
bCMS in LEAP

Tony Clark
Balbir S. Barn

School of Engineering and Information Sciences
Middlesex University

London NW4 4BT, UK
{b.barn,t.n.clark}@mdx.ac.uk

August 2, 2012

Abstract

This paper contains an overview of the features of the LEAP component-
based executable modelling language applied to the bCMS Crisis Manage-
ment System Case Study. The paper aims to show the key features of the
LEAP technology in terms of various aspects of the case study.

1 Introduction

LEAP is an executable modelling language and associated tool that aims to pro-
vide a basis for component-based development. LEAP is based on a collection of
simple concepts that are intended to span the development life-cycle from require-
ments through analysis, animation and eventually deployment. LEAP is currently
in development [3, 4, 2, 1] and its application to case studies such as bCMS1 and
the associated comparison with other modelling approaches is an important part of
the development process.

Our aim with LEAP is to support both enterprise models and system models
using the same collection of features. Our view is that such systems can be rep-
resented as hierarchically organized collaborating components expressed using a
suitable collection of modelling languages. Therefore, a specification language is
provided that expresses conditions over static and dynamic features of component
models. Components manage their own internal state as a form of knowledge base
and a deductive theory language is provided together with a functional language
for expressing behaviour. Declarative component behaviour can be achieved using
a state-machine language together with a language for event driven rules.

This document describes describes some key features of LEAP as they are
applied to the bCMS system. The key features are as follows: section 2 briefly de-

1http://cserg0.site.uottawa.ca/cma2012/CaseStudy.pdf

1

Figure 1: The LEAP Tool

scribes the LEAP tool and how it supports application development; section 3 de-
scribes how architecture models are constructed; section 4 describes the bCMS in-
formation models; section 5 describes data invariants; section 6 describes how
components contain theories that can be used to deduce facts about the current
state of a component; section 7 describes how system requirements are captured as
goal models; section 8 describes the operational semantics of LEAP components
using operations; section 9 describes how the behaviour of a component can be
encoded as a state machine; section 10 describes how the current state of a com-
ponent can be displayed as an object model; section 11 describe how Java classes
can be included in LEAP models shows how this feature can be used to implement
a simple GUI for bCMS.

2 Tool and Model Development

LEAP is both a textual language and an associated tool. The tool provides a collec-
tion of views on the models under construction and on the underlying file system.
Currently, the functionality of the graphical model editors is limited and therefore
they are used to view and interact with models that have been constructed using
text editors. LEAP models constructed using the tool can be saved as text files
or in an XML format that retains graphical information and tool state that can be

2

reloaded at a later date.
Figure 1 shows a snapshot of the LEAP tool after loading in the bCMS defini-

tion that is contained in the text files case study.cmp and mk coordinator.op.
The former contains the definition of a component model (hence the .cmp and the
latter defines a function (hence .op) that is used as a product-line definition for
co-ordinatoing components.

The top-left panel is a view on the file-system that can be used to create, edit
and delete LEAP source files. The top-right panel shows a LEAP text editor that
contains the contents of the mk coordinator.op file. The bottom-right panel con-
tains messages printed from the system. The middle-bottom panel is a property
editor that is used to view and change properties of selected model elements. The
bottom-left panel shows all the model elements in the system as a tree; it shows the
case study component with two sub-components called police and fire.

In order to run the bCMS model, the user opens up the police component and
navigates to an operation named display that can be invoked using the mouse. As
will be described in the rest of this document, from that point on the bCMS system
is driven from a simple GUI embedded as a panel within the LEAP tool.

All the diagrams in the rest of this document are exported from the LEAP tool.

3 Architecture Models

LEAP models consist of hierarchically organized collections of components. Com-
ponents bind names to values and therefore act as name-spaces. There is a root
component called leap and therefore, all named components can be reached by
navigation from leap. However, this does not mean that the structure of LEAP
models is static since components can be both anonymous and can be used as nor-
mal data values, i.e. they are first-class data values.

Components behave like black-boxes: they consume messages from their input
ports and produce messages on their output ports. Messages consist of a name and
a sequence of values. Component ports are named and can be connected so that the
output port of one component is connected to the input port of another component.
When a message is sent to an output port it is broadcast to all connected input ports.
An input port can also be connected to an input port of a child component so that
messages sent to a component are immediately delegated to its children.

The component features described above are used in the definition of the bCMS
system defined below:

1 component bCMS {
2 police = mk_coordinator(
3 ’police ’,
4 Location(0,0),
5 [Crisis(’M25 Crash ’,0,Location(2,2),[],[],[])],
6 [Resource(’Police -Car1 ’,Plan([]),[])])
7 fire = mk_coordinator(
8 ’fire ’,
9 Location(0,2),

10 [],

3

11 [Resource(’Fire -Engine1 ’,Plan([]),[])])
12 init {
13 connect(police.outputs ,fire.commands);
14 connect(fire.outputs ,police.commands)
15 }
16 }

Each component can define the following: bindings; sub-components; goals; op-
eration specifications; ports; operations; state; initialization code; rules; a theory;
a state machine. Most of these features will be used in the definition of bCMS.
The component bCMS contains two bindings: police and fire. The function
mk coordinator is defined in the file mk coordinator.op and is below, it re-
turns a new component based on the supplied arguments that initialize the name,
location, crises and resources of the coordinating component:

1 mk_coordinator(coord_name ,init_loc ,init_crises ,init_resources) {
2 component {
3 ...
4 }
5 }

All of the textual definitions in the rest of this report are part of the definition of
the component returned by mk coordinator and therefore should be understood
to be part of the body represented by ... above.

The component bCMS also contains an init block that is used to connect the two
components together: output messages from the police component are sent to the
fire component and vice versa.

The component architecture for bCMSis shown in figure 2. It shows the two
components together with their input ports (white boxes) and their output ports
(black boxes). The ports have names and the connections between them are la-
belled with the interfaces that the ports support. The two connections support the
same interface type, for example is fire sends a message contact(name,loc)
to the output ports named outputs then the message is sent to the input named
commands of the police component. The ticks in the top-left hand corner of
each component should be ignored for the purposes of this case study, they de-
note whether or not all of the data invariants for the component are satisfied.

The messages defined in interfaces are typed. LEAP supports basic types str,
int and bool along with types [t] that denotes a list of all elements of type t.
The type void is used to denote an asynchronous message. LEAP supports both
synchronous and asynchronous message sending. This case study only uses asyn-
chronous messages.

4 Information Models

In LEAP each component maintains a private state. The state is a list of terms
of the form Name(v,...,v) where Name is any name starting with an upper-case
letter and each v is a LEAP value that is defined as follows: a LEAP value v is
one of: a string ‘example’; an integer; a boolean; a list of values [v,...,v]; a

4

Figure 2: The bCMS Architecture

cons-pair h:t where head h and tail t are values; a term Name(v,...v); a function
fun(x1,...,xn) e where xi are argument names and e is a LEAP expression; a
component. LEAP models are values too, but we do not need to treat them as such
for the purposes of bCMS.

A component state is defined as a class-model. The model for bCMS is shown
in figure 3 and is defined in file mk coordinator.op as follows:

1 model {
2 class CoOrdinator {
3 name:str;
4 location:Location;
5 colleagues:[CoOrdinator];
6 crises:[Crisis];
7 resources:[Resource]
8 }
9 class Crisis {

10 description:str;
11 time:int;
12 location:Location;
13 victims:[Victim];
14 witnesses:[Witness];
15 allocated:[Resource]
16 }
17 class Time { time:int}
18 class Location { x:int; y:int }
19 class Person { name:str }
20 class Victim extends Person { medical:str; location:Location }
21 class Witness extends Person { statement:str }

5

Figure 3: bCMS Information Model

22 class Resource { id:int; plan:Plan; objectives:[Objective] }
23 class Objective { id:int; achieved:bool }
24 class Plan { route:[Location] }
25 class Map {locations:Location; roads:[Road] }
26 class Road { start:Location; end:Location }
27 }

A model definition is to be understood as follows. The state of a component is
represented as a list of terms. Each term should correspond to an instance of a
class definition (or an association which is not used here). For example, consider
the class Time, it defines a single field named time with type int, therefore an
instance-term is Time(10). Where there is more than one field, such as Location
the order of the fields is important when constructing a term: Location(1,2) has
a value of 1 for x and 2 for y. A possible state for a component with the model
given above is: [Time(1),Location(1,2)]. By default there can be any number
of instance-terms for a given class (invariants can be used to express multiplicity
requirements).

The model relates to the bCMS as follows:

CoOrdinator A co-ordinator is used in two ways: to record the details of a com-
ponent within its state; there should be one such instance-term for each

6

co-ordinating component. In addition, a co-ordinator will use instances of
CoOrdinator to record information about its colleagues in order to collab-
orate on a crisis. Therefore the single instance representing a co-ordinator
will contain a list colleagues that is builds up over time. In addition, each
co-ordinator has a name, a location, a list of crises that it is handling and a
list of resources that can be used.

Crisis A crisis has a description, a time at which it occurred, and a location. The
crisis contains a list of victims and witnesses. It has a list of allocated re-
sources that should be owned by its managing co-ordinator.

Resource A resource is under the control of a co-ordinator. It has a unique id and
a plan for getting from its current location to another location. A resource
maintains a list of objectives that describe the tasks allocated by its owning
co-ordinator.

Objective An objective is unique and either has been achieved or not. The details
of particular objectives are outside the scope of the model.

Plan A plan is just a list of locations.

Map Each co-ordinating component maintains a map of the area in its state. A
map is a graph whose nodes are locations and whose edges are roads that
link locations.

Location A location is represented as an (x,y) co-ordinate.

Road A road simply links locations.

Time A co-ordinating component maintains its local time so that it can determine
wether or not time-out events need to be generated.

Person Every person has a unique name.

Witness A witness provides a statement about the crisis.

Victim A victim has a medical history and a location.

Each LEAP component may specify an initial state via a state clause in its defi-
nition. Recall that some of the information necessary to initialize a co-ordinator
component is passed to the mk coordinator operation as argument values:

1 state {
2 Time(0)
3 CoOrdinator(coord_name ,init_loc ,[],init_crises ,init_resources)
4 Map([Location(0,0),Location(2,0),Location(2,1),Location(2,2),Location(0,2)],
5 [Road(Location(0,0),Location(2,0)),
6 Road(Location(0,0),Location(0,2)),
7 Road(Location(0,2),Location(2,2)),
8 Road(Location(2,0),Location(2,1)),
9 Road(Location(2,1),Location(2,2))

10])
11 }

7

5 Invariants

LEAP allows a component to specify data invariants that are conditions which must
hold at all times for the state of the component:
invariants {

...
}

The LEAP expression language includes a boolean expression sub-language that is
similar to first-order predicate calculus and OCL. For example the following invari-
ant requires that a component contains only a single instance of the CoOrdinator
class at the top-level (other instances may be nested as colleagues):

1 oneCoOrdinator {
2 length([name | CoOrdinator(name ,_,_,_,_) <- state]) = 1
3 }

The invariant defined above is named oneCoOrdinator. The body of the invariant
(line 2) requires that the number of terms in the state of the component that match
the pattern CoOrdinator(name,...) is exactly 1, i.e. there is only one instance
of CoOrdinator. Line 2 shows an example of a list-comprehension. In general:
[e | p1 <- e1, ..., pn <- en]

denotes the list constructed by selecting all values from lists ei that match pat-
ternspi in the order that varies selection from ej more frequently than ei where j
> i.

The following invariant requires that the location of the co-ordinator is on the
map:

1 locatedCoOrdinator {
2 exists CoOrdinator(_,loc,_,_,_) {
3 exists Map(locs ,_) {
4 exists loc in locs
5 }
6 }
7 }

The invariant above provides an example of the use of exists (3 times). An
exists expression consists of a pattern, an optional list (that defaults to state)
and a boolean valued expression (that defaults to true. Therefore the body of
locatedCoOrdinator states that there must be a co-ordinator and there must be a
map, both in the state of the component, and the location must be in the map.

6 Theories

LEAP supports component theories that are used to deduce facts from the current
state of the component. A theory is defined as a collection of deduction rules. The
theorems of a component are the facts it contains as terms in its current state and
the facts that can be deduced using the rules.

LEAP theories are defined in a theory clause in a component definition. The
rules are used in the same way as Prolog rules over a Prolog database, except that

8

each component in LEAP has its own database and collection of rules. Components
may use the theories of other components via message passing.

Each rule can be thought of as defining a term based on the existence of
other terms which are either deduced using rules or are present in the component
database, for example Append defines terms of the form Append(l1,l2,l3) where
l3 is the list containing elements from l1 followed by the elements from l2:

1 Append([],l,l) { }
2 Append([x|l1],l2,[x|l3]) {
3 Append(l1,l2,l3)
4 }

The example above defines two rules. The first rule defines a fact Append([],l,l)
for any list l. The second rule (lines 2-4) uses the notaion [h|t] that denotes a
list with a head h and tail t. The second rule defines a relationship between two
non-empty lists and a third list l2 in terms of an existing relationship defined by
Append(l1,l2,;l3).

LEAP provide the prove expression that is used to deduce facts within a com-
ponent, for example:
prove Append([1,2,3],[4,5,6],$l) {

print(l)
}

prints out [1,2,3,4,5,6]. Note the use of $ as a prefix for unbound variables in
the term. Another example is Member that defines list membership:
Member(e,[]) { fail }
Member(e,[e|rest]) {}
Member(e,[x|rest]) {

Member(e,rest)
}

The following rules deduce facts about roads in a map:
Road(loc1 ,loc2 ,[]) { fail }
Road(loc1 ,loc2 ,[Road(loc1 ,loc2)|roads]) { }
Road(loc1 ,loc2 ,[ignore|roads]) {

Road(loc1 ,loc2 ,roads)
}

Finally the following rules deduce routes between two locations:
Route(loc,loc,route ,visited){ }
Route(loc1 ,loc2 ,[loc1 ,loc2],visited) {

Map(locs ,roads);
Road(loc1 ,loc2 ,roads)

}
Route(loc1 ,loc2 ,route ,visited) {

Member(loc3 ,locs);
not(Member(loc3 ,visited));
Route(loc1 ,loc3 ,route1 ,[loc3|visited]);
Route(loc3 ,loc2 ,[loc3|route2],[loc3|visited]);
Append(route1 ,route2 ,route)

}

9

Figure 4: bCMS Goal Model

7 Goals and Requirements

LEAP supports requirements modelling using goal trees based on KAOS. Like
KAOS, LEAP goal fall into a number of categories including informal goals and
behavioural goals. An informal goal is used to provide a description of a functional
or non-functional requirement with the intention that it will be refined further. A
behavioural goal is expressed using a logic that expresses conditions over the be-
haviour of one or more components.

A LEAP component can be viewed as a state machine whose states are com-
ponent states and whose transitions are labelled with messages. LEAP behavioural
goals are expressed in a logic that denotes predicates over such state machines. It
is beyond the scope of this report to provide a detailed description of the LEAP
behavioural logic, however we provide some examples in the context of bCMS.

Figure 4 provides part of a goal model for bCMS. The goal CorrectBehaviour
is informal and is the root of the behaviour tree for the components. We decompose
the root into two informal sub-goals: TimelyBehaviour that relates to agreeing
plans and CollegiateBehaviour that relates to contacting colleagues in order
to work together. In order to provide an example of the different categories of
goals, the two sub-goals are refines into two precisely defined behavioural goals:
ResourcePlans and SendContactMessage (the indirect refinement is not nec-
essary, but it provides some structure for the tree to show the reader the kind of
refinement envisoned for larger goal models).

Goals are included in LEAP component models in a goals clause. The model
source is described in the rest of this section. The root goal and its immediate
refinements are defined as follows:

10

goal CorrectBehaviour {
’The system shall behave correctly.’

}
goal TimelyBehaviour {

’The system will have a plan in place
for all resources within a given time limit.’

}
goal CollegiateBehaviour {

’All controllers must introduce themselves
to their colleagues before a crisis strikes.’

}
refine CorrectBehaviour <- TimelyBehaviour and CollegiateBehaviour;

The behaviour goals are expressed using the LEAP behaviour logic, for example:
1 behaviour ResourcePlans {
2 ’At all times , if a crisis occurs at time t then
3 plans are in place by time t + 3.’
4 [](CoOrdinator(n,l,cs,[Crisis(d,t,l’,v,w,[])],rs) ->
5 <>(CoOrdinator(n,l,cs,[Crisis(d,t,l’,v,w,rs’)],rs’) and
6 forall Resource(i,Plan(p),a) in rs’ { p != [] } and
7 Time(t’) and t’ < t+3
8)
9)

10 }
11 refine TimelyBehaviour <- ResourcePlans;

The formula in lines 3-7 uses the operator [] to mean at all future times, -> to mean
logical implication, <> to mean at some future time. The temporal operators allow
us to roam over the future states of a component in order to enforce conditions on
its contents.

The following example shows an example of the U operator; p U q holds
when p is true until the point at which q is true:

1 behaviour SendContactMessage {
2 ’The contact message must be sent at or before the crisis happens.’
3 <>([contact(name ,loc)] and CoOrdinator(name ,loc ,colls ,crises ,res)) U
4 CoOrdinator(name ,loc,colls ,[crisis],res)
5 }
6 refine CollegiateBehaviour <- SendContactMessage;

8 Behaviour

Component behaviour is defined in three ways: named functions within a oper-
ations clause; a state transition machine defined within a machine clause; event
detection rules defined within a rules clause. The bCMS system will use all three
mechanisms for expressing behaviour. In principle, everything can be expressed
using just one of these behavioural definition mechanisms, however LEAP pro-
vides all three because each mechanism has features that make it appropriate in
particular circumstances. This section provides an example of LEAP operations.

LEAP behaviour occurs in response to message processing and to state change.
When a message is processed, there may be an operation with the appropriate name
and arity, and there may be a state transition labelled with the messgage and whose
guard is enabled. In this case the operation is called and then the transition is fired.

11

Rules and transitions without messages both monitor a component’s state. When
the state changes, rules and transitions may become enabled. A single enabled rule
or transition is fired on each component execution cycle (whether or not there is
a message being processed). Of course, the resulting change of state may cause
enabled rules and transitions to become disabled.

The following operation is called when a component receives a contact request
from another co-ordinator:

1 contact(name ’,loc ’) {
2 find c=CoOrdinator(name ,loc,cs,crises ,rs) {
3 case cs {
4 { CoOrdinator(name ’,_,_,_,_) } U _ -> print(’already registered ’)
5 else {
6 replace c with
7 CoOrdinator(name ,loc,CoOrdinator(name ’,loc ’,[],[],[]):cs,crises ,rs);
8 outputs <- contact(name ,loc)
9 }

10 }
11 } else error(’no coordinator ’)
12 }

Line 2 is an example of a find expression that matches a pattern against the current
component state (or a sequence of values if supplied). The case expression on
lines 3-10 is used to determine whether or not the co-ordinator making contact has
already been registered. Line 4 provides an example of a set-pattern that matches
over lists but does not require the elements of the list to be matched in order. A
pattern p U q matches a list so that p and q are non-overlapping subsets of the list.
In the case of line 4 the set pattern is used to extract an element from the list of
collaborators with the supplied name name’. The use of the set pattern ensures that
the term will be extracted no matter where it occurs in the list. If the pattern does
not match then the replace expression (lines 6-7) updates the component state, and
a message is sent to the output port (line 8) so that contact is made in the opposite
direction.

Operations for crisis and available that are used to swap crisis information
and resource availability are very similar to contact and do not involve any new
LEAP features.

The co-ordinator that is designated as providing the plan uses the following
operation to construct and disseminate the information:

1 plan() {
2 find c=CoOrdinator(name ,mystart ,coordinators ,[Crisis(d,t,end,v,w,_)],r) in state {
3 prove Route(mystart ,end,$myroute ,[mystart ,end]) in state {
4 let r’ = [Resource(rid,Plan(myroute),[]) | Resource(rid,_,_) <- r]
5 in replace c with CoOrdinator(name ,mystart ,coordinators ,[Crisis(d,t,end,v,w,r’)],r’);
6 for CoOrdinator(name ’,costart ,_,_,_) in coordinators {
7 prove Route(map,costart ,end,$coroute ,[costart ,end]) in state {
8 outputs <- proposeRoute(name ’,coroute)
9 }

10 }
11 } else print(’no route from ’ + mystart + ’ to ’ + end + ’ in ’ + map)
12 } else error(’no coordinator ’)
13 }

The operation uses prove to deduce a route for both the co-ordinator and their

12

Figure 5: bCMS State Machine

colleagues. The local route myroute is added to the component state (line 5), note
that a list-comprehension is used in line 4 to update all the local sources with a
planned route. For each colleague a new route is planned (line 7) and is sent to any
connected co-ordinators vis the output port (line 8).

When a component receives a proposed route, the route may be rejected or
accepted. Both of these are handled by message exchange, but are not defined here
as they resemble plan and do not introduce any new LEAP features. Planning may
timeout in which case a route is forced. The operations that handle forced outing
are the same as plan except routes are not forced, they must be accepted.

9 States and Events

9.1 State Machines

Section 8 shows how LEAP operations can define the behaviour in terms of han-
dling messages (and being directly called internally within a component). The
behaviour of a component can also be controlled by a state machine and event
driven rules. In principle, any behaviour can be defined using machines and rules,
however, it can become very complex. State machines are arguably best used to

13

control the life-cycle of an object and rules to control exceptional behaviour, leav-
ing operations to handle the more complex aspects of component behaviour.

Figure 5 shows the bCMS state machine constructed from the following defi-
nition:

1 machine(Start) {
2 contact contact(name ,loc) Start -> Contacted {
3 replace State(’start ’) with State(’details exchanged ’);
4 commands <- display()
5 }
6 crisis crisis(name ,c) Contacted -> Crisis {
7 replace State(’details exchanged ’) with State(’crisis exchanged ’);
8 commands <- display();
9 commands <- plan()

10 }
11 crisis_timeout forceRoute(route) Crisis ->Planned {
12 replace State(’crisis exchanged ’) with State(’crisis planned ’)
13 }
14 crisis_sent [State(’crisis exchanged ’)] Contacted ->Crisis;
15 route_proposed proposeRoute(name ,route) Crisis -> Planned {
16 replace State(’crisis exchanged ’) with State(’crisis planned ’)
17 }
18 route_accepted acceptRoute(route) Crisis ->Planned {
19 replace State(’crisis exchanged ’) with State(’crisis planned ’)
20 }
21 }

The machine is defined in terms of transitions that hold between states. The ma-
chine specifies a starting state Start and a collection of transitions; each transition
has a name, an optional trigger message, an optional guard, a pair of states and an
optional action. For example the transition contact (lines 2-5) is enabled when
the machine is in state Start and when the trigger message contact is processed.
There is no guard, i.e. no condition that must be satisfied in terms of the component
state. The action updates the state (line 3) and sends a message (line 4).

The bCMS machine uses an extra term State(s) in the component’s database
to keep track of which state is current; this will be used by the GUI in section 11
to determine what information to display to the user.

Transition contact is used to detect a new contact and to update the display.
Transition crisis is used to detect the transfer of crisis information and to initiate
route planning. Transition crisis timeout is used to detect when a route is forced
on a component. Transition crisis sent is an example of a transition with only a
guard. If the state is updated as required by the guard then the transition becomes
enabled.

Figure 5 shows the bCMS machine in the initial state. As transitions are fired,
the current state (shown as a black circle) is updated on the diagram.

9.2 Rules

State machines offer a structured way to express behaviour. Sometimes, state-
based behaviour is less structured, for example when a transition occurs on every
state. Rather than clutter a state machine with repeated transitions, it is possible

14

to factor the transition out as a single rule. Rules are defined in the rules clause
within a component. For example, the bCMSsystem must enforce an agreed plan
before a given timeout. This can be achieved using the following rule:
timeout: CoOrdinator(_,_,_,[Crisis(_,t,_,_,_,r)],_)

Time(t’)
?(t < (t’ - 3))
?(noPlan(r)) {

timeout_plan()
}

The rule matches against the current state of the component. There are two state
patterns and two conditions. The first state pattern matches against a co-ordinator
that has a single crisis. The time of the crisis is t and the allocated resources are r.
The second state pattern matches against the current time t’. The first condition
requires that 3 time units have passed since the crisis was recorded. The second
condition requires that the predicate noPlan is satisfied. The predicate is defined
as an operator:
noPlan(resources) {
exists Resource(_,Plan([]),_) in resources

}

The body of the rule cals the operator timeout plan which is the same as plan
above except that it forces a route on all of the colleagues.

10 Instance Models

The LEAP tool allows a model to be executed step-by-step and provides views
on the state of the components. At any stage the current state can be visualized
in terms of the original model. For example, after introducing themselves, after
swapping crisis information and then agreeing a plan, the Fire controller is shown
in figure 6 and the Police controller is shown in figure 7.

The ability to visualize component states in this way provides a means for
checking a model execution and can be used to build up an execution trace. The
states can be included as design information to guide system development.

11 Java Components and GUI

The LEAP language supports executable models of component-based systems.
LEAP components implement a specific interface that is used by the LEAP execu-
tion engine to deliver and receive messages. The internal details of the component
is opaque to the execution engine since components simple map input messages to
output messages. Therefore, it is possible to load the LEAP execution engine with
components implemented in languages other than LEAP. Since LEAP is written in
Java, there is a Java interface that can be used to implement any Java class so that
it loads on to the engine and behaves as any other LEAP component.

15

Figure 6: State of Fire CoOrdinator

LEAP provides a built-in function called jcomponent to load and instantiate
Java classes that implement the LEAP component interface. The single argument
to this function is a string that names the Java class. The LEAP tool provides
some built-in Java classes in whic way, including a class named frames.GUI that
implements a simple HTML-style user interface. The definition of the component
in mk component.op includes the line:
gui = jcomponent(’frames.GUI ’)

resulting in a nested component called gui that provides a single input port named
in with a single message display. The argument to display is a term t defined by
the following grammar:
t ::= Table([[t...]...) Tables (like HTML tables).

| Text(str) Literal text.
| Input(str,str) A named input field.
| Button(str,fun(n) e) A button with a call -back.

The idea when a display term is sent to gui it causes the display to be updated.
Pressing any buttons causes the associated function to be invoked (functions are
proper closures, i.e. their bodies are evaluated in the context in which the closure
was created). A button-function is supplied with a record that binds all the input
field names with their contents. Therefore:
Table([

[Text(’name ’),Input(’name ’,’’)],
[Button(’login ’,fun(r) print(’login: ’ + r.name))]

])

16

Figure 7: State of Police CoOrdinator

displays a name field and prints out the name that has been entered when the button
is pressed.

The bCMS component defines an operation display that builds a term and
sents it to the gui component. The display depends on the current state of the
component as defined by its state machine. The code is as follows:
display() {
case getState() {

State(’start ’) ->
gui.in <- display(Table([

timeRow(),
nameRow(),
crisisRow(),
communicateButton(),
tickButton ()]));

State(’details exchanged ’) ->
gui.in <- display(Table([

timeRow(),
nameRow(),
crisisRow(),
tickButton()] + crisisButton ()));

State(’crisis exchanged ’) ->
gui.in <- display(Table([

timeRow(),
nameRow(),
crisisRow(),
tickButton ()]));

State(’crisis planned ’) ->
gui.in <- display(Table([

timeRow(),
nameRow(),

17

crisisRow(),
tickButton ()]))

}
}

Each display term relies on row-construction functions that are defined as follows.
The time row displays the current time in the co-ordinator:
timeRow() { [Text(’Time ’),Text(getTime())] }
getTime() { find Time(t) { t } else 0 }

The name row displays the name of the co-ordinator:
nameRow() { [Text(’name ’),Text(coord_name)] }

The crisis row displays details about the current crisis or an appropriate message if
all is well:
crisisRow() { [Text(’crisis ’),Text(getCrisis())] }
getCrisis() {
find CoOrdinator(_,_,_,[Crisis(d,t,Location(x,y),v,w,r)],_) {

d + ’ at ’ + t + ’ pos (’ + x + ’,’ + y + ’)’
} else ’no crisis ’

}

The communication button is used by the human operator to inform all connected
co-ordinators that they should be registered as a colleague:
communicateButton() {

[Button(’Communicate ’,fun(e) outputs <- contact(coord_name ,getLoc()))]
}
getLoc() { find CoOrdinator(_,l,_,_,_) { l } else Location(0,0) }

The tick button is used to update the current time and then update the display:
tickButton() { [Button(’Tick ’,fun(e) { tick(); display() })] }
tick() { replace Time(t) with Time(t+1) }

A crisis button is available only when the crisis has been registered. Therefore it
checks to see if the state contains a crisis, if so it returns a list of rows, otherwise it
returns the empty list:
getCrisisData() {
find CoOrdinator(_,_,_,[a_crisis],_) {

a_crisis
} else error(’no crisis in ’ + state)

}
crisisButton() {
case getCrisis() {

’no crisis ’ -> []
else [[Button(’Crisis!’,fun(e) {

outputs <- crisis(coord_name ,getCrisisData ());
replace State(’details exchanged ’) with State(’crisis exchanged ’)

})]]
}

}

Figure 8 shows the start of an application where the gui components from both
controllers have been displayed. The police component has the crisis and the
fire component has yet to be informed. Both components do not know anything
about each other. Figure 9 shows the fire component at this stage.

18

Figure 8: bCMS Police Start

Figure 9: bCMS Fire Start

Figure 10: bCMS Police After Introduction

19

Figure 11: bCMS Fire After Crisis

The police component introduces itself to the fire component via the Communicate
button. The result is a new GUI for the police component as shown in 10. When
the operator presses the Crisis! button the crisis is sent from the police to the
fire component and the plans are produced. Figure 11 shows that the fire com-
ponent now has knowledge of the crisis. The internal state of the two components
is shown in figures 6 and 7.

12 Conclusion

This document has provided an outline of how the bCMS system can be imple-
mented using the LEAP approach. The key features of the approach are:

components The main modelling element is the component. Components have
a simple semantics, the act as black boxes that process input messages and
produce output messages.

information The state of a component is defined by a simple database of terms.
The use of terms allows a variety of pattern atching styles to be employed.
The lack of sharing between terms makes reasoning about component state
straightforward. The state of a component can be visualized using object
diagrams.

theories Components can contain theories that deduce facts from the current state
of the component using rules. Theories can be used to encode knowledge
about a domain within each component so that they react to incoming mes-
sages in an intelligent way.

higher-order Both components and functions are data values that can be used
as arguments, message values and returned from function calls. This feature

20

makes it easy to define patterns of structure and behaviour. The bCMS model
makes use of this to define the CoOrdinator component once and then
stamp it out via function arguments. This is a form of product lines for
components.

goals The requirements for a component are expressed as a goal model that con-
sists of a mixture of free-text and formal logic.

constraints Invariants can be expressed over the state of component. The LEAP
tool automatically checks the invariant constraints when the state of compo-
nent changes.

behaviour Component behaviour can be expressed using operations, state ma-
chines and event-driven rules. This allows a mixture of approaches including
service-oriented architecture and event-driven architecture to be used.

integration The LEAP approach is integrated with Java so that external systems
can be wrapped as components and included in models.

References

[1] T. Clark and B.S. Barn. Event driven architecture modelling and simulation. In
Proceedings of the 6th International Symposium on Service Oriented System
Engineering. IEEE, 2011.

[2] T. Clark, B.S. Barn, and S. Oussena. Leap: a precise lightweight framework for
enterprise architecture. In Proceedings of the 4th India Software Engineering
Conference, pages 85–94. ACM, 2011.

[3] Tony Clark and Balbir S. Barn. A common basis for modelling service-oriented
and event-driven architectures. In 5th India Software Engineering Conference,
IIT Kanpur, ISEC 12, 2012.

[4] Tony Clark, Balbir S. Barn, and Samia Oussena. A method for enterprise
architecture alignment. In PRET, pages 48–76, 2012.

21

