
A MOP Based DSL for Testing Java Programs

using OCL

Tony Clark

Thames Valley University, St Mary's Road, Ealing, UK, tony.clark@tvu.ac.uk

Abstract. OCL is used to specify systems by de�ning pre and post-
conditions for class operations. Typically, the conditions refer to proper-
ties and operations that are de�ned in a model. When the model is imple-
mented, various implementation decisions are made regarding properties
and operations that cause the OCL conditions to be inconsistent with the
implementation. This paper shows how OCL conditions can be performed
against a Java implementation of a model and how a meta-object pro-
tocol can be used to control the relationship between the original model
and the implementation thereby retaining OCL consistency.

1 Introduction

The Object-Constraint Language (OCL) is used to specify the behaviour of
system operations in terms of pre and post-conditions that are de�ned for a UML
class model. Once speci�ed, the system is implemented. The implementation
involves making many technology decisions relating to partitioning, structure,
messaging mechanisms, object instantiation, distribution, persistence etc.

The system tests are derived from the original model. Ideally it should be
possible to run the original OCL pre and post-conditions against the implemen-
tation. However, OCL does not provide a de�nition of how to connect to a system
implementation. Furthermore, the OCL constraints are de�ned against the orig-
inal model which is di�erent, due to technology decisions, to the implemented
system.

In order to make use of the a model involving OCL pre and post-conditions
in system testing two key issues must be addressed: there must be a mechanism
for linking the model with an implementation; and, there must be a mechanism
for bridging the di�erence between the original model and the implementation.

Our hypothesis is that the language used to express tests in terms of OCL pre
and post-conditions will depend on the approach taken to testing, therefore it is
appropriate to embed OCL within a domain speci�c language for testing whose
semantics provides the required test executions and reporting. Furthermore, it is
proposed that a meta-object protocol used as the basis for OCL within the DSL
is a suitable mechanism for bridging the di�erence between the original model
and the implementation.

The contribution of this paper is to show how OCL can be embedded within
a DSL for testing. The XMF platform is used to de�ne the DSL since it is based

on OCL and provides technology for DSL de�nition; however the approach could
be used within any suitable technology. A further contribution is to de�ne the
XMF MOP that controls how OCL can be linked to Java, thereby bridging the
implementation issue.

This paper is structured as follows: section 2 describes a simple model that
will be used as a case study; section 3 describes the key features of the XMF
platform that are used to implement the DSL and the MOP; section 4 de�nes a
testing DSL and gives examples in terms of the case study; section 5 describes
how the DSL is implemented; section 6 describes how the MOP can be used
to bridge the implementation gap; �nally section 7 analyses the approach and
describes related systems.

2 A Model and its Java Application

Fig. 1. A Sales System

Fugure 1 shows a model of a sales system (taken from [7]) that consists of
components for recording contacts, registering customers, placing orders and de-
livering orders. The idea is that sales representatives make contact with prospec-

tive customers who subsequently register with the system. Once registered a
customer can place orders for items and the orders are subsequently shipped.

context SalesSystem::contact(name:String)
pre: not contactsDatabase.contacts->exists(p | p.cid = name)
post: contactsDatabase.contacts->exists(p | p.cid = name)

context SalesSystem::register(name:String)
pre: contactsDatabase.contacts->exists(p | p.cid = name) and

not accountsSystem.accounts->exists(a | a.cid = name)
post: accountsSystem.accounts->exists(a | a.cid = name)

context SalesSystem::placeOrder(name:String,amount:int)
pre: accountsSystem.accounts->exists(a | a.cid = name)
post: accountsSystem.getAccount(name).items->exists(item |

item.amount = amount) and
accountsSystem.getAccount(name).items->size =
self@pre.accountsSystem.getAccount(name).items->size + 1

Fig. 2. Sales System Operation Speci�cations

Consider the operations contact, register and placeOrder de�ned on the
class SalesSystem. Each operation can be speci�ed using OCL pre and post-
conditions as shown in �gure 2: a contact should not be made twice and causes
a change in the contacts database; a contact must be made before a customer
can register; an order extends a customer's account with a new item.

The operation speci�cations given in �gure 2 are correct with respect to the
model in �gure 1. The speci�cations do not constitute a test script since there
is no way to link them to an implementation. Furthermore, there are a large
number of possible implementation choices. For example, in Java, associations
with multiplicities greater than 1 may be implemented as vectors or arrays or
some associations may be viewed as derived.

3 XMF Features

This paper proposes that OCL should be embedded into a DSL testing language
on an application speci�c basis and that a MOP should be used to map from
a model to the system implementation in order that the OCL pre and post-
conditions can be run against the implementation. This paper shows how this
can be achieved using the XMF platform. This section reviews the key features
of XMF that will be used.

XMF is an engine that provides a collection of features that support language
design. XMF provides an object-oriented language based on an imperative ver-
sion of OCL. For example, the following is a pair of class de�nitions for a library
containing a collection of books:

context Root
@Class Book
@Attribute name : String end

end
context Root
@Class Library
@Attribute books : Seq(Book) end

end

Top-level named elements are added to a name-space using the context keyword.
In the example above, both Book and Library are added to the global name-
space Root. Language features in XMF are preceded by @ followed by the name
of a syntax class that de�nes the concrete and abstract syntax representations
for the feature. XMF provides many built-in language features, such as Class
and Attribute above, and allows users to de�ne their own. In this paper we will
de�ne two new language features that support testing Java methods.

Nested named elements can be de�ned inside the containing name-space or
can be added using context. An operation is a named element that can be added
to a class (which is a name-space):

context Library
@Operation addBook(b:Book):Library
self.books := books->including(b)

end

The addBook operation uses the OCL including operation to add the supplied
book to the value of the attribute books.

Everything in XMF has a type that describes the structure and behaviour of
its instances. Classes have types which are meta-classes. For example, suppose
that the class Book is rede�ned to keep track of all its instances:

context Root
@Class InstanceManager extends Class
@Attribute allInstances : Set(Element) end
@Operation new()
let object = super()
in self.allInstances := allInstances->including(object);

object
end

end
end

context Root
@Class Book
@Attribute name : String end

end

A syntax class introduces a new language feature by de�ning a grammar that
processes concrete syntax. Once de�ned, the new language feature F can occur
in any XMF program using the reference @F The syntax class is responsible
for synthesizing abstract syntax that uses existing language features and OCL.
For example, it would be convenient to construct a library by just listing the
names of the books initially on the shelves:

context Library
@Grammar

Library ::= names = Name* 'end' {
names->iterate(n exp = [| Library() |] |
[| <exp>.addBook(Book(<n.lift()>)) |])

}.
end

A grammar consists of a collection of named rules, one of which must have the
name of the syntax class: this is the starting non-terminal. A library consists of
a sequence of names, bound to the rule variable names followed by the terminal
'end'. The synthesizing action within { and } creates an abstract syntax tree
that constructs a library and populates it with books. The names of the books
are supplied in the language feature; an iterate expression is used to process
the names and transform them into calls of addBook. XMF provides quasi-quotes
([| and |]) and drop-quotes (< and >) for syntax templates where quasi-quotes
construct abstract syntax trees using concrete syntax and drop-quotes provide
template holes. The operation lift is de�ned for any XMF value and returns an
expression that, when executed at run-time, reconstructs the value. Therefore
the following library:

@Library book1 book2 end

is transformed to:

Library().addBook(Book("book1")).addBook(Book("book2"))

XMF provides code walkers that can be used to translate source code. A walker
is a class that is supplied with an instance of a given class and then traverses
the structure calling operations on the sub-components. A code walker de�nes
operations for all the OCL language features. For example, suppose that large
libraries are to be de�ned and that it is much more e�cient to set the books

attribute of a library rather than make many calls to addBook. A walker might
be de�ned:

context Root
@Class ReplaceAddBook extends OCLWalker
@Operation walkSend(target,name,args)
if isNestedAddBook(target,name,args)
then [| <target>.books := <getBookExps(args)> |]
else super(target,name,args)
end

end
end

where isNestedAddBook returns true when the supplied arguments are a chained
call of addBook, and where getBookExps transforms a collection of nested addBook
calls to a sequence expression containing the book expressions. Using the code
walker, the library feature is translated to:

Library().books := Seq{Book("book1"),Book("book2")}

Finally, XMF provides an interface to Java where compiled Java classes can be
manipulated as ordinary XMF classes. For example, suppose that the Book class
was implemented in Java in a package called library then the Java class can
be loaded:

Book ::= xmf.javaClass("library.Book")

after which, subject to a suitable Java constructor, the Java class can be instan-
tiated and used just like a normal XMF class. When XMF performs an operation
(object creation, slot access, slot update and method invocation) on an instance
of such a class then the XMF VM makes use of a user de�ned meta-object proto-

col (MOP) written in Java that de�nes how to handle the operation. A default
MOP that performs the obvious operation is supplied and used by default.

It is useful to be able to extend the Java classes that are loaded into XMF.
The meta-class JavaClass is provided that allows an XMF class to wrap a Java
class and add new attributes and operations to it. Consider a situation where
the classes Library and Book are both implemented in Java, then:

context Root
@Class Library metaclass JavaClass
JavaDescriptor("library.Library")
@Operation hasBook(name:String):Boolean
books->exists(b | b.name = name)

end
end

Instantiating the class de�ned above creates an instance of the Java class named
in the JavaDescriptor. Methods and �elds de�ned by the Java class are avail-
able within XMF. The operation hasBook shows how an existing Java class in
this case library.Library) is extended with de�nitions involving OCL (in this
case exists).

4 A Testing Language

Given a sales system de�ned in Java, our aim is to specify methods in terms
of pre and post-conditions and to de�ne test scenarios as sequences of method
calls. These can be attached to the appropriate Java classes by de�ning a new
language feature. Each of the Java classes are de�ned in XMF using the meta-
class JavaClass. The language feature for method speci�cation is:

@MSpec <name> [<method-name>] (<args>)
pre <pre-condition>
do <body>
post <post-condition>

end

where name is the name of the speci�cation (a given Java method may have
more than one speci�cation), method-name is the name of the speci�ed Java
method, args are the names of arguments to the Java method, pre-condition
and post-condition are OCL expressions, body is an XMF command. The
semantics of a method speci�cation is that if the pre-condition is true then the
body is performed and the post-condition is expected to be true. The body may
reference the special variable run which causes the Java method to be called
with the supplied arguments. The post-condition may reference preSelf which
is the state of the receiver of the Java message before the body is performed. The
OCL constraints de�ned in section 2 are shown in �gure 3. A scenario language
feature just lists the steps in the scenario:

context SalesSystem
@MSpec successfulContact[contact](name)

pre not contactsDatabase.contacts->exists(p | p.cid = name)
do run
post contactsDatabase.contacts->exists(p | p.cid = name)

end
context SalesSystem
@MSpec successfulRegister[register](name)

pre contactsDatabase.contacts->exists(p | p.cid = name) and
not accountsSystem.accounts->exists(a | a.cid = name)

do run
post accountsSystem.accounts->exists(a | a.cid = name)

end
context SalesSystem
@MSpec successfulPlaceOrder[placeOrder](name,amount)

pre accountsSystem.accounts->exists(a | a.cid = name)
do run
post accountsSystem.getAccount(name).items->exists(item |

item.amount = amount) and
accountsSystem.getAccount(name).items->size =
preSelf.accountsSystem.getAccount(name).items->size + 1

end

Fig. 3. Sales System Speci�cations

context SalesSystem
@Test test1
successfulContact("fred")
successfulRegister("fred")
successfulPlaceOrder("fred",100)

end

5 Language Implementation

The testing language features described in section 4 are de�ned as syntax classes
in XMF. The method speci�cation feature is de�ned in section 5.1 and the testing
scenario feature is de�ned in section 5.2.

5.1 Method Speci�cations

A method speci�cation is added as a new operation to an instance of JavaClass.
The pre and post-conditions are expressed in OCL and are checked respectively
before and after the body of performed. The result of calling a method speci�-
cation depends on whether the pre and post-conditions are satis�ed. Firstly, the
pre-condition is checked, if that fails then the speci�cation returns. Otherwise,
the body of performed and the post-condition is checked. The rest of this section
describes the implementation of the language feature in detail.

The structure of the MSpec class is de�ned as follows:

context Root
@Class MSpec extends XOCL::Sugar

@Attribute name : String end
@Attribute opName : String end
@Attribute args : Seq(String) end
@Attribute pre : OCL end
@Attribute body : Performable end
@Attribute post : OCL end
@Constructor(name,opName,args,pre,body,post) ! end
@Operation body()
Subst([| self.send(<opName.lift()>,args) |]).walk(body)

end
end

Note that the pre and post attributes are of type OCL while the body is any
Performable action. MSpec extends the class XOCL::Sugar which means that
the class must provide an operation desugar that is used by the XMF parser
to synthesize abstract syntax. Therefore, instead of returning abstraction syntax
from the grammar rules, the actions simply create an instance of MSPec and
leave the synthesize work to desugar.

The operation body is de�ned to replace all occurrences of the variable run

with a call to the Java method. The code walker Subst is initialized with an
expression and then walks the body of the method speci�cation. Its de�nition is
as follows:

context Root
@Class Subst extends Walkers::Code::OCLWalker
@Attribute new : OCL end
@Constructor(new) end
@Operation walkVar(line,name,arg)
if name = "run"
then new
else super(line,name,arg)
end

end
end

The grammar for the MSPec language feature is de�ned below:

context MSpec
@Grammar extends OCL::OCL.grammar
MSpec ::= n = Name '[' o = Name ']' as = MArgs

p = Pre d = Do q = Post 'end'
{ MSpec(n,o,as,p,d,q) }.

MArgs ::= '(' as = CNames ')' {as}.
CNames ::= n = Name ns = (',' Name)* { Seq{n|ns} } | { Seq{} }.
Pre ::= 'pre' Exp.
Do ::= 'do' Command.
Post ::= 'post' Exp.

end

Notice that the MSpec grammar extends the XMF-supplied grammar for OCL.
XMF allows grammars to be extended and therefore all the rules from the parent
are included in the child. The OCL grammar provides the rule named Exp that
parses and synthesizes OCL expressions.

The desugar operation is responsible for returning abstract syntax that im-
plements a method speci�cation. The implementation is just an operation with
the method speci�cation name. Notice that desugar is an operation that returns

an operation de�nition expression. The arguments of the operation expression
.args is equivalent to the Java args... varargs feature:

context MSpec
@Operation desugar()
[| @Operation <name> (.args)

<0.to(args->size-1)->iterate(i x = self.desugarBody() |
[| let <args->at(i)> = args->at(<i.lift()>)

in <x>
end |])>

end |]
end

The body of the operation is code that binds the names of the arguments to
the appropriate element of the args run-time argument. The names are indexed
using at at compile-time and the values are indexed at run-time.

The body of the speci�cation operation is produced by desugarBody:

context MSpec
@Operation desugarBody()
[| let preSelf = self.deepCopy()

in if <pre>
then
let result = <self.body()>
in if <post>

then CallSucceeds(result,<opName.lift()>,args)
else PostFails(<opName.lift()>,args)
end

end
else PreFails(<opName.lift()>,args)
end

end
|]

end

The body binds a run-time variable preSelf to a deep copy of the receiver. This
can be referenced anywhere, but is appropriate in the post-condition where the
values of the �elds in the current state of the receiver can be compared to those
before the body was performed. There can be three outcomes each of which is
an instance of a di�erent class: PreFails described the situation where the pre-
condition fails; PostFails describes the situation where the post-condition fails;
and, in CallSucceeds both conditions are satis�ed and the result is returned.

5.2 Test Scripts

Test scripts are sequences of calls. A call is just a name and argumemts:

context Root
@Class Call
@Attribute name : String end
@Attribute args : Seq(Performable) end
@Constructor(name,args) ! end
@Operation desugar()
[| self.send(<name.lift()>,<args->iterate(arg x = [| Seq{} |] |

[| <x> + Seq{<arg>} |])>)|]
end

end

When a call is translated to abstract syntax using desugar, the resulting expres-
sion sends a message to self containing a sequence of arguments. The argument
sequence is constructed using iterate which chains together singleton sequences
for each argument (expression).

The Test language feature is de�ned below:

context Root
@Class Test extends XOCL::Sugar
@Attribute name : String end
@Attribute calls : Seq(Call) end
@Constructor(name,calls) ! end
@Grammar extends OCL::OCL.grammar
Test ::= n = Name cs = Call* 'end' { Test(n,cs) }.
Call ::= n = Name '(' as = TestArgs ')' { Call(n,as) }.
TestArgs ::= e = Exp es = (',' Exp)* { Seq{e | es} }.

end
@Operation desugar()
[| @Operation <name> ()

<calls->reverse->iterate(call x = [| Seq{} |] |
[| @Case <call.desugar()> of

CallSucceeds(result,name,args) do
Seq{CallSucceeds(result,name,args) | <x>}

end
PreFails(name,args) do
Seq{PreFails(name,args)}

end
PostFails(name,args) do
Seq{PostFails(name,args)}

end
end |])>

end |]
end

end

The de�nition of desugar above uses a Case expression to dispatch on the result
of calling each method speci�cation. It builds a sequence expression that will
terminate if any of the pre or post-conditions fail to be satis�ed. The result of
a test scenario is a sequence of method speci�cation outcomes which are either
all instances of CallSucceeds or terminate with a PostFails or PreFails.

6 A Meta-Object Protocol

We have shown that a Java implementation of the sales system can be tested
using OCL pre and post-conditions by implementing a testing DSL in XMF
using an interface that allows Java classes to be manipulated from XMF. The
interface supports the creation of new instances, �eld access and update, and
method invocation. The example has assumed that �eld references and method
invocation in OCL maps directly onto the equivalent in Java. However, this
is not always practical, since implementation choices translate properties and
associations in a model and implement them in a variety of ways. For example
an EMF implementation of a model uses factories to create instances of objects
and references �elds using accessor and updater methods.

A meta-object protocol (MOP) can be used to make key execution features
extensible. The key features for an object-oriented system are: object creation;

�eld access; �eld update; method invocation. The MOP is implemented using a
meta-class and a Java class. The defaults are JavaClass and ForeignObjectMOP.
This section describes the key features of the standard MOP and shows how it
can be extended.

6.1 A Standard MOP

A class is instantiated by applying it to initialization arguments. The behaviour
for applying a class is de�ned by the meta-class:

context Java
@Class JavaClass extends Class
@Attribute descriptor : JavaDescriptor (?,!) end

end

The meta-class JavaClass de�ned above extends the basic XMF Class with
a descriptor that names a Java class in the �le system. When a descriptor is
supplied in the de�nition of a class with meta-class JavaClass the operation
addDescriptor is used to process the descriptor:

context JavaClass
@Operation addDescriptor(d:JavaDescriptor)
xmf.foreignTypeMapping().put(d.type(),self);
xmf.foreignMOPMapping().put(d.type(),d.mopName());
self.setDescriptor(d)

end

The operation addDescriptor uses the operations foreignTypeMapping and
foreignMOPMapping in the system object xmf to inform the XMF virtual ma-
chine that instances of the XMF class are to be associated with instances of the
Java class referenced in the descriptor, and to inform the machine of the MOP
for the class.

When a class is applied to arguments in XMF it is instantiated. All meta-
classes must implement an operation invoke that describes how to instantiate
the receiver:

context JavaClass
@Operation invoke(target,args)
let class = xmf.javaClass(descriptor.type())
in if class = null

then self.error("Cannot find Java class " + descriptor.type())
else class.invoke(target,args)
end

end
end

When a JavaClass is invoked it uses the javaClass operator to load the Java
class named in the descriptor and then sends it an invoke message. The VM
knows that invoking a Java class causes it to be instantiated via a suitable
constructor. The foreignMOPMapping operation associates a Java class with a
MOP. The MOP is an instance of the XMF supplied class ForeignObjectMOP
(the default) or one of its sub-classes. The basic features of the default MOP are
shown in �gure 4: the method dot implements �eld reference; send implements

public class ForeignObjectMOP {
public void dot(Machine machine, int object, int name) {

ForeignObject f = machine.getForeignObject(object);
String string = machine.valueToString(machine.symbolName(name));
int value = XJ.getSlot(machine, f.getObject(), string);
if (value == -1)
machine.sendSlotMissing(object, name);

else machine.pushStack(value);
}
public void send(Machine machine, int target, int message, int args) {

if (!handleByXOCL(machine, target, message, args))
if (!handleByJava(machine, target, message, args))
noOperationFound(machine, target, message, args);

}
public boolean hasSlot(Machine machine, int foreignObj, int name) {

ForeignObject f = machine.getForeignObject(foreignObj);
String string = machine.valueToString(machine.symbolName(name));
return XJ.hasSlot(f.getObject(), string);

}
public void set(Machine machine, int obj, int name, int value) {

ForeignObject f = machine.getForeignObject(obj);
String string = machine.valueToString(machine.symbolName(name));
if(XJ.setSlot(machine, f.getObject(), string, value) == -1)
machine.sendSlotMissing(obj, name,value);

else machine.pushStack(obj);
}

}

Fig. 4. A Basic Java MOP

message passing; hasSlot tests whether an object has a slot; and, set sets the
value. When the VM attempts to perform one of the standard operations on a
foreign object it looks up the MOP for the object and invokes the appropriate
method.

The XMF VM is a value of type Machine and represents Java objects as
values of type ForeignObject. The XMF library XJ uses java.lang.reflect
to implement type conversion back and forth between XMF values and Java
values and also implements basic access to Java values. Notice in the de�nition
of send we have omitted the de�nition of handleByXOCL and handleByJava

which use basic machine and XJ de�ned primitives to perform message passing
(returning true and pushing the return value if successful).

6.2 ECore MOP

The MOP de�ned in the previous section could be used to support the testing
DSL providing that the implementation of the sales system is in one-to-one cor-
respondence with the model shown in �gure 1. Consider an EMF implementation
of the model. In that case instantiation is performed with respect to a factory
and �eld access must use feature descriptors. This section shows how the basic
MOP is extended to support Ecore.

context Java
@Class EMFClass extends JavaClass

@Operation invoke(target,args)
let factory = self.getFactory() then

package = self.getPackage() then
class = package.send("get" + name,Seq{}) then
object = factory.create(class);
constructor =
@Find(c,self.allConstructors())
when c.names->size = args->size
else null

end
in if constructor <> null

then
@For name,value in constructor.names,args do
object.set(name,value)

end
end;
object

end
end

end

Fig. 5. The EMFClass meta-class

Figure 5 shows how JavaClass is extended to support Ecore instantiation.
The invoke operation is modi�ed to use a specialization of JavaDescriptor
that references the appropriate factory and containing package. The package is
interrogated for the class to be instantiated and the factory is supplied with the
class to produce a new object. Since Ecore factories do not support constructors
(but XMF classes do), the �elds are set based on the names de�ned in the
appropriate constructor.

Figure 6 shows the specialization of ForeignObjectMOP to support Ecore
�eld access. There is no di�erence between EObjectMOP message passing and
ForeignObjectMOP message passing. In all cases, �eld access and update is
performed with respect to feature descriptors.

7 Analysis and Review

A number of OCL interpreters exist, for example [8] and the Dresden toolkit
(http://dresden-ocl.sourceforge.net/index.php), however most of these
run OCL expressions against object models and �lmstrips and do not address
the issues that arise when a model is implemented. Several tools and approaches
exist for model based testing including AGEDIS [9], [1] and [15] however, none
address the issue of associating OCL with an implementation. OCL is also used
to validate models [2] and to describe the behaviour of platform independent
models [12] where the implementation issue does not arise.

OCL is used as the source of tests and queries in a number of systems. For
example [16] and[10] generate code from conditions expressed as OCL. In many

public class EObjectMOP extends ForeignObjectMOP {
public void dot(Machine machine, int object, int name) {

ForeignObject f = machine.getForeignObject(object);
EObject eobject = (EObject)f.getObject();
EClass eclass = eobject.eClass();
String string = machine.valueToString(machine.symbolName(name));
EStructuralFeature feature = eclass.getEStructuralFeature(string);
if (feature == null)
machine.sendSlotMissing(object, name);

else
machine.pushStack(XJ.mapJavaValue(machine, eobject.eGet(feature)));

}
public boolean hasSlot(Machine machine, int foreignObj, int name) {

ForeignObject f = machine.getForeignObject(foreignObj);
EObject eobject = (EObject)f.getObject();
EClass eclass = eobject.eClass();
String string = machine.valueToString(machine.symbolName(name));
EStructuralFeature feature = eclass.getEStructuralFeature(string);
return feature != null;

}
public void set(Machine machine, int obj, int name, int value) {

ForeignObject f = machine.getForeignObject(obj);
EObject eobject = (EObject)f.getObject();
EClass eclass = eobject.eClass();
String string = machine.valueToString(machine.symbolName(name));
EStructuralFeature feature = eclass.getEStructuralFeature(string);
if (feature == null)
machine.sendSlotMissing(obj, name,value);

else {
Class type = feature.getEType().getInstanceClass();
Object newValue = XJ.mapXMFValue(machine, type, value);
eobject.eSet(feature, newValue);
machine.pushStack(obj);

}
}

}

Fig. 6. ECore MOP

cases model transformations are used to produce code; the approach described
here allows the user to interact with the SUT via the XMF interpreter without
a separate compilation step.

Whether code is generated or the OCL is interpreted directly, the prob-
lem of taking implementation issues into account that di�er from the model
remains; the novel approach described here involves the use of a MOP to drive
an interpretation engine for OCL, the same approach could be used to drive a
transformation engine.

An earlier version of this work was presented as an invited talk at an AS-
TRANet workshop [3], as a tutorial [4] and in [5], where OCL expressions are
expressed using both textual and graphical formats. This paper extends that
work by addressing the issue of the implementation mapping.

MOPs were used in the de�nition of Smalltalk and the original description
of how to implement a MOP is given in [13]. Code generation techniques using

a MOP are described in [11] where the OpenC++ compiler is extended to allow
tests to be inserted into code.

XMF is a language platform that has been used as the basis for a number of
commercial applications, it is open source and available from

http://itcentre.tvu.ac.uk/ clark/xmf.html. The XMF approach of us-
ing syntax classes to de�ne DSLs is de�ned in [6]. The integration of OCL with
model-based (i.e. MOF de�ned) DSLs is discussed in [14].

References

1. D. Arnold, J.-P. Corriveau, and V. Radonjic. Open framework for conformance
testing via scenarios. In OOPSLA '07: Companion to the 22nd ACM SIGPLAN

conference on Object oriented programming systems and applications companion,
pages 775�776, New York, NY, USA, 2007. ACM.

2. E. G. Aydal, R. Paige, and J. Woodcock. Observations for assertion-based scenarios
in the context of model validation and extension to test case generation. Software
Testing Veri�cation and Validation Workshop, IEEE International Conference on,
0:11�20, 2008.

3. T. Clark. Iswim for testing - a model driven approach. Invited Talk, Feb 2007.
Presentation available at http://itcentre.tvu.ac.uk/ clark/Presentations/ISWIM

4. T. Clark. A domain speci�c language for testing. Tutorial, Feb 2008. Tutorial
available at http://itcentre.tvu.ac.uk/ clark/XMF/.

5. T. Clark. Model based functional testing using pattern directed �lmstrips. In
Proceedings of the 4th International Workshop on the Automation of Software Test.
IEEE Computer Society, 2009.

6. T. Clark, P. Sammut, and J. S. Willans. Beyond annotations: A proposal for
extensible java (xj). In SCAM, pages 229�238, 2008.

7. D. F. D'Souza and A. C. Wills. Objects, components, and frameworks with UML:

the catalysis approach. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

8. M. Gogolla, F. Büttner, and M. Richters. Use: A uml-based speci�cation environ-
ment for validating uml and ocl. Sci. Comput. Program., 69(1-3):27�34, 2007.

9. A. Hartman and K. Nagin. The agedis tools for model based testing. SIGSOFT

Softw. Eng. Notes, 29(4):129�132, 2004.
10. F. Heidenreich, C. Wende, and B. Demuth. A framework for generating query

language code from ocl invariants. ECEASST, 9, 2008.
11. C. Hobatr and B. A. Malloy. Using ocl-queries for debugging c++. In ICSE '01:

Proceedings of the 23rd International Conference on Software Engineering, pages
839�840, Washington, DC, USA, 2001. IEEE Computer Society.

12. P. Kelsen, E. Pulvermueller, and C. Glodt. A declarative executable language
based on ocl for specifying the behavior of platform-independent models, 2007.

13. G. Kiczales. The Art of the Metaobject Protocol. The MIT Press, July 1991.
14. D. S. Kolovos, R. F. Paige, and F. Polack. Aligning ocl with domain-speci�c

languages to support instance-level model queries. ECEASST, 5, 2006.
15. A. Pretschner and J. Philipps. Methodological issues in model-based testing. In

Model-Based Testing of Reactive Systems, pages 281�291, 2004.
16. �ar	unas Packevi£ius, A. U²aniov, and E. Barei²a. Software testing using imprecise

ocl constraints as oracles. In CompSysTech '07: Proceedings of the 2007 interna-

tional conference on Computer systems and technologies, pages 1�6, New York,
NY, USA, 2007. ACM.

