
Advanced Modelling Made Simple with the Gmodel
Metalanguage

Jorn Bettin
Sofismo

Lenzburg, Switzerland
http://www.sofismo.ch/

jbe@sofismo.ch

Tony Clark
School of Engineering and Information Sciences

University of Middlesex, London, UK
http://www.eis.mdx.ac.uk/staffpages/tonyclark/

t.n.clark@mdx.ac.uk

ABSTRACT
Gmodel is a metalanguage that has been designed from the
ground up to enable specification and instantiation of mod-
elling languages. Although a number of metalanguages can
be used for this purpose, most provide no or only limited
support for modular specifications of sets of complementary
modelling languages. Gmodel addresses modularity and ex-
tensibility as primary concerns, and is based on a small num-
ber of language elements that have their origin in model
theory and denotational semantics. This article illustrates
Gmodel’s capabilities in the area of model-driven integra-
tion by showing that the Eclipse Modeling Framework Ecore
language can easily be emulated. Gmodel offers support for
unlimited multi-level instantiation in the simplest possible
way, and any metalanguage emulated in Gmodel can option-
ally be equipped with this functionality.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.12 [Software Engineering]: Interoperability

General Terms
Binding times, Denotational semantics, Domain analysis,
Graphs, Instantiation semantics, Metamodels, Model-driven
integration, Model theory, Modularity, Multi-level modelling,
Scope management, Value chain modelling

1. INTRODUCTION
In order to increase awareness about the role that domain-
specific modelling languages can play in capturing, preserv-
ing, and exploiting knowledge in virtually all industries, it is
necessary to:

1. Reach a consensus on fundamental values and princi-
ples for designing and using domain-specific languages

2. Progress towards interoperability between tools

– KISS Initiative, 2009 [4]

The development of Gmodel relates to the second objective
of the KISS initiative [3], and builds on the KISS results
that have been achieved in 2009 [4]. In particular, Gmodel
represents an attempt to provide explicit tool support for
the full set of KISS principles:

1. The DSL must be meaningful to users

2. The DSL should be cognitively efficient

3. The DSL should have multiple notations where neces-
sary

4. DSLs should offer mechanisms for modularising and
integrating models

5. The DSL should be supported by appropriate tooling

6. There must be an economic imperative for the develop-
ment of a DSL

7. The DSL must not be polluted with implementation fea-
tures

8. Model processing must always be based on a formal
DSL definition

9. DSLs should be kept small through modularisation and
integration

Since the design of Gmodel rests on mathematical concepts
from model theory and from the theory of denotational se-
mantics, Gmodel can tap into established mathematical ter-
minology, and the target audience for Gmodel includes mod-
ellers in all disciplines. Consistent with denotational seman-
tics and with the third KISS principle, Gmodel completely
separates the concern of representation from the concern of
naming. This means that in contrast to most programming
language specifications, the specification of Gmodel does not
include a text-based concrete syntax.

The authors of Gmodel believe that modelling has the great-
est value when performed by domain experts, and if mod-
elling language design takes into account established domain
notations. The challenge consists in providing a metalan-
guage that enables the most experienced domain experts to
define the notation for modelling in their field, whilst at the
same time providing tool support for enforcing (and ideally



guaranteeing) the adherence to KISS modelling language de-
sign principles.

This paper starts with a brief introduction of relevant termi-
nology, and then presents the Gmodel metalanguage in the
context of model-driven interoperability based on practical
examples:

1. Introduction of Gmodel kernel concepts

2. Outline of Gmodel’s contribution to model-driven in-
teroperability

3. Representation of the Eclipse Modeling Framework Ecore
language in Gmodel, and outline of the design of a bi-
directional bridge between the two technologies

4. Description of advanced modelling techniques for scope
management, modularisation, and interoperability

5. Comparison of Gmodel with other technologies

6. Conclusions

2. TERMINOLOGY
Modellers are not in the business of inventing new terminol-
ogy, they are in the business of identifying concepts and links
between concepts that are useful for a particular community
of people – usually scientists or professionals in a particu-
lar field. This approach to modelling is consistent with the
Oxford American dictionary definition of modelling:

to model devise a representation, especially a mathemati-
cal one of (a phenomenon or system)

2.1 Model Theory
The mathematical definitions from model theory make use of
the concepts of sets and graphs, and provide a mathematical
basis for reasoning about models:

structure A structure A is a set that contains the following
four sets

1. A set called the domain of A, written as dom(A)

2. A set of elements of A called constant elements,
each of which is named by one or more constants

3. For each positive integer n, a set of n-ary relations
on dom(A), each of which is named by one or
more n-ary relation symbols

4. For each positive integer n, a set of n-ary opera-
tions on dom(A), each of which is named by one
or more n-ary function symbols

signature The signature of a structure A is specified by
giving the set of constants of A, and for each separate
n > 0, the set of n-ary relation symbols and the set of
n-ary function symbols – The symbol L is used to rep-
resent signatures and languages; if A has a signature
L, A is also called an L-structure.

Beyond these two definitions, model theory defines the fol-
lowing concepts that every modelling language designer should
be familiar with: substructure, term, formula, variable, lan-
guage, cardinality, sentence, theory, model [7].

This terminology and the associated mathematical theory
have heavily influenced the design of Gmodel.

2.2 Denotational Semantics
The second source of influence on Gmodel is denotational
semantics, in particular the concepts of semantic domain
and semantic identity [11].

One advantage of using established mathematical terminol-
ogy to describe Gmodel is a low risk of terminological confu-
sion with concepts from the Meta Object Facility (MOF), a
popular metalanguage that is steeped in object orientation,
and with concepts from related implementations such as the
Eclipse Modeling Framework Ecore language. This benefit
immediately becomes apparent when discussing the repre-
sentation of Ecore in Gmodel. A second advantage of using
the above terminology is the ability to reason about Gmodel
in mathematical terms, without the need for any linguistic
gymnastics.

2.3 Natural Language and Exchange of Arte-
facts

In addition to mathematics, Gmodel terminology draws on
concepts that have shaped the development of natural lan-
guage, and the way in which humans perform work and ex-
change artefacts – including abstract ideas. In relation to
the latter, and in accordance with the second KISS principle,
the design of Gmodel takes into account human cognitive
abilities and limitations [10].

language artefact A container of information that:

1. is created by a specific actor (human or a system)

2. is consumed by at least one actor (human or sys-
tem)

3. represents a natural unit of work (for the creating
and consuming actors)

4. may contain links to other language artefacts

5. has a state and a life-cycle

model artefact A language artefact that meets the follow-
ing criteria:

1. It is created with the help of a software program
that enforces specific instantiation semantics (qual-
ity related constraints)

2. The information contained in a model artefact can
be easily processed by software programs (in par-
ticular transformation languages)

3. Referential integrity between model artefacts is pre-
served at all times with the help of a software pro-



gram (otherwise the necessary level of complete-
ness and consistency is neither adequate for auto-
mated processing nor for domain experts making
business decisions based on artefact content)

4. No circular links between model artefacts are al-
lowed at any time (a prerequisite for true modu-
larity and maintainability of artefacts)

5. The life-cycle of a model artefact is described in
a state machine (allowing artefact completeness
and quality assurance steps to be incorporated
into the artefact definition)

instance A set that seems to contain one and only one
element at any given point in time from the view point
of a specific actor

instantiation function A function that returns an instance
– sometimes instantiation functions are also called con-
cretisation functions

visibility Visibilities are links between model artefacts that
set the architectural context for artefact producers by
declaring the model artefacts that can be used as in-
puts for the creation of specific kinds of model artefacts

producer An actor that creates language artefacts

consumer An actor that consumes language artefacts

value chain A value chain consists of actors (systems and
humans) that consume artefacts as inputs and produce
derived artefacts

3. THE GMODEL KERNEL
The Gmodel kernel [figure 1] is a semantic domain consisting
of a set of semantic identities that reify the concepts of or-
dered pair, ordered set, and graph – the latter consisting of a
set of vertices and a set of edges. To facilitate extensibility
and multi-level instantiation, the encoding of the Gmodel
kernel is entirely expressed in Gmodel semantic identities,
and each semantic identity in the kernel is defined as an in-
stance of itself, and as a sub set of the next simpler semantic
identity in the kernel.

The generic term to refer to any semantic identity that is
expressed in Gmodel is the set. The simplest semantic iden-
tity is the ordered pair. Ordered pairs are used to define
ordered sets and graphs. Much of the power and simplicity
of Gmodel has its origin in the specific encoding chosen for
graphs. Instead of consisting of a set of vertices and a set
of edges, a Gmodel graph is encoded as a set of vertices and
several complementary ordered sets of links:

edges Links between two sets with a dedicated edge end for
each connected set

super set references Directed links from a sub set to a
super set

visibilities Directed links from one sub graph to another
sub graph

edge traces Directed links from one edge to another edge

The Gmodel vertex and all four types of links are encoded
as sub sets of graph. In order to serve as a metalanguage,
edge ends are decorated with variables for minimum cardi-
nality and maximum cardinality, as well as variables that
represent the direction of navigability of edges and a notion
of containment relating to the connected set.

3.1 Instantiation
A modeller may use the instantiation function of Gmodel
kernel to create representations of vertices and links. Since
vertices are encoded as a sub set of graph – and hence enable
the representation of nested abstractions, vertices are well
positioned to serve as the unit of modularity in Gmodel.
Using the terminology introduced above, vertices play the
role of model artefacts, and in the context of Gmodel (mod-
elling), are simply referred to as artefacts.

Links between artefacts are also encoded as a sub set of
graph, and therefore are also capable of representing nested
abstractions by containing sets of vertices and sets of links.
Links between two artefacts are always contained in the arte-
fact that contains the first of the two artefacts connected by
the link, which is one of the constraints that allows Gmodel
to fulfil the fourth criteria of the definition of model artefact
– effectively enforcing much stronger rules regarding modu-
larity than the minimum expectations set by KISS principles
(4) and (9).

The most powerful feature of Gmodel instantiation is the
ability to decorate any Gmodel artefact with instantiation
semantics (or concretisation semantics) relating to represen-
tations of less abstract (or more concrete) sets, such that the
artefact becomes instantiable. The instantiation semantics
available in the Gmodel kernel are specified via the variables
for cardinalities, navigability, and containment that are part
of all edge ends of Gmodel edges. Thus, on the one hand,
by excluding any circular links between artefacts, Gmodel
imposes heavy constrains on the models that can be created,
but on the other hand, Gmodel allows an unlimited degree
of freedom with respect to the number of instantiation lev-
els.

Gmodel does not mandate a layered metamodel architec-
ture. Our modelling experience in software intensive indus-
tries has taught us that the model pattern known as the
power type pattern in object orientation occurs pervasively
in highly configurable systems. The power type pattern is a
technical kludge that forces the fragmentation of semantic
identities, and it clearly demonstrates the limits of the ob-
ject oriented paradigm – which is currently still treated as
dogma by many software engineers. By allowing multi-level
instantiation, the need for the power type pattern is elimi-
nated, and the fragmentation of semantic identities can be
avoided.

3.2 Surface notation
The name Gmodel is motivated by the graph concept, and
all notations for visualising graphs are good candidates for
a concrete syntax for Gmodel artefacts. In contrast, purely
text-based representations are only practical for represent-
ing Gmodel artefacts with certain characteristics, such as



Figure 1: The Gmodel kernel within a typical usage context

artefacts with a low ratio of edges to vertices. Additionally,
given that the main target audience for Gmodel consists
of modellers in general – as opposed to software engineers
with a strong preference for working with formal text-based
languages, there is no urgent need for developing a human
readable purely text-based syntax.

The Gmodel open source project has no intention of rein-
venting XML or burdening the world with yet another XML-
based but not-quite-human-readable syntax. The Gmodel
API can easily be used to build graphical editors for Gmodel
artefacts that are complemented with appropriate form-based
representations of variables and their values. At this point in
time Gmodel provides two complementary graphical surface
notations for visualising model artefacts. A generic graph-
ical editor that allows artefacts to be created and modified
is currently under development.

3.3 Model artefact storage
Gmodel internally uses a serialisation format that is not in-
tended for human consumption, and it provides a binding
of this serialisation format to relational database technolo-
gies. In particular Gmodel fulfils criteria (3) of the defini-
tion of model artefacts, and provides explicit support for the
semantics of unknown and the semantics of not applicable.
As needed, the serialisation format can be bound to alter-
native persistence mechanisms such as file systems, object
databases or cloud database technologies.

In order to work with model artefacts, Gmodel includes a
repository API that currently offers basic artefact search
functionality, which will be significantly enhanced in future
releases.

3.4 Interoperability mechanisms
There are two main ways of achieving interoperability be-
tween Gmodel and other modelling technologies. This ar-
ticle focuses on the level of profound semantic interoper-
ability with other metalanguages that can be achieved by
making use of multi-level instantiation to emulate “foreign”
technologies. Gmodel also offers an alternative for partial
and superficial interoperability via file based information ex-
change. Out of the box Gmodel includes integration with
the Eclipse integrated development environment, and with
the openArchitectureWare Xpand template/transformation
engine, putting text or code generation at the user’s finger-
tips.

4. CONTRIBUTION TO MODEL-DRIVEN
INTEROPERABILITY

To a significant degree the development of Gmodel was moti-
vated by a lack of adequate technologies for formal modelling
beyond the realm of software engineering and programming
languages, and by a lack of interoperability between exist-
ing tooling for domain-specific modelling languages. Gmodel
simplifies model-driven interoperability in the following ar-
eas:

1. Modularity – The implementation of the artefact con-
cept prevents users from constructing circular depen-
dencies between modules. In contrast to other tech-
nologies, Gmodel allows the modelling of links between
primary model artefacts and derived artefacts [figure
6], which amounts to an in-built infrastructure for or-
chestrating model transformations.

2. Simplicity – Since the Gmodel kernel treats links be-
tween concepts as first-class constructs, all kinds of
graph structures (including undirected graphs) can be
represented without compromise, and in the preferred
terminology of the user. As a result, representations of
modelling languages within Gmodel tend to be highly
compact [figure 6], and the complexity of any required
model transformations is reduced accordingly.

3. Multi-level-modelling – Gmodel is not limited to the
four layered metamodel architecture. This opens up
new approaches with respect to interoperability [5] [2],
since types – and therefore interoperability patterns,
can be encoded in Gmodel to any level of complexity.
As illustrated in this article, multi-level instantiation is
a prerequisite for emulating “foreign” modelling tech-
nologies. We are not aware of any other multi-level
modelling technology that is ready for industrial use.

4. Scope management – Gmodel has an explicit feature
for scope management that is universally available within
all modelling languages expressed in Gmodel [figure
9]. This gives designers of modelling languages and
system architects an unprecedented amount of control
over the artefacts that language users can instantiate.
In the experience of the authors, such functionality is
essential for managing the dependencies between lan-
guages and between components in large-scale software
intensive systems.



5. Separation of the concern of modelling from the con-
cern of naming – Right down to the core Gmodel func-
tionality is expressed in semantic identities, and these
identities can be referenced from as many represen-
tations (models) as needed. In practical terms this
allows Gmodel to incorporate custom terminology and
jargons at all meta levels.

6. Portability – In contrast to many other modelling tech-
nologies Gmodel makes no assumption about the im-
plementation and legacy technologies that modellers
are going to drive from their model artefacts. The
Gmodel kernel is highly portable. It is articulated us-
ing the concepts presented in this paper, and makes
use of the Java programming language to bootstrap
the nine kernel concepts of ordered pair, ordered set,
graph, vertex, edge, edge end, super set reference, visi-
bility, and edge trace – but without exposing the Java
type system in the core API, whilst restricting inter-
nal use of Java types to a handful: boolean, int, List,
Iterator, UUID, and String.

5. EMULATING ECORE IN GMODEL
Gmodel clearly distinguishes between semantic domains and
models. The former simply contain sets of semantic identi-
ties, whereas the latter contain representations of semantic
identities from the view point of a particular actor.

5.1 Representing the Ecore metamodel
In Gmodel no model can be constructed without referencing
elements in the relevant underlying semantic domains.

5.1.1 Defining the Ecore semantic domain
In Ecore the most generalised element is the EObject, and
all other elements are part of a generalisation/specialisation
hierarchy that starts with EObject. To represent Ecore in
Gmodel, the first step consists of instantiating the seman-
tic domain EcoreDomain, which contains all the semantic
identities that appear in Ecore [figure 2]. This step will be
perceived as somewhat unusual by all those who are only
familiar with the definition of text-based languages using
EBNF-style grammars; as the concern of representation and
the concern of naming are one and the same in such specifi-
cations.

The number of semantic identities required to represent Ecore
is significantly larger than the number of elements that ap-
pear in the Ecore generalisation/specialisation hierarchy. Ev-
ery instance of an EDataType, every instance of an ERefer-
ence, every instance of an EAttribute, etc. that occurs in the
encoding of Ecore in itself requires a corresponding seman-
tic identity. Loosely speaking, everything that has a name
in the encoding of Ecore in itself corresponds to a semantic
identity.

5.1.2 Representing the representation of Ecore
To prepare for the representation of Ecore in itself (the
metametamodel level in the classical four layered metamodel
architecture) in Gmodel, we instantiate a model artefact
(with meta element vertex) based on the semantic identity
Ecore that has been defined as part of the EcoreDomain in

the previous step. Loosely speaking we now have an empty
model artefact called Ecore.

We can then proceed to add contained artefacts to the Ecore
artefact that correspond to the Ecore generalisation/ spe-
cialisation hierarchy that starts with EObject. Once this is
done we can represent the entire Ecore generalisation/ spe-
cialisation hierarchy in the Ecore artefact using super set
references as shown in figure 3, and we can represent all in-
stances of EReferences in the Ecore artefact within Gmodel
as illustrated in figure 4.

Lastly we add all relevant variables to the elements of the
Ecore artefact, making use of appropriate semantic identi-
ties from the EcoreDomain.

The whole process of representing Ecore in Gmodel is straight-
forward modelling in Gmodel, and requires no coding in a
programming language.

5.2 Representing Ecore models
The representation of Ecore models (the metamodel level in
the classical four layered metamodel architecture) in Gmodel
follows the same pattern as the representation of Ecore in
itself in Gmodel. First, appropriate semantic identities must
be defined, and then the Ecore model artefact can be instan-
tiated to obtain an empty model artefact. Note that above
we instantiated a vertex to obtain a model artefact with the
Ecore semantic identity, and now we are instantiating this
model artefact.

Just as above, the next step consists of adding contained
artefacts to the model artefact, this time however the meta
elements of the contained artefacts correspond to Ecore con-
cepts. Up to this point there is nothing special about using
Gmodel. We could turn the table and proceed with very
similar steps in Ecore to obtain a reasonable representa-
tion of Gmodel – “reasonable”, because Ecore actually lacks
one instantiation level to provide a precise representation of
Gmodel edges. But instead of delving into the encoding de-
tails of Gmodel edges, the following step in encoding Ecore
models is straightforward to follow, and clearly illustrates
where multi-level instantiation plays a critical role.

In Gmodel we can proceed to represent all instances of ERef-
erences as demanded by the Ecore model we are emulating,
and we can use the edges that Gmodel uses to represent
EReference instances to record the cardinalities pertaining
to the instantiability of the model artefact. In a metalan-
guage without multi-level instantiation we would already
have hit rock-bottom at this point. We would have been
able to express links between elements (which, depending on
the metalanguage, may be called “references”,“association”,
“relationships”, “connections”, “edges” or similar – the name
is immaterial), but we would not have been able to decorate
these links with cardinalities etc., which constitute essential
instantiation semantics for the next level of instantiation or
concretisation.

5.3 Representing instances of Ecore models
Given the explanations above, it is obvious how to proceed
to instantiate Ecore models (the model level in the classical
four layered metamodel architecture) in Gmodel such as the



Figure 2: The Ecore semantic domain

Figure 3: Encoding of Ecore super types

Figure 4: Encoding of Ecore references

Figure 5: Encoding of an entity relationship modelling language in the Ecore emulation



Figure 6: Native encoding of an entity relationship modelling language in Gmodel

example shown in figure 5. The comparison with figure 6
illustrates the complexity introduced one the one hand by
the emulation, and on the other hand by the Ecore encoding
of links between concepts in the form of EReferences.

5.4 Representing instances of instances of Ecore
models

In Gmodel there is no reason to stop modelling at the“model”
level. If the modeller has invested in decorating a model
artefact with instantiation semantics, Gmodel is capable of
applying these semantics – regardless of the level of instan-
tiation or concretisation [figure 7].

In practical terms multi-level instantiation allows the mod-
eller to instantiate operational data right down to the con-
crete level (the instance level in the classical four layered
metamodel architecture) – where Joe Bloggs owns life in-
surance policy number 123456 [figure 8].

Given that industrial-strength relational database technol-
ogy is the default storage format used by the Gmodel repos-
itory, navigating and maintaining large databases or data
warehouses is simply a matter using the Gmodel repository
for navigation, and of using Gmodel’s instantiation func-
tion.

5.5 Interoperability between Ecore and Gmodel
With the native encoding of Ecore emulated by Gmodel
artefacts, building a bi-directional bridge between the two
technologies has become a trivial task. The Ecore API can
be used to systematically read EMF models (at the meta-
model level and the model level in the classical four layered
metamodel architecture), and the retrieved in-memory rep-
resentations can be mechanically mapped to corresponding
in-memory representations in the Ecore emulation within
Gmodel.

Gmodel is a technology that allows the construction of model-
driven systems on a new scale, whereas EMF Ecore is a
technology with an established user base and a vast array of
useful transformation and generator components that facil-
itate the binding to popular Java implementation technolo-
gies. A bridge between Ecore and Gmodel can be driven
by an event-based mechanism to create dynamic interoper-
ability between the two technologies, opening up interesting
avenues for model-driven systems that exploit the strengths
of both technologies.

6. ADVANCED MODELLING TECHNIQUES
Modularity and scope management go hand in hand. One
without the other is of very little value.

6.1 Scope management via visibilities
Gmodel requires users to be explicit about scope. A model
artefact may not reference any element in other model arte-
facts unless these artefacts have been declared to be visible
from the first artefact [figure 9]. In contrast to most pro-
gramming languages, declarations of visibility are not part
of an artefact, but they are part of the parent artefact in the
so called artefact containment tree.

The parent artefact has the responsibility of providing the
architectural context for all the artefacts that it contains.
The authors of Gmodel consider it to be good modelling
practice to associate every artefact with a producer, and
to identify and name the binding time that is associated
with the instantiation of an artefact. Experience from many
large-scale software system development initiatives has con-
sistently confirmed the usefulness of this approach to system
analysis and modularisation.

The encoding of Ecore in Gmodel required the declaration
of a small number of visibilities, but there are much bet-
ter practical examples that can be used to demonstrate the
value of scope management via visibilities – a topic that goes
beyond the scope of this paper.

Visibilities offer significant value to intensive users of EMF,
as Ecore lacks a corresponding facility. By switching from
the native implementation of Ecore to the Gmodel Ecore

emulation, EMF users gain access to the use of visibili-
ties, and hence obtain a powerful tool for actively manag-
ing/restricting the dependencies in large-scale Java compo-
nent architectures.

6.2 Applications of multi-level instantiation
6.2.1 The bottomless pit of abstractions

Gmodel incorporates the insight from experienced modellers
that there is no absolute rock-bottom concrete level of mod-
els. Life insurance policy number 123456 only looks like an
instance from the view point of the average policy holder.
From the view point of the insurer a specific version of the
policy that is active for a certain interval is a more appro-
priate perception of instance. If, in 2020, Joe Bloggs decides
to shift his entire life into n virtual worlds (given the track
record of software technology, who would want to put all
eggs in one basket), his view point will shift. Life insurance
policy number 123456 in Second Life may be considered to
be one instance, and the corresponding policy representation
in Third Life may be considered to be a different instance –
perhaps the currency in which premiums are being paid is
different in each of the virtual worlds.

6.2.2 Value chain modelling and mass customisation



Figure 7: Snippet from an entity relationship model of a CRM application

Figure 8: Joe Bloggs’ life insurance policy number 123456

Figure 9: Example of visibility declarations



If the above sounds far fetched, analysing the typical evo-
lution of technology products over a period of several years
provides further motivation for multi-level instantiation. Since
the 1970s software has been used as a tool to not only au-
tomate industrial production, but also to extend the degree
to which technology products can be configured and cus-
tomised without having to resort to manual manufacturing
techniques. Mass customisation has become commonplace
in many industries.

The evolution of a product over longer stretches of time
can be modelled as a series of instantiation levels. Adding
a new set of configuration options equates to adding addi-
tional variables to an artefact that used to be perceived as
an instance. What used to be called a product morphs into
a product line, and the new products are the instances of
the product line, where each of the variables take on con-
crete values. The view point of the customer usually remains
unaffected, she still buys instances of a product.

Within a non-trivial value chain, the variables associated
with a product line tend to be replaced by concrete values
in a series of stages, so called binding times. Each binding
time is associated with a specific actor that is responsible for
making decisions regarding the values relating to a specific
set of variables. In our experience multi-level instantiation
is by far the simplest modelling technique for representing
non-trivial value chains.

The alternative of using a purely object oriented design, in
combination with the classical power type pattern, leads
to system designs that are much more complex and much
less maintainable than they could be. In particular the tra-
ditional distinction between design-time and run-time is a
dangerous over-simplification that distracts from the need of
proper value chain analysis (also known as domain analysis
in the discipline of software product line engineering).

6.3 Applications of denotational semantics
Since all model artefacts in Gmodel are constructed from
semantic identities, and since semantic identities are the only
Gmodel elements that have names, semantic identities offer
a one-stop-shop for dealing with all aspects of naming. This
greatly facilitates any required translation between different
terminologies, and it even enables users to replace the names
of the semantic identities in the Gmodel kernel. If a user
prefers to call a vertex a node, or if she prefers to rename
TRUE to FALSE and FALSE to TRUE, so be it. The role
of modelling is representation and not naming.

Separating the concern of modelling from the concern of
naming adds value precisely because good terminology is so
important. Each pair of collaborating actors in a value chain
tends to have a preferred terminology or jargon for their
specific interactions, and such jargon is often a valuable tool
for disambiguation.

Without the systematic use of semantic identities, estab-
lishing interoperability across an entire value chain is sig-
nificantly complicated. Names end up being used in the
definition of protocols and artefacts, and the reliability of
links between the participants in the value chain and com-
munication across the links suffers accordingly.

It is worthwhile to note that semantic identities are not only
applicable at the atomic level to define identities such as
TRUE and FALSE, but are just as applicable to statements
such as minimum cardinality = 1 or to aggregates such as
the entire Ecore model artefact.

7. OTHER TECHNOLOGIES
The level of interoperability between current domain-specific
modelling tools is comparable to the level of interoperability
between CASE tools in the 90s. To increase the popularity
of model based approaches, this needs to change. The as-
sumption that all parties in a global software supply chain
will use identical tooling is simply not realistic.

7.1 Research prototypes
We are aware of at least three modelling technology proto-
types with some form of multi-level instantiation capability
[1], [8], [9], [6]. It would be extremely interesting to com-
pare the design of Gmodel with the design of these prototype
technologies.

7.2 Eclipse Modeling Framework Ecore
In this paper we have illustrated how Gmodel can be used
to emulate the Ecore technology, and conversely we have
highlighted some of the limits of Ecore, in particular the
lack of support for multi-level instantiation.

7.3 MetaEdit+
MetaEdit+ is mature metamodelling and modelling environ-
ment that compares favourably with the Eclipse Modeling
Framework. In particular the metametamodel of MetaEdit+
is simpler than the metametamodel used by Ecore, with-
out any sacrifice in expressive power. But just as Ecore,
MetaEdit+ follows the four layered metamodel architecture
dogma and does not offer multi-level instantiation. As a re-
sult, MetaEdit+ runs into the same limitation that Ecore
runs into when attempting to emulate “foreign” modelling
technologies.

Similar to Gmodel, MetaEdit+ relies on database technol-
ogy rather than a file system for the storage of model arte-
facts, enabling modellers to build large-scale model-driven
systems, but without explicit scope management facilities.

7.4 Unified Modelling Language tools
The main target audience of UML consists of software pro-
fessionals who have an interest in visualising code, especially
object oriented code. Most UML tools only offer very lim-
ited – if any – functionality for instantiating models that
users have created. Since UML is based on the Meta Object
Facility (and on Ecore or similar implementations), UML
tools are affected by the kinds of limitations discussed in
this paper in relation to Ecore.

7.5 Programming languages
There are several programming languages that offer multi-
level instantiation, and there are also a number of program-
ming languages that are based on denotational semantics,
such as LISP or REBOL. Whilst these language have ex-
pressive power that is comparable to Gmodel, they don’t
offer the limitations and constraints that have consciously
been built into Gmodel.



Programming language designers approach language design
from a view point that differs significantly from the view
point of a modelling language designer.

1. A programming language is designed to be executable
on a specific platform. The platform represents the so-
lution space, and the implementations of programming
languages are optimised with respect to using the re-
sources offered by the platform.

2. Since most programming languages are general pur-
pose languages, they have to offer features that cover
the needs of a big range of different users. As a result
programming languages offer many features that are
not strictly needed by the majority of users. These
features lead to additional degrees of freedom in so-
lution designs, and consequently lead to variations in
implementation that are induced by personal design
preferences of individual software engineers. In the
small this may not matter, but in the large these vari-
ations are known as spurious complexity.

3. A modelling language is designed for the representa-
tion of specific kinds of problems. As outlined in this
article, problem spaces are best modularised along the
lines of the actors that participate in a value chain, and
each actor must be equipped with modelling languages
that have a clear focus on the specific context and view
point – all other details must be abstracted away. The
result is a design force that pulls in the opposite di-
rection of the design force that drives the development
of most programming languages. The most valuable
modelling languages are not only domain-specific, they
are company specific.

Gmodel is a metalanguage that strives to provide expressive
power in those areas that matter to modellers, and at the
same time it strives to restrict those expressive powers that
may lead to non-maintainable artefacts.

8. CONCLUSIONS
Although Gmodel is a brand new metalanguage, it embodies
the collective lessons from many experienced modellers. The
specific constraints that have been built into Gmodel have a
track record of many years in industrial practice. Up to now
best practices for scope management and modularity had
to be applied manually, in the form of conventions. This
worked up to a point, but it posed limits to the scalability
of modelling technology in large environments.

Without appropriate tool support, designing and maintain-
ing advanced model-driven systems requires a large number
of highly skilled modellers and system architects, and of-
ten the required level of expertise is simply not available.
We hope that Gmodel offers the missing stepping stone that
allows a much larger group of organisations to reap the ben-
efits of formal modelling, by significantly reducing the num-
ber of concepts and technologies that a designer of modelling
languages needs to be familiar with, and by offering features
– such as multi-level instantiation – that lead to simpler and
clearer designs. Interoperability with EMF Ecore as outlined
in this article is currently being refined, and a bi-directional
bridge between Gmodel and Ecore will be a feature in an

upcoming release of Gmodel.

No modelling tool can ever replace the need for domain
analysis, but Gmodel is ideally positioned to record the re-
sults of domain analysis. On the one hand Gmodel provides
domain-specific modelling support for all participants in a
value chain, and on the other hand it serves as a front end
for model transformation and code generation technologies
that allow models to be glued to existing technologies and
legacy systems.

9. REFERENCES
[1] Colin Atkinson, Matthias Gutheil, and Bastian

Kennel. A flexible infrastructure for multilevel
language engineering. IEEE Trans. Softw. Eng.,
35(6):742–755, 2009.

[2] Jorn Bettin and Tony Clark. Gmodel, a language for
modular meta modelling. In Australian Software
Engineering Conference, KISS Workshop, 2009.

[3] Jorn Bettin and Tony Clark. The knowledge industry
survival strategy initiative (kiss), 2009.

[4] Jorn Bettin, William Cook, Tony Clark, and Steven
Kelly. Knowledge industry survival strategy (kiss):
fundamental principles and interoperability
requirements for domain specific modeling languages.
In OOPSLA ’09: Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented
programming systems languages and applications,
pages 709–710, New York, NY, USA, 2009. ACM.

[5] Tony Clark, Paul Sammut, and James Willans.
Applied metamodelling: A foundation for language
driven development, 2008.

[6] Tony Clark, Paul Sammut, and James Willans.
Superlanguages: developing languages and
applications with xmf., 2008.

[7] Wilfrid Hodges. A shorter model theory. Cambridge
University Press, New York, NY, USA, 1997.

[8] A. Laarman. An ontology-based metalanguage with
explicit instantiation, March 2009.

[9] Alfons Laarman and Ivan Kurtev. Ontological
metamodeling with explicit instantiation. In
M. van den Brand, D. Gaševi?, and J. Gray, editors,
Software Language Engineering, volume 5969 of
Lecture Notes in Computer Science, pages 174–183,
Heidelberg, January 2010. Springer Verlag.

[10] Tomasello M, Carpenter M, Call J, Behne T, and Moll
H. Understanding and sharing intentions: The origins
of cultural cognition. Behavioral and Brain Sciences,
28, 675 - 691, 2005.

[11] David A. Schmidt. Denotational semantics: a
methodology for language development. William C.
Brown Publishers, Dubuque, IA, USA, 1986.


