
Keywords Programming Languages, Theory of Computing

Abstract This work seeks to characterize the gap and to supply a concept that it at

present missing from the science of computing. The gap that is waiting to be �lled is, in

a simple way, apparent when we speak informally of doing the "same" thing by means of

di�erent programs, perhaps in di�erent languages, or perhaps modes of implementing

a language, or even two "paradigmatically" di�erent systems. It makes informal and

important sense to ask, of any system of getting a computer to do things, for a piece

of text or other appropriate stimulus whose performance does, in some sense, achieve

a given behaviour � whether by Pascal, Haskell or Prolog, or a structured construction

of a Turing machine, or by object-oriented interaction among objects. We propose

to decouple the customary linkage from program to the function or relation that it

realizes. What is to be interpolated is a function from data to entire calculation.

2

Noname manuscript No.

(will be inserted by the editor)

Calculations

A Hole In The Heart Of The Study Of Computing

Peter J. Landin

the date of receipt and acceptance should be inserted later

Contents

1 Interlude: A Hole In The Heart Of The Study Of Computing 2
2 What a Calculation Is . 6
3 Some Disclaimers And A Claim . 25
4 Programs And Performers . 32
5 Conclusion . 36

1 Interlude: A Hole In The Heart Of The Study Of Computing

There is a growing divide between the theorization of computing and the practice of

those whose job it is to get computers to do calculations. This can be acknowledged

without judging it any more reprehensible than, say, the similar development that

overtook economics a few decades ago. In the case of economics, a historical analysis

of that development has still gone scarcely further than sour grapes, accusations of

mathophobia and defensive claims about �lling syllabuses and theses with hard science

rather than discursive rhetoric. Perhaps history is written by the victors.

In the case of computing, the growing gap is unsurprising for research that follows

a similar tendency in the branches of mathematics that computer scientists draw on �

algebra and logic.

Programs and program-fragments are viewed as functions over some range-of-

variability concerning the conditions in which they are performed. These conditions

include data, textual and dynamic context, implementation, con�guration and the

management of time and space. These will henceforth be collectively referred to as

data. Whether regarded by means of logic or algebra, and whether the semantic in-

terest is operational or compositionally denotational, the functions that are studied

are largely about outcomes, results, answers and non-answers, and about equivalences

modulo these things, especially when they are elegantly and concisely characterizable.

By contrast with theorization, the practitioners of computing wade through a deep-

ening swamp of unstable but undredgeable artifacts for which elegant and concise

Peter J. Landin
Queen Mary College, University of London, UK

3

characterizations are rare. Delicately balanced edi�ces are nudged together, propped

up, and ine�ectively shielded from the passing winds and hurricanes of new releases

and updatings. As for anything being equivalent to anything else, there is little to be

con�dent about.

For lack of �rm equivalences, introductory learning practice becomes syntactic

maze-running, performed with few semantic sign-posts or coherent nostrums about

why what works, or which perturbations have what consequence. The question "Yes,

but what does it do?" loses meaning.

Productivity in artifacts and their updatings far outstrips productivity in making

sense of them. New proposals for their conceptual models become, even before they

are launched, obscured by the syntax of communicating with them.

We have been living through the whithering away of the programming language.

There is a diminishing importance in the concept of a language equipped with all the

software, meatware, and gasware that was intended to grow around it but never really

did. No passing language except a dead one ever stood still long enough to become

compatibly and consistently implemented and tooled (software), consensually and reli-

ably taught, talked about, and thought about (meatware), or precisely and accurately

described and theorized (gasware). This is not new. But it is more so. In a vast and

vibrant economic and social sector, each accessory, whether soft, meat or gas, breeds

its own accessories. Nor is it deplorable. But it does add urgency. Individualized inter-

active experimentation replaces re�ection and a consensual working culture. Declining

stability undermines principled teaching and clear communication.

There is one exception to the divergence of theory from practice, and it is unfortu-

nate. Both are increasingly complicit in seeing the current state-of-a�airs as indivisible.

Timidity and expediency, whether their own or of others, trap both in unary worlds.

As artifact instability throws users back into the arms of experimental interaction,

they are forced into procedural rather than conceptual thought � A Piagetian regression

to an earlier stage of childhood development � backwards from formal operational

through sensory-motor. Hobbled by the preset agendas of menus that are the product

of unary minds, it is risky to think in non-unary terms. There may indeed be object-

oriented objects that pursue multary behaviours. But collectively their interface is to

be gingerly explored without the help of that assumption. For the producers of an

artifact, multariness is too long term and costly a burden. For the theorizers, unariness

is a comfortable refuge.

Atavistic old hands are nostalgically rung in memory of those "real" machines

that "really" "did" obey instructions. Real machines were less often updated, and so

the experience of them provided an intuitive earthing for mental models that, even

if never actually consulted, might, by the very assurance of their existence, provide

an exemplary ground-�oor for the upper storeys. For lack of this assurance, virtual

machines and abstract machines are made and used by people who don't really believe

in them, and who comfortably confess so when their designs show cracks and bumps.

What do you expect? � it's theoretical.

The diagnosis o�ered here is that current computer science proceeds without look-

ing back over its shoulder. It has not noticed, and indeed does not need to notice, that

the �rm ground is no longer credited or creditable. The obscure depths below which the

physical machine has sunk has left a gap, a hole in the heart of the study of computing,

for which it is the present purpose to propose a �lling: calculations.

This work seeks to characterize the gap and to supply a concept that it at present

missing from the science of computing. The gap that is waiting to be �lled is, in a

4

simple way, apparent when we speak informally of doing the "same" thing by means of

di�erent programs, perhaps in di�erent languages, or perhaps modes of implementing

a language, or even two "paradigmatically" di�erent systems.

It makes informal and important sense to ask, of any system of getting a computer

to do things, for a piece of text or other appropriate stimulus whose performance does,

in some sense, achieve a given behaviour � whether by Pascal, Haskell or Prolog, or a

structured construction of a Turing machine, or by object-oriented interaction among

objects, or whatever.

We propose to decouple the customary linkage from program to the function or

relation that it realizes. What is to be interpolated is a function from data to entire

calculation, or perhaps a description of a calculation.

It is a notion often appealed to, from all levels from novice work to experienced

design. Its uncertainties are perhaps disambiguated by careful dialog, but only case-

by-case, not in a systematized or uniform way. It would be pleasant to approach such

situations in a more sharply de�ned conceptual context. It would be more pleasant to

forestall them with a set of concepts that express the intended aspects precisely, but

without irrelevant precision or elaborate quali�cation.

This conceptual gap probably calls for a notion that will be as fundamental to

the study of computing as the concept of mass became to the study of physics. The

observations that each of them contributes to de-relativization lends support to this

analogy.

Explanations of di�erent modes of program-performance are sometimes unneces-

sary because they are expressed in terms of concepts whose design was speci�cally

chosen so that such contrasts were concealed. For example the distinction between

strict-lazy "if" has sometimes been poorly explained using if-notation. More generally,

function notation is not a helpful tool to explain how strict and lazy functions dif-

fer. A similar situation occurs when the copying of a data-item has to be contrasted

with copying its name or address � say, for stack-items, garbage-collectible items, or

directory items.

For a system in which both compiled and interpreted modes are available it is a

blessing to know how far the same notation "works" for both. But if the interpretive

modes are explained by presenting interpreting programs, especially in the same lan-

guage, then the explanation must be taken with care. To explain by particular instances

is to risk not being comprehensive. But if comprehensiveness requires a program then

the question may be begged.

Informatics without calculations is like physics without mass. So how did physics

last so long without mass? Why was it not missed for centuries? Because physicists, or

their forerunners, thought operationally about what matter did, rather than concep-

tually about what it was. Similarly for informaticists (and there is a trivial paradox

here that arises merely from a terminological accident about the word "operational", a

concern with operations in their dynamic aspect as processes leading to outcomes, has

obstructed any view of behaviour as an object of study in itself). By contrast, in logic

the corresponding view of proofs as objects of study in themselves is well established.

However it must be admitted that at the present stage, this informatics-physics anal-

ogy is not deep. Mass underpins the way weight varies according to physical context. I

seek a similar underpinning for the way in which proposed notations of behaviour vary

according to the context of language, mode of execution, and implementation.

I have little to o�er beyond a tentative de�nition. Existing theories of process have

already gone beyond that, probably bene�ting from their two limitations. They are

5

restricted to state-to-state, or unary, systems, together with concurrency-con�gurations

of these. Secondly, and at a more pragmatic level, they lack adjustable focus. They do

not pay attention to the ranges-of-variability, from coarse to re�ned, and from concrete

to abstract, that play an important part in views of program-performance.

For example, steps that achieve name-value-lookup, are from some points of view

relevant � from others forgettable. Similarly with other situations requiring the selec-

tion of one from among several alternatives. Other examples of such discretionarily

elidable administrative steps will be given later. The trade-o� between unadministered

particular cases and administered general procedures is an issue that pervades com-

puting. To shield this from view is usually rated a merit of a programming system. To

exhibit it we have usually been driven towards "the machine". But to what machine?

and please can there be not a lot of them?

Calculations are an attempt at this a�rmative. Perhaps there was a time when

adding up apples was di�erent from adding up oranges. To propose otherwise threat-

ened venerated historic tradition, NIH hubris, trade barriers, Chinese walls, and com-

petitive secrecy. Equivalently there still is, despite unstoppable decimalization. Napoleon

didn't invent numbers but it might have seemed so to anyone who was forced to realize

that lots more things were merely numbers than had previously been apparent. (It has

been left to the tax-collecting departments of British local governance to decimalize

the year � by the Procrustean amputation of February and March.)

There are two existing concepts whose credentials for �lling the hole-in-the-heart

need consideration. Data-�ow-diagrams have some claim to staticizing the dynamic.

And likewise for a closed nested where-term such as might result from partly reduc-

ing a functional program as far as eliminating function-variables, and without doing

any of the actual evaluation. Dfd's will turn out to be groomable into rigorous calcu-

lations, once their two awkward features are recognized. There is no di�culty about

streams occurring as the data-items of a calculation. They will need proper start-up

operations, and the feedback, or cyclic nature of most dfd's must be faced. Also the

"implementation" of a time-changing data-base by a stream of time-stamped updaters

is unattractive. As for nested where-terms and beta-redexes, they are close but with

some serious irrelevancies. Why be committed to particular names? And to particular

syntactic nesting?

It is not necessary to claim that Newton and Napoleon rolled into one have been

at work here, to hope that calculations have two things to o�er. First, analytically, as

a low-level explanatory tool, and synthetically, as a way of moving to a program when

the starting point is some of the (ground) calculations you want it to do.

There is one bene�t that becomes clearer as this work proceeds. Through the basic

concepts of computing, a dividing line can be drawn separating aspects of programming

that are properties of ground runs, from properties that only have meaning in terms

of the program being performed. But the dividing line is not simply that of a run-time

versus compile-time. For example, looking at the entire history of a speci�c execution,

straticized as a composite "�rst-class" piece of information, we may observe a certain

intermediately resulting data-item that is used more than once, or a certain sub-set of

data-items that constitutes a candidate for single threadedness, or two fragments that

are su�ciently congruent to suggest a procedure abstraction.

Each of these properties is innate in the calculation and independent of whether

it arises from some program-plus-data (run-time attribute), or program sans data

(compile-time), or program-plus-some partial determination of its data ("half-compile"-

time attribute). Thus exception-raising is usually regarded as a run-time attribute of a

6

program, and recursion as a compile-time attribute. But as attributes of a calculation

neither has meaning, except perhaps as a recognizable pattern.

Pedagogically, it is proposed that teaching about calculations serves the purposes

that have been in the past attributed to teaching about hardware and machine-code,

and that have in recent years been undermined by the disappearance and diminished

pragmatic relevance of the machine. These purposes were and are valuable. They can

be resumed, indeed better served, by taking calculations as the pedagogic point of

departure. Machine-code is not thereby banished. It takes a place as a low rung on a

ladder of particular, approximately single-threaded, calculations whose role is usually

to intimate multary calculations.

2 What a Calculation Is

2.1 A Calculation Is a Graph-Like Thing

2.1.1 Graphs and Labels

Fig. 1 A 3-In 1-Out Edge

It is a vertex-labelled, edge-labelled "poly-graph", where

"poly-" here indicates a generalization of the usual con-

nections between edges and vertices. The source of an

edge is either a vertex, or (disjointly) an indexed set

of vertices (see �g 1). Likewise for the target of an

edge (�g 2). A calculation is thus characterized as con-

sisting of calculational steps usually plugged together.

Any further features of calculations, that draw atten-

tion to multi-step parts of it, for example as nested

sub-calculations, or as threads, will be introduced as

mappings between calculations. The disjoint options for

source and for target impose on data-items a severe dichotomy into non-records (�g

3) and records (�g 4). They permit calculations to acknowledge, for every occurrence

of a record, whether it is derived intact or is thus piecewise, and whether it is used

and possible shared intact or piecewise. This will be referred to as the "disjointness

feature" of this de�nition of polygraph1. In a calculation each edge is one (occurrence

of a) calculational step, and a calculation consists of (occurrences of) steps, usually

plugged together. In the preceding sentence, the cautious phrasing re�ects the sense in

1 The following slight generalization of this de�nition of "poly-" has a usefulness that be-
comes apparent when we consider the compositional structure of calculations, and their (unsur-
prising) correspondence with sets of de�nitional equations. This generalization is: The source
of an edge is an indexed tree of vertices (i.e. it is either a vertex, or (disjointly) an indexed
set of indexed trees of vertices). Likewise for the target of an edge. By comparison, the de�-
nition given in the main text constitutes a restriction on the tree-depth to less than two. The
term "leaf-indexed source" therefore comprises all shapes of source. In particular it fails to
distinguish what in the simpler version can be referred to as the unindexed case. It would be a
distraction to pursue this generalization through the various elementary remarks about calcu-
lations that follow. When it is re-introduced there will be a bit of catching up to do, especially
in respect of indexed sets that are empty, and operations that collect and distribute the parts
of a composite data-item, and also the pictorial display of a calculation. In the catching up
no revision will be required concerning word "unindexed". By a small overload, it can mean a
single point tree, and can continue to exclude the disjoint case if the empty indexed set.

7

which, say, the addition of 1 to 66 might occur more than once in a calculation � see

2.7.

Historically the word "graph" is still wobbly enough to need explicit de�nition by al-

most every user of it. In the terminology adopted here it means polygraph. When appro-

priate the special case of unary graphs will be signalled.

Fig. 2 A 1-In 2-Out Edge

Every calculation is a labelled graph. But not every

labelled graph is a calculation. There are two questions

that immediately arise, but are largely adjourned until

after the analogy that follows here.They are: What are

the labels? And secondly, is it envisaged that a piece of

data might be, in any sense, calculated in more than one

way? Is there a requirement of, at most, single assign-

ment? Can a vertex and its label be pointed to more

than once? Two conditions must be met. The labels on

edges and vertices are, respectively, operations and items of data that "�t" them, in an

unsurprising sense that is spelt out as the "consistency" requirement in 2.2. Secondly,

no vertex is "arrived at" (aka pointed to, in an unsurprising sense spelt out in 2.1.4)

more than once.

Fig. 3 Non-Records

So, anticipating slightly, we de�ne calculation to

mean: consistently vertex- and edge-labeled graph, in

which no vertex is arrived at more than once. With this

arrangement, we can, for example, envisage an instance

of a number-operation for quotient-and-remaindering,

that steps from the two numbers 17 and 4 to the two

numbers 4 and 1: the earlier 4 being at a distinct vertex

and being a result of another step. Again, we can envis-

age an instance of a logical inference-rule that steps from

nothing to the sentence "communism is dead". Steps

from nothing are often called axioms in logic and con-

stants in algebra.

Some rules about drawings of calculations are given

later. Meanwhile it might be possible, without further explanation, to attempt some

useful pictures (�gs 5 6). It is the label of a calculation, rather than the vertices

and edges themselves, that carry its calculational information, namely, items of data

and results and the operations that link them. For the above two steps to occur in

a calculation, it must contain vertices labeled 17, 4, 1 and "communism is dead".

There must ordinarily be two labeled 4 (�g 7). Otherwise would compel the graph to

contain a cycle � not prohibited by the nature of calculations, but not suitable for

an elementary illustration. The signi�cance of cycles in calculations is discussed in

2.1.7. Also it must contain two edges labeled by an operation of which these steps are

instances, in obedience to the requirement of consistency.

2.1.2 A Hazardously Apt Analogy

Something very close to this idea of calculation is an occupied computer memory in

which the elastically-sized registers is dedicated either to a singly-assigned data-item

or to a once-only-executed instruction that indicates three things: an operation, the

8

registers it consults, and the registers it assigns to. Each register is then either a vertex

or an edge.

Fig. 4 Records

Corresponding to the consistency condition for a

graph's labels, there is the requirement that, for each

instruction, the registers it names are occupied consis-

tently with its operation. Thus we are looking at the

memory-state as it might be after every instruction has

been executed (exactly once). This can be said with no

explanation about how they came to be appropriately

sequenced, nor about how it all began, nor about what

mishaps might have been avoided, nor even about what

magic might have hit on solutions for any cycles.

Various options for an interpretive mechanism will

be discussed in a later section 3.4. Part of the interest

of the way various interpreters di�er will lie in how they

suggest di�erent relaxations of the present de�nition of

calculations, and how they do or not respond over a

wider range. (It can be noticed in passing that this arrangement precludes instructions

whose parameters are indirectly addressed or addressed via address-modi�ers. Arrays

are not thereby vitiated. An elastic-sided register may be occupied by a single composite

data-item. But a singly-executed instruction cannot index it in more than one way).

Fig. 5 A Step

This collection of singly-executed instructions is one

that might arise from the loops and calls of a more con-

ventional program when they, and the addresses they

refer to, are totally unfolded in accordance with speci�c

data. In this set-up it is the ultimately remembered fea-

tures that constitute a calculation in the present sense.

Though apt, this analogy is hazardous if it encourages

a dynamic rather than a static view of calculations. A

calculation is a composite data-item that records cal-

culational behaviour, presented as a staticized, "�rst-

class citizen" of the data world. It is not a dynamic

process. It is a static record of (perhaps only some as-

pects of) a completed dynamic process. For this reason,

there cannot be a question about whether an instruction in this set-up is inapplicable

or non-determinate, or whether exceptions are raised, or whether the program failed

to complete.

There is, in this set-up, an asymmetry that is partly misleading. It is also present in

the above de�nition of polygraphs, and indeed in one of the two customary approaches

to ordinary graphs. There is a suggestion that edges "point-to" vertices, and not the

other way round. The fortuitousness of this is exposed by recalling that an alternative,

and for some purposes more convenient, representation of a graph in computer registers

might accompany each vertex with a catalogue of its roles as a target and source, with

each role recorded as: one bit for a source-or-target indicator, plus an index if any, plus

(a "pointer-to") the relevant edge. There is a little task to undertake here, of designing

a corresponding interpretive mechanism.

Fig. 6 A 0-in step

Lying in this analogy there is another risky sug-

gestion to be resisted. The question whether a ver-

tex or edge might be "pointed-to" by, or from within,

9

a vertex- or edge-label, is a straightforward confusion

of abstraction-levels. For example there cannot be an

operation sensibly described as: adding the list-sum

of the label of the vertex 77. Nor can there be a

data-item sensibly described as: the ordered pair con-

sisting of 7 conjoined with the label of vertex 88.

2.1.3 An Edge's In-Arity and Out-Arity

Each edge has a numerical in-arity of 0 or more, namely

the number of its source vertices. And likewise for out-arity. A (zero-to-zero)-ary edge

is necessarily unconnected to any vertex. It is called a detached edge. Detached edges

seem to be without intuitive signi�cance, but their exclusion seems unjusti�ed. They

have no use and cause no problems. In passing, it may be observed here that an

isolated vertex involved neither as source nor target, does have intuitive signi�cance.

It is certainly not excluded � see 2.8.

Fig. 7 Combination

In particular, we do not exclude graphs with just

one vertex and/or no edges. Whether or not tolerate

no vertices, with or without those detached edges, is

a technical issue that can be resolved by further de-

velopments. We can expect that it will be settled by

technical neatness when de�ning the composability of

calculations. Likewise, at the other extreme, for in�nite

collections of vertices, edges, and/or indices.

It must be noted that these are attributes of edges,

not of operations. Uniformity in this respect, let alone

more rigorous type-uniformity, is not here taken for

granted. Nor, even, are they attributes of instances of

operations. When a record occurs as the argument of an

operation-instance, the question whether it appears in-

tact at a single vertex or piece-wise spread over several,

is immaterial to the identity of the operation instance.

2.1.4 Arrow-Tails and Arrow-Heads

The above de�nitions for the arities of an edge are forgetful about the great variety

latent concerning index-sets, and concerning the disjointness feature of a single in-

dexed source, let alone more re�ned notions of type. A (3-to-2)-ary edge includes 5

"half-edges" called here arrow-tails and arrow-heads. A path consists of alternate tails

and heads and indicates calculational dependence. This notion is intuitively violated

if a path is cyclic. Nevertheless, cycles will �nd their uses below when streams are

acknowledged as unitary data-items.

It is an arid and intricate exercise to formulate a de�nition of polygraphs in terms

of four sets rather than two, namely vertices, edges, tails and heads, with the obvious

incidence functions for mapping tails and heads to vertices and edges. The rub comes

with the indexing. It becomes clear that, if the purpose is to provide tails and heads

with some mathematical identity, it should be relative to edges (see 2.6).

10

2.1.5 Special Cases: Term-Evaluations, Unary and Single-Threaded Calculations

In term-evaluation, and "tree-automata", we see examples of calculations that are

special in three ways. Multi-out-arities are excluded, and so are multiply-used data-

items; and, furthermore, there is just one vertex that is undeparted from (or "�nal", if

we anticipate the terminology introduced below). Thus in calculations, there are two

kinds of forward branching not present in term-evaluation.

A calculation is unary if each of its edges is unary, i.e. one-to-one-ary. It is neces-

sarily a forest, in which the un-arrived at vertices are the roots, and undeparted-from

vertices are the leaves. A unary calculation is single-threaded if, in addition, it has just

one root, and no vertex has more than one edge departing from it.

A path through a state-transition system is stringy, and can be expressed as a single-

threaded calculation, in which each vertex is labeled by a state, perhaps repeated, and

they are linked by unary in-and-out-edges, each labeled by a member of the systems

controlling alphabet. It is reasonable, but not essential, for the sources and targets of

these edges to be un-indexed rather than indexed singletons.

There is another small design-choice about whether the �rst index appears as the

target of no edge or as the target of a zero-to-one-ary edge. Dually for the last. The

signi�cance of this will be more easily discussed after the notions of initial and �nal

vertices have been introduced.

This does not quite exhaust the shapes of calculation that are possible if multariness

is excluded. The topic is taken up in 2.10.

2.1.6 Convergence At A Vertex? � Pariahs

Two arrow-tails departing from the same vertex is an indication that this particular

occurrences of this data item is participating in more than one way as data for a step.

Two arrow-heads arriving at the same vertex is, however, violating of our intuition.

It violates our intention that each calculated data-item results from just one calcu-

lational occurrence of an operation. If, in later developments, calculations containing

these "pariahs", or multiple-produced vertices, deserve attention they should probably

be called "pre-calculations", because they seem to indicate a range-of-variability over

calculations.

In the working practice of computing, redundancy or over-determinedness is some-

times desired for added con�dence. It is not relegated to "pariah" status. It can be

expressed in a calculation that includes either the con�rmatory checking or the con�ict

resolution � not both. This is the �rst of many later references to situations concerning

variations of interpretive mechanisms, where a contrast between calculations o�ers an

alternative means of explanation of what is usually displayed as a contrast between

programs.

2.1.7 Cycles In Calculations?

In a graph having no multariness, a cycle is likely to involve some vertex at which there

are multiple arrivals � two edges converging. In calculations, this kind of cycles is ruled

out merely on account of the ban on "pariahs". But in polygraphs, banning convergence

at a vertex does not mean banning convergence. In the presence of in-multary-ness, the

convergence can be in an edge instead of at a vertex. Thus the way is opened for our

11

intuition to see signi�cance in cycles without being violated by convergence at a vertex.

If cycles are to be excluded it must be for some other fault than convergence at a vertex.

Fig. 8 Cycles

Legalistically, convergence at an edge

facilitates inclusion of cycles without

introducing over-determined vertices.

But it does better than that. It pro-

vides an escape from an intuitive ob-

jection that might appear at �rst sight

to damn any cycle � namely: how

could it, calculationally, start? We now

brie�y anticipate here a subsequent

and precise account of "fragments" of

a calculation. A fragment is a sub-

set of its edges with at least enough

vertices to include their targets and

sources, and all with the same la-

bels. This allows a vertex to be iso-

lated with respect to the fragment,

but not with respect to the context.

Calculations will be seen to provide a range of views of the same calculational events.

In particular, if boundaries can be envisaged around multi-edge fragments then these

might coarsely be viewed as single composable steps. If this is reminiscent of a procedure-

call standing in for in�line expansion then give pause. Our edges and fragments are not

program-steps. They are non-parametric run-time steps.

Fig. 9 Unwinding A Cycle

Thus a speci�c instance of, say, (an

occurrence of) a stream-operation can

be expected, when blown up, to be a

multi-edge fragment whose edges deal

with individual speci�c items of input

and output streams. For example, if

the source vertices of (an occurrence

of) a stream-operation include a (spe-

ci�c value for a) start-up parameter,

and a stream, then two such compos-

ite steps might be plugged into each

other. The resulting cycle (�g 8) be-

comes reasonable in terms of our in-

tuitions about calculation providing it

can be seen to be disentangle-able by

zooming into their interiors (�g 9).

In a telescopic regard the bound-

aries, with their embarrassing mutual

clutch, melt away. The �ner grained

con�guration of edges stands revealed

as cycle-free. It is tempting to conclude

that the attribute of cycleness is in the eye of the beholder, not in the calculation. But

the technical terminology of calculations provides a sharper utterance. A calculation is

what the eye sees and remembers of a historical process. If, as suggested by the above

stream example, one eye can see cycles where another sees none, this is not two views

12

of a calculation. It is two calculations that themselves sharply characterize two views

of a fuzzier notion � namely what is going on.

Here is the strongest claim that is to be made for the notion of calculation. It

replaces fuzzy views of a fuzzier phenomenon by a uni�ed framework for sharp views

of the same fuzzier phenomenon.

The questionableness of cycles can also be assuaged by turning the telescope the

other way around. If, in a non-cyclic graph, you draw some boundaries around frag-

ments, and then take a blurred view of their interiors, are you going to ban the ones in

mutual embrace? After all, they may be exactly the fragments that make good sense

at a coarse-grained level. It is acceptable that by selecting boundaries around two frag-

ments of a non-cyclic calculation we may introduce a "macro"-cycle, two composite

steps that depend on each other. To the objection, namely: How could it, calculation-

ally start?, there is an answer: Lazily!

This topic is taken up in section 3.5, where special attention is paid to an apparent

paradox. The need for laziness is indeed a property that can be attributed to a calcula-

tion. Yet it is not, except for a degenerate situation, a property that can meaningfully

be attributed or denied for a single edge. Anticipating here the resolution of this para-

dox, we can observe that, for whole calculations, the need for laziness, like cyclicness,

is a global property, not local to individual edges. The uninteresting exceptions to this

are single re-entrant edges.

Reverting again to the position of looking from the outside inwards, any cycle in a

calculation presents a challenge: is there a plausible �ne-grained view, or re�nement, of

it that disentangles the cycle? But such questions lead directly out of the topic in hand,

and into territory familiar to students of implementation and veri�cation. It would be

rash at the present stage of development to claim that calculations have anything to

o�er to those studies, except a pedagogic tool, a metaphor, and an opportunity to

reformulate on slightly shifted ground.

2.1.8 Two Terminological Disclaimers

Graphs have sometimes been called "indexed graphs" when the edges departing from

each vertex are (distinctly) indexed, e.g., serially ordered, or named "car" and "cdr".

Our graphs are not of this kind. For a vertex that is the source of several edges, any

index of an arrow tail that departs from it relates to the edge itself and not the vertex.

Thus they need not be distinct.

In graphs two or more edges have sometimes been called "parallel" when they agree

as to both the source and target. In the present context this feature is, except in the

zero-out-ary case, excluded by an embargo on the "pariah" situation described above.

It is at any rate relegated to what have just be dubbed "pre-calculations". Located

there, it would present a choice between two perhaps identically labeled edges that

step from the same source to the same target.

Notice that the exclusion of multiply-produced vertices a fortiori excludes two par-

allel occurrences of the same calculational step. Anticipating a later section, the steps

of a calculation constitute a bag not a set, and by no means characterize it. By contrast,

the edges of a calculation constitute a set not a bag, and do.

Notice also that two edges may be identical in their (multi-used) source vertices,

and their operation, and their target indices, and their target labels, but not of course

their target vertices.

13

With multi-out-ary-ness there arises the quite di�erent possibility of the parallel

arrow-heads. These are, of course, excluded by the same "pariah" embargo.

On the other hand, and again quite di�erently, the presence of parallel arrow tails

is merely an indication that an (instance of a) multary operation is making double use

of a part of its source data � as when 7 is added to the same occurrence of 7.

2.2 Data Items

The term "data-item" (dit) here comprises all things that might occur as labels, includ-

ing operations. A vertex label is permissibly an operation. An edge-label prescriptively.

The labeling throughout a calculation is "consistent" in the following unsurprising

sense. Each edge has an argument and a result. Its argument is either the label is its

unindexed source, or (disjointly) the indexed set comprising (in the obvious way) the

zero or more labels of its indexed source. Likewise for its result.

Consistency is the requirement that for each edge the argument-result pair belongs

to the extension of the edge-label. Beyond being a set of pairs, or a characterizing

property of a set of pairs, nothing need be said about what counts as an extension. In

particular no notion of types, or of type uniformity, or totalness is supposed.

For example, a tail-less, head-less edge does not breach consistency, provided the

pair (nothing,nothing) belongs to the extension of its operation. Nor is the extension of

an operation required to be functional. For example: the non-functional operation that

derives from an input number any number greater than it. This does not open the door

to a notion of "nondeterminate" calculation. A calculation is not a variable calculation

any more than 77 is a variable number. A program may be non-determinate for a host

of reasons, starting with the range-of-variability of its data. But a calculation is not.

From the above de�nitions of argument and result there arises a signi�cant question

concerning index-sets that are empty. We return to this later in 2.10.

As a constraint on labeling, this notion of consistency is a weak requirement provid-

ing the graph is cycle-free. Hence the same is true for cycles providing there is a known

justi�cation � a non-cyclic re�nement of the kind described in section 2.1.7. Consis-

tency gets non-trivial when the justi�cation is yet to be discovered. This is outside the

present topic.

2.3 Calculations Are Semantic

As suggested above, the labels are "semantic". This leaves, as issues separate from the

concept of calculations, questions about how they might be described and displayed,

and about how consistency, equality, applicability, etc., might be studied. In many

straightforward cases involving numbers, sentences and other familiar dits (including

operations), the worst problems arise when the size or repetitiousness calls for some

naming system that is external to the calculation itself. But this anticipates a later

topic of what might count as descriptions of calculations.

Many language-designers have adopted a similar separation of issues when they

have taken abstract syntax as a point of departure, and thus left many subtle questions

about ambiguity and parsing for independent design, perhaps even going so far as to

rely on disambiguation by dialogue.

14

There are precedents. At a time in the past when a programming system was

expected to be a list of its operations � APL was currently the big novelty � there was

considerable audacity about a system that consisted exclusively of connections and

con�gurations. To the unfriendly, and probably rhetorically intended question: "yes

yes but what are the operations? What kind of data and i/o? What can it do?", the

only answer was "Oh, I see what you mean. That's all just a parameter It does anything

you want it to. You just choose the basics." Similarly with the vertex- and edge-labels

of calculations. Since the labels are abstract, calculations are necessarily at least as

abstract as the dits in them.

2.4 Abstract Graphs, Not Concrete Graphs

Calculations are abstract for another more familiar reason. The information-content

of a calculation rests entirely in its shape, its labels, and its indexing of sources and

targets � not in the edges or vertices themselves. If the vertices are 2D points on a

screen then consistent dragging does not change the calculation.

As in many other contexts involving graphs, the vertices and edges �gure merely

as hooks on each of which there hangs a dit. Of the various informational components,

vertices and edges are to be abstracted, and of course not indices and labels. The

same point is made by being blind to the di�erence between isomorphic graphs; or by

drawing a graph with its labels, but with no acknowledgment of what constitute the

vertices of edges beyond their being small regions connected by spidery lines. Again the

same point is made when, in programming a graph-operation, we avoid dependence on

the memory locations occupied by its components, while at the same time embracing

dependence on equality of such locations � for shared fragments.

2.5 Displays Of Calculations

2.5.1 Pictures

A network of drawn lines with an annotation for each vertex- and edge-label is the most

natural way to draw a calculation. An edge, multary-in and multary-out, can look a

bit like a spider whose body is a roundish outline enclosing a display of its operation.

Isolated vertices and detached edges can be incorporated into such a drawing. Note that

every detached edge is 0-to-0-ary but not vice versa. Arrow-tails, annotated with their

indices when such exist, arrive at this (occurrence of an) operation, from argument-dits;

likewise arrow-heads depart from it, to result-dits.

If a calculation is drawn with a downwards and perhaps rightwards tendency, then

source-indices 1,2,3,. . . can be implicit in the clockwise order of their attachment points

to the spider-body. Likewise anti-clockwise for serially indexed results. There is a small

but unavoidable risk of confusion concerning a source or target that (genuinely i.e.

abstractly) lacks an index.

The vertices of these displays carry no other information than their dit-displays.

This re�ects their abstractness in the sense drawn attention to above. Such a drawing

misleadingly suggests an ordinary (non-poly)graph in which two kinds of nodes might

be discernible. Each of these "nodes" actually indicates either a vertex or an edge

(disjointly), and any "node"-to-"node" path visits these alternately. Such drawings are

15

somewhat reminiscent of Petri-nets, and of DFDs, and of �ow-charts, and of state-

transition systems. In Later sections of these notes we examine possible connections.

The points of interest will be cycles, and mutables, i.e. variables.

As an explanatory tool, the problem of size is not one that arises in coarse-grained,

or zoomed, or toy situations. Nor is the conceptual e�ort of sharply characterizing

coarse-grained components of calculations any greater than is already seen as accept-

able these days in modular design. A starker di�culty is that these pictures are not

easy to process. They provide an application for a graphical editor that can drag and

patch while maintaining consistency among captions and text. Perhaps this, rather

than size, is why explanatory texts display a lot more programs than calculations.

2.5.2 Textual Display

There is another display technique, more writable (i.e. typable in the old-fashioned

sense) and less readable than network pictures. It depends on vertex-identity, though

not necessarily on edge-identity, and so the graph it displays is not abstract. It consists,

unsurprisingly, of two tables, one for the vertices and one for the edges.

From the exclusion of parallel edges, and parallel arrow-heads it follows that the

edge-table is a set not a bag. There can be no repeated item. Hence there is enough

information here to characterize the concrete graph without providing edge-identities.

Also, the edge-table is a set not a list. It is of course true that, viewed as a list, the

order numbers would provide edge-identities, though unnecessary.

This textual display is essentially another presentation of the "occupied memory"

idea discussed in section 2.1.2. The resemblance is probably close enough to a�ront

the reader. One table shows the dit at each vertex. If vertices are viewed as names,

there are synonyms but no homonyms. (That would imply some sens in which a dit

at a vertex could "change"). If vertices are taken to be letters, and hence are "self-

displaying", then items of this table might look like: x is 3, y is 4, z is 7, v is 4, t is 1,

s is 5, k is (7,8), p is plus, and q is "communism is dead".

The other table consists of source-operation-target triples. Each triple comprises

(here changing slightly their order): (a display of) the operation, and (displays of) its

source and target vertices together with (displays of) any indices. Edge labels might

look like: z is plus(x,y), y is greater than x, (v,t) is devrem(w,y), w is apply(p,k),

and q is ideology(). These illustrations depend on some intended rule by which their

punctuation indicates indices such as the numbers 1 and 2, or the strings "�rst" and

"second".

The appearance in these illustrations of a dit (7,8) invites a question about the

relationship between indexing within a label, and the indexing already introduced as

a feature of graphs. This question is taken up later in 2.9.

This display is essentially the single-assigned, single-executed set-up that was men-

tioned earlier with helpful intent.

In the uninteresting circumstance of no synonyms, i.e. every vertex having a distinct

dit, the former table is discardable, and the edge items look like: 7 is plus(3,4), 4 is

greater than 3, (5,1) is divrem(21,4), 17 is apply(plus,(7,8)), and "communism is dead"

is ideology().

There are overtones here of Prolog or (if non-functional operations are excluded)

of Miranda. But that is wandering out of the world of (ground) calculations and into

the world of their connections with programs � a later topic.

16

2.6 Separate "Nodes" For Edges??

In diagrams similar to calculations, e.g., in the trees that are drawn for term-evaluation

and for parses and for logic derivations, there is a subtree and therefore a root-node

corresponding to each nested composite part. It is common for the operation that

relates whole to parts to be indicated at the root-node, rather then mid-way between

it and (the roots of) its parts.

It is relevant here to note that the information-content of such diagrams is often

curiously independent of whether the arrows point from whole to parts ("distributing")

or from parts to while ("collecting"), and that this is true event when, instead of trees

there is a graph-structure that indicates the shared-ness of the parts. Little or nothing

is lost if linking lines are unoriented, and something gained. The operation symbol,

and hence the entire tree, can be overloaded to serve several purposes � e.g. expres-

sion synthesis ("collecting"), expression analysis ("distributing"), inductive expression

evaluation or translation (by synthesizing collecting), recursive expression evaluation

or translation (by analyzing, distributing) etc.

So, by handing the operation on the whole rather than the parts, or midway between

them, no clash arises, with the proviso that there is not a whole that is composed of

parts in more than one way � "no confusion", as the adage goes, or "monotectonic"

as Curry said. Moreover the embarrassment is avoided of having to invent a notation

that hangs one operation on several parts, or in the case when several means none, on

no parts.

In calculations, although the proviso is exactly guaranteed by an embargo on "pari-

ahs", the embarrassment is unavoidable in either direction. There is no requirement to

indicate a dit that occurs as an intermediate result in more than one way. But multiple

targets would not neatly be accommodated. Nor would a targetless edge. Moreover, we

shall later see the bene�t of being able to distinguish between one occurrence of the

operation divrem, and a pair of occurrences of its two projected operations div and

rem.

There is also a pedagogic advantage. The customary overloading of uncles or

squares, or liberated, to refer both to the relation and to the set of its target indi-

viduals risks ine�cient communication when it comes to names, or last, or parts �

"part is a relation not a predicate" chants the teacher, if there is one.

And, more fundamental than these, there is another ground for the design decision

being defended here. The unary special case of this is familiar, and demonstrates the

point. In a diagram for a state transition system, arrow-heads can converge, and the

transition-signals attached to converging arrows must therefore be properties of the

arrows, not of the nodes. The state transition graph of a machine expresses the full

range of possible calculations. Each is a unary chain that is a path or orbit through

the underlying machine.

Generalizing to multi-in and multi-out operations, the underlying poly-graph has

dits for vertices, and expresses every instance of every operation. Each calculation

is a "poly-path", or "poly-orbit" through the underlying machine. In this underlying

machine, or "computational �eld" just one of the vertices is the number 7 and there

are many ways of arriving at this dit . . . 3 + 4 = 10 - 3 etc. In the intimate dependence

that a calculation has on its graph it would be weird for the edge-label to have slid

along to the target node.

To sum up: at each vertex there are zero or more arrow-tails (departing divergently

from it), and zero or more arrow-heads (arriving convergently at it). By contrast, for

17

an (instance of an) operation no such restriction applies. Zero or more tails arrive at it

and zero or more heads depart from it � with a possibly embargo on both being zero,

as already mentioned.

2.7 77 Occurrences Of 7 Is plus(3,4)

A "step" means an operation together with one instance of it. In a calculation each

edge has one step, comprising its label together with its argument and result. This

dit-pair belongs to the extension of the operation. There may be many vertices having

the same dit, and, even more plausibly, many edges having the same operation. Even,

many edges having the same step, i.e., in agreement concerning the label, source dit(s),

and target dit(s). For example, the step of testing the number 7 for zero-ness might

occur at many edges. And likewise of course the dit 7 and the dit false might occur at

many vertices, not necessarily in this con�guration.

We shall, in talking about a calculation, have occasion to distinguish between a

dit and an occurrence of it � for example observing that the calculation contains 77

occurrences of numbers between 10 and 20, and also contains three of the numbers

between 10 and 20.

The word "vertex" will be overloaded to be our abbreviation for "occurrence of

a dit". Similarly, to distinguish carefully between steps and occurrences of a step we

shall refer to the latter by overloading the word "edge". So there might, in a particular

calculation, be, say, seventy-seven 7-vertices, and sixty-six 7-tested-for-zero-ness edges.

If this overloading were to have been avoided, then perhaps the word "action" is

apt for "occurrence of a step". Also perhaps "dit" should have been dedicated to their

occurrences, in which case the terminological gap thus arising might have been �lled by

"data-value" (pace ML, which is severer than the present study in its attributions of

�rst-class citizenship). With that arrangement, here rejected, a data-item would have

been an occurrence, in a particular calculation, of a data-value.

One �nal remark to hammer home this distinction. In a discarded version of this

text, a step was de�ned as an edge together with its label, its source and target, and

their labels. This vacuated any question about how many times some step occurs in a

calculation.

2.8 The Initial And Final Vertices

.

An edge has a source and a target. A step has an argument and a result. (Also

of course an operation-instance has an argument and a result.) What about an entire

calculation? An initial of a graph is a vertex that is not the target, or part-target, of

any of its edges. Dually, a �nal is a vertex that is not a source, or part-source, of any of

the edges. These concepts are relative to a particular graph, and may demand careful

phrasing when several graphs are simultaneously under discussion. In particular, an

initial of a fragment of a graph, viewed as itself a graph, i.e. a subgraph, is usually not

an initial of the including graph. In the extreme, a single vertex, viewed as a subgraph,

is its own initial and �nal. And for a single edge, treated as a subgraph, its source- and

target-vertices are, barring cycles, exactly its initials and �nals.

18

A vertex that is neither initial nor �nal is an intermediate vertex, or an interme-

diate of the graph. A vertex that is both initial and �nal is an isolated vertex, or an

isolate. Such vertices have a role. For example, when we discuss fragments it will violate

intuition to exclude a fragment that describes a dit being transmitted without being

operated on.

Fig. 10 Initials and �nals

These notions carry through when

we hang labels on the graph and turn

it into a calculation.

To treat multi-edge calculations as

composable units requires some techni-

cal design-choices about their intended

incidence. If we limit their incidence

to a superposition of �nals onto ini-

tials then some of this has already

been e�ected. The chosen notion of

initials and �nals has warded o� the

famous "leakage" complication of au-

tomata theory. There is another bit of

the design-choice that can be contem-

plated now.

When there is exactly one initial,

and its participation as a source is ex-

clusively as an unindexed source, then

it might be supposed that the calcu-

lation, viewed from outside as a com-

posable unit, has one unindexed ini-

tial. Likewise for �nals, but with a slight simpli�cation, on account of the fact that no

vertex, �nal or otherwise, can participate more than once as a target. However, the

proper setting for this is less assumptive. What is required is the kind of renaming

operations customary in process algebras, but slightly generalized to accommodate the

disjointness feature. This idea will be completed later.

Protocol about indexing for composition ought at this point to be tentative. It will

be in�uenced by the introduction of parametrization in which the abnormal termination

or non-termination of a program may �gure as a contingent property. By contrast it

should be noted that for calculations, the notion of normal/abnormal termination has

no innate meaning. This would not be the case were a calculation to include some

kind of �ags, exogenously imposed, as indications of �nality. The notion of �nality

de�ned above is exogenous, i.e. de�ned dependently upon the characterizing attributes

of a calculation. Our design-choice has rendered it meaningless to ask concerning a

calculation: Did it/is it/has it �nish(ed)/terminate(d)?

For example, the same calculation might be an aborted eager performance that fell

down on an account of over-eagerness, or a performance of a di�erent program that

terminated in an orderly manner.

The entire calculation of the dits that label its initial vertices and all of its edges,

is called the demands of a calculation. This collection will sometimes be viewed as a

bag, other times as a set. Also sometimes the initials and the edges will be segregated,

and other times con�ated.

A familiar situation will be met when we study the senses in which a calculation

might be imitated by another calculation whose demands are similar or di�erent.

19

Leaving aside for the moment any more precision about how a collection of dits

might be viewed, we can anticipate an inclusion relation amongst collection. We shall

say that a calculation is resourced by any dit-collection that includes its demands, We

also anticipate some sense in which a calculation supplies a dit-collection. Whether

this should be its terminals only, or the totality of its vertex-labels is another technical

question here deferred.

Concerning edge labels, it seems reasonable to anticipate that they will be in no

sense supplied by it. For an operation to be supplied, it must be a vertex-label. As such

no special concern is needed.

2.9 One Indexed Dit At A Vertex Versus Some Dits At Indexed Vertices

Indexing arises in two ways � as part of the graph-structure when a source or target is in-

dexed and as part of the dit-structure of a single, usually composite, dit. The de�nitions

of source and argument that have been adopted here introduce a bump into the corre-

spondence between edges and steps. A step whose argument is indexed may occur either

as an edge with an indexed source (usually multi-tailed), or as an edge with an unin-

dexed source (always uni-tailed) bearing an indexed label. Two examples follow, respec-

tively 2-ary (�g 11) and 0-ary (�g 12).

Fig. 11 2-ary Example

For the purposes of this paragraph we consider 2-ples

to be indexed sets of numbers, or of vertices or whatever,

whose indexes are the strings "�rst" and "second". Then

the step from the 2-ple (3,4), by means of plus, to the

number 7, can occur either as a two tailed edge or as

a one-tailed edge. These have di�erent shapes but the

same argument. To paraphrase this, the source of a plus-

step that adds 3 and 4 may be either an indexed set of

two vertices each bearing a number, or (disjointly) a

single unindexed vertex bearing an indexed pair of numbers.

Fig. 12 0-ary Example

Again, a step that derives the dit 77 from nothing

(i.e. from an empty indexed set of dits), can occur either

as a tail-less edge (i.e. one whose source is the empty

indexed set of vertices), or as a uni-tailed edge whose

source is unindexed and is labeled by nothing. The argu-

ment nothing occurs both as the absence of arrow-tails,

and as a single unindexed arrow-tail from (a vertex la-

beled by) the empty indexed set.

Thus, the 2-ple (3,4) can occur as an argument with-

out occurring as a vertex label; or without 3 and 4 oc-

curring as vertex-labels. Likewise the 0-ple (), i.e. nothing, can occur as an argument

without occurring as a vertex-label. This possibility has been smoothly anticipated by

the de�nitions already given for the notions of source and argument. And dually for

target and result.

The in-arity is a property of an edge, not of a step. It is the number of arrow-tails

attached to the spider-body, i.e., the size of the source if it is indexed and 1 if it is not.

This does not correspond smoothly to the size of the argument, should there be such

a size. Every edge has a numerical in-arity, greater than or equal to zero, whereas to

20

attribute an arity to every step the disjointness feature must be acknowledged. Likewise

for out-arity.

If size is to be an attribute of dits, then its range-of-variability could be the numbers

disjointly unioned with a singleton that represents the property of not being indexed.

This attribute of dits may be relevant if and when there is some discussion of types,

i.e., of operations whose extensions have some uniformity.

In the design of the concept of calculation, we have rejected the option of keeping

separate these two uses of indexing. Thus was avoided the unattractive presence either

of arguments (and results) that are "second-class" in the sense of not being dits, or

of two parallel identical but distinct systems of indexing, or of an awkward two-layer

indexing that would arise from an insistence that every source (and target) be indexed.

The design-options are summed up (referring to sources only and omitting the

repetitious facts about targets) this: Either: Two indexing systems and (whether or

not unindexed sources are excluded) either: Include both in dits...then redundancy.

or: Exclude source-indexing from dits...then second-class arguments. Or: Con�ate the

indexing systems (and hence eliminate the choice about whether source indexing is

excluded from dits) and either: Exclude non-indexed sources (i.e. abandon the dis-

jointness feature)...then two-layer indexing. or: Include the disjointness feature...then

the design presented here.

Fig. 13 Collect/Distribute

We have also rejected the option of cor-

ralling all indexed arguments into special con-

structing (or collecting) steps, and dually of

corralling indexed results into special selecting

(or distributing) steps. It is true that given the

appropriate operations (and it should be noted

that with our cavalier disregard of types there

need be no proliferation of such operations),

there is a trivial "normalization", a calculation-

to-calculation operation, that eliminates all in-

dexing of sources and targets except in those

special contexts.

But the distinction thereby elided is one

that will turn out to have been helpful when calculations are studied for possibly order-

ings of their steps, for single-threadedness, over-writing, re-use of names or locations,

and forgetting.

A total ban on indexed targets would trade mult-out-aries like divrem for their

projected operations like div and rem. But a calculation whose "resource" includes

divrem but lacks div and rem su�ers a constraint that can be expressed in a calculation

but would otherwise be lost.

A total ban on indexed sources would eliminate most of what calculations are good

for, with the exception of (distributive) abstract phrase analysis.

If both are excluded, thus abandoning collecting and distributing, the notion of

calculation would collapse into the notion of a branching forest of paths, as when a

state transition system is unfolded from some start-state. Special cases include a set

of single-threads (not a bag, not a list), and of course one single-thread. What would

also collapse would be the study of how (multary-in-and-out) calculations are imitable

by single-threads, such as stacks.

21

What would survive would be the study of imitating a big-state system by a con�gu-

ration of smaller-state systems, either non-communicating as in automata-decomposition,

or communicating as in Petri-nets and process-algebras.

It is on the relative poverty of such systems that any merits of calculations are

based.

Indexed sets are often called records, bindings, environments, look-up tables etc.

No harm other than a jarring with custom would have resulted from such alternatives.

It might have been necessary to stress the di�erence between a record of vertices and

a single vertex labeled by a record of dits.

In the following section two aspects of empty indexed sets are described. They

provide a technical trick that avoids an upwards or downwards dangling dit from being

mistaken for an initial or �nal. They act as tourniquets to tie o� danglers. But �rst

the slightly elusive presence of nothing-dits (or rather, of occurrences of the nothing

dit) is discussed. It may be relevant now to observe again that a calculation is more

than a set of steps. Apart from the unusual and unimportant case when no dit occurs

multiply, the connectivity cannot be inferred from merely the set, or bag, of steps.

2.10 Nothing

2.10.1 Two Kinds Of Occurrence Of Nothing

The previous section mentions a small perturbation, referred to as "corralling" the

indexing into special operations that collect and distribute. This perturbation does not

disturb the initials, �nals, or the dependency relation (except by the insertion of new

intermediates). If it merits attention, then so does another, which does not. In the

zero-arity case the di�erence is subtle and has repercussions on dependency.

One consequence of the disjointness feature is that two calculations may agree

totally as to the steps (i.e. each argument-operation-result triple) and their dependency-

relation while di�ering slightly as to their vertices and edges (i.e. each argument-source-

operation-target-result quintuple), the di�erence being exactly that between an already

"collected" argument (resp. subsequently "distributed" result) and an "uncollected"

argument (resp. "undistributed" result). This phenomenon is possible with the proviso

that all these source dits are initial (resp. these target dits are �nal). So the small

disagreements are con�ned to initials and �nals.

The proviso is needed. If a source has non-initial parts they may be derived sep-

arately rather than already packaged as a single dit. Then there is not an alternative

calculation that di�ers slightly in this way. There is, of course, the corralled variant that

results from inserting an extra step, and does preserve initials, �nals, and dependency.

The preceding paragraph has an exact dual.If a target has non-�nal parts, they

may be used separately rather than consumed as a single packaged dit. Then there is

... etc.

In the zero case this proviso does of course hold, the di�erence being exactly the

presence or absence of an extra nothing vertex. This vertex, if present, is either en

extra initial or �nal (not both), or is an extra link in the dependency relation � perhaps

thereby itself losing the status of initial or �nal.

Summing up, the replacement of an explicit nothing-source by an implicit one dam-

ages the dependency relation unless it is initial. The reverse change merely introduces

22

a plausibly harmless initial nothing, providing it is not done by unreasonably hooking

onto an already present nothing vertex.

And likewise for the replacement of an explicit nothing target, and for the reverse.

As an intermediate, a nothing is reminiscent of the �eeting shadow of an un0named

transient state that is sometimes signalled by "void" in the procedure-types.

2.10.2 Why Not Just Look At The Program?

The pedantic study of a small di�erence between two calculations, making no mention

of the programs that they might have come from, seems to turn tradition upside-down.

But this is a tradition of theoretical study. It unrealistically neglects the dynamics

of program-making. A program in the making is perceived as a blur of close alterna-

tives, together with lots of clues as to which is which, including diagnostics yielded

by speci�c but unclearly identi�ed points in the blur (compile-time diagnostics), and

diagnostics yielded by speci�c runs of these points which speci�c data (run-time di-

agnostics). Programmers puzzle over subtle di�erences between runs. So calculations

o�er pedagogically an abstracted model of a familiar working situation.

But they do more. If a run-time diagnostic shows the result of a �ow-analysis of

the dependencies between intermediate results, then it is showing something close to

our calculations. A machine-free interface that lies between a programming language

and its usually heavily specialized records of traces is an interface that might facilitate

thinking both up and down, both analytically and synthetically. It makes a space that

can incorporate both tradition and its inverse.

2.10.3 Breeders And Killers

If initials and �nals are to play a role in the part-wise topography of calculations, then

it must be stressed that an initial and a target of a tail-less edge, are intuitively very

di�erent. Almost dually, for a �nal and a "victim", i.e. a vertex that is a source, but

only of head-less edges. Notice the bump in duality. Paraphrasing, there are two ways

in which a vertex may have no dependent vertices, i.e. no vertices following it. There

may be no departures from it, or there may be a (or more than one) departure, but

only head-less.

Tail-less edges and head-less edges will be called breeders and killers, respectively.

It should be noted that these are attributes of edges, not of steps � and certainly not

of the operations whose instances might include them, along with other argument-

result pairs. Also, they are attributes of edges, not of vertices. There is no embargo on

a breeder and a non-breeder departing from the same (nothing-)vertex, although its

intuitive signi�cance is not apparent.

The word "constant" can then be dedicated to constant operations, including con-

stant functions. For example, an operation whose extension contains nothing (sic) but

(nothing-number) pairs is a (perhaps non-deterministic) constant. Each tail-less occur-

rence of it is a number-breeder. It is a non-determinate zero-ary operation, which is

a special case of a non-determinate constant. For it to be determinate, its extension

cannot be plural.

There might appear to be a trade-o� between initial vertices and breeder-steps.

Corresponding to a dit there are breeder-steps, each of whose results is that dit. Two

calculations di�ering only in this respect have approximately the same demands �

23

trading a dit for a breeder. But, as regards composition by plugging �nals into initials,

their properties are very di�erent.

Initials are a demand that might be "met" by composition with a "previous" cal-

culation. Intuitively, operations are a demand to be met by a deeper-rooted resource,

in a sense to be described in a later section. In the extreme, corresponding to any

calculation there is indeed another tail-less calculation whose demands are entirely

its operations. Compositionally, an initial-less fragment plays the role of a "macro"-

breeder � whatever its �nals, they arise entirely from an initial-less calculation. Initials

are part of the demands. Finals are not. So the dual is not quite symmetric. Instead of

a �nal vertex there is a "victim" of a head-less edge that "consumes" it. This, should

it be desirable, must be a net addition to the demands, even when the �nal happens

to be an initial.

2.10.4 Zero-Arity Ties Up Loose Ends

Calculations will later be presented as views of what happens when a program is

executed. From various view-points, various execution features are visible or unseen.

Zero-arity, in and/or out, enables steps to be elided without exposing vertices to initial-

ity or �nality. Across a broad spectrum of detailedness there is one view that is fairly

extreme. Everything is disregarded except input and output. This view pays attention

only to data and results. The calculation perceived is an empty hull that includes none

of the intervening steps.

In an empty hull the only edges are zero-out-aries that depart from its initials and

zero-in-aries that arrive at its �nals. Even these are absent in the case of an initial that

is also a �nal � remember that isolates are not excluded and their intuitive usefulness

for the composability of fragments has been claimed to be useful.

The con�gurations possible with just edges that are either tail-less or head-less (or

both) are almost exhausted by empty hulls, but not totally. In such a con�guration, each

vertex is either initial or �nal or both (i.e. isolated) or neither. In the last case it can

play no role. It springs from nothing (not even from a nothing-dit of the calculation and

it's not initial). It contributes to nothing (not even to a nothing-dit of the calculation

and it's not �nal).

This is a single-vertex special case of a wider phenomenon � a sub-calculation

wholly detached from initials and �nals. It can arise unobjectionably in the course of

unprogrammed exploratory dialog, or as a pathological special case of a programmed

general administration, or as an oversight of careless programming.

Summing up: As an argument the nothing-dit can occur in two ways. It is the

argument of a tail-less edge that cuts its target vertices o� from all ancestry. They are

not even initials. Or, it is the argument of one or more one-in-ary edges, and is either

an initial or else it is an intermediate vertex.

Almost dually: Occurring as a result, the nothing-dit can be the result of a head-

less edge that cuts o� its sources from all descendants. They are not even �nals. Or, it

can be the result of exactly one one-out-ary edge and is either intermediate or �nal.

There are other less extreme circumstances in which a calculation might, for some

of its intermediate vertices, leave no room for the progeny and/or the ancestry. Such

vertices are an essential ingredient of the above-mentioned broad spectrum of views to

be described in a later chapter.

24

It is strange to look back now at an earlier developmental stage of these ideas in

which it seemed important to insist on some notion of connectedness in these respects,

variously formulated in terms of backwards and/or forwards reach ability.

In the present formulation, the dependence-closure of the set of initials necessarily

contains every vertex. The intuitively stronger requirement for the "relevance" of every

initial excludes any vertex that does not depend on at least one initial, and in particular

excludes initial-less calculations.

The nearest we can get is the trivially true assertion that every vertex is dependent

on (i.e. is contributed to by) at least one initial or breeder. (Recall that dependence is

a relation over the union of vertices and edges).

The duals of these assertions also hold but have less obvious intuitive appeal. The

co-dependence-closure of the set of �nals necessarily contains every vertex. Every vertex

is co-dependent on (i.e. contributes to) at least one �nal or killer. But, to balk at

requiring that every vertex is co-dependent on at least one �nal is much less compelling.

This requirement is nevertheless rejected in order to make allowance for the kind of

partial views described above.

2.10.5 Di�erent Looks At The Aame Program Execution

We shall be introducing the term "performer" for a function that, given a program

and su�cient data to �x its behaviour, produces some view of this behaviour. Hence

a performer that produces the empty hulls corresponds to what is ordinarily called

denotational semantics.

In the broad spectrum of possibilities, empty hulls are not the most extreme. There

could be a mere indication of termination, or some other attribute such as whether or

not a particular operation, say writing, is demanded. It is perhaps worth observing

that these are not the program-attributes uncovered by abstract interpretation. We

are concerned here with the attributes of ground runs, not programs.

Moving along the spectrum in the other direction, there are views that give a full

account of the paths of dependency that lead from initials to �nals, but undecorated

by any account of the administrative arrangements that must have played a part. It

is at this point that there is the richest possibility of identifying some shared ground

on which to base the behaviour of di�erent programs, perhaps in di�erent languages

and di�erent styles of language. The gap that is waiting to be �lled is, in a simple

way, apparent when we speak informally of doing the "same" thing by means of dif-

ferent programs, perhaps in di�erent languages, or di�erent modes of implementing a

language, or even two "paradigmadically" di�erent systems. Going further, there are

calculations that include administrative steps such as those involving names, look-ups,

procedure-calls, and exception-raising. The more there is, the less chance of shared

ground, but there are also merits.

There is one matter of perennial concern to programmers that calculations can

exhibit � the trade-o� between unadministered special cases and administered general

regulation or regularities. For example for a programmer an if-statement brings two

special cases together into a single regularity. The administrative steps are: the deriva-

tion of a boolean, the derivation of a package of two alternatives (perhaps two numbers,

perhaps two programs) and the use of the boolean to select one of these. Without the

if-statement there must be some other way of selecting which unadministered special

case is appropriate, e.g., human judgment, or prior specialization of the program. The

25

if puts the administration into the program. Discovering regularities is the very essence

of automation.

The relationship between the if-program and the two special cases can be ap-

proached from either side. Narrowing the special cases down to speci�c ground in-

stances, given two calculations we can seek to add administrative steps to each of them

with the goal of "unifying" them, i.e., reaching a pair of calculations for which there

is a single program, and a single performer, according to which each of them is, with

di�ering data, a performance. At the trivial worst this means an outermost if. Con-

versely, given such a program plus data, its behaviour can be so viewed as to observe

the selection-steps that discard the parts inappropriate to the data. By another view,

it is shorn of these steps, unrevealing of what could have been done had the facts been

otherwise.

This contrast will appear later as di�erent performers for if-statements. One per-

former shows all the steps that derive the boolean, the package of alternatives, and

the step of selection. Another elides all these, showing merely the steps relevant to the

given data. The calculations hows no trace of the discarded alternative, nor even of the

choice having been made.

There is also a midway viewpoint that relies on zero-out-aries. The boolean is seen

to be derived, but no clue appears as to its relevance to other steps. The boolean

appears with no progeny, nor is it a �nal. It occurs as a "victim" � the source of a

killer-edge, that leaves the boolean looking like a dead-end. The calculation contains

no trace of the discarded alternative, but it does acknowledge that a choice has been

made.

One small design-choice has arisen here from the disjointness feature. The killing

might plausibly be done with an unindexed nothing-target thus leaving a �nal nothing

as a careless clue to the murder.

As suggested above, in an earlier stage of the development of these ideas, dead-ends

were excluded. It was required of a calculation that every edge be backwards reachable

from its �nals. That design choice disabled the midway viewpoint just mentioned.

As with if, similarly with case-selection, records, arrays, name-lookup in environ-

ments, and address-lookup in memories. The above discussion of if foreshadows a sys-

tematic range of the views that performers can take when looking at the process of

selecting a component from a composite dit.

3 Some Disclaimers And A Claim

Through the basic concepts of computing, a dividing line can be drawn separating

aspects of programming that are properties of ground runs, from properties that only

have meaning in terms of the program being performed. But the dividing line is not

simply that of run-time versus compile-time. For example, failing to reach the end, is

usually thought of as a run-time property. But as an attribute of calculations it makes

no sense. This section analyzes aspects of the dividing line.

3.1 A Calculation Is Not The Execution Of A Program

It is misleading to think that a calculation is what arises from the performance of a

program (relative to a su�cient �xing of its data).

26

In the �rst place there is no obvious single choice concerning what and how much

detail might be conveyed by an account of program behaviour. At one extreme it might

be pared down to a few hints about outcome � e.g., it didn't happen. At the other we

might demand �ner and �ner accounts of its pre-processing, compilation, time and

memory management, arithmetical micro-steps, etc.

Secondly by acknowledging certain midway postures on this spectrum, say a history

shorn of names, addresses, calls and returns and other housekeeping, we are immedi-

ately led to the extremely attractive notion that the same calculation can result from

di�erent implementations of the same program, di�erent programs, di�erent languages,

or di�erent �paradigms�.

And lastly, there are other ways in which a calculation can arise � from the search

for a path through a maze, or derivation through a given logic-system, or just be

serendipitous forward growth. It may be a useful idea, but currently neglected, to

think of proof in logic as some performance of a parametrized proof/program.

3.2 Calculations Are Ground; A Vertex Is Not A Variable

A calculation is a particular derivation of dits from dits, composed of steps, each of

which is a particular instance of a particular operation. It is ground, not parametric. A

vertex is not in any straightforward sense a variable. There is not a particular range-

of-variability associated with a vertex, except the various ranges that might be implied

by compatibility with incident edges.

However, since everything is a dit then so are sets and arrays and lists. The range-of-

variability among the elements of an aggregate dit provides a bridge between mutables

and non-mutables, especially because one familiar kind of aggregate is the perhaps

inde�nitely long list known as a stream, or lazy list. The successive values of a variable,

its time series of history, perhaps mingled with historical, chronological commentary

such as time-stamping, tracing, etc., constitutes a stream.

This opens a way in which a history of a set of updatable registers, responding

to instruction-steps that each assign to some of them in terms of some others, can be

decomposed into a collection of the histories of each register. Each register-history is

a function of some or all of the others, albeit expressed rather awkwardly on account

of the need to collect them together into it all the perhaps scattered instruction-steps

that contribute to it.

Viewed thus as a calculation containing streams-to-streams operations, each register

is a vertex, and the edge pointing to it connected with registers that are named in its

instruction-operations.

3.3 Calculations Are Ground: An Edge Is Not A Variable

The similar disclaimer holds for an edge, but less needfully. In hidebound minds, argu-

ments may �t functions, but little thought is given to which functions �t a particular

argument. Just as a particular operation implies some limited range of amenable dits,

so dually a particular dit (which might be an operation) implies some limited range of

applicable operations. This is the symmetry that is strikingly encountered in �curry-

ing�. The same symmetry is more widely familiar as a pointless quarrel that concerns

selecting a component from an aggregate dit, say an array or a record: Is the aggregate

27

an argument to a selector function, or is it a function applied to an amenable position

or index or �eld-name? Either way round, the result is one component of the aggregate.

The quarrel is calmly resolvable by resorting to the apply operation, which is in any

case forced upon us whenever a derived operation is to be applied. This is exactly the

pedagogic device by which, in applicative formulas, a composite operator is sugared

into ordinary term-notation to avoid frightening the horses.

3.4 A Calculation Is Not For Executing: It Does Not Flow

The source-target orientation of edges suggests a rough drift of �ow, concurrent and

asynchronous, washing through the vertices, that cannot oppose the arrows and cannot

be opposed by any historical process that the calculation re�ects.

For a cycle-free calculation this rough drift might be seen as related to the obvious

partial order of the vertices and/or edges. Informally, thinking of this drift as a process,

its purpose might be to check consistency and/or, in the case of an edge-label that is

determinate (i.e. is a determinate operation), to �ll in missing results. Even with cycles,

the idea need not be entirely discouraged. A rough drift of �ow might wriggle through a

cycle if it's in luck concerning non-contributing or irrelevant arguments, or if, following

up an earlier subsection, it knows a non-cyclic re�nement, or simply by plain good luck

in guessing a solution.

Let us brie�y resume the �Hazardously apt Analogy� of an earlier section. The un-

labeled graph corresponds to these two register-sets together with source- and target-

maps as occurring in the respective parts of instruction-registers (assuming some con-

ventional detail about indexing). The labels of edges and vertices correspond respec-

tively to (the occupants of) the operation-parts, and to the eventual occupants of the

data-registers � eventual in the following sense. Suppose each data-register is either

initially primed with an occupant, or (disjointly) initially vacant but destined to be

singly-assigned by one of the singly-executed instructions. If this process completes

with no mishap, neither from absent not unnameable data, not from attempted re-

occupation, then the eventual occupied memory corresponds exactly to a cycle-free

calculation.

One of the mismatches between this set-up and the labeled graphs introduced above

relates to the question that was raised and temporarily adjourned. The requirement of

single-assignment corresponds to a prohibition of any vertex pointed to in more than

one way. This point is taken up in section 2.1.6 and after section 2.1.4.

It may also be noted that, for the instructions, their memory-positions, perhaps

sequential but also perhaps arbitrarily scattered amongst the non-instructions, are

irrelevant provided that the computer's interpretive mechanism is clever enough to

recognize them and execute them in an order that respects their dependence. The

eventual memory-state has forgotten which sequence took place. although it does record

the dependency constraints among them that cannot be breached.

On the other hand, there can and should be questions about whether an analogy

can be stretched to include cycles, and whether an instruction might be lazy with

respect to parts of its data or result. The link between cycles and laziness is taken up

in section 2.1.7.

It is tempting to think of executing a calculation, perhaps by choosing arbitrarily a

sequence of its steps compatible with its arrows, visualizable as a conquering frontier

marching jerkily onwards as each edge yields its new dit(s). But, each such choice gives

28

rise to another calculation of which the successive dits correspond to the successive

boundaries of the transiently completed fragment.

A closer look at how tightly this ��ow� might be controlled, suggests a range of

possibilities, of which the slackest extreme sees concurrent asynchronous processes, one

for each injection of an initial and one for each edge, each quipped with �wait� signals

and �ready� signals for its source vertices and target vertices, with arbitrary timing of

their births, perhaps all simultaneous, or even contradicting edge-interdependence.

In this arrangement there are questions about synchrony or synchrony within single

steps for which a calculation, to its credit, shows not answer. For example, a 2-to-2-ary

edge might be �really� the parallel composition of two 1-to-1-aries, acting independently

of, and perhaps asynchronously with, each other. But this distinction is properly ex-

pressed, not by two ways of �executing� a calculation, but by two di�erent calculations.

Similarly, a question about laziness with regard to some parts of an argument is really a

question about the relationship that this particular edge bears to the operation of which

it is one instance � see the next section, which explains how a single ground-instance

of laziness is expressed as a di�erent calculation.

A slightly less extremely slack image of �ow might place the edge-interdependence

in the interpretive foreground, reminiscently of the singly-assigned, single-executed

registers suggested earlier as a "Hazardously apt Analogy" for a calculation. Among

these various ways of viewing the �rough drift�, this one is a special case. The �di�erent

calculation� happens to be not di�erent, but exactly the same.

At the other extreme there is, at least for cycle-free cases, any totalization of

the partial order. The afore-mentioned conquering army is one image of this. Or, the

conquering army can be seen as consuming the graph, so that the frontier at each

stage becomes the initials of the diminished calculation. Each of the successive dits of

this unary calculation is itself a calculation, and the ��ow� is that of a graph-rewriting

system.

Such a process is state-transitional, i.e. one-to-one-ary. To express it as a calculation

requires some analysis, and some design-choices about what is the dit that corresponds

to each transient con�guration of the conquering army, and what is the unary operation

corresponding to each jerky step.

For a limited shape of tree-like calculations, stacks are a famously well-thought-

out design-choice for this. A stack-history is a one-to-one-ary evaluation. A valid but

less well-thought-out design-choice is to remember everything � the conquering army

maintains complete archives just in case. This is the chosen method when a proof is

presented as a list (as opposed to the biologically-oriented trees of natural deduction)

of its successively derived items (sentences, sequents, or whatever), each annotated to

indicate which bits of the archive justify it. It is a method that is di�cult to avoid for a

proof whose steps need non-local justi�cation, whether it is topologically a list, a tree,

or a graph.

There is, however, a proper setting for such matters in which calculations are not

dynamic things that get executed. Imagine instead a programming language whose

programs happen to be calculations, or rather, calculations minus the labels of their

non-initial vertices. We may there bring to bear the concepts to be explained later by

describing a connection between calculations and programs, or more precisely programs

closed by a speci�c choice of data. A function by which a closed program (i.e. one that

needs no more data to �x its execution), determines a calculation, will be called a

�performance-rule� or �performer�. So a performer is a closed program-to-calculation

function. In the special case where the program is a calculation, a performer is a

29

calculation-to-calculation function. In the above situation concerning two asynchronous

one-to-one-aries, a performer, using knowledge about the decomposability of that par-

ticular operation, will transform the calculation into a di�erent calculation.

So each image of �ow introduced in this section does not provide support for think-

ing of calculations as dynamic entities. It is a correspondence by which a calculation,

viewed as a program, yields another (or perhaps exceptionally the same) calculation.

It is di�cult to think of calculations as programs without giving them a textual

representation. Two styles spring to mind. Both are close to the textual display given in

the previous chapter. One, Miranda-wise, treats the set of edges as an unordered set of

mutually self-referential de�nitions. The other, ML-wise, organized them into nested

where-expressions non-recursive except in so far as cycles require otherwise. This is

pursued in a later section. Meantime it is instructive to go through the various images

of �ow mentioned above, and attempt to restate each of them for each of these styles.

There is a conjecture here, and the inevitable challenge to discon�rm it that must

accompany any conjecture. Is there any distinction expressible as di�erent ways of

"interpreting" a calculation that is not expressible as a di�erent calculation? And, less

sharply, is there any distinction expressible as di�erent programs, perhaps in di�erent

languages, that cannot be expressed as performance-rules that map programs-plus-data

to calculations?

To sum up dogmatically, there are may ways of performing a calculation, and each

of them usually yields a di�erent calculation. In this sense, and only in this sense is it

valid to think of a calculation as a dynamic entity.

3.5 Neither Strict Nor Non-Strict

It might be suspected that, in the above mention of wait- and ready-signals, there is

a distinction concerning strict/non-strict that has been overlooked. That this is not so

is one of the consequences of the "groundness" of calculations.

The source(s) of an edge provide those dits that contribute to that particular occur-

rence of that particular instance of its operation. Non-strictness is merely a discrepancy

between an operation itself, as a collection of instances, and an individual member of

this collection.

For example, among possible arguments for the usual lazy 3-ary if-operation (with

obvious indexing) there are the following indexed sets: {"�rst":true,"second":5}, and

{"�rst":false,"third":7}, yielding, respectively, the results 5 and 7, as well as including,

say, {"�rst":true,"second":5,"third":666} and {"�rst":false,"second":888,"third":7}. For

the (unusual) strict if-operation the argument domain is smaller. It excludes the "gappy"

cases. This does not exhaust conceivable �avours of if. But notice that, although the

"gappy" cases alone do not constitute a function, it does not qualify as a lazy function.

A connection between cycles and laziness has already been introduced. The above

lazy if-operation provides an illustration, albeit trivial. Consider the 1-edge cycle whose

indexed source is ("�rst":v,"second":vv,"third:vvv) and whose target is vvv. Suppose

the vertex-labels are respectively false, 7, and 7, and the edge-label is lazy-if. Then

there is a non-cyclic mapping, or re�nement, of this. If the "second" tail is deleted,

consistency is not damaged, and the resulting calculation has lost a cycle.

As a feature of calculations (by contrast with programs) the strict/nonstrict dis-

tinction �gures only as a property of an operation itself, discernible, so to speak, only

by looking at the semantic object inside the spider-body. There are lots of operations

30

of which the step from {"�rst":false, "third":7} to 7 is a valid instance, Some are strict,

some are nonstrict.

In programs, ranges of choice have to expressed. By contrast, for one particular run

the die is cast.

3.6 Calculations Contain No Forward Branching For Selection

Among the arrows of a calculation there are two kinds of forward branching � multi-

used vertices and multi-result edges. In a networkish display these show respectively as

multiple arrow-tails departing divergently from the same vertex, and multiple arrow-

heads departing divergently from the same (occurrence of an) operation.

This is perhaps worth paraphrasing.

Multiple arrow-tails diverging from an occurrence of a dit indicate several uses of

it. Were we planning time and space we would plan to delay the dit's death until all

uses had been made.

Multiple arrow heads diverging from an (occurrence of an) operation indicate that

its result comprises several separately usable dits.

Forward branching in the sense of selection is not meaningful as a feature of a

calculation. For a ground run, all choice has been made. This does not exclude from

calculations the fragments that prepare an aggregate of alternatives, and select one of

them. The items of such an aggregate are likely to be the same complicated kind of dit

as arises when a calculation exhibits a programmer de�ned function in the process of

being communicated as an argument.

Why should a calculation containing such complicated dits be if interest? For two

reasons, corresponding to analysis and the synthesis of programs. A program (with

enough �xing of its data) may yield, under �ne-grained analysis such as is achieved

by a �ne-grained "performing function", a calculation that exhibits such mechanisms.

This can be a halfway stage on the way to a less committed one that does not � less

committed in the sense that it might have arisen from di�erently structured, but in

some sense equivalent, programs.

Dually, the �ner grained calculation might arise from seeking to "unify" it with

others as part of a search for a program of which they are (with varying data) all

performances.

3.6.1 Digression: Is Your Will Free?

The confusion dissolved above corresponds to one resolution of an apparent anomaly

made famous by its vast philosophical literature. From a divinely cosmic vantage-

point my entire life, past-present-future, is a rei�ed, unitary, staticized, composite dit

� what programmers call a �rst-class citizen. So whence arises my delusion of free-will?

Proposed resolution: Me living is (like) me performing a program. My consciousness

includes the interpretive steps, including choice-steps. My consciousness of my free-will

is merely the inclusion of these choice-steps in my consciousness.

When we come to explain below the plurality of relationships that exist between

programs and calculations, we shall encounter various "views" of program-performance.

From some views, interpretive steps are deleted. There remain only the bare bones of

what actually happened. My consciousness includes my memory of past consciousness.

The di�erence between past and present lies in that for the past there is a greater

31

range of views, including those from which interpretive choices are deleted. The forward

movement of the present is the expansion of these abbreviated views.

Of course, the notion of godly omniscience is no more an essential feature of the

apparent anomaly, or of this resolution of it, than the less extravagant notion of my

own present perspective of my own past.

3.7 Calculations Contain No Forward Branching For Non-Determinateness

Multiple arrow-heads diverging from an (occurrence of an) operation do not indicate

alternative results. In particular, the question whether an operation is delivering an

exceptional result or a normal result does not show. Either one or the other, but not

both, can appear in a (ground) calculation. The die is cast.

By the headings of this and other sections they are proclaimed as disclaimers. A

particular case of the present disclaimer can be spelt out.

Multiple arrow-tails diverging from (and occurrence of) a dit do not indicate alter-

natives of behaviour. For example, for a nondeterminate state-transition system there

is a unary graph. Its one-to-one-ary edges diverge from each vertex that o�ers choice. If

all downward convergence has been unfolded the resulting forest is indeed a calculation

(in our sense), but one whose �nals (i.e. of those branches that terminate) comprise

the bag of all possible end-states, each replicated in accordance with the number of

ways of getting there. The unfolded graph is a calculation, but it does not have the

merit of being a run of the system.

If on the other hand there are edges that do converge, i.e., there is a vertex to

whose label there is more than one path, then the graph is not even a calculation. It

is a "pre-calculation", in the sense introduced earlier, and to be discussed in a later

chapter as a particular kind of program.

In either case, viewed as a program its data is the successive nudges that choose

among its branches. Each path from initial to �nal of this (pre-)calculation is one calcu-

lation. An example of state-transition systems appeared above when non-determinate

graph-rewriting was put forward as a possible image for the somewhat misleading no-

tion of calculation "�ow".

The conjecture was made there that instead of seeing such an image as lending

support for a dynamic view of calculations, there is, for each such image, another

calculation. Further, that the proper relation this other calculation bears to the orig-

inal is that it the performance of the original in accordance when some appropriate

performance rule.

Each of the various disclaimers, including the present one, is a consequence of the

ground-ness of calculations. Each is obvious. The best excuse for nevertheless airing

them arose during the development of this work. It did seem that the conjecture was

beaten by the single-threaded nondeterminate graph-rewriting image of "�ow". How

might asynchronous localized steps, transforming di�erent parts of a state, be captured

by the notion of a calculation?

But of course what were then being overlooked were the inappropriateness of ex-

pecting a calculation to indicate single-threaded nondeterminateness and the correct-

ness of viewing nudges as data.

A forward-branch in a calculation, whether it be at a vertex or an edge, does not

indicate nondeterminateness, except for a very limited sense which is inherent in a

programmed fork � this is the topic of a later section. It can arise from diverging

32

arrow-tails, i.e., with a multiply-used dit, or from diverging arrow-heads, i.e., with

a multi-target step. An example is the non-observable nondeterminatess concerning

the relative speeds of concurrent non-memory-sharing processes during the intervals

between communications, formulated as mutually dependent histories.

By contrast, for graph-rewriting, Petri-nets, and other local but asynchronous

memory-sharing steps, each calculation is a unary, single-threaded possible history. A

calculation does not include the rules about toe-treading. It merely exhibits individual

consequences of such rules.

3.8 Calculations Contain No Forward Branching For Search

A unary calculation is necessarily forest-shaped. So there are obviously search-processes,

for example looking for a particular leaf. But to express this search as a calculation

means a di�erent calculation.

In the natural generalization of this to multary-steps, a root-to-leaf path is gener-

alized to the backwards, i.e., co-dependency, closure of one �nal.

3.9 Calculations Do Contain Forward Branching For Forking

Forward-branching, i.e. arrows that diverge, is frequently used to indicate selection

among alternatives. But never in calculations.

On the other hand, forward branching in the sense of forking is indeed a structural

part of calculations. Opportunities for concurrency are presented both by diverging

arrow-tails and by diverging arrow-heads. Dually joins correspond to converging arrow-

tails. But not of course (to complete the four combinatorial possibilities) to converging

arrow-heads. This feature could only mean that the dit converged on is a result of more

than one step � the afore-mentioned "pariah" situation.

A forward-branch in a calculation, whether it be at a vertex, or an edge, does

not indicate nondeterminateness, except for a very limited sense which is inherent

in a programmed fork. It can arise from diverging arrow-tails, i.e., with a multiply

used dit, or from diverging arrow-heads, i.e. with a multi-target step. An example is

the non-observable nondeterminatess concerning the relative speeds of concurrent non-

memory-sharing processes during the intervals between communications, formulated

as mutually dependent histories.

4 Programs And Performers

We propose to decouple the customary linkage from program to the function or relation

that it realizes. What is to be interpolated is a function from data to entire calculation,

or perhaps a description of a calculation. The new link connects a program-plus-data

(or closed program, or program-plus-environment) to a calculation. Such a link is called

a performer.

33

4.1 Di�erent Views Of The Same Behaviour

This section spells out several views that can be taken of program-behaviour even for

a low-level language that leaves little choice about how to interpret it, and about what

actually happens.

The following conclusion will be drawn. If, with even this down-to-earth notion of

program, there is such a wide range of views of its behaviour, then it is not surprising

that, for languages designed to rely on interpreters and compilers, there is not a single

obvious choice of "behavioural semantics".

Once upon a time, when programs were more prescriptive of behaviour, there might

have been a set of states, called memory-states, each one an indexed set of dits (perhaps

each of, say, 48 bits), always including a special one called the control-cursor whose

occupant in every state is a memory index (i.e., address) and a rule that associates

with each of these dits, a state-to-state operation called its e�ect-operation, or e�ect.

For this set-up, behaviour is wholly described as the inde�nite repetition of a single

operation called its "interpretive cycle". The immediate successor of a state is one of

the results of applying the operation (in accordance with the above mentioned rule)

of the memory-item pointed to by the current control-cursor. This the control-cursor

would run through a sequence of (not necessarily consecutive) memory indices (i.e.,

addresses).

In this never-never land each instance of each of these operations might have con-

sulted and updated only a small subset of the memory items, in accordance with a

multary dit-operation called its registers-to-registers operation. (By contrast with the

earlier "Hazardously apt Analogy", address modi�cation and indirect addressing are

not excluded. It is assumed merely that the registers-to-registers operation factors

through the occupants of the indexed set of addresses that, for each current state, the

e�ect operation choices for its sources. This is weak. But it does exclude, say, an op-

eration that either adds or multiplies its arguments, depending on whether they come

from odd- or even- numbered addresses).

This behaviour is a single-threaded and hence unary calculation, stepping from

memory-ful to memory-ful (including the cursor) by repeated application of the inter-

pretive cycle. Each dit is some memory-state, and there is just one operation, the in-

terpretive cycle. By being non-determinate this operation can accommodate exogenous

in�uences from outside the memory. For example, an input stream, or the consultation

of other external information.

Each thread is a root-to-leaf path through a forest of possibilities, that is itself a

non-single-threaded calculation. But this o�ers little support for seeing divergent arrow-

tails as an expression of non-determinateness. Diverging arrow-tails here indicate that

a state is being updated in multiple ways that breach single-threadedness. They either

lead to multiple results, or by subsequent join, indicate that a plurality of alternative

states contribute to the �nal state.

The inside/outside distinction is as much a matter of formulation as of reality. A

change of formulation that incorporates an input stream or an interacting program into

the state might transform a non-determinate system into a determinate one. Conversely,

as we shall see directly, a change of formulation that excludes a control-cursor from

the state, might have the reverse e�ect.

For the same program-behaviour there is a second and more familiar view. It is also

single threaded, but each dit is a memory-state minus the control-cursor. (The corre-

spondence is one-many on account of omitting the control-cursor). It has a plethora of

34

operations corresponding (one-many) to the plethora of e�ect-operations indicated by

the control-cursor. The control-cursor's familiar steady incrementation does not show

in these steps. Nor will any other resetting of it. For example a pure jump-instruction

will appear as the identity-operation. The control-cursor itself now �gures as an exoge-

nous in�uence (like an input stream) in any step that copies it into an included part

of memory, and such an operation is non-determinate.

As yet, these views have not invoked the registers-to-registers feature. They de-

pended only on the control-cursor feature. For the same program-behaviour there is a

third view, one in which the multariness of calculations comes into its own. It is a cal-

culation expressing �ow-analysis of the program-execution, i.e., a ground �ow-analysis.

Concretely, each vertex is an address, time-stamped to characterize its most recent

re-occupation. Its label is that new occupant. And each m-to-n-ary edge is likewise an

address time-stamped to characterize one execution of its occupant, and its label is the

semantic, registers-to-registers operation.

Recall that the graph underlying a calculation is abstract not concrete. In a calcula-

tion there is no essential role for the concrete identities of vertices and edges. It follows

that in a ground �ow-analysis inessential instruction-ordering has been forgotten.

It is perhaps worth acknowledging that there is no assumption here about dedi-

cating memory areas to read-only program-space. And punning is not even noticed,

let alone excluded. If prime numbers are executed or instructions are squared, its just

another calculation.

We add some more candidates to this list of di�erent views of the same behaviour,

each of them perhaps of occasional interest. An elaboration of the second view above

might explicitize the contributions of instruction-segments instead of drawing on an

unsystematized plethora of monolithic views of whole instructions. And, for each of

these there are �ner and coarser variants, showing, at one extreme, every bit-operation,

and at the other extreme, just a single step from start to �nish.

There is a conclusion to be drawn from the preceding rather laborious account of

an uncomplicated programmed machine. If, with even this down-to-earth notion of a

program, there is such a wide range of views of its behaviour, then it is not surprising

that, for languages designed to rely on interpreters and compilers, there is not a single

obvious choice of "behavioural semantics".

4.2 Performers Versus Interpreters

The calculation yielded by a performer, given an interpreter-plus-data, i.e., a program-

plus-its-data that is being interpreted, is likely to include lots of interpretive steps. Of

course, if the performer is not one that deals comprehensively with the whole language

in which the program is expressed, but is specialized to just this one program, then

much elision is possible. Indeed, the options are exactly those for a performer of the

whole interpreted language.

4.3 Performers Versus Behavioural Semantics

When a language is designed with a range of implementations in mind, intended to di�er

from one another only transparently, little wonder if what language-de�ners choose to

count as visible, modestly shrinks from entire behaviour to mere outcome. So we must

35

wonder why it is that denotational semantics is nevertheless often so behavioural. There

are three reasons, pressing both from the pragmatic and theoretical sides.

If practice is to be theorized honestly, it must acknowledge that histories can include

breakdowns, abortions, traumas that strike in what would otherwise be mid-behaviour.

So an account of outcome cannot stray too far from the path that should get there, for

fear that it doesn't, that it misses the point at which breakdown occurred.

For example, parsing can be elegantly expressed as the inverse of the mapping from

parse-tree to string, but only over wholly parsable strings. For error-action to be seen

as a possible outcome, a closer hold on the step-by-step behaviour is necessary.

Hence in practice, an account of �nal outcome is likely to be an account of its

derivation.

Again, if theory is to be practiced economically, it must exploit nested program-

structure. This leads to compositional descriptions, and in particular to compositional

semantics, whether or not allowances are to be made for mishaps. So outcomes must

be attributed to nested fragments as well as to whole programs. Some account of stage-

by-stage behaviour is inescapable.

And there's a third reason for doubting that a great chasm separates behavioural

description from output description. In so far as execution involves the meanings of a

repertoire of operation-names, it is plausible to envisage a systematic adjustment of

these meanings by which each derived dit is accompanied by a trace, i.e., its entire

derivation from the overall demands of the program, namely from the initial dits by

means of the operations. Thereby, a description of �nal outcome becomes a description

of how it was derived.

Arising out of this third reason there is a small technicality in the design of such a

systematic adjustment, that does not have to be faced in the unary case. It concerns

the choice between folded and unfolded derivations. The correct backwards folding is

required unless we are willing to tolerate derivations that have forgotten about how

dits are multiply used.

If shared fragments of derivations are to be acknowledged, then derivations must

distinguish and characterize separate occurrences of a dit. This is of course a problem

that does not arise in single-threaded derivations.

The study of behavioural semantics has not come out of a wish to specify behaviour.

Descriptions of the journey have been given grudgingly because there was no other way

of saying where it ended. So it is not discreditable if the journeys have bene�ted from

less analysis that might otherwise have been the case. If you can't do a perfect job

without �rst perfecting your tool then depth-�rst despair is your dangerous destiny.

Neither implementers nor semanticists need feel shame about being uncritical of

their unremitting unariness, or incurious about the details of calculational steps. Their

own goals compel them to patch together some notion that serves the current purpose

and lacks generality.

4.4 77 Di�erent Calculations For (3+4)(5+6) � Administrative Steps

Let us focus on one straightforward three-edge, seven-vertex calculation. It has four

initials, which are (occurrences of) the numbers 3, 4, 5 and 6 an one �nal, 77. Its other

demands are two operations, addition, occurring twice, and multiplication occurring

once, of (unlimited) integers. Its two intermediates, are 7 and 11, and they are the

results of the two addition-steps.

36

This is the calculation that we might expect a performer to yield from a program-

fragment "(3+4)(5+6)", and also from a fragment "(a+b)(c+d)" performed relative to

an appropriate binding.

For the latter case there is another, more detailed calculation that includes four

lookup-steps that derive numbers 3, 4 etc., from names "a", "b", etc. Further details

that might or might not appear, depending on the choice of performer, are a binding,

with or without names for the operations, and some manifestation of the program itself,

perhaps with steps for phrase-breakdown.

In each variant, there are some aspects taken for granted and other spelt out. For

example the steps of phrase-analysis might disregard the lookups for "+" and "*".

Another variant might include them, this forcing the operations + and * to occur as

vertex labels, rather than edge labels, and hence also be compelled to include apply-

steps that marry each (intermediate) operation to its arguments.

Lookup is a selection operation and in the above examples, the index determining

the selection is a name, such as "a". It is either an initial (i.e. no derivation acknowl-

edged), or is calculated by steps of phase-analysis.

For selections by if, the index is a boolean, and its derivation is usually a more main-

stream part of the calculation. But, as with name-lookup, there is a range-of-variability

about how explicitly this shows up in a calculation. A previous section showed how, by

means of nothing and breeders and killers, such chunks of derivation might at choice

be included or omitted without being forced to include embarrassing danglers.

Likewise for case-selection, records, arrays, name-lookup in environments, and address-

lookup in memories.

In this respect the administration of calls for in-program de�nitions of functions

and procedures o�ers considerable choice. For example, a performer that forgets these

steps yields calculations that do not distinguish between a call and its unfolding.

