
A General Model Based Slicing Framework

Tony Clark

September 23, 2011

Abstract
Slicing is used to reduce the size of programs by removing those state-

ments that do not contribute to the values of specified variables at a given
program location. Slicing aids program understanding, debugging and verifi-
cation. Slicing could be a useful technique to address problems arising from
the size and complexity of industrial scale models; however there is no precise
definition that can be used to specify a model slice. Model slices are achieved
using model transformations, and since models are usually instances of mul-
tiple heterogeneous meta-models, model slicing must involve the composition
of multiple transformations. This paper proposes a framework that can be
used to define both program and model slicing. The framework is used to
construct slices of a simple model written in a UML-like language

1 Program Slicing
Slicing is a transformation technique that can be used to reduce the size of a program
by focusing on a particular aspect of interest. There are different types of traditional
slicing [7, 6]: static for all potential program executions; dynamic for one particular
program execution; conditioned for a sub-set of executions. Traditional slicing does
not change the program in any way, i.e. statements can only be deleted.

Slicing methods aim to support program comprehension, debugging, measure-
ment verification (particularly using tools such as model checkers and theorem
provers that cannot handle the state spaces produced by standard programs [4]),
re-engineering, comparison [3], and testing.

A traditional backward slice [20, 18] involves an original program, a slicing crite-
rion and a sliced program. Each program statement is uniquely identified and the
slicing criterion is a collection of variable names and a statement identifier. The
resulting slice is the smallest well-formed sub-program of the original where the two
programs agree on the values of the variables at the given statement.

The following examples are taken from [6] (Example 1):
Original Criterion Slice
x = 42
d = 23 d d = 23

If variables depend on each other, the sub-program requirement forces earlier state-
ments to be maintained (Example 2):

a = 42
x = 2
b = 23 + a
y = 3
c = b + 2 c

a = 42

b = 23 + a

c = b + 2
Control structures must be preserved providing that they contribute to the state
defined by the slicing criterion. In the following example the number of times the
loop is executed depends on the value read in for i, however since all possible input
must be considered, the loop is part of the slice. The value of prod does not depend
on the value of sum therefore that can be elided (Example 3):

1



sum=0
prod=1
read(i)
while(i<11) {
sum=sum+i
prod=prod*i
i=i+1

} prod

prod = 1
read(i)
while (i<11) {

prod=prod*i
i=i+1

}
Forward Slicing, using an original program and a criterion, produces a slice that
contains the statements that are affected by the value of the variables in the criterion
at the indicated statement. This seems to have no counterpart in modelling since
there is no control flow.

Dynamic Slicing of programs works like backward slicing except that only a
particular collection of values for inputs and variables are considered. Therefore, if
the input is 11, then the slice of Example 3 is (Example 4):

sum=0
prod=1
read(i)
while(i<11) {
sum=sum+i
prod=prod*i
i=i+1

} prod

prod = 1
read(i)

Conditioned Slicing allows program slicing to be viewed as a spectrum since the
values of variables and inputs are specified using predicates on their values at given
statements. For example, if pos(next(input))=true (Example 5):

read(a)
if(a<0)
a=-a

x=1/a x

read(a)

x=1/a
Like programs, models contain variables and therefore we can make the distinction
between backward (static), dynamic and conditioned slicing.

All program slicing techniques outlined above involve structural projections on
the original program. Amorphous Slicing [7] allows the slice to change the pro-
gram in any way in order to meet the slicing criterion. Whilst models can also be
changed and retain the original semantics, amorphous slicing seems to introduce a
new category of sophistication and we will not consider it further.

Unions of program slices are introduced in [5] as a means to combine dynamic
slices. The union of multiple slices is the smallest program that can be sliced to
produce all the individual component slices. Constructing the union of multiple
slices involved the composition of program transformations.

2 Model Slicing
Recently, slicing has been applied to state machines [1] where similar benefits as
those listed above for program slicing are claimed. State machine slicing is an
example of applying slicing to a model of a system rather than to the system im-
plementation. Although models of systems are, by definition, less complex than
the systems they model, they can still become large and complex, contain errors,
provide useful properties that can be measured, require maintenance and testing,
and need to be compared. Therefore the potential benefits claimed for program
slicing ought also to apply to system models.

It is not clear what it means to slice a model. It is not even clear what we
mean by the term model. Given that we are claiming benefits in terms of large
models, the rest of this paper will use UML as the language that is representative of
industrially-relevant large-scale modelling languages. As described in [1] a number
of definitions are possible for state machine slicing. However, system models such as

2



those represented in terms of the UML-family of languages are much more complex
than state machines (and contain state machine sub-languages).

Several attempts have been made at slicing UML class diagrams. The approach
in [8] describe context-free slicing of UML class models where the issue of context
is defined to be object location, which is a dynamic property; therefore context-
free slicing is a static slice of a structural model. As noted in [8] the criteria used
for slicing a model is more complex than that used in program or state machine
slicing since there are more types of elements and relationships; they note that
OCL should be used to express the slicing criteria. A similar approach is used to
modularize the UML meta-model into collections of components that are relevant
to the different UML diagram types in [2] although the predicate used to determine
the slicing criteria is fixed in terms of traversing the meta-model elements starting
with a collection of supplied classes. Class models are sliced together with OCL
invariants in [17] thereby reducing the state-space explosion that would otherwise
occur when using a model-checker (in this case Alloy) to verify a class-model.

UML statecharts can be sliced as described in [19, 13, 11] although these ap-
proaches do not generalize the results to include other parts of the UML language
family. Both static and dynamic aspects of UML can be combined and sliced as
described in [9, 10] where class and sequence diagrams are merged into a single rep-
resentation (a model dependency graph MDG) that can be subsequently sliced to
show partial dynamic and structural information resulting from criteria containing
both structural and dynamic constraints. Slicing UML sequence diagrams in order
to generate test cases is described in [16, 15].

UML sequence diagrams (or scenarios) are essentially underspecified executions
of a program, they can be used as slicing criteria for programs as described in [14]
where the scenario significantly limits the scope of the slice.

The approach described in [12] uses the logic-based sub-language of UML: UML-
RSDS. Since this language is formal, it has a semantics as advocated by the frame-
work in this paper. Although it does not introduce the notion of a projection, least
slice, or a slicing criterion explicitly represented as a semantic domain object, the
UML-RSDS approach could support the general slicing framework that is proposed
here.

All of the approaches to model slicing outlined above are limited in some regard,
either in terms of a specific set of model types (usually a sub-set of UML) or in
terms of requiring the use of specific technologies or algorithms. What does it mean
to specify a model-slice? Can we do so without resorting to specific technologies or
being limited to specific types of slice? The rest of this paper proposes a general
framework for slicing that can be used to specify slices of both programs and models.
Section 3 describes the framework, section 4 shows how the framework applies to
the examples in section 1, section shows how the framework supports model-slicing
by defining a simple modelling language and applying the framework to a simple
example model in the language.

3 General Slicing Framework
Figure 1 shows the proposed GSF. Syntax elements are of type Γ. An element has
a semantic domain Σ and the semantic interpretation φ maps a syntax element γ
to a semantic element σ. The mappings p : Γ → Γ are syntactic projections. The
definition of a projection depends on the specific instance of the framework, for ex-
ample a homogeneous projection of a program can remove abstract syntax sub-trees
providing certain syntax well-formedness rules are satisfied; whereas, an amorphous
projection of a program holds between programs when they have semantic elements
that are related via a semantic slice.

3



γ : Γ
φ - σ : Σ

γ′′ : Γ
φ-

p ′

-

σ′′ : Σ -
�

q
′

z- ω : Σ

x

-

γ′ : Γ

p

?

φ
-

�

p
′′

σ′ : Σ

q

?
y

-q ′′

-

Figure 1: General Slicing Framework (GSF)

Figure 2: A Simple Semantic Do-
main for Programming

The mappings q : Σ → Σ are semantic pro-
jections. Again, the definition of a semantic pro-
jection depends on the instance of the frame-
work. For any element there exists the iden-
tity projection. Any element can be projected
uniquely to an empty or terminal element.

A slice of an original element γ with respect
to a semantics φ and a slicing criterion (ω, x),
is a pair (γ′, y) such that the diagram shown in
figure 1 commutes and for any other slice (γ′′, z)
there are projections p′′ and q′′. The latter con-
dition ensures that the chosen slice is a smallest

slice.
Since both the syntactic and semantic domain have projection mappings, they

have product elements such that if γ1 and γ2 are syntax structures then γ1 × γ2 is
a syntax structure that can be projected onto both γ1 and γ2. Note that product
elements are not guaranteed to exist, but if they do then they are likely to be unique
up to isomorphism.

The importance of products is that, given a syntax structure γ with a slicing
criterion (ω1, x1) leading to a slice γ′1 and a second slicing criterion (ω2, x2) leading
to a slice γ′2 then products can be used to find a slice γ′1×γ′2. If the component slices
have been characterized using tranformations p1 and p2 then there is a combined
transformation p1 × p2.

Therefore to set up the framework for a particular application domain you will
need: syntax (Γ) The things you want to slice; semantics (Σ, φ) The meaning
of the syntax defined as a semantic domain and a semantic mapping; projections
(p, q) Relationships that hold between syntactic and semantic elements and that
remove items that are not of interest; criterion (x, ω) The things that remain
invariant, defined in terms of the semantic domain; products If the syntax and
semantic domain also define products for elements nd projections then there is
scope for slicing composition. As a slicer, your job is to find a smallest syntax
element that can be generated from the original element so that the semantics are
the same and where the slicing criterion holds.

4 GSF Applied to Programs
Figure 2 is a model for the semantic domain of programs. Trace instances will be
represented as sequences of sets of maplets in the usual way.

4



Example 1: the semantics is σ = {[{x 7→ 41; d 7→ 23}]} The slice criterion requires
that any trace in σ when projected onto the second step has a value for d, so
ω = {{d 7→ v} | v ∈ V } Therefore the smallest set of traces for which there exists a
structural projection is σ′ = {[{d 7→ v} | v ∈ V }]}.
Example 2: the semantics is σ = {[{a 7→ 42}, {a 7→ 42;x 7→ 2}, {a 7→ 42;x 7→
2; b 7→ 65}, {a 7→ 42;x 7→ 2; b 7→ 65; y 7→ 3}, {a 7→ 42;x 7→ 2; b 7→ 65; y 7→ 3; c 7→
67}] The slicing criterion requires that c has the same value in the original and
the slice ω = {c 7→ v | v ∈ V }. The projection x maps σ states onto c in the 5th
step. Therefore the smallest structural projection on the original program has a
semantics σ′ = {[{a 7→ 43}, {a 7→ 42, b 7→ 65}, {a 7→ 42; b 7→ 65; c 7→ 67}]} where y
maps states onto c in the 3rd step.
Example 3: the semantics is σ = {[{sum 7→ 0}, {sum 7→ 0; prod 7→ 1}, {sum 7→
0; prod 7→ 1; i 7→ v}] + trace(v) | v ∈ V } ] where trace(0) = [] and trace(v) is

trace(v − 1) + [{sum 7→
∑

i∈0...v

i; prod 7→!v; i 7→ v}]

The criterion requires that prod is a specific value ω = {prod 7→ v | v ∈ V } and the
projection x maps each trace onto the last maplet for prod. Therefore, the smallest
structural projection omits the variable sum and the projection mapping y maps
each trace onto the last maplet for prod.
Example 4: dynamic slicing defines the input to be 11 so the semantics is limited
to σ = {[{sum 7→ 0}, {sum 7→ 0; prod 7→ 1}, {sum 7→ 0; prod 7→ 1; i 7→ 11}]} and the
projected semantics is therefore σ′ = {[{prod 7→ 1}, {prod 7→ 1; i 7→ 11}]}.
Example 5: has a semantics σ = {[{a 7→ v}, {a 7→ v;x 7→ 1/v}] | v ∈ V,pos(v)}.
The criterion requires the value of x to be invariant and therefore the projected se-
mantics is the same, leading to the appropriate structural projection on the original
program.

5 GSF Applied to Models

Figure 3: A Simple Modelling Language

The syntax for a modelling language
(Γ) is defined as a meta-model and
associated well-formedness constraints.
Consider the meta-model defined in fig-
ure 3. It is intended to be repre-
sentative of UML modelling where a
model consists of both static and dy-
namic aspect. The static aspect of a
system is expressed as a collection of
packages containing classes and associ-
ations. The dynamic aspect of a system
is expressed as use-case models, state-
machines and sequence models.

The meta-model does not include all
of the detail of the language, for ex-
ample it omits structural information
for each of the meta-classes. There-
fore, it is not possible to give the de-
tails of the well-formedness constraints;
however these are standard, for exam-

ple requiring that all classes in a package to have unique names.
The GSF requires that syntax structures define a projection relation that should

only hold between well-formed elements. The structure of programs is fairly simple,

5



i.e. trees where certain nodes are labelled as statements, and the projections elide
statement sub-trees.

The modelling language defined in figure 3 has graphs, rather than trees, as
instances. Therefore projections hold between models, p : γ → γ′ when the model
γ′ is a sub-graph of γ, when OCL constraints in γ imply constraints on projected
elements in γ′, and when both are well-formed. Therefore: packages may delete
classes and associations; classes may delete attributes, operations; use-case models
may delete use-cases and actors; sequence models may delete messages and classes;
state-machine models may delete states and transitions.

Figure 4: A Simple Semantic Domain for
Modelling

The semantic domain for the mod-
elling language (Σ) is defined as a model
in figure 4. The meaning of a model is
a filmstrip that contains an ordered se-
quence of steps. Each step is a relation
between a pre and a post snapshot, a
message, and a nested filmstrip. The
message has a name, some arguments,
a return value, and a target object. A
snapshot contains objects and links.
In order to express the slicing crite-
rion for a model, we need to be able
to construct instances of the seman-
tic domain. This can be expressed as
a term as follows. Objects with id i,
type t and state σ are represented as
(i, σ, t)[s = v; . . .]. Links of type t be-
tween objects with ids i and j are rep-
resented as (t, i, j). Snapshots are rep-

resented as a pair of sets(O,L). Messages are represented as v = i ← m(v, . . . , v).
A step is represented as a 4-tuple (s,m, f, s). Finally, a filmstrip is a sequence of
steps.

The well-formedness constraints on the semantic domain require that slots have
unique names for each object, objects have unique identifiers for each snapshot,
where a snapshot contains a link then the snapshot must also contain the objects
attached ot the link ends. An atomic step has an empty nested filmstrip. The
difference between pre and post snapshots in an atomic step arises due to: single
slot changes; single object or link creation; single object or link deletion.

Since semantic domain terms are trees, we define semantic projections q : σ → σ′

to hold when σ′ is a structural projection of σ. Therefore: slots may be deleted
from objects, elements deleted from sets; steps deleted from filmstrips, etc.

5.1 Case Study
Figure 5 shows a use-case model for a library. It shows the externally visible oper-
ations that are available to the users of the system. Figure 6 shows a package that
defines classes for a simple library that supports registration of readers, addition
of books, and book borrowing/return. The library timestamps borrowing records
and imposes a limit on the length of time a book may be borrowed. If the limit is
exceeded then a fine must be paid to reset the borrowing date. A book may only
be returned if the limit has not been exceeded. The following is an example of an
OCL constraint:
context Library::borrow(reader,book)
pre not hasFine(reader) and
post borrows->includes(b | b.reader = getReader(reader) and b.book = getBook(book) and

b.date = date())

6



Figure 5: Library: Use-Cases

Figure 6: Library: Package

In general, each class in the library model may have a state machine that defines
the life-cycle states of the class-instances. Figure 7 shows a typical state machine
for the Reader class. When a reader is first created it is in the new state. After the
name and id slots have been set the reader becomes initialized. Once the reader
object is added to the library it becomes registered. From this point on, a reader
may borrow and return books; it changes from registered to borrowing and back
again. If the borrowing limit is ever exceeded then the reader becomes a debtor,
reverting to borrowing when the fine is paid.

Each of the use-cases may give rise to a sequence of operation calls. Figure 8
shows an example of a sequence of calls that occur when a reader borrows a book.
The calls are sequenced from left to right and from top to bottom.

The semantics of the model is given as an instance of the model in figure 4. For
example, borrowing is described by the following step:
(s1,ok = 0 <- borrow(fred,b),f,s6)
where
s1 = ({(0,*,Library)[limit=l],(1,*,Book)[name=n,id=1],(2,initialized,Reader)[name=fred,id=2]},{})
f = [(s1,false = 0 <- hasFine(fred),...,s1),(s1,2 = 0 <- getReader(fred),...,s1),

(s1,1 = 0 <- getBook(n),...,s1),(s1,d = 0 <- getDate(),...,s1),
(s1,3 = 0 <- new(Borrows),[],s2),(s2,ok = 3 <- setReader(2),...,s4),...]

7



Figure 7: Reader: State-Machine

Figure 8: Borrow: Sequence Model

s2 = ({(0,*,Library)[limit=l],(1,*,Book)[name=n,id=1],
(2,initialized,Reader)[name=fred,id=2],(3,*,Borrows)[]},{})

5.2 Slices
Section 5.1 has defined a simple model and the semantic definition for the modelling
language provides a way of constructing a set of filmstrips as the meaning of any
model. This section defines two slices of the library; the first isolates that part of
the model that describes what happens when a book is borrowed and the second
refines the first slice by removing the steps that occur during a borrowing operation.

The slicing criterion that is used to isolate borrowing behaviour is (B1)∗ where
B1 is defined as follows:
{[(s1,v = l <- borrow(r,b),F,s2)] |
F <- Filmstrip, s1 <- Snapshot, s2 <- Snapshot,v <- Value, l <- Id, r <- Str, b <- Str}

The mapping part, x1, of the slicing criterion projects any filmstrip to the sequence
of borrow steps that it contains. Therefore, any filmstrip containing no borrowing
messages will be mapped to the empty filmstrip. Our task is to find the smallest
projection of the original model whose filmstrips can be mapped onto (B1)∗ such
that the diagram in figure 1 commutes.

Syntactic projections on use-case models can elide use-cases and their relation-
ships. Recall that use-cases are linked to operations that name messages in steps,
therefore, the resulting slice of figure 5 is:

8



where use-cases that do not initiate or participate in borrowing are elided.
Packages may remove structural elements and may weaken constraints, therefore

the class diagram:

is the result of slicing the package and shows the structure and objects necessary
to construct filmstrips whose steps are defined by B1. All constraints that are not
related to borrowing are removed.

The state machine model is reduced to the two states that can occur in borrowing

filmstrips: The slice produces no change to the sequence
model shown in figure 8.

Now consider a refinement to the slice criterion that ignores any behaviour that
occurs within a borrow step. The set B2 is a projection of B1 and is defined as
follows:
{[(s1,v = l <- borrow(r,b),[],s2)] | s1 <- Snapshot,s2 <- Snapshot,v <- Value,l <- Id,r <- Str,b <- Str}

The mapping part x2 is a refinement of x1 that maps all nested filmstrips to []. The

sliced use-case is: The sliced package is:

There is no change in the state machine between the two slices because readers are
affected the same way whether we include the details of the borrowing operation or

9



not. The sequence diagram is sliced in order to slide the nested operation calls as
follows:

Another slicing criteria might be a refinement of B2 which removes any of the
elements in the snapshots. The resulting slice would be empty models except for
a single use-case: borrow. Dynamic slicing of models implies that the criterion is
a specific filmstrip and that the slice produces the smallest model that generates
the filmstrip. Conditioned slicing uses predicates to construct the criterion, for
example, by requiring that all filmstrips include a fine payment.

6 Types of Slicing
The previous section has described how the GSF can be applied to models. Slicing
of each type of model has been described in terms of a simple case study. This
section reviews the different types of program slicing and discusses them in the
context of model slicing.

Static Slicing A static slice of a model cannot limit the values of object slots, or
the multiplicty of links in the slicing criterion. The criterion may limit the structural
complexity of a model by ignoring classes, operations, attributes and associations,
but cannot express predicates over their instances. In the case of the library, it
would be possible to slice on Library::date, but not slice on a particular date.
Most work on model slicing is limited to static slicing and expresses the slicing
criterion in terms of a syntax transformation. However, the GSF approach requires
the slicing criterion to be expressed in terms of a semantic domain and therefore
ensures that all possible syntaxtic elements that are related to a selected syntax
element are present in the resulting slice.

Dynamic Slicing A dynamic slice of a model is a particular instance of a
semantic model. In the case of the library it is a single filmstrip, each step contains
a particular operation call with respect to a fixed collection of objects and links.
Dynamic model slicing only makes sense when a model has a dynamic semantics.
For executable models, dynamic slicing can be used for debugging where the slicing
criterion is a trace of model execution that terminates in an error. Unlike standard
program slicing, there is no single starting point for an executable model, and
therefore the criterion can limit the model based on the steps from the starting
snapshot to the end snapshot of a filmstrip.

Conditioned Slicing Conditioned slicing is the most general case where a set
of possible semantic elements is defined using a collection of predicates. The GSF
explains provides a simple explanation of how a conditioned slice is constructed,
without having to resort to complex analysis of syntax structures. Conditioned slic-
ing can be used for controlling the size and complexity of models, and for debugging.
In addition, they can be used for analysis of models, for example: is it possible to
slice the model given a criteria that includes two readers with the same name?

Slicing Unions Programs typically a single homogeneous structure. UML-style
models are constructed from multiple homogeneous and heterogeneous sub-models
and therefore unions of slices can occur in various different ways. A single model
may contain multiple models of the same type (for example class models) in which
case name-spaces are used to define repeated occurrences of the same element. A
slice may apply to any one of the components and multiple slices can be merged.

10



M-1

S `M1 < M ′
1

S `M2 < M ′
2

S `M1 ⊕M2 < M ′
1 ⊕M ′

2

M-2

S `M1 < M2

S ` p⇒ q

S `M1 when p < M2 when q

M-3

S ` A1 < A2

S ` C1 < C2

S ` (C1, A1) < (C2, A2)
G-1 S ` X < X

G-2

S ` X1 < X′
1

S ` X2 < X′
2

S ` X1 ∪X2 < X′
1 ∪X′

2

G-3 S ` ∅ < X

C-7
S ` (C)[] < (C)[]⊕ c

C-4
S ` C1 < C2

S ` {C1} < {C2}

C-5

S ` p⇒ q
S ` c < c′

S ` cwhen p < c′ when q
C-6

S ` c1 < c′1
S ` c2 < c′2

S ` c1 ⊕ c2 < c′1 ⊕ c′2

A-1
mi = m′

i or(mi = 1andm′
i = ∗)

S ` {(A, c,m1, c′,m2)} < {(A, c,m′
1, c

′,m′
2)}

Figure 9: A Slicing Theory

7 Constructing Slices
A model M may be (C,A) a set of classes C and associations A, a model with an
invariant p that holds between classes and associations M when p, or a composition
of models M ⊕ M ′ . An association is (a, c,m, c′,m′) where a is an association
name, c, c′ are class identifiers andm,m′ are multiplicities (1 or ∗). Well formedness
constraints on models require classes named in associations to be present, names to
be unique and predicates to reference classes and associations defined in the model.
A class (C)[n 7→ T ] has a name C and a slot n with type T , or has an invariant
cwhen p, or is empty (C)[], or is a combination of classes c⊕c′ where the identifiers
and types on common attribute names agree.

Figure 9 defines a slicing theory for models that is consistent with the GSF. Rules
labelled M refer to models, rules labelled A refer to attributes and rules labbeled
C refer to classes. The theory defines a relation S ` M < M ′ that holds when
model M is a slice of model M ′ with respect to the slicing criterion S expressed as
a snapshot and where S is an instance of M . The key rules are: M-2 that requires
model invariants to be strengthened; A-1 that requires association multiplicities to
be tightened; C-5 that requires class invariants to be strengthened; C-7 that allows
attributes to be deleted. The theory can be used to specify a model transformation
for model slicing. The theory can be extended for heterogeneous languages (as in
UML). In addition, multiple transformations can be defined on the same model
and the theory extended to specify the required single slice that is consistent with
merging the individual transformations.

8 Conclusion
This paper has reviewed program slicing and observed that many of the benefits
may apply to models. A general framework for slicing any structured elements has
been proposed and shown to be a basis for both program and model based slicing.
The framework provides a check-list of features that must be defined before any
structured elements can be sliced.

11



References
[1] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and L. Tratt. Control depen-

dence for extended finite state machines. Fundamental Approaches to Software
Engineering, pages 216–230, 2009.

[2] J.H. Bae, K.M. Lee, and H.S. Chae. Modularization of the UML metamodel
using model slicing. In Information Technology: New Generations, 2008. ITNG
2008. Fifth International Conference on, pages 1253–1254. IEEE, 2008.

[3] David W. Binkley and Keith Brian Gallagher. Program slicing. In ADVANCES
IN COMPUTERS, pages 1–50. Academic Press, 1996.

[4] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, and
H. Zheng. Bandera: Extracting finite-state models from java source code. In
Software Engineering, 2000. Proceedings of the 2000 International Conference
on, pages 439–448. IEEE, 2000.

[5] Csaba Faragó. Union slices for program maintenance. In Proceedings of the In-
ternational Conference on Software Maintenance (ICSM’02), pages 12–, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[6] K. Gallagher and D. Binkley. Program slicing. In Frontiers of Software Main-
tenance, 2008. FoSM 2008., pages 58 –67, 28 2008-oct. 4 2008.

[7] M. Harman and R. Hierons. An overview of program slicing. Software Focus,
2(3):85–92, 2001.

[8] H. Kagdi, J.I. Maletic, and A. Sutton. Context-free slicing of UML class models.
2005.

[9] J.T. Lallchandani and R. Mall. Slicing UML architectural models. ACM SIG-
SOFT Software Engineering Notes, 33(3):1–9, 2008.

[10] J.T. Lallchandani and R. Mall. Integrated state-based dynamic slicing tech-
nique for UML models. Software, IET, 4(1):55–78, 2010.

[11] K. Lano. Slicing of UML state machines. AICÕ09, 2009.

[12] K. Lano and S. Kolahdouz-Rahimi. Slicing of uml models.

[13] V. Ojala. A slicer for UML state machines. Helsinki University of Technology,
2007.

[14] J. Qian and B. Xu. Program slicing under UML scenario models. ACM SIG-
PLAN NOTICES, 43(2):21, 2008.

[15] P. Samuel and R. Mall. A Novel Test Case Design Technique Using Dynamic
Slicing of UML Sequence Diagrams. e-Informatica Software Engineering Jour-
nal Selected full texts, 2(1):61–77, 2008.

[16] P. Samuel, R. Mall, and S. Sahoo. UML Sequence Diagram Based Testing
Using Slicing. In INDICON, 2005 Annual IEEE, pages 176–178. IEEE, 2005.

[17] A. Shaikh, R. Clarisó, U.K. Wiil, and N. Memon. Verification-driven slicing of
UML/OCL models. In Proceedings of the IEEE/ACM international conference
on Automated software engineering, pages 185–194. ACM, 2010.

[18] F. Tip. A survey of program slicing techniques. Journal of programming lan-
guages, 3(3):121–189, 1995.

[19] S. Van Langenhove. Towards the Correctness of Software Behavior in UML: A
Model Checking Approach Based on Slicing. 2006.

[20] M. Weiser. Program slicing. In Proceedings of the 5th international conference
on Software engineering, pages 439–449. IEEE Press, 1981.

12


