
Enterprise Architecture (EA) aims to capture the 
essentials of a business, its IT and its evolution, 
and to support analysis of this information: `it is 
a coherent whole of principles, methods, and 
models that are used in the design and 
realization of an enterprise's organizational 
structure, business processes, information 
systems and infrastructure' [11].  
 
A key objective of EA is being able to provide a 
holistic understanding of all aspects of a 
business, connecting the business drivers and the 
surrounding business environment, through the 
business processes, organizational units, roles 
and responsibilities, to the underlying IT systems 
that the business relies on. 
 
In addition to presenting a coherent explanation 
of the what, why and how of a business, EA aims 
to support specific types of business analysis 
including: alignment between business functions 
and IT systems; business change describing the 
current state of a business (as-is) and a desired 
state of a business (to-be); maintenance the de 
installation and disposal, upgrading, 
procurement and integration of systems 
including the prioritization of maintenance 
needs; quality by managing and determining the 
quality attributes for aspects of the business such 

as security, performance to ensure a certain level 
of quality to meet the needs of the business; 
acquisition and mergers describing the alignment 
of businesses and the aspects on both when they 
merge; compliance in terms of a regulatory 
framework, e.g. Sarbanes-Oxley; strategic 
planning including corporate strategy planning, 
business process optimisation, business 
continuity planning, IT management 
[8,16,13,2,10]. 
 
EA has its origins in Zachman's original EA 
framework [21] while other leading examples 
include the Open Group Architecture 
Framework (TOGAF) [18] and the framework 
promulgated by the Department of Defence 
(DoDAF) [20]. In addition to frameworks that 
describe the nature of models required for EA, 
modelling languages specifically designed for 
EA have also emerged.  
 
A number of specialized modelling notations 
have been proposed for EA modelling. In most 
cases these notations provide a number of views 
or layers that capture the enterprise from 
different perspectives. The notations provide 
domain specific modelling languages (DSMLs) 
for EA and as such conceptualize a system in 
terms of domain elements and their 

Simulating Enterprise 
Architecture Models 
By Balbir S. Barn, Tony Clark and Samia Oussena 

 
Business and ICT strategic alignment remains an ongoing challenge facing organizations as they 
react to changing requirements by adapting or introducing new technologies to existing 
infrastructure. Enterprise Architecture (EA) has increasingly become relevant to these demands 
and as a consequence numerous methods and frameworks for pursuing EA have emerged. 
However these approaches remain bloated, time-consuming and lacking in precision. This paper 
proposes a lightweight method for EA (LEAP) and introduces a language for representing EA 
components that lends itself to modelling as-is and to-be EA with a concrete aim to providing a 
simulation environment that delivers an unambiguous description of the required changes. The 
LEAP method and the language are illustrated with a detailed case study of business change 
currently being addressed by UK higher education institutions. 



relationships. A representative example of such a 
DSML is ArchiMate [9].  
 
Accompanying methods for EA have emerged 
but are not widely adopted, perhaps due to their 
size and complexity. Riege et al note the 
evolving nature of method requirements and the 
need to tailor methods for specific scenarios 
[16]. Methods, where they have been used, tend 
to be available as overarching large frameworks 
(similar to TOGAF) often located within 
consulting divisions of large corporations. 
Examples of such methods include: the Oracle 
Enterprise Architecture Framework1 and IBM's 
EA Consulting Method2. Both while attempting 
to be lightweight present large all-encompassing 
approaches to EA.  
 
One area which existing method frameworks are 
not able to easily examine and address in a light-
weight manner is the need to understand how to 
change an EA to meet a new requirement. 
Drilling down, the potential impact and change 
required would need to be promulgated as an 
impact analysis, a sliced view of the EA (of the 
systems affected), a gap analysis of missing 
functions and most importantly an equivalence 
analysis of an existing system and proposed 
changes. Method frameworks that have largely 
presented layered architectural models do not 
necessarily lend themselves to this type of 
modelling and analysis. Furthermore their 
bloated and document driven nature presents 
additional issues of complexity and places 
significant workloads on enterprise architects 
and those tasked with managing systems in large 
organization. The requirements for a lightweight 
method were discussed in detail in an earlier 
paper [5]. 
 
The architectural style of an organization has the 
potential to  influence the construction and use 
of an EA. Several different styles of architecture 
are possible. A Service Oriented Architecture 
(SOA) involves the publication of logically 
coherent groups of business functionality as 
interfaces that can be used by components using 
                                                
1 http://tinyurl.com/bpzo2u2 
2 http://tinyurl.com/cr4ph5m 

synchronous or asynchronous messaging. An 
alternative style, argued as reducing coupling 
between components and thereby increasing the 
scope for component reuse, is Event Driven 
Architecture (EDA) whereby components are 
event generators and consumers.  
 
An important difference between SOA and EDA 
is that the latter generally provides scope for {\it 
Complex Event Processing} (CEP) where the 
business processes within a component are 
triggered by multiple, possibly temporally 
related, events. In SOA there is no notion of 
relating the invocation of a single business 
process to a condition holding between the data 
passed to a collection of calls on one of the 
component's interfaces. As described in [12] and 
[17], complex events can be the basis for a style 
of EA design. EDA replaces interfaces with 
events that trigger organizational activities. This 
creates the flexibility necessary to adapt to 
changing circumstances and makes it possible to 
generate new processes by a sequence of events 
[15]. 
 
Whilst a complex event based approach to 
architectural design must take efficiency 
concerns into account, the primary concern is 
how to capture, represent and analyze 
architectural information as an enterprise design. 
EDA and SOA are closely related since events 
are one way of viewing the communications 
between system components. The relationship 
between event driven SOA and EA is described 
in [1] where a framework is proposed that allows 
enterprise architects to formulate and analyze 
research questions including `how to model and 
plan EA-evolution to SOA-style in a holistic 
way' and `how to model the enterprise on a 
formal basis so that further research for 
automation can be done.' Our claim is that 
system architectures should be based on both 
EDA and SOA. We have described in detail the 
language for integrating EDA and SOA [6].  In 
that paper we present a unified language for 
modeling architectures, a corresponding 
simulation language and an environment for 
exploring simulations. We use that technology 
supported a light-weight method in this paper. 



Our contribution in this paper is to provide an 
agile method for EA that utilizes an integrated 
set of concepts derived from SOA and complex 
event processing that could easily be used as a 
standalone EA method or be integrated into 
larger EA frameworks. The underpinning 
concepts are well-formed with precise semantics 
that supports simulation of EA requirements. Of 
particular note, is that one of the key 
requirements facing enterprise architects, namely 
how to understand the mapping and therefore the 
solution space from an As-Is to a To-Be 
architecture and how it is achieved through 
equivalence modeling. Our method is validated 
through the use of a case study that is based on 
genuine requirements facing IT directors in all 
UK higher education institutions in 2012.  
 
Our intention is that readers understand the 
method and its application easily so we have 
chosen to integrate the method and illustrations 
of its use by drawing upon the case study. Thus 
the paper is structured as follows. The section 
named LEAP for Event Driven EA introduces the 
proposed method for constructing an EA 
requirements (To-Be) and a physical EA (As-Is) 
and to compare the two using simulation. The 
section named Case Study presents the case 
study. The section named Applying LEAP then 
follows the method by applying it to the case 
study.  
 
LEAP FOR EVENT DRIVEN EA 
 
In this section we introduce our Lightweight EA 
method (LEAP) and the key technology concepts 
required for supporting agile EA development.  
The motivation for developing a method to 
support EA is driven from our knowledge and 
experience of the prevailing EA methods, 
namely that existing methods are large, 
cumbersome, lacking agility and not based on 

well-defined concepts. Where existing methods 
have used modelling languages such as 
Archimate they are constrained by orthodox 
layering approaches (business layer, functional 
layer, deployment layer and so on). The layers 
prevent rigorous equivalence modelling in order 
to identify changes and new additions to an EA. 
Because of its simplicity, our proposed method 
may utilize existing techniques and approaches 
as appropriate. 
 
Figure 1 shows an overview of our proposed 
method. Consistent with most approaches to EA 
methods where there is need to describe As Is 
and To Be models, there are two streams of 
activity, which converge at key stages. The to-be 
analysis stream includes activities to Model 
Requirements. We do not prescribe how you 
might wish to derive the requirements in order to 
produce a model of requirements but as our 
method is based on UML, models will include 
artefacts such as business information models, 
process models and business use case models. 
Existing method approaches such as Catalysis 
[7] and its derivatives [4] could be used for 
developing information models whilst 
recommended approaches for process modelling 
could include Ould's approach [14]. 
 
In parallel to the Model Requirements step, the 
activities in the Collate Physical Architecture 
step will bring together existing descriptions of 
systems and their configurations. Our experience 
of such descriptions is largely pictorial based 
documentation captured using drawing tools 
such as PowerPoint. A key output of this stage is 
a description of the systems that exist in the 
organization. We recommend capturing the 
description of each system as a UML 
Component to aid the migration to later stages of 
the method. Again, the method does not 

Figure 1 LEAP Method 



prescribe modelling approaches; it leaves it to 
the practitioner to determine how to produce the 
required artefacts. 
 
The Configure Physical Architecture step is an 
agile and simple way of slicing a description of 
an EA to determine what system components are 
likely to be impacted by emerging requirements. 
Techniques that can be used to support this 
impact analysis include use case maps [3]. A use 
case map is simply a trace of path of causal 
sequences of events across a set of system 
components representing an EA. The events are 
triggered by a business use case identified in the 
Model Requirements step. Alternative 
approaches that could be used in this step could 
be the use of CRC to help identify those system 
components that are (collaboratively) 
responsible for delivering a business use case 
[19]. The key output from this activity is an 
artefact expressed in system components that 
includes all the EA system elements that will be 
subject to some impact as a result of the 
emerging requirements.  
 
Up to now, the steps in the method have utilized 
well-established notations and techniques. The 
subsequent steps in stage 2 incorporate an 
integrated set of concepts from SOA and 
complex event processing.   
 
The Define Logical Enterprise Architecture 
(L-EA)  step produces a model based description 
of a target logical EA - that is - the system 
components that are likely to be required as a 
result of the Model Requirements step. However, 
in recognition of the agile nature of the method, 
the Logical EA uses as a short cut, a candidate 
logical components from the Configure Physical 
Architecture step.  
 
The Logical EA (L-EA) uses our integrated 
concepts derived from SOA and complex event 
modelling so the L-EA is expressed as 
components offering services, raised events, 
requested services and listened to events. 
Dependencies between components are thus 
expressed in terms of services request and 
fulfilments and event management. There may 

also be constraints that will need to be fulfilled. 
These are expressed as invariants. 
 
The Conformance step uses simulation to 
produce and visualize results. The logical 
architecture describes what is required and the 
physical to-be architecture defines how existing 
systems can be used to satisfy the requirements. 
It remains to validate the physical architecture 
by showing that the behaviour conforms to the 
requirements. If the simulation produces the 
same output when it is run with both the logical 
and physical definitions for university on a 
sufficiently large representative sample of data 
sets then we have confidence that the physical 
conforms to the logical. Such an approach 
presents a practical solution that is geared 
towards EA practitioners. Our EA design 
method produces a context and both a logical 
and a physical architecture description using the 
LEAP language.  
 
CASE STUDY 
 
Having outlined the method and concepts, this 
section presents a genuine requirement faced by 
IT directors in UK higher education institutions 
to deliver key information sets (KIS) to 
applicants deciding on which course and which 
university to chose for study at under graduate 
level. The case study is used throughout the rest 
of this paper as a basis for our proposed EA 
method. 
 
Higher education institutions (HEI) in the UK 
are faced with a challenging and dynamic 
business environment where public funding of 
HEIs has been reduced by up to 70\%. This lost 
funding is being replaced by the introduction of 
a new student fees regime beginning in 2012 
following a bill introduced in the UK parliament 
in November 2010. The UK Government is of 
the view that students will require key 
information set (KIS) in order to make informed 
decisions regarding the selection of courses and 
institutions. Currently this information is not 
readily available in a consistent and easily 
accessible form. Consequently the Higher 
Education funding body (HEFCE) is 



coordinating the specification of the required 
information and how it is to be made available 
and at what time. 
 
Briefly: HEFCE produces KIS data at a given 
census date each year. In order to be included in 
KIS, each university must register with both the 
NSS and DHLE government agencies before the 
census date. KIS information consists of NSS 
data, teaching and learning data from each 
university, financial data from each university 
(including university owned and private 
accommodation costs), employability data from 
the DHLE agency. 
 
The NSS data is completed by students via a 
web portal. The details of the information go to 
the NSS agency and the university is informed of 
the completion for their records. Private property 
prices within the geographic area around the 
university are captured by monitoring RSS feeds 
from property companies.  
 
This initiative will lead to the implementation of 
a new regulatory framework for higher education 
sector, where the quality assurance of the KIS 
data is the responsibility of the high education 
institution. Although, some of the information 
items will be sourced externally (NSS, DHLE), 
data on learning and teaching activity, 
assessment methods, financial support and 
accommodation costs will have to be produced 
by the HEI. It is therefore imperative, for an 
institution to put in place systems that allow the 
collection of the data and the auditing of these 
systems. While putting in place these systems, 
the institution needs to review its exiting system 
and establish if any required changes are 
necessary. 
 
APPLYING LEAP 
 
This section takes the reader through the key 
steps of the method. We provide illustrations of 
the use of the LEAP method from models 
constructed from the case study. 
 
 
 
 

Step 1: Model Requirements 
 

 
Figure 2 Context Diagram 

 
Figure 2 shows the context of the KIS case 
study in terms of the systems that must interact 
with any university. Components offer interfaces 
represented by filled circles. Components can 
raise events and can also listen for events; this is 
represented by open circles. The context in 
which a university must satisfy the KIS 
requirements is described in terms of messages 
and events as described in the rest of this section. 
 
A student uses a web-portal (web) to complete 
the NSS survey on-line. When this occurs an 
event is raised (A); the NSS government agency 
handles the event by recording the NSS data; the 
university simply records that a student has 
completed the survey. 
 
A university must maintain information about 
the prices of private property in the local area. 
This is achieved via an RSS feed (property) that 
regularly generates an event (B) that is recorded 
by the university. 
 
In order to participate in KIS, each university 
must register with both the NSS and DHLE 
agencies. Therefore, both agencies provide 



operations (E and H) for registration that cause a 
registration event to be raised (G and C). The 
registration events are processed by HEFCE in 
any order; both must be received before the KIS 
census date. 
 
The KIS census date causes a timing event (I) 
that is processed by HEFCE causing it to request 
data necessary to build a KIS report. The NSS, 
University and DHLE components provide 
suitable operations (D, F and J) for requesting 
data. 
 

 
Figure 3 Information Model 

 
Figure 3 shows the information model for the 
logical architecture. Each University has a 
number of students with unique identifiers and in 
a particular year of study. Information is 
maintained on the cost of both University owned 
accommodation and private accommodation in 
the area. A student studies a course and 
optionally completes an NSS return in their third 
year of study; the NSS form allows students to 
comment on the quality of the University's 
provision of teaching and learning in terms of 

questions such as: `Do you agree that you 
receive prompt feedback on formative 
assessments?'. Each course is delivered in terms 
of scheduled, guided and practical teaching and 
learning components, and assessed in terms of 
exams, courseworks and practicals. Information 
is maintained nationally about employment 
statistics for particular courses, such as the salary 
of graduates and the percentage who are in work 
or unemployed 6 months after graduation. Each 
HE course in the UK has a cost and may involve 
various forms of financial support. 
 

 
Figure 4 Clock 

 
 

 
Figure 5 Online NSS Portal 

 
 

 
Figure 6 Property RSS Feed 

 
 

 
Figure 7 University 



 
Figure 8 NSS 

 
Figure 9 DHLE 

 
Figure 10 HEFCE 

 
The LEAP simulation language uses 
components, records, operations and events to 
model an EA. Figure 4 to Figure 10 uses 
these concepts to elaborate the components from 
the context diagram in Figure 2 using the 
information concepts from Figure 3. Each 
diagram shows an individual component 
(identified using the stereotype 
<<component>>), its associated data model, the 
events it expects (<<eventin>>), the events it 
produces (<<eventout>>) and the operations 
that it supports.  

Note that several information concepts occur in 
more than one component. In all cases, 
information is private to a component, and a 
system invariant is required if the information is 
to be consistent. For the purposes of our case 
study, the university maintains full information 
on courses and students and all references to 
these concepts are unique. 
 
Step 2: Define L-EA 
A key feature of our approach is to simulate both 
a logical and a physical architecture in terms of 
components, operations and events. To achieve 
this we have implemented a simulation language 
as a Java interpreter. A simulation model 
consists of a collection of component definitions 
of the following form: 

Each component monitors the events raised by a 
list of named components. A component 
maintains a private state that is a list of terms 
(named records). The component defines an 
initial state and may add and delete terms. The 
invariant conditions are boolean expressions 
over the component's state; a message is 
displayed when an invariant becomes false.  
 
The operations of a component implement the 
business processes that form the component's 
interfaces; components invoke each other's 
operations by sending messages. A component 
monitors its state and the events it receives from 
components it monitors, using rules. Each rule 
has a collection of patterns that match the terms 
and events in the component's state. When all 
patterns are matched then the rule is ready to 
fire. The body of a rule is an action that can 
involve modifying the state or sending messages. 
A simple example example is: 
 
 
 

component name (monitored components) { 
  state { ...terms... } 
  invariants { ...conditions... } 
  operations { ...function   defs... } 
  rules { ...rule definitions... } 
  ...nested definitions...   
} 
 



 
To save space in the rest of the paper we will not 
give the complete definition of each component. 
Instead, we will provide those elements of the  
state,  invariants,  operations and 
rules sections that are essential to 
understanding how the simulation works. 
 
The initial state of a clock is the term Time(0). 
The clock provides a single operation that is 
used to drive the simulation. The operation 
provides an example of a new command that 
adds a new term to the state of the component. A 
clock has a single rule that fires when the clock 

ticks. It increments the time and raises an event 
Time(n), note the use of delete and raise 
to remove a term from the state of a component 
and to raise an event: 

 
 
 
 

 
 

A student uses the NSS web portal to complete 
the NSS survey. For simulation purposes the 
initial state of the web component contains terms 
defining the times at which students complete  
the survey, and the answers to the questions. The 
web component monitors the clock events and 
has a single rule that raises two events when a 
student completes a survey. The first event is 
processed by the NSS agency and the second is 
processed by the university: 

The property component simulates an RSS feed 
that supplies bounds on annual rental costs. The 
initial state is a collection of terms describing the 
times at which the data becomes available. The 
property component monitors clock events and 
raises an event when the appropriate time is 
reached using the following rule: 

 
The DHLE agency is responsible for maintaining 
employment data on universities and courses. 
For the purposes of the simulation all 

component share_dealer (share_prices) { 
  state {  
    Shares(0)  
    Money(1000)  
    Buy_At(50)  
    Sell_At(100)  
  } 
  invariants {  
    never_broke {  
      find Money(m) in state { m >= 0 }  
    } 
  } 
  operations {  
    get_shares() {  
      find Shares(n) in state { n }  
    } 
  } 
  rules { 
    buy:  
      Shares(n)  
      Money(m)  
      Price(p,avail)  
      Buy_At(q)  
      ?(p<q) ?(avail*p < m) { 
        delete Shares(n); 
        delete Money(m); 
        new Shares(n + avail); 
        new Money(m - (avail*p)) 
    } 
   sell:  
     Shares(n)  
     Money(m)  
     Price(p,_)  
     Sell_ 
     At(q) ?(q < p) { 
       delete Shares(n); 
       delete Money(m); 
       new Shares(0); 
       new Money(m + (n*p)) 
    } 
  } 
} 
 

tick: t1=Tick() t2=Time(n) { 
  delete t1,t2; 
  raise Time(n); 
  new Time(n+1) 
} 
 

step: Time(t)  
      NSS(t,id,cid,qual,it,lib, 
          help,prompt,expl,advice) { 
  raise NSS(id,cid,qual,it,lib, 
            help,prompt,expl,advice); 
  raise NSS_complete(id) 
} 
 

tick: Time(n)      
      Property_Feed(n,low,high) { 
  raise Property(low,high) 
} 
 

register(university) { 
  new University(university); 
  raise DHLE_Registered(university) 
} 
 



employment data is part of the initial state. The 
DHLE component implements an operation that 
allows a university to register. It raises an event 
when this occurs. 
 
HEFCE will request employment data when it 
constructs a KIS report. The operation provides 
an example of the find construct that is used to 
select an element from a list (in this case the 
state of DHLE) that matches a pattern; the body 
of the find expression returns a new term: 

The NSS component provides an operation for 
registering a university: 

The HEFCE component uses the following 
operations to request KIS data from the NSS 
component. In each case a list-comprehension is 
used, for example: 

In order for a university to be registered with 
HEFCE, it must have registered with both the 
NSS and DHLE components in any order as 
defined by this rule: 
 

When the census date is reached the HEFCE 
component will make calls on NSS, University 
and DHLE components to get the KIS data: 
 
 
 
 
 
The component definitions above provide the 
context for the logical definition of a university 
given in this section. The initial state of a 
university is shown below. It defines several 
distinct types of information: the times at which 
the university registers with the government 
agencies; the financial, teaching and learning, 
and assessment patterns for each course; the cost 
of university owned accommodation; the cost of 
private accommodation; student records that 
assign a unique id to each student, assign them to 
a course, define their year of study and record 
whether or not they have completed the NSS 
survey: 

employment(uni,course) { 
  find Employment(uni,course,s,w, 
          u,so,na,was) in state { 
    Employment(s,w,u,so,na,was) 
  } 
} 
 

register(university) { 
  new University(university); 
  raise NSS_Registered(university) 
} 
 

[id | NSS(id,course,true,_,_,_,_,_,_)  
           <- state] 
 
quality_score(course) {  
  length([id |     
    NSS(id,course,true,_,_,_,_,_,_)  
      <- state]) 
} 
 
it_score(course) {  
  length([id |  
    NSS(id,course,_,true,_,_,_,_,_) 
      <- state]) 
} 
 
 

university: NSS_Registered(name)  
            DHLE_Registered(name) { 
  new University(name) 
} 
 

kis: Time(t)    
     KIS_census(t) { 
  get_kis_data() 
} 
 

Register(nss,2) // Register NSS at 2. 
Register(dhle,3) // Register DHLE at 3. 
Course('p01',8500,true,false,true,false) 
Learning('p01',[60,30,35], 
  [20,20,50], 
  [20,50,15]) 
Assessment('p01',[70,50,50], 
  [10,20,30], 
  [20,30,20]) 
... 
Lower_Accommodation(7000) 
Upper_Accommodation(9600) 
Lower_Private(0) 
Upper_Private(0) 
Student('s01','p01',3,false)  
Student('s02','p01',3,false)  
... 
NSS_census(5) 
 



A university includes a number of invariant 
conditions that must be met at all times. The 
following is an example called assessments 
that requires the split between %-age values for 
examinations, courseworks and practicals in any 
given year to add up to 100% for each course. 
The condition uses the forall expression that 
matches a pattern against all elements in a list; 
the body of the forall must return true for 
each element in the list that matches the pattern 
trans is defined in the operations section 
below: 

A second invariant encodes a business 
requirement that 50% of all students registered 
for a course must complete the NSS survey in 
year 3: 

 
 
 
 
 
 
 

The following operations are used by HEFCE to 
access the data necessary in a university to 
produce the KIS report: 
A university has the following rules: register 

that registers with the appropriate government 
agencies when the appropriate time event occurs; 
clock that is used to keep a local record of 
time; property that is used to update the 
prices of private accommodation using events 
from the RSS feed; nss that is used to record 
the completion of an NSS survey by a particular 
student: 

assessments { 
  forall    
   Assessment(course,exams,coursewks,pracs)    
  in state { 
    forall [e_pc,c_pc,p_pc] in    
      trans([exams,coursewks,pracs]) { 
        (e_pc + c_pc + p_pc) = 100 
   } 
  }  
} else 'all assessments must add up to 100 
in each year.' 
 

nss_50_per_course { 
 forall Course(id,_,_,_,_,_) in state { 
  find UniTime(t) in state { 
   find NSS_census(t) in state { 
    let nss = length([id |    
          Student(_,id,3,true) <- state]); 
        students = length([id |   
          Student(_,id,3,_) <- state]) 
    in if students = 0  
       then true  
       else   ((nss/students)*100) > 50 
   } else true 
  } else true 
 } 
} else ' 50% of all students must complete 
the NSS.' 
 
trans(lists) { 
  if exists l in lists { l = [] } 
  then [] 
  else [ head(l) | l <- lists ] :  
       slice([ tail(l) | l <- lists ]) 
 
 

register: Register(target,time)  
          Time(time) { 
  send(target,'register',[self.name()]) 
} 
clock: Time(time) { 
  delete UniTime(time-1); 
  new UniTime(time) 
} 
property: p=Property(low,high)  
          l=Lower_Private(x)  
          u=Upper_Private(y) { 
  delete p,l,u; 
  new Lower_Private(low); 
  new Upper_Private(high) 
} 
nss: NSS_completed(id)    
     s=Student(id,course,3,false) { 
  delete s; 
  new Student(id,course,3,true) 
} 
 

learning(course) { 
 case find Learning(course,_,_,_) in state { 
   Learning(n,sched,guided,plmnt) ->     
     Learning(sched,guided,plmnt) 
 } 
} 
assessment(course) { 
 case find Assessment(course,_,_,_) in state { 
    Assessment(n,exams,cw,pract) ->       
      Assessment(exams,cw,pract) 
 } 
} 
finance(course) { 
 case find Course(name,_,_,_,_,_) in state { 
   Course(n,f,fw,mt,nmt,sch) ->     
     Finance(f,fw,mt,nmt,sch) 
 } 
} 
 



SIMULATION 
 
Our approach uses simulation to show that a 
physical architecture is consistent with the 
behaviour required by a logical architecture. 
 

 
Figure 11 Simulation (Part 1 of 3) 

 

 
Figure 12 Simulation (Part 2 of 3) 

 
Figure 13 Simulation (Part 3 of 3) 

 
The LEAP language for the KIS context and 
logical architecture has been defined in previous 
sections. LEAP also provides features for 
generating a GUI that can be deployed on a web 
server and accessed via a web browser. We do 
not show the LEAP code for the KIS GUI, but 
the output is shown in Figure 11 to Figure 
13. The control section in Figure 11 is used to 
step through the simulation by sending  tick() 
messages to the clock. The step button 
shows the current time and the currently selected 
course; the rest of the GUI shows KIS 
information for the course. 
 
Step 3: Collate Physical-EA 
 
The next step of our method involves reviewing 
the current physical as-is system architecture. 
Most organizations have a systems overview that 
is used as the input to this step. The result is an 
understanding of the currently capability of the 
organization in terms of systems, interfaces, 
information and events. 
 
We will use the University of Middlesex (Mdx), 
London, UK as the basis for our case study. 
Space limitations prevent us from providing a 
complete description of the Mdx physical 
architecture, however it is consistent with most 
UK HEIs and includes systems for registry, an 
asset management system that includes a sub 
system for university accommodation, an 
examinations database, a library system, a 
financial management system called PAFIS, a 
teaching and learning system called OASIS, an 



alumni management system, a student portal, 
and a staff portal. 
 
Step 4: Configure Physical-EA 
 

 
Figure 14 Physical Architecture 

 
The next step of the method analyses the 
physical system of an organization and takes an 
appropriate slice to produce just those systems 
that will be involved in the required to-be 
architecture. In the case of supplying KIS data, 
we know that Mdx will need to provide student, 
accommodation, teaching and learning, 
assessment and financial information. Therefore, 
for example the P-EA will not include the 
alumni or library management systems.  
 
The P-EA for Mdx is shown in Figure 14 
where interfaces have been introduced that 
support the appropriate delegation of the 
operations defined by the university component. 
The next section defines the components using 
LEAP. 
 
Step 5: Define Physical-EA 
 
The previous section has identified the slice of 
the Mdx systems that are required to support the 
KIS case study. This section defines each 
component using LEAP. 
 

The asset management system must provide an 
interface for accommodation pricing. 
The part of the assessment information that was 

handled by the university in the logical model is 
delegated to the exams database: 
 
The Mdx financial management system PAFIS is 

used to handle information about course costs 
and support: 
 
The Mdx teaching and learning system OASIS is 

component asset_management() { 
  state { 
    Lower_Accommodation(7000) 
    Upper_Accommodation(9600) 
  } 
  operations { 
    lower_accommodation() {  
      find Lower_Accommodation(cost)  
        in state { cost }  
    } 
    ... 
  } 
} 
 

component exam_db() { 
  state {  
    Exam('p01',[70,50,50])  
    ...  
  } 
  operations { 
    find_exams(name) {  
      find Exam(name,exams) in state  
    } 
  } 
} 
 

component pafis() { 
  state {      
   Course('p01',8500,true,false,true,false)    
   ...  
  } 
  operations { 
    finance(course) { 
      case find Course(course,_,_,_,_,_)  
           in state { 
        Course(n,f,fw,mt,nmt,sch) ->      
          Finance(f,fw,mt,nmt,sch) 
      } 
    } 
  } 
}   
 



used to handle the teaching and assessment 
patterns: 
The definition of University is then modified to 

include the components defined above as sub-
definitions. The resulting component is the 
physical architecture description of University 
and must include some new invariants. Firstly, 
information about courses is now distributed 
amongst a number of systems. We must ensure 
that the information is consistent, therefore we 
introduce a new university invariant 
conformance (seteql4 is a predicate that 
holds between four lists when they all have the 
same elements): 

Finally, information about assessment for a 
given course must add up to 100% in any year. 
The information is distributed between the 
OASIS and exams systems: 

 
 
Step 6: Conformance 
 
Our EA design method produces a context and 
both a logical and a physical architecture 
description using the LEAP language. The 
logical architecture describes what is required 
and the physical to-be architecture defines how 
existing systems can be used to satisfy the 
requirements. It remains to validate the physical 
architecture by showing that the behaviour 
conforms to the requirements. 
 
In general, conformance can be established using 
a number of approaches. The context defines a 
collection of system executions in terms of 
messages, events and state changes. It is possible 
to use inspection-based techniques to show that 
all required executions are handled appropriately 
by the physical architecture. 
 
More precise approaches are possible. For 
example, we can define mappings from the 
physical architecture components to the logical 
architecture. In the case of the Mdx architecture, 
the asset_management, exam_db, pafis 
and oasis components are merged to become a 
single top-level university component. 
Providing that all operations, events and 
invariants are consistent then the physical 
architecture is conformant. 
 
Another approach is to rely on simulation. LEAP 
can be used to run the simulation to produce 
GUI output as defined in the simulation figures 
above. If the simulation produces the same 
output when it is run with both the logical and 
physical definitions for university on a 
sufficiently large representative sample of data 
sets then we have confidence that the physical 
conforms to the logical. When we run the 
simulation with both definitions of university 
given in this paper, the output is the same. 
 
Finally, if we require total confidence in 
conformance then we need to resort to formal 
methods such as model checking and theory 
proving. For large systems such as those found 

component oasis() { 
  state { 
    Learning('p01', 
      [60,30,35], 
      [20,20,50], 
      [20,50,15]) 
    ... 
    Assessment('p01', 
      [10,20,30], 
      [20,30,20]) 
    ... 
  } 
  operations { 
    find_learning(name) {  
      find Learning(name,_,_,_) in state      
    } 
    find_assessment(name) {  
      find Assessment(name,_,_) in state  
    } 
  } 
}   
 

conformance { 
  seteql4( 
    [id | Exam(id,_) <- exam_db], 
    [id | Assessment(id,_,_) <- oasis], 
    [id | Learning(id,_,_,_) <- oasis], 
    [id | Course(id,_,_,_,_,_) <- pafis]) 
} else 'inconsistent information.'  
 

assessments { 
  forall Assessment(course,coursewks,pracs)  
  in oasis { 
    forall Exam(course,exams) in exam_db { 
      forall [e_pc,c_pc,p_pc]  
      in slice([exams,coursewks,pracs]) { 
        (e_pc + c_pc + p_pc) = 100 
      } 
    } 
  }  
} else 'all assessments must add up to 100' 
 



in EA, formal methods are often impractical in 
terms of complexity. That said, a formal 
semantics for LEAP is an area for future 
development in order to investigate whether 
formal methods could help. 
 
CONCLUSION 

 
Enterprise Architecture remains a confusing and 
constantly evolving collection of methods and 
frameworks that are generally characterized by 
an expansive outlook, lack of precision, a focus 
on diagrams and an emphasis on document 
management. The result is that existing 
approaches are difficult to use. This paper has 
presented an effort to reduce the scope of EA in 
order to pin down the core use cases of 
managing change and better understanding the 
impact of changing requirements on existing 
technical architectures of an organization. We 
have proposed a lightweight EA method and its 
accompanying language that supports precise 
description of to be and as is EA. The language 
by virtue of its design can be used with a simple 
Java based simulation environment to 
experiment with conformance of proposed EA 
changes. We recognise that there are several 
limitations with our current proposal but we 
have demonstrated using a detailed case study 
that there is merit and considerable potential in 
using such an approach understanding and 
managing EA. 
 
BIBLIOGRAPHY 

 
[1] M. Assmann and G. Engels. Transition to  
service-oriented enterprise architecture. Software  
Architecture, pages 346–349, 2008.  
 
[2] T. Bucher, R. Fischer, S. Kurp juweit, and R. 
Winter. Analysis and application scenarios of 
enterprise architecture: An exploratory study. In 
10th IEEE  International Enterprise Distributed 
Object Computing  Conference Workshops, 
2006. EDOCW’06, 2006.  
 
[3] R.J.A. Buhr and R.S.O. Casselman. Use case 
maps for  object-oriented systems, volume 302. 
Prentice Hall,  1996.  

 
[4] J. Cheesman and J. Daniels. UML 
components.  Addison-Wesley, 2001.  
 
[5] T. Clark, B.S. Barn, and S. Oussena. Leap: a 
precise lightweight framework for enterprise 
architecture. In  Proceedings of the 4th India 
Software Engineering  Conference, pages 85–94. 
ACM, 2011.  
 
[6] Tony Clark and Balbir S. Barn. A common 
basis for  modelling service-oriented and event-
driven  architectures. In 5th India Software 
Engineering  Conference, IIT Kanpur, ISEC 12, 
2012.  
 
[7] Desmond F. D’Souza and Alan Cameron 
Wills.  Objects, components, and frameworks 
with UML: the  catalysis approach. Addison-
Wesley Longman  Publishing Co., Inc., Boston, 
MA, USA, 1999.  
 
[8] M. Ekstedt, P. Johnson, A. Lindstrom,  M. 
Gammelgard, E. Johansson, L. Plazaola, E. 
Silva,  and J. Lilieskold. Consistent enterprise 
software  system architecture for the cio - a 
utility-cost based  approach. In System Sciences, 
2004. Proceedings of  the 37th Annual Hawaii 
International Conference on  System Sciences 
(HICSS’04), 2004.  
 
[9] The Open Group. Archimate technical 
standard, http://www.opengroup.org/archimate/. 
2008. 
 
[10] J.C. Henderson and N. Venkatraman. 
Strategic  alignment: Leveraging information 
technology for  transforming organizations. IBM 
systems Journal,  32(1), 1993.  
  
[11] Marc Lankhorst. Introduction to enterprise  
architecture. In Enterprise Architecture at Work, 
The  Enterprise Engineering Series. Springer 
Berlin  Heidelberg, 2009.  
 
[12] B.M. Michelson. Event-driven architecture 
overview.  Patricia Seybold Group, 2006.  
 
[13] K.D. Niemann. From enterprise architecture 



to IT  governance: elements of effective IT 
management.  Vieweg+ Teubner Verlag, 2006. 
  
[14] M.A. Ould. Business Process Management: 
a rigorous  approach. British Informatics Society 
Ltd, 2005.  
 
[15] S. Overbeek, B. Klievink, and M. Janssen. 
A flexible,  event-driven, service-oriented 
architecture for  orchestrating service delivery. 
IEEE Intel ligent  Systems, 24(5):31–41, 2009.  
 
[16] C. Riege and S. Aier. A Contingency 
Approach to  Enterprise Architecture Method 
Engineering. In  Service-Oriented Computing–
ICSOC 2008 Workshops.  Springer, 2009.  
 
[17] G. Sharon and O. Etzion. Event-processing 
network  model and implementation. IBM 
Systems Journal,  47(2):321–334, 2008.  
 
[18] J. Spencer et al. TOGAF Enterprise Edition 
Version  8.1. 2004.  
 
[19] R. Wirfs-Brock, B. Wilkerson, and L. 
Wiener.  Designing object-oriented software, 
volume 13.  Prentice Hall Englewood Cliffs, 
New Jersey, 1990.  
 
[20] DE Wisnosky and J. Vogel. DoDAF 
Wizdom: A  Practical Guide to Planning, 
Managing and Executing  Projects to Build 
Enterprise Architectures Using the  Department 
of Defense Architecture Framework  (DoDAF), 
2004.  
 
[21] J.A. Zachman. A framework for 
information systems  architecture. IBM systems 
journal, 38(2/3), 1999. 


