In a
nut-shell, Language Factories aim to make DSL design sys-
tematic by allowing languages to be realised from compo-
nents which describe fragments of syntax, semantics, tool-
ing capabilities, and so on. By providing a firm base on
which to build languages, we believe that powerful, reli-
able, DSLs will be able to be built at significantly lower
cost than today’s ad-hoc approaches. Furthermore, a move

to component-based language design offers greater potential
for variable implementations of a language, and for the lan-
guage to evolve in a predictable manner. Section 2 details
Language Factories in detail.

We are mindful of two considerations in particular: one
size rarely fits all; and ‘jam tomorrow’ does not sustain life
today. To address the former point, Language Factories is an
abstract concept – similar in spirit to design patterns – de-
scribing a family of related approaches; each Language Fac-
tory must conform to the basic principles of Language Fac-
tories, but can differ in various aspects. To address the lat-
ter point, it is possible to create a Language Factory which,
by imposing various restrictions on the languages it can ex-
press, can then realise those languages within a normal pro-
gramming language (Section 2.3 discusses the possible op-
tions, and trade-offs, in detail).

2. Language Factories
Language Factories are a component-based approach to the
definition and construction of languages, as well as associ-
ated tooling, verification, and so on. Language Factories are,
at the highest level, an abstract concept, describing a family
of related approaches. An individual Language Factory is
a concrete realisation of this concept which makes choices
about what languages it can express, how they can be im-
plemented, and so on. The common concept across all Lan-
guage Factories is the language component.

2.1 What is a language?
At an abstract level, a language is a means of communica-
tion; in the case of computing that communication is gen-
erally between a human and a machine. In order to be us-
able, a language needs to have a way that participants can
share communications (syntax) and an agreed shared mean-
ing (semantics). Languages may form parts of larger lan-
guages (e.g. the sub-part of English used only in computing
could be detached and reattached to the main language); they
may be parameterisable (e.g. American and British English
can be seen as variations on the single, abstract, language
English); they may have variable syntaxes (e.g. Serbian is
written in both the Cyrillic and Latin alphabets); and so on.

As far as is practical, the Language Factories concept tries
not to be prescriptive. At a minimum, a language needs a
syntax in which to express it (even if it is in a generic XML-
like format) and an accompanying semantics of sorts (which
can range from a formal mathematical definition, to the
description of a translation into C). Exactly what form the
syntax and semantics take is left to an individual Language
Factory.

2.2 Language Components
Language Factories break languages down into components,
including the following parts:

C Pascal Java Smalltalk XMF Converge MetaLua Stratego/XT
Syntax modification ◦ ◦ ◦ ◦ • ◦ • •
Syntax extension ◦ ◦ ◦ ◦ • • • •
Introspection ◦ ◦ • • • • • n/a
Self-modification ◦ ◦ ◦ • • • • n/a
Intercession ◦ ◦ ◦ • • • • n/a
Compile-time meta-programming Partial ◦ ◦ ◦ • • • n/a
Traceability ◦ ◦ ◦ ◦ ◦ • ◦ n/a

Table 1. A summary of some of the features in contemporary programming languages relevant to Language Factories.

Abstract syntax The single definition of its Abstract Syntax
Tree (AST).

Concrete syntax(es) and syntactic mapping A definition
of its concrete syntax(es) specified as e.g. a context free
grammar, and a mapping from that concrete syntax to the
abstract syntax.

Semantic aspect(s) Each semantic aspect defines (a possi-
bly incomplete part of the) semantics. Semantic aspects
may overlap with each other (e.g. an operational and de-
notational semantics) or describe completely different el-
ements of the semantics (e.g. semantics of language types
and semantics for text editors supporting tool-tips).

Constraints Describes constraints on how the language can
be composed with others (both in terms of what the com-
ponent provides, and what it requires of other compo-
nents).

An individual Language Factory can decide which of the
above parts are optional or mandatory, and which combi-
nations are illegal. For example, a Language Factory may
require only the concrete syntax to be defined, in order to al-
low the testing of syntactic composition; however, if a com-
ponent wishes to define semantics aspects, it will have to
define the relevant parts of the abstract syntax.

The granularity of components is left open to users; at its
crudest, a component could be an entire language. Ideally,
of course, one would like language components to capture
smaller, reusable, aspects of languages. For example, many
DSLs integrate expression languages [Hudak 1998]; since
expression languages vary relatively little, it is feasible to
share a single expression language across many larger lan-
guages [Tratt 2008]. Language components need not be fixed
and immutable; just as with language libraries, the designer
of a language component can trade implementation expense
with flexibility.

2.3 Realizing Language Factories
We have, until this point, been deliberately abstract about
how Language Factories could be realised. The reason for
this is simple: Language Factories can be realised using dif-
ferent formalisms, tools, and with varying degrees of au-
tomation. The approach is a spectrum whose extreme posi-
tions can be thought of as virtual and idealised. At the virtual

end, languages are specified but not implementable; at the
idealised end, they have their own fully bespoke implemen-
tations. These two extremes also, in a sense, represent the
status quo: specifying a language is relatively easy (a vir-
tual language), but providing a stand-alone implementation
is hard (hence idealised).

Fortunately, the many shades of grey between the two
extremes are both meaningful and useful. In particular, we
are keen that Language Factories can be realised using ex-
isting infrastructure (chiefly through currently available lan-
guages) when practical; this cuts down on implementation
costs and also lowers the interoperability burden. Doing so
inevitably involves some compromises, which depend on the
language targeted. As an example of the compromises that
need to be considered, Table 1 shows a representative se-
lection of languages that are compared in terms of relevant
features. Each Language Factory needs to consider what fea-
tures it requires of a target language. For example, ‘syntax
extension’ describes whether a language can allow new syn-
taxes to be naturally embedded within it; languages which
allow this can directly express embedded languages; lan-
guages which do not allow this have to be translated into an
intermediate form without the extension. Similarly, ‘trace-
ability’ describes whether a language can trace the trans-
lated version of an embedded language; languages which do
not allow this are likely to present many more challenges
when debugging both Language Factory implementations,
and programs written in it. In some cases, such compromises
will not be acceptable, and a bespoke implementation of the
Language Factory may be the best route.

3. An example Language Factory and case
study

In order to make the description of Language Factories con-
crete, in this section we present an imaginary Example Lan-
guage Factory (ELF) and a case study in it. ELF is a sim-
ple Language Factory intended to specify behavioural lan-
guages, using relatively traditional grammar specifications,
and allowing language components to have both an opera-
tional semantics and a semantics via a translation into Java.
The case study is based on the languages needed to specify
different aspects of an aircraft’s systems; for obvious space

reasons, we are only able to tackle a small part of this in
detail in this paper.

3.1 ELF language definition
ELF is a simple, but powerful, Language Factory for defin-
ing certain classes of textual languages. In particular, it pro-
vides practical support for composition of components, and
allows running Java implementations to be produced from
ELF language components. ELF itself uses a simple inden-
tation based syntax, with the general syntax of an ELF lan-
guage component being as follows:

lang:
ast:
...

grammar:
...

semantics eval(env):
...

semantics java:
...
constraints:

...

In ELF, the grammar clause is mandatory, but all other
clauses are optional. The ast clause is typically very sim-
ple, detailing the AST constructors required. The grammar
clause allows grammars to be specified via a largely stan-
dard EBNF syntax from which ASTs are created; ELF as-
sumes that implementations use an Earley parser [Earley
1970], so that any context free grammar can be used. An
ELF language component may define semantics either op-
erationally (through the eval clause) or via a translation to
Java (the java clause). The operational semantics references
an environment associating variable names with values. The
Java translation uses quasi-quotes [Sheard and Peyton-Jones
2002] to represent code templates (generating Java code as
an AST, not as a string). Both semantics clauses are driven
by pattern matching. Finally, the constraints sub-clause
within the java clause allows a component to specify its ex-
pectations about elements in the target Java environment.

3.2 The case study
Our case study involves a fictional, large aerospace company
that is working on the design and implementation of an air-
craft. The life-cycle of an aircraft project is lengthy and com-
plex; many different aspects need to be precisely specified,
implemented, evaluated, and altered. Such a project ideally
requires a diverse collection of languages to support various
parts of the life-cycle such as: planning; requirements; speci-
fication; implementation; testing; deployment; manufacture;
and so on. Traditionally, a handful of small languages are
co-opted to perform a wider variety of tasks than they are
ideally suited to, with many of those languages being only
informally specified. The fundamental question is therefore:
can Language Factories help to quickly create robust lan-
guages that support the aircraft project life-cycle?

To make this both concrete, and tractable within the space
confines of the paper, we concentrate on the specification

aspect of the aircraft life-cycle, where both the hardware
and software components of the system need to be precisely
specified. This requires a language that can specify compo-
nents and can specify both the differing states that the com-
ponents can be in over time, and how it moves between them.
For example, the landing gear of a plane is a distinct compo-
nent that is either deployed, stowed, or moving. The specifi-
cation of a landing gear component sets an initial height and
speed; as the height and speed change, or the pilots issue
new instructions, the landing gear will move through differ-
ent states. We would therefore like to specify the landing
gear as follows (we have elided several transitions in the in-
terests of brevity):
component Landing_Gear(height:int, speed:float) {
stm {

state Moving_Up
state Moving_Down
state Deployed
state Stowed
transition up from Deployed to Moving_Up
height_change[height>500ft and speed>100kn/s]

transition down from Stowed to Moving_Down
deploy

}
}

Most of the above specification is fairly intuitive. A land-
ing gear has an initial height and speed (both of which will
change as the plane speeds up and slows down). Transitions
have a name (e.g. moving up) and specify a move from one
transition to another, conditional on a named event occur-
ring, and an (optional) guard being satisfied, with the latter
two elements’ syntax being event [guard].

There are many different ways in which we could create
a language to implement the above. The traditional approach
would be to create a single language which captures all
of the above features, bringing all the problems and costs
noted in Section 1.1. However there are clearly different
aspects to the language which can be teased apart: a super-
structure that defines aircraft components; a state machine
language (which has little to do with aircraft components
as such); and an expression language which can express
lengths and measures. In the following section we show
how Language Factories can make the process of building
this sort of language systematic, reliable, and realistic by
breaking the language down into separate components, many
of which are likely to already exist when such a language is
created.

3.3 A reusable expression language
The first language component we define is a generic expres-
sion language, Expr. In order that we can show a sufficient
breadth of the case study, we present a simplified version
of the expression language, concentrating on variables, ad-
dition arithmetic, and integers—extrapolating the rest of the
expression language from these examples is mechanical and
largely trivial. Expr’s AST is simple, requiring little expla-
nation:

lang Expr:
ast:
Var(Str)
Add(Expr, Expr)
Num(Int)

The grammar for this component is as follows:

grammar:
expr -> name:Id <Var(name)>

| lhs:expr ’+’ rhs:expr <Add(lhs, rhs)>
| num:Int <Num(num)>

The core of an ELF grammar is EBNF, with AST construc-
tors contained between angled brackets. Terminals and non-
terminals can be prefixed with a name, followed by a colon,
which allows that element to be referred to in the AST con-
structor.

We can now easily give an operational semantics to Expr:

semantics eval(env):
Var(x) -> lookup(env, x)
Add(x, y) -> eval(x, env) + eval(y, env)
Num(x) -> x

The operational semantics of expressions is defined with
respect to an environment of variables env which maps
names to values. The semantics consists of a series of defini-
tions, from AST patterns (on the LHS) to integer expressions
(on the RHS). For example, the first rule of eval matches
against a variable and specifies that its semantics are given
via the pre-defined lookup function, which returns the value
of x in the environment env. As in the above, semantics
clauses can always recursively call themselves via a func-
tion of the same name as the clause (i.e. eval in the above).
Note that while ELF’s operational semantics uses a fixed col-
lection of data values and operators (e.g. integers and addi-
tion), [Ivanovic and Kuncak 2000], [Mosses 2004], and oth-
ers have shown how language semantics can be made mod-
ular through the use of techniques including monads and la-
belled natural semantics systems, all of which could be in-
cluded in a Language Factory.

Since Expr is intended to be reusable, and since Java
does not allow operator over-loading, we cannot translate
Expr types directly into Java base types, as this would not
allow new types to be added to Expr. This is a standard
example of the sort of real-world compromise that choosing
an existing programming language as a target can impose.
We are therefore forced to construct a new type hierarchy
whose root is ExprObj, with concrete sub-classes such as
ExprInt and so on. The Java semantics therefore looks as
follows:

semantics java:
Var(x) -> [j| ${x} |]
Add(x, y) -> [j| ${java(x)}.plus(${java(y)}) |]
Num(x) -> [j| new ExprInt(${x}) |]

constraints:
exists_class(ExprInt)
exists_class(Expr)
exists_static_method(Expr,plus)

Similarly to the operational semantics, the Java semantics
is a series of definitions, from ELF patterns to Java ASTs.
The latter can be built manually when necessary but, in gen-
eral and as in the above example, be expressed by quasi-
quoting. Quasi-quoting is a well understood technique (see
e.g. Stratego/XT [Bravenboer and Visser 2004]) which al-
lows abstract syntax to be expressed via concrete syntax ex-
pressed by quasi-quotes [| ... |]. In the above example
the j in the quasi-quotes makes explicit that the AST being
built by these particular quasi-quotes is a Java AST. Inser-
tions ${...} allow ASTs to be built out of smaller chunks,
or for ELF values to be ‘lifted’ to their Java AST equivalent
(so ${2} creates a Java AST integer whose value is 2; see
[Sheard and Peyton-Jones 2002] for more details of lifting).
The constraints within the Java semantics are on the eventual
Java program. ELF provides various predefined constraints:
exists class(C) asserts that the Java system in which the
ELF component is translated into must have a class called C ;
exists static method(C, M) asserts that the Java sys-
tem in which the ELF component is translated into must
have a static method M in the class C . A more complete Lan-
guage Factory would allow more complex constraints to be
defined; the above should however give a sufficient flavour.

3.4 Measurement types
The reusable expression language in the previous section is
missing one data type commonly needed in languages used
in aircraft: a simple means of expressing measurements. In
this subsection we define a very simple language component
which allows expressions of the type 3kn/s (to be read as
‘three knots per second’) to be defined. The component itself
is very simple, using exactly the same concepts as Expr (in
the interests of brevity, we elide the operational semantics):

lang Measurement:
ast:
Ft(Float)
KnPerH(Float)
MiPerH(Float)

grammar:
measure -> dst:float ’ft’ <Ft(dst)

| dst:float ’kn/h’ <KnPerH(dst)>
| dst:float ’mph’ <MiPerH(dst)>

semantics java:
Ft(x) -> [j| new ExprFeet(${x}) |]
KnPerS(x) -> [j| new ExprKnPerH(${x}) |]
MiPerS(x) ->

[j| new ExprKnPerH(${x*0.869}) |]

constraints:
exists_class(ExprFeet)
exists_class(ExprKnPerH)

We can now compose Expr and Measurement together to
produce a new expression language which can also express
measurements. There are many different potential forms of
composition and different Language Factories can provide
composition operators which differ significantly in detail; in
this case we can use ELF’s simple composition operator:

merge(l1, l2, grammar:{...}, semantics:{...})

that merges l1 and l2 to produce a new language. In
essence, merge constructs the union of the two languages in
terms of their grammar and semantic rule-sets. The grammar
and semantics parameters allow additional grammar and
semantic rules to be added into the merged language, gluing
the two sub-languages together. For example, grammar:{R1
-> R2} specifies that in the merged language, the grammar
rule R1 should have a new alternative added that references
R2. The semantics: parameter has a similar effect. For an
expression language with measurements, merge is used as
follows:

ExprMeasurement = merge(Expr, Measurement,
grammar:{Expr::expr -> Measurement::measure},
semantics:{})

In this case the merge of the two languages is simple,
with only a reference needed from Expr’s expr rule to the
measure production.

While simple conceptually, this type of composition is a
fundamental part of Language Factories, allowing language
components to be reused and customised, even in ways that
their original authors might not have anticipated.

3.5 A parameterisable language for statemachines
Aircraft components are frequently specified by statema-
chines. In this section we show a simple example of a generic
statemachine, whose guard language can be parametrised
via the guard lang parameter. The language elements (ast,
grammar, semantics) of the parameter can be used in ap-
propriate places within the body of StateMachine:

lang StateMachine(guard_lang:Component):
ast:
STM([State | Transition])
State(Str)
Transition(Str,Str,Str,Str,guard_lang.ast)

grammar:
STM -> ’stm’ ’{’ elems:(State | Transition)*

’}’ <STM(elems)>
State -> ’state’ name:Id <State(name)>
Transition -> name:Id from:Id to:Id

event:Id ’[’
guard:guard_lang.grammar ’]’
<Transition(name,from,to,event,guard)>

semantics java:
STM(states, transitions) -> [j|

class ${freshname()} {
States state;
enum States {${states}};
${self(transitions)};

}
|]
Transition(name, from, to, event, guard) ->
[j|

@Transition
public void ${name}(Event ev) {
if (self.state == ${from} &&
ev == ${event} &&
${guard_lang.semantics.java(guard)}) {
self.state = ${to};
return true;

}

return false;
}

|]

While the above is relatively detailed, we hope that most of it
is, given what has come before, relatively intuitive. Note the
use of the guard lang parameter of type Component (for
the avoidance of doubt, this type denotes a Language Fac-
tory language component). The StateMachine component
includes the AST of the guard language as a component of
the transition constructor and the guard language’s start non-
terminal is used to parse this element of a transition’s con-
crete syntax. The Java translation semantics for a transition
calls the guard language’s Java translation semantics.

The advantage of defining the state-machine language in
this way is that, since we know that statemachine languages
often require subtly different expression languages, we can
make that parametrisation easy. At its simplest, a user can
pass the vanilla Expr language component as the parameter:

ExprSM = StateMachine(Expr)

In our case study however, we wish to use the expression lan-
guage including measurements, so we instantiate a statema-
chine language as follows:

ExprMeasurementSM = StateMachine(ExprMeasurement)

With the ExprMeasurementSM language, we can now ex-
press fairly complex state machines, and use guards such as
x < 10kn/h.

Merge (see Section 3.4) and parametrisation are related
forms of language customization, each having its advan-
tages and disadvantages. When a very specific instance of
variability is known in advance, parametrisation is attractive
as it makes the location and impact of the variability ex-
plicit. When a type of customisation is needed that could not
have been originally envisaged – or if the type of customi-
sation required is more sophisticated than parametrisation
can achieve – then composition comes into play. There are
inevitable shades of grey between the parametrisation and
composition, and users of Language Factories will have to
use their own judgement to decide when each is appropriate.

3.6 A language for components
Finally, we define a component ACComponent (AirCraft
Component) which provides a standard way of expressing
an aircraft component: each has a name and is instantiated
with a list of variables which become the components at-
tributes; the body of the aircraft component is not specified
and is passed as a parameter to ACComponent.

lang ACComponent(body_component:Component):
ast:
Component(Str,[Var],body_component.ast)
Var(Str, Str)

grammar:
component -> ’component’ ’{’ name:id

vars:var*
body:body_component.grammar ’}’
<Component(name, vars, body)>

var -> name:id ’:’ type:id
<Var(name, type)>

semantics java:
Component(name, vars, body) -> [j|

@Component
class ${name} {

${java(vars)}
${body_component.semantics.java(body)}

}
|]
Var(name, type) -> [j| ${type} ${name} |]

One item of note in the above is that since ACComponent
does not know the name of the top-level AST element in the
language component body component, it cannot be referred
to directly; instead it makes use of the fact that each language
component’s AST slot refers implicitly to the top-level AST
element. The same mechanism is used to link the grammar
of the body component into ACComponent’s grammar.

Finally we can instantiate a statemachine component, giv-
ing us the language component with which we can express
the landing gear example of Section 3.2:

AicraftDesign = ACComponent(ExprMeasurementSM)

4. Beyond traditional syntax and semantics
Traditionally we think of languages as a combination of syn-
tax and semantics and, up until this point, Language Fac-
tories have largely been couched in those terms. However
modern software practices make use of both wider and nar-
rower knowledge of languages than these notions capture.
For example, modern IDEs can perform on-the-fly partial
compilation (requiring sophisticated knowledge of the lan-
guage that a traditional semantics does not need to bother
with) and perform code completion (which requires under-
standing a tractable static subset of the language’s seman-
tics). Let us take a simpler example: syntax colouring. It is
hard for many of us now to remember the old days when
programming meant looking at semi-intelligible green pix-
els on a charcoal grey background: syntax colouring helps
our brain to interpret source code more quickly than before.
In order to make syntax colouring practical, AST elements
need to be ordered into groups so that colouring can be ap-
plied to groups. An extension of ELF could easily cater for
this by allowing language components to specify a colouring
clause along the lines of:

colouring:
group String: ASCIIString, UnicodeString
group Number: Int, Float, Fractional

This information could then be used to automatically gener-
ate the necessary files needed to integrate into an IDE. Sim-
ilarly, clauses for any other desired tooling related require-
ments can be defined by a Language Factory as required.

5. Meta-Language Factories
It is often said that the first test of a programming language
is whether a compiler for it can be written in the language it-

self (thus finishing the bootstrapping of the language). Lan-
guage Factories do share many similarities to programming
languages and compilers, so an important question to ask is
whether a Language Factory could be used to produce other
Language Factories. The answer is clearly ‘yes’: Language
Factories can specify and implement other Language Fac-
tories. When a Language Factory is used to realise another
Language Factory we refer to it as a meta-Language Fac-
tory2. We do not envision that there will be a single meta-
Language Factory, since Language Factories as a concept is
in many ways more similar to (loose) design patterns than
(strict) formal languages: different classes of Language Fac-
tories will require different meta-Language Factories.

6. Discussion and comparison
6.1 Advantages of Language Factories
There are two ways in which we imagine Language Facto-
ries shaping the future. First, and most obviously, Language
Factories make the design and implementation of new lan-
guages (mostly in the form of DSLs) a realistic prospect
for a much greater number of people than was previously
the case. By making language components reusable, param-
eterisable, and composable, Language Factories can signifi-
cantly reduce the burden associated with language creation.

Second, and thinking further ahead, Language Factories
offer the potential to provide a new level of abstraction over
libraries and frameworks, which are forced to express, often
complex, domain specific information through the strait-
jacket of normal programming languages. As shown by
Stratego/XT [Bravenboer and Visser 2004], adding syntax
and semantics specific to a library or framework can make
using it significantly easier. As shown in the case study,
since Language Factories can target existing programming
languages, they provide all the necessary tools to make this
a practical reality.

6.2 Comparison to related approaches
There are several existing techniques, tools, and languages
to which Language Factories can be compared.

MDA [OMG 2003] and Software Factories [Greenfield
et al. 2004] both share similarities of outlook with Language
Factories, being (at least in part) based on the idea of build-
ing systems from components. However neither vision has
yet been realised, in part, we assert because of the overly
general problem they attempt to tackle: automating the pro-
cess of building arbitrary software systems still seems to be
immensely hard. Language Factories tackle a more tractable
problem since, as we have shown in this paper, languages
often naturally decompose into components and the for-
malisms underlying languages are relatively well developed
and understood, even if they have rarely (before Language
Factories) been explicitly integrated together.

2 Note that meta is a relative term in this instance: there is no notion of an
absolute meta-Language Factory.

Extensible programming languages such as Lisp and
Converge typically use compile-time meta-programming
(often called ‘macros’, although that is more properly thought
of as a specific form of compile-time meta-programming) to
allow programs to embed different syntaxes and have them
transformed into the base language. This class of languages
is homogeneous in the sense that the language used to spec-
ify the transformation is the same as the language being
translated into [Sheard 2003]. Homogeneous languages by
their very nature are restricted to a single host language;
while this tight coupling can bring benefits (see [Tratt 2008]
for details), it is also inherently limiting. In their particu-
lar field, homogeneous languages will inevitably outperform
Language Factories; however, because they need not be tied
to any particular language, Language Factories’ field is so
much larger that the overlap is almost trivial.

AST-based systems such as JetBrain’s MPS3 and Inten-
tional’s tool 4 both work on the basis that users edit AST’s,
not text (i.e. both are syntax directed editors which do not al-
low the user to enter ill-formed ASTs). Fundamentally, both
systems require programs written in their languages to be
edited exclusively in their tools. While both go out of their
way to make such editing more pleasant than previous gen-
erations of syntax directed editors, this is a serious restric-
tion: it restricts some types of additional tooling; it hampers
interoperability; and quite possibly alienates many potential
users before they have even started. While some Language
Factories may choose to use syntax directed editing, with the
inevitable accompanying restrictions, most Language Facto-
ries are unlikely to choose to be so prescriptive.

Perhaps the closest extant technology to Language Fac-
tories are the term rewriting systems, the most advanced
of which is arguably Stratego/XT [Bravenboer and Visser
2004]. Like Language Factories, Stratego/XT can arbitrar-
ily compose together syntaxes, and are not restricted in the
languages they compose or the languages they translate into
(see e.g. [Visser 2008] for a large scale example). Unlike
Language Factories, Stratego/XT has little or no knowledge
of the semantics of the languages it is expressing: it is easy
to build nonsensical intermediate representations, which can
then cause chaos when debugging. Perhaps even more fun-
damentally, Language Factory language components have
significant semantic information attached to them (e.g. con-
straints on the components they can be composed with),
making the composition of such components much more
well-defined than the ad-hoc composition found in current
term rewriting systems.

7. Conclusions
In this paper we presented the Language Factories vision.
Language Factories can perhaps best be thought of as be-
ing similar to design patterns, describing a family of related

3 http://www.jetbrains.com/mps/
4 http://www.intentsoft.com/

approaches to component-based language building. We ex-
plained, via a case study, how one particular Language Fac-
tory allows powerful languages to be built in a far more sys-
tematic, flexible way than any existing approach.

References
Jon Bentley. Programming pearls: little languages. Communica-

tions of the ACM, 29(8):711–721, August 1986.

Martin Bravenboer and Eelco Visser. Concrete syntax for objects.
Domain-specific language embedding and assimilation without
restrictions. In Douglas C. Schmidt, editor, Proc. OOPSLA’04,
Vancouver, Canada, October 2004. ACM SIGPLAN.

Tony Clark, James Willans, and Paul Sammut. Applied Metamod-
elling: A Foundation for Language Driven Development (Second
Ed.). 2008. http://itcentre.tvu.ac.uk/~clark/.

James R. Cordy. TXL - a language for programming language tools
and applications. In Proc. LDTA 2004, ACM 4th International
Workshop on Language Descriptions, Tools and Applications,
April 2004.

Jay Earley. An efficient context-free parsing algorithm. Communi-
cations of the ACM, 13(2), February 1970.

Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Soft-
ware Factories: Assembling Applications with Patterns, Mod-
els, Frameworks, and Tools. John Wiley & Sons, 2004. ISBN
0471202843.

Paul Hudak. Modular domain specific languages and tools. In
Proc. Fifth International Conference on Software Reuse, pages
134–142, June 1998.

Mirjana Ivanovic and Viktor Kuncak. Modular Language Specifi-
cations in Haskell. In Theoretical Aspects of Computer Science
with practical application, 2000.

Peter D. Mosses. Modular structural operational semantics. J. Log.
Algebr. Program., 60-61:195–228, 2004.

OMG. OMG unified modeling language specification 1.4, 2003.
www.omg.org/docs/omg/03-06-01.pdf.

Tim Sheard. Accomplishments and research challenges in meta-
programming. Proceedings of the Workshop on Semantics, Ap-
plications and Implementation of Program Generation (SAIG
’01), 2196:2–44, September 2003.

Tim Sheard and Simon Peyton-Jones. Template meta-programming
for Haskell. In Proceedings of the Haskell workshop 2002.
ACM, 2002.

Guy L. Steele, Jr. Growing a language. Higher-Order and Symbolic
Computation, 12(3):221 – 236, October 1999.

Laurence Tratt. Domain specific language implementation via
compile-time meta-programming. TOPLAS, 30(6):1–40, 2008.

Eelco Visser. WebDSL: A case study in domain-specific language
engineering. In Generative and Transformational Techniques in
Software Engineering II, volume 5235 of LNCS, pages 291–373,
2008.

Gregory V. Wilson. Extensible programming for the 21st century.
Queue, 2(9):48–57, January 2005.

