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Preface

This submission is aresponse to the Object Management Group’ s Request For Propos-
alsad/00-09-01 (UML 2.0 Infrastructure) and ad/00-09-03 (UML 2.0 OCL). An
updated version of this document will be submitted for the superstructure RHP. This
Preface summarizes the relationship of this submission to the RFPs. The main body of
the document describes the technical submission itself.

0.1. Submission Summary

Submission contact point
Stephen J. Méllor: steve@projtech.com
Desmond D'Souza: desmond.dsouza@kinetium.com

pUML.:
Tony Clark: anclark@dcs.kcl.ac.uk
Andy Evans. andye@cs.york.ac.uk
Stuart Kent: sj.h.kent@ukc.ac.uk

Guide to material in the submission
See Chapter 1: Introduction.

Overall design rationale

See Chapter 1: Introduction, Chapter 2: Context, and the Resolution of RFP Issues in
this Preface.

Satement of proof of concept

The approach outlined in this submission has been implemented in a prototype tool
(MMT) that creates instances of objectsin a semantics domain and verifies that the cor-
rect instances of metamodel concepts then exist. Many of the models defined in this
submission have been automatically checked usng MMT and are known to be well
defined and consistent.

0.2. Resolution of Infrastructure RFP Requirements
The infrastructure RFP requirements are addressed in detail below.

0.2.1 General Requirements

8§ Proposals shall enforce a clear separation of concerns between the specifica-
tion of the metamodel semanticsand notation, including precise bi-directional map-
pings between them.



Resolution of Infrastructure RFP Requirements

Theinitia submission clearly separates metamodel semantics and notation. The map-
ping between them is bidirectional and expressed using precisely formulated associa-
tionsin the metamodel.

8§ Proposals shall minimize the impact on users of the current UML 1.x, XMI 1.x
and MOF 1.x specifications, and will provide a precise mapping between the current
UML 1.x and the UML 2.0 metamodels. Proposals shall ensure that there isa well-
defined upgrade path fromthe XMI DTD for UML 1.x to the XMI DTD for UML 2.0.
Wherever changes have adversely impacted backward compatibility with previous
specifications, submissions shall providerationales and change summaries along with
their precise mappings.

The initial submission minimizes the impact of the current UML 1.x, XMI 1.x and
MOF 1.x specifications.

The final submission will provide a precise mapping between the current UML 1.x and
the UML 2.0 metamodels. As a consequence of the precise mapping between UML
1.x and UML 2.0, the final submission will ensure that there is awell-defined upgrade
path from the XMI DTD for UML 1.x to the XMI DTD for UML 2.0.

The final submission will list changes that have adversely impacted backward compati-
bility with previous specifications and rationales and change summaries for these
changes along with the precise mappings.

Proposals shall identify language €l ements to beretired from the language for
reasons such as being vague, gratuitous, too specific, or not used.

The final submission will identify language elements to be retired from the language
for reasons such as being vague, gratuitous, too specific, or not used.

Proposals shall specify an XMI DTD for the UML metamodel.

The final submission will specify an XMI DTD for the UML metamodel. The initial
submission relies on the fact that an XMI DTD can be generated from the UML 2.0
metamodel provided by the submission.

0.2.2 Architectural alignment and restructuring

8§ Proposals shall specify the UML metamodel in a manner that is strictly aligned
with the MOF meta-metamodel by conformance to a 4-layer metamodel architectural
pattern. Sated otherwise, every UML metamodel element must be an instance of
exactly one MOF meta-metamodel element. If thisarchitectural alignment requiresthat
the MOF meta-metamodel also needs to be changed, then those changes (including
changesto XML and IDL mappings) should be fully documented in the proposal.

The submission takes an innovative approach to addressing thisissue once and for all.

The submission provides the tools to generate both UML 2.0 and MOF from the same
source. As a consequence, UML X .x and MOF will forever be mutually compatible.
The approach is to define the meta-model for UML 1.x. and MOF 1.x., and then meta-
model a 2-way translation mapping between these and UML 2.0. This mapping defines
precisely how to move from one meta-model to another. XMI can be viewed as an
XML concrete syntax for the abstract syntax of UML/MOF. Both concrete syntax and
abstract syntax, and the mappings between them can be defined using a meta-model.
Thus we can aso define mappings from XMI into UML 1.x., MOF 1.x. and UML 2.

UML2 infrastructure initial submission 12



Resol ution of Infrastructure RFP Reguirements

These mappings, combined with the mappings between UML/MOF 1.x. and UML 2
(abstract syntax) meta-models, deals with backwards compatibility of XMI. These
mappings would also make clear the differences between the old and new meta-mod-
els.

Note that the above mappings would be defined as part of the final submission.

Because this submission focuses first on providing the tools to generate a UML 2.0,
there is a marked dearth of abstract metaclasses defining the conceptual entities actu-
aly inUML 2.0.

The issue of whether to generate MOF-compliant models first, then abstract meta-
classesfor UML 2.0 or viceversaisleft open in theinitial submission.

The final submission will benefit from the combined wisdom of the ADTF and com-
peting proposals.

8§ Proposals shall strive to share the same metamodel el ements between the UML
kernel and the MOF kernel, so that there is an isomor phic mapping between MOF
meta-metamodel kernel elements and UML metamodel kernel elements.

See above.

8§ Proposals shall restructure the UML metamodel to separate kernel language
constructs from the standard elements that depend on them. The standard elements
shall be restructured consistent with the requirementsin 6.5.3.

The submission separates the kernel language constructs from the standard elements
that depend on them, as described in Chapter 6.

8§ Proposals shall decompose the metamodel into a package structure that sup-
ports compliance points and efficient implementation.

See above.
8§ Proposals shall identify all semantic variation pointsin the metamodel.

None.

0.2.3 Extensibility
8§ Proposals shall specify how profiles are defined.

Profileswill be defined using two methods:

(1) Model extension. This involves using first class extension mechanisms to extend
both syntax and semantics. This is required if the base language is not expressive
enough to start out with (e.g. adding filmstrips or time to a semantics that does not sup-
port them). There are many examples of this approach in the submission. For example,
extending classes with constraints.

(2) Trandational. This involves no extensions. Instead, syntax and semantics are trans-
lated via a mapping from the new language to the old. It is useful since no new con-
cepts are involved - everything is viewed as sugar. However, it requires the base
language to be sufficiently expressive, which may not be the case.

UML 2 infragtructure initial submission 13
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Stereotypes will be viewed as syntactic sugar for both mechanisms Tools may or may
not implement this interpretation of stereotypes, however, if they do, they will gain the
ability to check that extensions are both well-defined and consistant.

8§ Proposals shall specify afirst-classextension mechanismthat will allow model-
ersto add their own metaclasses, which will be instances of MOF meta-metacl asses.
This mechanism must be compatible with profiles and consistent with the 4-layer meta-
model architecture described in 6.5.2.

A firgt class extension mechanism based on the use of packages and package generali-
sation has been precisely defined in Chapter 5.

8§ Proposals shall identify model elements whose detailed semantics preclude spe-
cialization in a profile. If proposals need to generalize these model elements, they
should propose refactoring consistent with the architecture and restructuring require-
ments described in 6.5.2.

Not applicable.

0.2.4 Architectural alignment and restructuring

8§ Proposals may refactor the UML metamodel to improve its structure if they can
demonstrate that the refactoring will make it easier to implement, maintain or extend.

The submission refactors the UML metamodel somewhat. The refactoring is a direct
consequence of defining the semanticsin terms of primitives on which the remainder of
UML 2.0 isbuilt. Thislayered approach is easier to implement, maintain and modify.

8§ Proposals may consider architectural alignment with other specification lan-
guage standards.

Not applicable.

0.2.5 Extensbility
8§ Proposals may support the definition of new kinds of diagrams using profiles.

Not applicable.

0.2.6 Issuesto bediscussed

Proposal s should provide guidelinesto determine what constructs should be
defined in the kernel language and what constructs should be defined in UML profiles
and standard model libraries.

Thisissueisdiscussed at length in Chapter 1: Introduction and Chapter 2: Context.

Proposal s should stipulate the mechanisms by which compliance to the specifi-
cation will be determined, recognizing that determination of conformance is on a sub-
set of the specification and that not all parts of a metamodel package are always
needed. For example, proposals might submit XMI DTDs to test the compliance of a
tool to the specification in a subset of a metamode package.

The separation of concerns in the proposed architecture of the UML infrastructure,
means that a statement of conformance can be factored by elementsin that architecture.
For example, one can claim to support only the static core. Or one can claim only to
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support the graphical syntax, or only to support atextual syntax, etc. The precise nature
of the definition, makes automatic conformance checking feasible.

Proposals should discuss the impact of any changesto the UML metamodel on adopted
profiles. In particular, the impact of any refactoring should be discussed.

The initial submission has no comment.

0.3. Resolution of OCL RFP Requirements

0.3.1 Mandatory requirements

Proposals shall provide a metamodel for OCL that integrates with the UML
metamodel .

A meta-model for the abstract syntax of OCL, as used for writing static, invariant con-
straints, is defined, and this integrates with the proposed meta-model for the static core
of UML. The final submission will extend this with a meta-model for those aspects of
OCL used only to write dynamic constraints (pre/post conditions).

0.3.2 Optional requirements
Proposals may define a formal semantics for OCL.
A semanticsis defined using a metamodel ling approach.

Proposals may define changes or extensionsto OCL that increase itsexpressive
power, for example, that improve its applicability to behavioral specification or to com-
ponent assembly. Such proposals shall preserve the declarative nature and side-effect-
freeness of OCL expressions.

The proposed OCL metamodel is a specialisation of the metamodel that provides the
foundation for the definition of a family of expression languages. This will make it
easy to adapt or extend OCL for other purposes. It will also make clearer the similari-
ties and differences between expression languages used in conjunction with UML.

UML 2 infragtructure initial submission 15



Resolution of OCL RFP Requirements

UML2 infrastructure initial submission 16



Chapter 1

Introduction

Thisintroduction highlights the key contributions of our submis-
sion, and where we think more work would be required to fully
address the RFP requirements. It provides an outline for the rest
of the document.

1.1. Aims and Objectives

The main aim of this submission is to address the problems defined in the UML 2.0
Infrastructure and OCL RFP's by delivering the methods and notations necessary to
fully support the infrastructure of UML 2.0 and a family of OCL like constraint lan-

guages’. The specific objectives are as follows:

1.

To propose a systematic method for the precise and complete definition of UML 2.0
in terms of modular components. A complete definition means that semantics and
notation are defined to the same precision as the abstract syntax.

Using the method defined in (1), to define a kernel of the UML meta-model which
provides a firm foundation for the UML superstructure, including the language
defined in (2).

Using the method defined in (1), to define the meta-model of the meta-modelling
language used in the method.

To address issues concerned with alignment and backwards compatibility with
UML 1.4 and MOF 1.3.

1.2. Key contributions

A meta-modelling approach that is able to deliver modularity and reuse of language
component definitions with precision. Specifically, we extend the meta-modelling
language with a notion of templates and package/template extension and composi-
tion.

Templates allow patterns of language definition to be captured precisely and then
used to stamp out language components. Templates deliver the following benefits to
the meta-modeller:

— They enforce a high degree of architectural integrity over the meta-models they
are used to build — the meta-models must conform to templates! This makes
meta-model s much easier to comprehend. Architectural integrity is virtually
impossible to maintain in a vanilla meta-modelling approach, especialy for lan-
guages on the scale of UML.

1. Assuch, thiswork is afollow onfrom [Clark00], re-architected using templates (c.f. frameworksin

Catalysis) that capture meta-modelling patterns suitable for modelling UML as afamily of languages.



To be completed

— They lead to more complete metamodels. Ensuring that a meta-model is com-
plete and consistent requires considerable skill and hard work. Templates allow
this work to be reused many times over.

— Once aset of templates has been established, constructioin of new (and compre-
hensive) meta-models proceeds very quickly. This allows more ground to be
covered in the time available, aswell asleading to a higher quality and more
comprehensive result.

Package extension and composition constructs allow language components and
templates to be composed, merged and specialised. This isessential to support the
notion of alanguage family and to allow that family to be extended.

» An approach to defining all aspects of alanguage, including notation and semantics,
to the same level of precision. Specifically, we identify a set of templates that allow
us to mimic formal language theory using a meta-modelling approach.

A transformation-based solution to the backwards compatibility/alignment issue,
that does not |leave the meta-modeller shackled to UML 1.4 and MOF 1.3.

1.3. To be completed

As thisis an initial submission, there are some omissions that we would expect to be
included in afinal submission. The key ones are:

» The meta-modelling language itself has not been completely defined in itself. Spe-
cifically, we have not yet provided a meta-model definition for templates. All other
aspects of the language have been defined using the approach. A meta-model for
templates will be provided in the final submission.

» A transformational approach to dealing with alignment/backwards compatibility
issues has been outlined, but not fully implemented. The complete meta-model defi-
nitions of (two way) trandations between UML 1.4/MOF 1.3 and UML 2.0 would
be provided as part of the final submission. These trandlations would also provide a
precise definition of the exact relationship between UML 1.4/MOF 1.3 and UML
2.0. Separate documentation of the changes would not be required, though informal
explanation of the decisions made in defining the transformations would no doubt
be helpful for usersto makethe transition from UML 1.4/MOF 1.3to UML 2.0. The
trandations will also support the continued use of MOF 1.3 to provide repository
servicesfor UML 2.0 models. Of course this would not be necessary, if MOF 1.3
was revised to be an extension of the meta-modelling language used here; this
would require extension with anew capability (templates and composition/merging
mechanisms) and revision of its meta-model definition to confirm with the UML 2.0
architecture.

» Already in this submission, we have deat with some aspects of superstructure as
proof of concept of our approach. The final submission to provide complete meta-
models for superstructure as required by the RFPs.

* Meta-model definitions of concrete notation, and their mapping to abstract syntax,
have not been provided. These will beincluded in the final submission, with parti-
ucular emphasison XML and graphical syntax.
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Outline

1.4. Outline

The objectives outlined in section 1.1, if achieved, deliver more than is required by the
RFP. Chapter 2 describes the background and motivation for the approach used here. It
discusses how the approach can both address the issue of backwards compatibility with
existing meta-models and frontwards compatibility with the chalenges of MDA.
Chapter 3 describes our approach to meta-modelling, in particular describing the meta-
modelling language employed. Chapter 4 describes a set of templates for language
engineering, that are instantiated to deliver language components that can be combined
in the definition of UML 2. Chapter 5 defines a core set of static modelling concepts.
Chapter 6 extends these modelling conceptsto deal with dynamic aspects.

1.5. Acknowledgements

The authors wish to thank Laurence Tratt (Kings College London) and Paul Sammut
(University of York) for their invaluable help in the preparation of this document.
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Chapter 2
Context

This chapter provides an overview of the submission, describing
it's philosophy and overall architecture, and the problems
addressed. It includes an informal explanation of how the
approach relatesto the 4-level architecture adopted by the
OMG., describes the different aspects of alanguage definition
and how these relate. It rehearses the motivation for using a
meta-modelling approach, defineswhat that means, and explains
how such an approach can be used to cleanly specify the differ-
ent language aspects and rel ationships between them. It moti-
vates the use of package composition and templatesto support
the definition of UML asafamily of languages. Ladly, it
explains how backwards compatibility can be ensured by a
transformation-based approach, and discusses options for align-
ment with MOF in its present or future form.

2.1. Introduction

2.1.1 Pattern-based infrastructure

The class/object centric view of the 1990's, based on subclassing, isnot the best way to
structure models. Most interesting properties we wish to model are about the patterns
of static and dynamic relationships between all granularity of objects, both when defin-
ing the UML family of modelling languages as well as when defining end-user models
of some problem domain. Hence our submission focuses strongly on the package as a
unit of extensible models, aswell as a unit of modelling patterns.

The overall submission defines:
1. How packages can be extended and used as patterns.

2. A library of reusable patterns for defining families of related languages.
3. A static core (and examples of adynamic core) built using the above two.

2.1.2 Main Principles

The main principles behind this submission are the following:

1. Extensible core: core language constructs are extended using package generaliza-
tion and package templates. A new modelling construct is defined, optionally with
its own concrete syntax, with clear semanticsincluding atranslation into more
familiar constructs where needed. Thisis a powerful way to leverage patterns of
arbitrary model fragments to define both modelling languages and end-user models.

2. Minimal core and layered definitions. we use as few constructs as possible. Addi-
tional constructs (associations, qualifiers, n-ary associations) are defined consist-
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ently in terms of this core constructs using the extensibility features. Our goa isthat
the UML 2.0 superstructure can use thisto properly unify objects and values,
attributes with associations and qualifiers, states and attributes, templ ate packages
and template classed collaborations, activities and actions and state transitions, etc.

3. No duplication: we aim to define any class, attribute, constraint, or recurrent pattern
across any of these, exactly once. Language definitions should re-use these defini-
tions at whatever granularity is suitable.

4. Effectively factored and easily re-factored: the semantics of both package generali-
zation and package templates make it easy to re-factor parts of a package into other
packages (including template packages) with no impact on clients of that package.
The submission itself has factored the definitions into small, easily understandable
parts, themselves built using alibrary of patterns.

5. Incremental definition and composition: classes, packages, and even patterns can be
incrementally defined. The proposal specifies clearly the meaning of such incre-
mental definition in the semantic domain by defining multiple views of the
“instances’ of aclassor a package. This will form the basisfor the UML 2.0 super-
structure to uniformly support incremental definition and composition of state
charts, sequence and collaboration diagrams, etc.

6. Patternsfor consistent architecture: We use the facilities of package templatesto
define mgjor architectural patterns that structure the entire meta-model for the infra-
structure (and the corresponding superstructure, OCL, profiles, etc.).

2.1.3 The Meta-Model - Semantics and Composition at Core

The Static Core model is described in detail in Chapter 5; the Dynamic Core is intro-
duced in Chapter 6 (and will be expanded in the superstructure submission). However,
the constructs used in these core language definitions themsel ves make use of architec-

tural patternsfor all major language definition tasks: structuring syntax, semantics, lan-
guage structure, naming, etc. Hence, this core is itself built using a library of model
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templates that is part of this submission. These templates are equally applicable to the
definition of any new profiles, and to end-user models.

UML2. Patt er ns |

apply patterns
substituting
dynam c constructs

apply patterns
substituting
static constructs

OHLZ2.2tatlicCora |

Classas | Enprns:ians

UM_2. Dynani cCor e |

1 §

Packagas I DataTypas | Constraints I

I ? ]
hssoclations | Reflaction I Tanplatss guariaes

The definitions are based on a consistent structure of language syntax and semantics,
and an underlying approach of incremental definitions that can be readily composed.
The StaticCore, in essence, describes:

The semantic domain: states described as snapshots of interconnected objects that
we wish to model.

The abstract syntax domain: modelling constructsto define static invariantsthat dis-
tinguish valid snapshots from invalid ones, including a consistent expression-based
language for static constraints.

Notations. concrete syntax that is used to express the abstract syntax.

Multiple views: waysto incrementally define static models syntactically in terms of
other models (e.g. one class extending another, or one package extending another),
with corresponding definitions of how the snapshots in the semantic domain can be
viewed from these different partial and composed syntactic constructs.

The Dynamic Core, briefly introduced in this submission, describes:

The semantic domain: histories of executions representing partial orderings of
action occurrences, each with at least its before and after states.

The abstract syntax domain: modelling constructs to define dynamic invariants that
distinguish valid histories from invalid ones; including an expression-based action
language for dynamic congtraints.

Notations. concrete syntax used to express the abstract syntax.
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» Multiple views: waysto incrementally define dynamic models syntactically interms
of other models (e.g. one state machine specializing another, or two collaboration
models being composed with some objects playing roles in both collaborations),
with definitions of how the corresponding snapshots and histories of executions cor-
respond to these different partial and composed syntactic constructs.

There is clearly a large-grained structural similarity across the static and dynamic
cores. That architectural pattern isitself defined once, as a pattern in a template pack-
age, and used across many parts of the language definition.

In addition, relationships across models can be asimportant as an individual model. We
believe that “Refinement” is an essential construct for describing large-scale models,
and for the separations between platform-independent and platform-dependent models
required by the MDA.. In particular, we are interested in refinement of both objects and
actions, as shown below:

(a) Zooming in/out — objects (b) Zooming infout — interactions

e “Zooming” out of amodel showing acomplex network of objects, and have asim-
plified model with fewer large-grained objects and attributes; and correspondingly
zoom in to see those details.

» “Zooming” out of amodel of adetailed interaction protocol to get asimplified
model with asingle more abstract action with the same overall effect; and corre-
spondingly zoom in to see those detailed interactions.

There will be different kinds of refinement needed, some corresponding to automated
trandations or model/code generation; others having at best some helpful patterns that
are selected manually by a modeller. Refinement should definitely be supported by the
UML superstructure; it is not clear whether MOF or the UML infrastructure will incor-
porate support for refinement. In the final submission, we will include some underlying
patterns needed for refinement in Chapter 4, based on Declarative Generalizable Con-
tainers (Section 4.9).

2.2. Support for a Family of Languages

UML 2.0 and MOF will form the foundation for afamily of different dialects of model-
ling languages. It is essential that these languages share a consistent language architec-
ture, with clear semantics, to enable interoperability. For example:

» The OMG aready has multiple, independent, and overlapping constructsin the area
of defining connection points on components separately from the connections
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between those points. The real-time UML profile defines constructs such as cap-
sules. The EDOC profile defines ports, connectors and protocols. The Corba com-
ponent model uses facets, receptacles.

Even within the UML, there are multiple ways of defining dynamic behaviors, with
poorly defined relation between their semantics. preconditions and postconditions
on operations, state transitions on state charts, activities and object flows in activity
diagrams, and sequence and collaboration diagrams.

Architectural consistency across a large family of complex languages is not easy. Our
submission enables this consistency by starting with precise definition of any language,
and sharing patterns of partial language definitions across languages.

Based on this submission, a “profile”, or language dialect, is simply another package
defined using sharing of the relevant partial language packages and patterns.

2.2.1 Language Definition

A modelling language has a concrete syntax or notation, an abstract syntax with its
well-formedness rules, and semantics that give meaning to the syntax®.

Abstract syntax domain: definesthe structure of the modelling constructs and the
rules for that abstract syntax to be well-formed in agiven model e.g. a class has
attributes and gtatic invariants; static invariants can refer only to attributes of  self.

Semantics domain: defines the el ements that are being described by the abstract
syntax e.g. objects have slots, and at any point in time a snapshot of object defines
the values of those slots as references to other objects.

Semantic mapping: givesthe “meaning” of amodel in the abstract syntax, either by
tranglating it into a more basic abstract syntax that has a well-defined meaning, or
by relating the syntax to constraints on things in the semantic domain e.g. astatic
invariant on a classmust hold true of any snapshot of an instance of that class.

Notation: a concrete (graphical or textual) syntax, with itsrules of well-formedness.
e.g. agtatic invariant iswritten context classinv: boolean_expression

Syntax mappings. rules that map concrete syntax to abstract syntax, and back.

1. These have often been mis-characterized in prior UML and MOF work.
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The submission defines patterns for these aspects of languages definition. An example
is shown below, detailed in Section 4.7.

Semantics (ModalEl ement, InstanceBlemant) |

AbstractSyntax Samanticlomain

cHodal cInstanca
Elamant » Elamantx»

SemanticMapping T

cHodal ! <Instanca
BElaonsnts= . instancEs Blamankt=

2.2.2 Architectural Consistency across L anguage Definitions

In addition to the macro pattern of concrete syntax, abstract syntax, and semantics, lan-
guage dialects have to repeatedly address recurring language definition issues. naming
and namespaces, the tree “container” structure of abstract syntax elements, variables
and constants in expressions, run-time semantics of expressions, etc.

We use package generalization and package templates to define these language ele-
ments in a way which addresses numerous shortcomings of the subclass-based
approach prevalent in UML 1.x and MOF 1.x. Chapter 4 includes several templates,
some of which are listed below:

Basic Templates: templates used as a foundation for most language constructs.

» Container: one element is contained within another.

» NameSpace: a naming context binds names to a set of elements.

» Semantics. separation and mapping between abstract syntax and semantic domain.

Extensions: capture “extension” relationships between modelling elements.
» Generalisable Container: contents of container are derived from its parents.
» Declarative Generalisable Container: container obliged to extend parents' contents.

Semantics: templates that capture meaning rel ationships between modelling elements.
» Container Semantics: how container and contents constrain their semantic domain.
» Generalisable Semantics: how generalization constrains its semantic domain.

Constraints: templates for the definition of constraint languages, such as OCL.
» Expression Semantics. how syntactic expressions constrain semantic calculations.
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» Binding: binding syntactic elements (e.g. variables) to semantic ones (instances).

Mappings: express transformations across modelling elements and across languages.
» Container Mapping: maps one kind of container to another.

Graphs: graphs, trees, etc. which are very useful to define languages.
» Graph: anodes-and-edges description of arelation.

» Tree: agraph with specific constraints on its structure.

Reflection: relate model elements to their reified representation as metaobjects,
addressing the core issues of the OMG's 4-level meta-modelling architecture and
MOF.

* Object Reflection: a container model element has an object + slot representation.

Abstract Class Hierarchy: these patterns painlessly construct an abstract class hierar-
chy similar to that used in UML 1.x.

2.2.3 N-level Meta-modelling

The OMG standards have long described the benefits of “strict” 4-level meta-mode-
ling. However, the UML and MOF have never satisfied the few clear definitions of
what strict N-level meta-modelling means. Moreover, “strict” 4-layer rules make some
simple things difficult, even impossible:

» Modelling conceptsthat cross layers e.g. the class-instance relationship.
» Having one definition of “pattern” used in MOF, UML, Profiles, and user models.
» Specific patterns, such as Namespace, Tree, Graph, DAG, ... used at all levels.

This submission provides a precise and clear basis for representing amodel element in
more than one way e.g. reified as an object in the semantic domain, or as an element in
the abstract syntax domain. These approaches to reflection are represented as patterns.
Using these, we can define the meta-model for UML and MOF, and then model a 2-
way translation mapping between these and UML 2.0. Thanksto our clean handling of
abstract syntax, concrete syntax, and semantics, we can view XMI as a concrete syntax
for the abstract syntax of UML/MOF.

Based on this, we can generate both UML 2.0 and MOF from the same source, so UML
and MOF 2.0 and beyond could forever be mutually compatible. In fact, this submis-
sion enables MOF to be the UML 2.0 core, without need for any trandation or isomor-
phic mapping between them.

2.2.4 Relationshipsand Translations across L anguages
The template facility in this submission can be used to define relations and transforma-

tions across languages, at the level of abstract syntax, concrete syntax, or semantic
domain. We illustrate this with some simple examples.
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» Templates can parameterize any model by designating elements as placeholders.
Thus, <Cont ai ner > and <Cont ai ned> could be placeholdersin atemplate that
described the structure and OCL constraints for containment.

» Templates can parameterize identifiers (names) used in amodel. For example, given
an attribute name <at t r >, atemplate can defineset _<attr>and get _<attr>
methods.

* UML 1.x constructs such as N-ary associations and qualified associations can be
easily represented as templates, with atranslation into, for example, smple
attributes and queries with parameters.

* Since we make a complete separation of abstract syntax, concrete syntax, and
semantic domains, languages such as XMI and IDL could be defined as alternate

syntaxesto UML 2.0%; OCL could be used with a far more friendly syntax.

» The mapping from MOF to XMI or IDL could be easily represented as a template,
even through to concrete IDL syntax such as:

nodul e <PackageNane> {
t ypedef
sequence < <BuiltlnType> > <BuiltlnTypeNane> <Col | ecti onKi nd>;

}

1. Inthecase of IDL, this might require the definition of some new #pr agma’sin IDL.
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Two examples from the MOF 1.3 specification are included here. Their representa-
tion as atemplate will be included in the final submission.
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2.2.5 Improved Modedl Interchange

In the presence of a family of modeling languages, model interchange takes on some
new nuances. For example, suppose you have a model in Profi | e- A, which includes
states and state-charts. In pseudo-text form, your model might define class Per son
with astate chi | d and digoint substatesi nf ant, toddl er:

class Person { States: child substates (infant, toddler) }
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Suppose someone else has a tool which does not understand Prof i | e- A (states), but
does understand attributes and static invariants (Pr of i | e- B). The approach in this sub-
mission enables model interchange to transfer a profile-based model as:

class Person {
attributes child, infant, toddl er: Bool ean
static invariants:
child = infant OR toddl er
EXCLUSI VE (infant, toddler)

}

In the presence of multiple profiles, with unresolved overlapping areas across profiles
and across the domains the models address, and with tools picking and choosing what
they implement, such smart interchange will be a blessing.

2.3. Unified Concepts

This submission (with its corresponding OCL and UML/superstructure submissions)
unifies several disparate concepts that are not cleanly related in UML 1.x, including:

» Template packages. unifiesthe current concepts of packages and renaming, collabo-
ration patterns, and parameterized classes. In addition, it replaces many inappropri-
ate uses of abstract classesin UML and MOF 1.x, and supports patterns of
packages, patterns of refinement, etc.

* Objects and values: these are unified in the current submission, so the same

JOS_Z:T;I(E:: firstName é?ﬁ—:
firstName stringLength

\

joeBrown: ‘.
Person ———age— | 3L

alive Integer
true:
Boolean

approach can be used to define OCL collections, integers, strings, and enumeration
types, asis used to define other UML classes, user-defined classes, or user-defined
“value’ types. Concepts such astuples and n-ary associations become easy to
define as patterns. A particular platform’s call-by-value rules are deferred to the
appropriate language dialect or “profile”, aswould be required by MDA.

» Actions:; this submission unifies and makes consistent the current UML notion of
action, state transition, activity, and collaboration.

» Language semantics and syntax: many elements of UML have their abstract syntax
and well-formedness rules of the abstract syntax defined; few have clearly defined
semantics. This submission unifies and make consistent the approach to defining
and relating concrete notation, abstract syntax, and semantics.

* Inter-language mappings: this submission provides a systematic way to define map-
pings that cross languages, at the level of concrete syntax, abstract syntax, or seman-
ticsdomains.
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e UML 1.x concepts of system, subsystem, model are unified using packages and
refinement of the basic concepts of object and action.

* UML 1.x concepts of role, object, classifier role, etc. are unified using the clear sep-
aration of objectsin the semantic domain, from variables and bindings.

» Containment and ownership have been separated from namespace. The definition of
a class should be considered independently from the name by which you refer to
that class definition, hence name bindings should be separated from the model ele-
ments being named.
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Chapter 3
Meta-Modelling Approach

This chapter introduces our approach to meta-modelling, in par-
ticular the language being used. The language is the expected
subset of UML, extended to include arich notion of package
templates and package inheritance, both crucia to defining fam-
ilies of languages.

3.1. Introduction

The meta-modelling approach is dictated by the meta-modelling language chosen and
the way in which that language is deployed.

3.1.1 The Meta-modelling language

Unsurprisingly, our approach uses a meta-modelling language based on well-under-
stood object modelling principles which are at the heart of UML and MOF. There are
four main components of the language:

Static basics. Includes the usual constructs (classes, attributes, associations, query-
operations) for capturing the static structure of a meta-model.

Packages. For organising meta-models into manageabl e chunks. Includes facilities to
handle package composition and merging.

A constraint language (OCL). For expressing well-formedness constraints on the
structures admitted by the meta-model.

Templates. Allows meta-modelling patterns to be encoded in a precise and effective
way. Includes facilities to handl e template composition and merging.

These four components are described in the main body of the chapter.

The static core, hencethis meta-modelling language, isformally defined in Chapter 5.1

Meta-modelswill be presented using diagrams and text. Text is used only to write out
the OCL congtraints and write out the definition of supplementary operations.

1. It should be noted that templates have not been formally defined for thisinitial submission, although
thereisaplaceholder in Chapter 5. They will be formally defined in the final submission. Templates
have been implemented in a prototype tool as proof of concept.
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3.1.2 Deployment

Our deployment of the meta-modelling language is considerably affected by the inclu-
sion of templates. Templates deliver three key benefits for the meta-modeller:

» They alow commonality between language components to be captured in one place,
which leadsto a high degree of architectural integrity in the definition of languages
constructed through the application of templates;

» They take much of the slog out of producing meta-models, in particular well-
formedness constraints, which allows more complete definitions to be constructed
more quickly;

» They avoid the proliferation of abstract meta-classes, which are an ineffective
mechanism (we argue) for supporting reuse and extensihility.

Thus, when deploying the meta-modelling language, one should strive to isolate tem-
plates that capture useful patterns of language definition. The templates used in this
submission are described in Chapter 5.

One should also strive to deliver complete meta-models, especially for adefinition of a
standard language. The component of a meta-model that is most often omitted isthe
well-formedness congtraints. There are three good reasons for putting the effort into
defining well-formedness constraints:

» Writing such constraints helpsto uncover ambiguities and subtletiesin the language
that would otherwise be missed, and often this can precipitate changes to other
aspects of the definition, such as class diagrams.

» Constraints capture important aspects of the language definition that can not be cap-
tured through structure diagrams alone. This becomes particularly noticeablein
complex aspects such as semantics and even the syntax of some sophisticated lan-
guage constructs.

* If the constraints are written precisely enough they can be directly processed by
tools that have a constraint capability. This can be used, for example, to check
whether amodel satisfies the well-formedness conditions defined in the abstract
syntax component of a meta-model; or whether an instance of amodel satisfiesa
model, as defined by the semantics captured by the constraints in the meta-model.
Indeed, if the meta-model languageitself is cast as a meta-model, then meta-models
(which will be models of this cast) can be checked to ensure that they are well-
formed meta-model s using the proposed tool.

This submission has been careful to define constraints as precisely and completely as
possible. Templates have been of considerable benefit here, both by delivering many
constraints automatically through their instantiation, and by helping usto identify
where constraints need to be added by language components which instantiate atem-
plate.

All the meta-models in this submission have been checked by a prototype tool that
understands and checks constraints. The same tool also supports the expansion of tem-
plates, which has helped to ensure that the template mechanisms employed in this sub-
mission give the expected results.
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3.1.3 Organisation of chapter

Theremainder of this chapter focuses on providing adescription of the meta-modelling
language itself, dealing with each main component in sequence. More attention is paid
to the novel aspects of the language (templates & package/template specialisation/
composition/merging). Subsequent chapters deploy that language to deliver the UML 2
infrastructure.

3.2. Classes

Classes and associations (next section) are used to describe structural aspects of a
meta-model. In the meta-modelling language used, classes are restricted to contain
» Attributes

o taketheformx: T, whereT may taketheform X, Set (X), Seq( X) and X may be
aclassor abasic datatype—1 nt eger, Bool ean Or Stri ng.

* Query operations

o taketheformq(x1:T1,..., xn: Tn): T, whereTi and T takethesameformasT
above.

Visibility distinctions on attributes or query operations are not needed.
Classes may only be defined in the context of a package.

The usual UML graphical notation for classes will be used.

3.3. Binary associations

Binary associations have two ends. An association end is identified with a source class
C and target class D, acardinality constraint m . n and alabel s.

Associations which are only navigable in one direction are also alowed, in which case
their semanticsis given by the semantics of the association end which can be navi-
gated.

A fuller treatment of UML associations, including n-ary associations, is given as part
of Chapter 5. The tranglational semantics given hereis consistent with that definition.

Associations may only be defined in the context of a package.

The usual UML graphical notation for binary associations will be used.

3.4. Packages

Packages may contain classes, associations and other packages. The ends of an associ-
ation in a package must be sourced on classes contained in that package. This avoids
associations delivering new attributes on classes in distant packages. In practice, this
means that only one-way associations may refer to classes of a different package (with
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the source being in the package owning the association). Of course, attributes and que-
ries can refer to classes of different packages.

A package generalisation mechanism is also supported. Thisisillustrated by the exam-
plein Figure 1, which shows a package with multiple (two) parents.

i | ° |

N

< X >

T o
o
N X >

R
A

o oTo
N < X

Figure 1. Package gener alisation example

The UML graphical notation for packagesisused. The UML class generalisation arrow
isused to show a generalisation relationship between packages. Anything shown in
blue in the child is generated from the parent. Although it is not strictly necessary to
show these elements, it can be extremely helpful to the modeller to see them displayed.
In some cases it is essential to show generated elements as they interact with new ele-
ments introduced in the package (so, for example, classR. C interacts with R. X).

The basic ruleisthat the child gets everything from each parent, where model elements
of the same kind (class, attribute, constraint, etc.) and which are “indistinguishable’ get
merged. What it means for amodel element to be distinguishable from another ele-
ment, and how amodel element is merged with another, depends on the kind of model
element. For example, two classes will be deemed indistinguishable if they have the
same name, and the merge of two classes will requirethelist of attributes of each to be
merged, merging attributes as appropriate. Two attributes are also deemed indistin-
guishableif they have the same name, and their merge replacesthe type with onethat is

asubtype of the types of the attributes being merged!

1. Thisisthe not the only possibility for merging attributes, but it is the one adopted here.
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The child may also specialise any model element from any parent in aconformant way,
where the definition of conformance depends on the kind of model element. So, for
example, the cardinalities on association ends may be strengthened.

Clearly this merging idea can be extended to class generalisation, and thisis assumed
for the meta-modelling approach used here.

In principle, one may wish to prevent a merger taking place or, indeed, force amerge to
happen. This could be achieved through a renaming mechanism. However, we have
found no need to do this (or at least nothing that can not be easily circumvented), when
templates are deployed. The need for renaming will be reconsidered in the final sub-
mission.

3.5. Constraint Language

OCL asdefined in UML is used to write invariant constraints using our meta-model-
ling approach. Thereisasingle caveat: constraints are given names, where the name is
asingle text string on a separate line below the context clause (see constraints in Sec-
tion 3.3 for an example).

OCL expressions are also used to provide the definition of queries, using the syntax

class C

where OCLexp isan expression of type T, which may depend on the arguments of g and
attributes of C.

3.6. Package Templates

Package templates are used to provide chunks of (meta-)model with substitutable parts.
They are very effective in encoding modelling patterns. Figure 2 gives a simple exam-
ple of atemplate.

Gont ai ns( Cont ai ner, Cont ai ned)

*

<Qont ai ner >
<Qont ai ner > <Qont ai ned>
1 <Cont ai ned>s

Figure 2. Simple example of template

The parameters to the template are just strings, representing names of things. The
names of these parameters are declared in brackets after the package name. The argu-
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ments may be quoted anywherea string is required. Quoting is shown by angled brack-
ets.!

Templates may be instantiated to generate standard packages or other templates. The
former isillustrated by Figure 3.

Cont ai ner ()

[ Cl ass/ Cont ai ner, Attribute/ Contai ned]
[ Cl ass/ Cont ai ner, Query/ Contai ned]

*

Cl ass
Cl ass Attribute
1 Attributes

1 Cl ass

Query

Querys

Figure 3. Templateinstantiation

Template instantiation is shown by a dashed generalisation arrow, which isannotated
by substitutions for the parameters of the template. More than one substitution may be
given, in which case the template isinstantiated for each substitution and the results
merged.

So, in the example, the template is instantiated twice. In both cases, Cont ai ner is sub-
stituted for C ass, but in the first case Cont ai ned issubstituted for At t ri but e and, in
the second, Cont ai ner issubstituted for Quer y. By merging rules, only one copy of

Cl ass appearsin the child package.

The syntax of a subgtitution takestheform[ A1/ X1, ..., An/Xn] which means, for a
template with parameters x1, ., Xn that A1 issubstituted for X1 and so on. A
parameter may only be substituted once for any single template instantiation, but there
may be more than one instantiation of the same template into the same package.

1. Rather than just allowing quoting, one can instead introduce the concept of string expression, and use
asmall string expression language involving the parameters to generate names. For this submission,
we have found concatenation to be sufficient.
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A package resulting from an instantiation of atemplate may specialise, in aconformant
way, the elements generated from the template through the instantiation. Thisis analo-
gous to the package generalisation case.

Of course templates may contain more that just classes and associations. For example,
they may also contain constraints, query definitions and so on. Consider the template
defined by Figure 4, and query definitions that follow.

NaneSpace( Nanmi ngCont ext , NanedEl enent )

_ <NanedEl enent >
<Nami ngCont ext >

nanme(): String
1 /N

\/ 1

<NanedEl enent >NaneSpace

NanmeX
<NanedEl enent >)

naneFor <NanedEl enent >( a: <NanedEl enent >): Stri ng ~
<NanedEl enent >_For (s: Stri ng) : <NanedEl enent > defs | Name: String
don(): Set (String)

ran(): Set (<NanedEl enent >)

Figure 4. Template with method definitions

nameFor <NamedElement>(): Returns a name for a NamedElement in a NameSpace.

cont ext <NanedEl enent >NanmeSpace
nanmeFor <NamedEl enent >( a: <NanedEl enent >): Stri ng
sel f.defs->select(pair | pair.name = a).sel ectEl enent (). nane

<NamedElement>For (): Returnsa NamedElement for a name in a NameSpace.

cont ext <NanedEl enent >NaneSpace
<NanedEl enent >For (s: Stri ng) : <NanmedEl enent >
sel f.defs->select(pair | pair.name = s).selectEl ement().target

dom(): All namesin the NameSpace.

cont ext <NanedEl enent >NaneSpace
dom(): Set(String)
sel f.defs->collect(pair | pair.nane)

ran(): All named elements in the NameSpace.
cont ext <NanedEl enent >NanmeSpace
ran(): Set (<NanedEl enment >)
sel f.defs->coll ect(pair | pair.target)

name(): Returnsthe name of an element in the context of a NameSpace.

cont ext <NamedEl enent >
name( naneSpace: <NanedEl enent >NaneSpace) : String
naneSpace. naneFor (sel f)
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When thistemplate is instantiated the effect will be to generate methods with the right
names and appropriate definitions. So given theinstantiation inFigure 5, the following
method will be generated, for example:

context Attribute_NaneSpace
Attribute For(s:String): Attribute_
sel f.defs->select(pair | pair.name = s).selectEl ement().target

NanmeSpace()

[ d ass_/ Nam ngCont ext ,
. Attribute_/ NanedEl enent |

Attribute_
d ass_
nane()
1
1
* NameX
Attribute_Nane Attribute_
Space
defs nane: String

Figure5. Instantiation of template with query definitions

Templates may also be generated from other templates. Thisisillustrated by Figure 6.
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Cont ai ns()

Package Templates

NaneSpace()

[ <Cont ai ner >/ Cont ai ner,
<Cont ai ned>/ Cont ai ned]

\
-

JAN

[ <Cont ai ner >/ Nam ngCont ext,
<Cont ai ned>/ NanedEl enent ]

Di sti ngui shabl e( Cont ai ner, Cont ai ned)

<Cont ai ner >

<Cont ai ned>s <Cont ai ned>

L

<Cont ai ned>
NanmeSpace

<Cont ai ner >

nanme(): String
1

NaneX
<Cont ai ned>

defs

nane: String

Figure 6. Template gener ation from templates

Asshown by the diagram, this is achieved by instantiating one or more templates, with
parameter substitutions that substitute parameters of parent templates with parameters
(or not) of the child template. Thistechniqueis used extensively in the meta-modelling

approach adopted here.
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Chapter 4
Templates

This chapter describes a number of templates that are key to
defining modelling languages. The application of these tem-
plates is demonstrated using fragments of UML 2.

4.1. Introduction

The purpose of this chapter isto describe the templates used to define UML 2. Each of
the templates described in this chapter represent a self-contained unit of concepts and
properties that capture a specific aspect of language design. Taken asawhole they con-
stitute a standard library of template definitions, and for this reason this chapter is pre-
sented in the form of a reference manual.

The templates can be broadly categorised asfollows:
Basic Templates. fundamental templates that are used to define more complex lan-
guage templates.
» Contains (Section 4.2 on page 46)
» NameSpace (Section 4.3 on page 43)
 Digtinguishable Container (Section 4.4 on page 51)
* Relatedl (Section 4.5 on pageb4)
» Generaisable (Section 4.6 on page 55)
» Semantics (Section 4.7 on page 57)
Extensions. templates that capture relationships between modelling elements, where
one modelling element can be viewed as an extension of another modelling element.
» Generalisable Container (Section 4.8 on page 59)
Declarative Generalisable Container (Section 4.9 on page 62)
Generaisable Relatedl (Figure 4.10 on pa ge65)
Importable Container (Section 4.11 on page 66)
Mergeable Container (Section 4.12 on page 66)

Semantics. templates that capture meaning rel ationships between modelling elements,
where the meaning of a modelling element is defined in terms of a mapping to a
semantic domain (which isitself amodél).

» Container Semantics (Section 4.13 on page 67)
» Generalisable Semantics (Section 4.14 on page 69)
» Generalisable Container Semantics (Section 4.15 on page 71)
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» Generalisable Related1l Semantics (Figure 4.16 on page74)

» Generalisable Feature Container Semantics (Section 4.17 on page 76)
Constraints: templates necessary for the definition of constraint languages, such asthe
Object Constraint Language.

» Expression Semantics (Section 4.18 on page 76)

» Binding (Section 4.19 on page 76)

Mappings: templates that define a vocabulary for expressing transformations between
modelling elements and between languages.

» Mapping (Section 4.20 on page 77)

» Container Mapping (Section 4.21 on page 77)

Refinement: templates that define a refinement relationship between modelling ele-
ments.

* Refinement (Figure 4.22, “Refinement,” on page 77)

Graphs: templates that define variants of graphs. Graphs and trees have an important
roleto play in the definition of modelling languages. Many of the templates used in this

document are related to these concepts (although this relationship has not been made
explicit asyet).

» Graph (Section 4.23 on pag e 78)
» Tree (Section 4.24 on page 79)

Reflection: templates that define the relationship between model elements, their meta-
objects (ObjectReflection) and their meta-classes (Class Reflection).

» Object Reflection (Section 4.25 on page 80)
» Class Reflection (Section 4.26 on page 83)

Abstract Class Hierarchy: templates that can be used to construct an abstract class
hierarchy similar to that used in UML 1.X. Abstract class hierarchies have a useful role
to play for the tool vendor, who may use them to define plug-points for new modelling

elements (using a traditional framework style). The following abstract class templates
are defined:

» Abstract Container (Section 4.28 on page 87)
» Abstract GeneralisableElement (Section 4.28 on page 87)
» Abstract NameSpace (Section 4.29 on page 88)

The remainder of this chapter consists amost entirely of independent sections, each
introducing a definition of a template, a summary of its purpose, a description of the
definition and small examples of its usage (including some snapshots). Full examples
of the use of the templates can be found in the remaining chapters of the submission.
An introduction to the template notation and their informal semantics can be found in
chapter 3. An overview of the most important templates and their relationship to each
other isshown in Figure 7.
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4.2. Contains

ummary

A containment relationship, in which one element, the Container, conceptually con-
tains another element (the Contained element).

Definition
Gont ai ns( Cont ai ner, Cont ai ned)
<Qont ai ner > *
<Cont ai ner > <Cont ai ned>
1 <Cont ai ned>s
Figure 8. Contains

Queries
None.

WAl -formedness Rules

None.

Description

Containers are one of the most fundamental patterns found in a modelling language.
Many language elements “contain” other language el ements.
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Example

A class containsits attributes and queries.

Cont ai ner ()

[ Cl ass/ Cont ai ner,

At tri but e/ Cont ai ned]
:[ Cl ass/ Cont ai ner, Queries/ Contai ned]

Cl ass

Cl ass

1 Cl ass

1 Attributes

Attribute

Queries

Queries

UML?2 infrastructure initial submission

Figure 9. Contains Example
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4.3. NameSpace

ummary

Defines a name space for a named element in a naming context. A namespace is a col-
lection of mappings from names to named elements.

Definition

NanmeSpace( Nam ngCont ext, NamedEl ement )

. <NamedEl ement >
<Nam ngCont ext >

name():String
1 Y

V1

<NamedEl enent >NanmeSpace

NameX
<NamedEl enent >

naneFor <NamedEl ement >( a: <NanedEl ement >) : Stri ng ~
<NamedEl enment >_For (s: Stri ng): <NanedEl ement > defs | Name: String
dom(): Set (String)

ran(): Set (<NamedEl ement >)

Figure 10. NameSpace
Queries

nameFor <NamedElement>(): Returns a name for a NamedElement in a NameSpace.

cont ext <NanmedEl enment >NaneSpace
"nanmeFor " <NamedEl enent >( a: <NamedEl ement >): String
sel f.defs->select(pair | pair.name = a).sel ectEl enent (). nane

<NamedElement>_For(): Returns a NamedElement for a name in a NameSpace.

cont ext <NamedEl enent >NaneSpace
<NanedEl enent >_For (s: Stri ng) : <NanmedEl enent >
sel f.defs->select(pair | pair.name = s).selectEl ement().target

dom(): All names in the NameSpace.

cont ext <NamedEl enment >NaneSpace
dom(): Set(String)
sel f.defs->collect(pair | pair.nane)

ran(): All named elementsin the NameSpace.
cont ext <NanmedEl enment >NaneSpace
ran(): Set (<NanedEl enent >)
sel f.defs->collect(pair | pair.target)
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name(): Returnsthe name of an element in the context of a NameSpace.

cont ext <NamedEl enent >
name( naneSpace: <NanedEl enent >NaneSpace) : String
naneSpace. naneFor (sel f)

WAl |-formedness Rules

None.

Description

Namespaces are a mechanism for decoupling names from modelling elements. A nam-
ing context defines a namespace for al the elements that it can name. Lookup queries
are provided for retrieving names and named elements from a namespace.

Example

A class has a namespace for its attributes.

NarmeSpace()

[ d ass_/ Nam ngCont ext ,
Attribute_/ NaredEl enent]

;

Attribute_
d ass_
nane()
1
1
. NanmeX
Attribute_Nane Attribute
Space
defs nane: String
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Example Shapshot

Figure 11 shows the definition of a single class named C with two attributes named a
and b respectively. Note, in practice, attributes and other namespace elements will not
have name attributes. However, we have found that local names considerably reduce
the noise associated with name spaces, and should be viewed asinterchangeable, i.e. an
attribute with name “a’ is equivaent to an attribute that is named “a’ in a attribute

namespace.

Atftribute_MameSpoce defs_[omAHTIngS,

name b
Attribute_Mames AT
WClozs_
PamexAttribute
name=C
e Harme =0
type
target
Attribute
A =0
target
Attribute
name=h

Figure 11. NameSpace Example
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4.4. Distinguishable Container

ummary

A distinguishable container is a container that cannot contain two or more elements
with the same name.

Definition
Cont ai ns() NanmeSpace()
| |
S m——————— 4
|
|
[ <Cont ai ner >/ Cont ai ner, | [ <Cont ai ner >/ Nam ngCont ext ,
<Cont ai ned>/ Cont ai ned] : <Cont ai ned>/ NanedEl enment ]
|
Di sti ngui shabl eCont ai ner ( Cont ai ner, Cont ai ned)
_ <Cont ai ned>s | <Contai ned>
<Cont ai ner >
<Cont ai ner > nanme(): Sring
1
\/ 1
. NameX
<Cont ai ned> <Cont ai ned>
NanmeSpace
defs nane: String
Figure 12. DistinguishableContainer
Queries
None.

WAl |-formedness Rules

All<Contained>sHaveDistinctNames: All contained el ements have distinct names.

cont ext <Contai ner> inv:
Al | <Cont ai ned>sHaveDi st i nct Nanes
sel f. <Cont ai ned>s->forAll (el enent, elenment’ |
el enent . nanme(sel f. <Cont ai ned>NaneSpace) =
el enent' . nane(sel f. <Cont ai ned>NaneSpace) inplies
el ement = elenment')
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Description

A distinguishable container contains elements that are distingui shable by name through
their name() method. This method is defined in the context of a namespace of con-
tained elements (see NameSpace template, Section 4.3 on page 48).

Example

A class's queries and attributes are distinguishable by their name, i.e. no two attributes
can share the same name. However, because two separate constraints are generated for
each contained element, it is quite legal for a classto contain an attribute and a method
with the same name.

Di sti ngui shabl e
Cont ai ner ()

[ Cl ass/ Cont ai ner, Attribute/ Contai ned]
[ Cl ass/ Cont ai ner, Query/ Cont ai ned]

H

Cl ass * Attribute
Cl ass
1 Attributes |name() : String
1 1
1 Cl ass
* Query
U name() : String
1 ’7
. Name X
Attribute Attribute
NaneSpace
nanme: String
defs
—
. Name X
Query Query
NaneSpace
nanme: String
defs

Figure 13. DistinguishableContainer Example
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Generated Constraints

AllAttributesHaveDistinctNames: All attributes have distinct names as defined by
their namespace.

context Class inv:
Al AttributesHaveDi sti nct Nanes
self.Attributes->forAll (el enent, elenent’ |
el enent . name(sel f. Attri but eNanmeSpace) =
el enment' . nane(sel f. Attri but eNameSpace) inplies
el enent = elenment')

AllQuerysHaveDistinctNames: All queries have distinct names as defined by their
namespace.

context Class inv:
Al | QuerysHaveDi sti nct Narres
sel f. Querys->forAll (el enment, elenent’ |
el enent . name(sel f. Quer yNaneSpace) =
el enent' . nane(sel f. Quer yNanmeSpace) inplies
el enent = elenment')
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4.5. Related1

ummary

Defines amany to one relationship between two elements.

Definition
Rel at ed1( El enent 1, nanmel, El enent 2)
1
<El ement 1> <El ement 2>
* <nanmel>
Figure 14. Related1
Description

Relatedl isjust one of many “relation” templates that can be defined between two ele-
ments. It describes a function, where many instances of <Element1> are mapped to a
single instance of <Element2>. In future, this template will be generalised to permit
the substitution of multiplicities (thus avoiding the need to define N templates for N
different relations). The Contains template (section 4.2) is probably just another vari-
ant.

Example

Attribute, owner, “type” and Class can be readily substituted for <Elementl>,
<namel>, and <Element2> respectively to model the relationship between an Attribute
and itstype.
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4.6. Generalisable

ummary

A generaisable type has parents and children.

Definition
Cener al i sabl e( Type)
<Type> *
al | Local Parents() | parents
Figure 15. Generalisable
Queries

allL ocalPar ents(): Returnsall local parents of the type.

context <Type>
al |l Local Parents() : Set(<Type>)
sel f.parents->iterate(parent S = self.parents |
S->uni on(parent. all Parents()))

WAl |-formedness Rules

No Circular Inheritance: A generalisable element cannot specialise itself.

context <Type> inv:
NoCi r cul ar I nheritance
sel f.all Local Parents() -> excludes(self)

Description

Model elements are generalisable when they have parents.

Example

Class and Package can both be substituted for <Type>. The result of substituting Class
into the templateis shown in Figure 16.

—

d ass *

al | Local Parent s() parents
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Generdisable

Figure 16. Generalisable Example

Example Shapshot

A snapshot satisfying the properties of Figure 16 is shown on the left hand side of Fig-
ure 17. Note that the right hand side shows an example of a snapshot that invalidates

the circular inheritance rule.

{Lloss_ Closs_
parents parents
©Closs_ {LClozss_
parents parents
parents
LClozs_ Class_

Figure 17. Generalisable Snapshots
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4.7. Semantics

ummary

Semantics

The semantics of a model element are defined in terms of a mapping to multiple

instance e ementsin a semantic domain.

Definition

Semant i cs( Model El enent, | nst anceEl enent)

Abst ract Synt ax

Semant i cDomai n

<Model <l nstance
El ement > El ement >
/
Semant i cMappi ng T
l *
<Model <l nstance
El ement > i | (St ANEES El ement >

Queries

None.

WAl |-formedness Rules

None.

Description

Figure 18. Semantics

The Semantics template captures the model element/instance relationship that occurs
between abstract syntax elements and their instances in a semantic domain. The differ-
ent roles played by elements in a semantic definition are clearly delineated by parti-
tioning the Semantics package into an AbstractSyntax package (which contains all
model elements), a SemanticDomain package (which contains all instance elements)
and a SemanticMapping package. The SemanticMapping Package specialises both the
abstract syntax and semantic domain packages and defines an instances/of association
between model elements and their instances. Thus, an instance will always be able to
determine what it is an instance of .
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Example

I nstances of associations are links.

Semanti cs()

[ Associ at i on/ Model El enent ,
Li nk/ | nst anceEl enent ]

¢

Abst r act Synt ax Semant i cDomai n

Associ ati on Li nk

Semant i cMappi ng

Associ ati on Li nk
of i nst ances

Figure 19. Semantics Example
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Generalisable Container

4.8. Generalisable Container

ummary

Defines a query-based generalisable container, in which the contents of a container are
calculated from its parents contents. Note, namespaces are not shown for brevity.

Definition
D sti ngui shabl e
Gont ai ner () General i sabl e()
Y / [ <Cont ai ner >/ Type]
\ /[ <Cont ai ned>/ Type]
\\ //
\ /
\ /
\ /
\ /
Gener al i sabl eCont ai ner (Gont ai ner, Gont ai ned)
par ents
par ent's
*
. <Qont ai ned>
<Cont ai ner > <Cont ai ner> *
all Local Parents()| 1  <mntai nedss| & | Local Parents()
name(): Sring
Figure 20. GeneralisableContainer
Queries

allParents(): Returns all parents of a contained el ement, including all local parents and
all derived parents.

context class <Cont ai ned>
al | Parent s(): Set (<Cont ai ned>)
sel f.all Local Parents()->uni on(sel f.all DerivedParents());

all<Contained>s(): Returns all contained element.

context cl ass <Cont ai ner >
al | <Cont ai ned>s() : Set (<Contai ned>)
self.allParents() -> iterate(p s = self.<Contai ned>s
s->uni on(p. al | <Cont ai ned>s() - >
reject(c | s->exists(c'

c. nane(sel f. <Cont ai ned>NanmeSpace) =
c' . nane(sel f.<Cont ai ned>NaneSpace) or
c'.parents ->includes(c)))))
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Generalisable Container

allDerivedParents(): Returnsall parents of an element that share the same name asthe

contents of its container’s parents.

cont ext cl ass <Cont ai ned>

al | Deri vedParents() : Set(<Contai ned>)
if self.<Container> <> self then

sel f. <Cont ai ner>. al | Parent s()

s->uni on( p. <Cont ai ned>s ->

select(c |

-> iterate(p s = Set{}

c. nane(sel f. <Cont ai ned>NaneSpace) =
sel f. name(sel f. <Cont ai ned>NanmeSpace))))

el se Set{}
endi f

W&l -formedness Rules

None.

Description

A generaisable container can calculate its contents by finding the contents of al its
parents, and determining whether it indirectly inherits from them.

Example

Figure 21 shows the template applied twice to Package and Class (a Package contains
Classes) and to Class and Attribute (a Class contains its Attributes). Note. namespaces

aren’t shown for brevity.

Gener al i sabl e
Cont ai ner ()

[ Package/ Cont ai ner,
d ass/ Cont ai ned]

[d ass/ Cont ai ner,
Attri but e/ Cont ai ned]

parent s

*

[ Package

Package

parent s

*

[ d ass

al | Local Parent s()

1

d asss

parent s

\x *| Attributes
Attribute

al | Local Parent s()
nanme(): String

1 d ass

al | Local Parent s()
nane(): String

Figure 21. GeneralisableContainer Example
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A class can now calculate all its attributes (including those inherited from its parents)
viathe query:
context C ass
all Attributes() : Set(Cd ass)
self.allParents() -> iterate(p s = self.Attributes |
s->union(p.all Attributes()->
reject(c | s->exists(c' |
c.nanme(sel f. Attri but eNameSpace) =
c' . nane(sel f.Attri but eNanmeSpace) or
c'.parents ->includes(c)))))

Thiswill iterate through all the parents of the classincluding all its derived parents (see
below) regjecting any duplicate attributes that might otherwise be inherited from the
parents or any redefined attributes.

All derived parents of Classwill return all parents of Classthat share the same name as
the classes of its package's parents.

context C ass
al | DerivedParents() : Set(d ass)
if self.Package <> self then
sel f. Package. al | Parents() -> iterate(p s = Set{} |
s->union(p. Attributes -> select(c |
c. nanme(sel f. Cl assNameSpace) =
sel f. nane(sel f. Cl assNanmeSpace))))
el se Set{}
endi f

Example Shapshot

In Figure 22, allAttributes() of the class class ¢ in the package a will return the
atributes { e, f, g}. Attribute f is inherited from the loca Parents of the class c in the
package a, whilst attribute e is inherited from the derived parent of c (i.e. the classcin
package b). Note that for brevity, names shown on objects are the names that would be
returned by their container’s namespace.

Package_ Closz_=  |Class_ Attribute_z |attribute
et o HOME =&
parents
i (Closs_ Attribute_s |:Attribute_
name =d name=f
Pockage_
parsnt
HoHE 0.
Clazs_=
Closs_ Attribute_s [:Attribute_
Horme =c hamme =g

Figure 22. GeneralisableContainer Snapshot
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Declarative Generalisable Container

4.9. Declarative Generalisable Container

ummary

A declarative generalisable container has the property that it must specialise the con-
tents of its parents. It is given as an example of a more specification-oriented approach
to defining generalisable containers. Note, namespaces aren’t shown for brevity.

Definition
D sti ngui shabl e
Gont ai ner () Gener al i zabl e()
[ <Qont ai ner >/ Cont ai ner, | ) [ <Cont ai ner >/ Type]
<Cont ai ned>/ Gont ai ned] Y, /" [<Cont ai ned>/ Type]
\\ //
\ !
\ !
\ /
\ 1
Decl Gener al i zabl eCont ai ner (Cont ai ner, Gont ai ned)
par ent s parents
&3 *
<Cont ai ner > <Cont ai ner> « <Cont ai ned>
al | Local Parents() 1 <containedss | > 0@ Farents()
nane(): String
Figure 23. DeclarativeGener alisableContainer
Queries

parents<Contained>s(): Returns the contents of all parents of a container.

cont ext cl ass <Cont ai ner >
par ent s<Cont ai ned>s() : Set (<Contai ned>)
sel f.parents->iterate(parent S = Set{} | S->
uni on( par ent. <Cont ai ned>s));

<Contained>sParents(): Returnsthe parents of all contents of a container.

cont ext cl ass <Cont ai ner >
<Cont ai ned>parents() : Set(<Contai ned>)
sel f. <Cont ai ned>s->i t er at ¢(
x S = Set{} | S->union(x.parents))
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Declarative Generalisable Container

WAl |-formedness Rules

<Contained>sParents(): A container’s parents contents must be a subset of its con-
tents’ parents.

cont ext cl ass <Cont ai ner >
Cont ent sPar ent sAreCorrect inv:
sel f. parent s<Cont ai ned>s() . subset (sel f. <Cont ai ned>sParents())

Description
A declarative generalisable container does not calculate its contents like a generalisa-

ble container. Instead it must guarantee that it will specialise the contents of its parents,
whilst also permitting the addition of new contents.

Example

Note, namespaces aren’t shown for brevity.

Decl Gener al i sabl e
Cont ai ner ()

[ Package/ Cont ai ner, 4
Cl ass/ Cont ai ned] :
[ Cl ass/ Cont ai ner, 1
Attribute/ Cont ai ned] ',
1
par ent s parents
& *
[ Package Package & [ Cl ass
al | Local Parents()
al |l Local Parents()| 1 Cl asss name(): String

parents L Class

\x* Attributes
Attribute

al | Local Parents()
name():String

Figure 24. Declar ativeGeneralisableContainer Example
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Declarative Generalisable Container

Shapshot Example

Figure 25 shows an example of a snapshot that satisfies the well-formedness rules of
the model shown in Figure 24. Here, class ¢ in package a must contain additional
attributes f and e as specialisations of the attributes of classes b.c and a.d. Note that for
brevity, the names shown on the objects are the names that would be returned by a
namespace.

Package_ Closz_= |:Class_ Attribute s [:Attribute_
harme=h parme e parme ze
parents parents
Clazs_= {Clos=z_ Attribute_s [:Attribute_
narme=d narme =f
Pockags_
parents parknts
name=a,
Clazs_=  |flass_ Attribute s [Attribute_
narTE =o narme =f
ipute_=
Attribute_
Attribute_= e
Attribute
nams=gq

Figure 25. Declar ativeGeneralisableContainer Snapshot
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4.10. Generalisable Related1

ummary

Defines the relationship between two generalisable element, where one element is
related to the other.

Definition

Rel at ed1() ‘ General i zabl e() ‘
\ / [ <El ement 1>/ Type]
\ )/ <El enent 2>/ Type]

Gener al i sabl eRel at ed1( El enment 1, nanmel, El ment 2) ‘

parents parents
*
[ <El ement 1> 1 [ <El ement 2>
al | Local Parents()| * <name1> | all Local Parents()

WAl |-formedness Rules

RelatedElementCommute: All an elements parents must be related to the parents of
the elementsitsisrelated to.

cont ext <El ement1> inv:
Rel at edPar ent sConmut e
sel f. <<nanmel>>. parents = self.parents ->
iterate(p s = Set{} | s->including(p.<<nanel>>))

Description

A generalisable related element has the property that all its parents must be related to
the parents of the elementsit isrelated to.

Example

None.
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4.11. Importable Container

ummary

An importable container can import another contai ners namespace.

Definition
To be defined in the final submission.

Description

Example

4.12. Mergeable Container

ummary

A mergeable container can be merged with another container.
Definition
To be defined in the final submission.

Description

Example
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4.13. Container Semantics

ummary

Container Semantics

Containers have instances, whose elements are instances of the container's contents.

Definition

]

Cont ai ner ()

SRR

[ <Cont ai ner| nstance>/ Cont ai ner,
<Cont ai nedl nst ance>/ Cont ai ned]

Semant i cs()

4

’
/
’

[ Abstract Synt ax. <Cont ai ner >/ Abstract Synt ax. Model Cl ass,

N Semant i cDomai n. <Cont ai ner I nst ance>/ Semant i cDomai n. | nst anceCl ass]

\ \\

[ <Cont ai ner >/ Cont ai ner, "~
<Cont ai ned>/ Cont ai ned]
N

\ SO
\ ~
\ SO
\ ~

Cont ai ner Semant ixcs( Cont ai ner, Cont ai ned,

Cont ai ner | nst ante, Cont ai nedl nst ance) |
N

)
\
N
\

\
Abst ract Synt ax AN

<Cont ai ner >

1 | <Container>

* <Cont ai ned>s

<Cont ai ned>

4

Semant i cMappi ng ‘

Semant i cDomai n

<Cont ai ner
I nst ance>

1 <Cont ai ner
I nst ance>

<Cont ai ned
I nstance>s | *

I nst ance>

<Cont ai ned

* .
. 1 <Cont ai ner
<Cont ai ner >
I nst ance>
of .
i nstances
1 *
. <Cont ai ned
<Cont ai ned>
I nst ance>
of
i nst ances

Figure 26. Container Semantics

Queries

None.
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Container Semantics

W&l -formedness Rules

| nstanceContentsCommute: | nstance contents commute.

context class <Contai nerlnstance> inv:
I nst anceCont ent sComrut e
sel f. of . <Cont ai ned>s = sel f. <Cont ai nedl nst ance>s ->
iterate(elenent S = Set{} | S->union(Set{elenent.of}))

Description

This template describes the relationship between containers and their instances. A con-
tainer’s structure is reflected on the instance side. Each instance of a container will
contain instances of the container’s contents.

Example

See Generalisable Container Semantics, Section 4.15.
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4.14. Generalisable Semantics

ummary

Defines the semantics of generalisation as an inheritance preserving relationship
between elements and their instances.

Definition
General i zabl e() Semanti cs()
DA 4
\ N /
[ <Model Cl ass>/ Type] N /
\ N /
\ [ <I nstanceCl ass>/ Type] )/
\ N /
\ N /
A ~ L
Gener al i sabl eSenknt i cs( Model CTe\ss, I nst anceCl ass) ‘
\\ =
\ Sy
\ N
Abstract Synt ax \ Semant i cDomai n
AN
* parents & parents
<Model <I nstance
Cl ass> Cl ass>
Semant i cMappi ng
<Model 1 instances <l nstance
Cl ass> of * Cl ass>
Figure 27. GeneralisableSemantics
Queries
None.
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Generalisable Semantics

W&l -formedness Rules

I nstanceParentsCommute: |nstance parents commute.

context class <lnstanceCl ass> inv:
I nst ancePar ent sCommut e
sel f.of . parents = self.parents ->
iterate(parent S = Set{} | S->union(Set{parent.of}))

Description

Instances of generalisable el ements have the same generalisation hierarchy astheir ele-
ments. The intention is that a semantic domain element that is an instance of an ele-
ment may easily be viewed as an instance of a parent by selecting the appropriate
super-instances.

Example

See Generalisable Container Semantics (Section 4.15 on page 71).
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Generalisable Container Semantics

4.15. Generalisable Container Semantics

ummary

Query-based generalisable container semantics (note namespaces aren’t shown for
brevity).

Definition

General i sabl e Cont ai ner General i sabl e
Cont ai ner () Semant i ¢s() Semant i cs()
AN 5 4
\ ~ | /
\ N 1 //
[ <Contai ner >/ Contai ner, >\ _ ' /
<Cont ai ned>/ Cont ai ned] Y : [ <Cont ai ner >/ Model Cl ass,
\\ A : <Cont ai ner | nst ance>/ | nst anceCl ass]
\ [ <Cont ai ner | nstance>/ Cont ai ner,
‘\ <Cont ai nedl nst ance>/ Cont ai ned] : [ <Cont ai ned>/ Model Cl ass,
‘\ N : <Cont ai nedl nst ance>/ | nst anceCl ass]
~
\ /
S\ . . N ! /
Cener al i sabl eCont ai ner Semanti cs \\ : /
(Cont ai neY, Cont ai ned, Cont ai ner | SN ! /
nst ance‘\Cont ai nedl nst ance) \\ | ,/
% \I\ Vi
\ N
\ S
\ AY
Abst ract Synt ax ‘ Semant i cDomai n ‘
parents parents
. <Cont ai ner
< >
Cont ai ner | Ak AREES
) <Cont ai ner
1 <Cont ai ner > 1
I nst ance>
parents parents <Cont ai ned
o <Cont ai ned>s * | nst ance>s
) <Cont ai ned
<Cont ai ned> I nst ance>
Semant i cMappi ng
*
1 .
. <Cont ai ner
<Cont ai ner >
. I nst ance>
© i nstances
*
1 <Cont ai ned
<Cont ai ned> -
of i nstances I'nstance>

Figure 28. GeneralisableContainer Semantics

UML?2 infrastructure initial submission

71



Generaisable Container Semantics

Queries

None.

WAl -formedness Rules

None.

Description

The generalisable container semantics (GCS) template merges properties of containa-
ble, generalisable and instantiable modelling elements. Any element E that contains
other elements must guarantee to have instances that contain instances corresponding
to the elements of E. Furthermore, the parents of an instance should reflect the same
generdisation hierarchy as the element. In this way, a GCS element can itself be
viewed as atemplate for stamping out its instances, i.e. each of itsinstances will guar-
antee to preserve the structure of the GCS element.

Example

Figure 29 shows an example of defining a partial semantics for classes and attributes.
Instances of classes are objects using the GCS template. Instances of attributes are
dots. The dots contained by an object must match the attributes contained by its class
and the object must preserve the same inheritance hierarchy as its class. Note name-
spaces aren’'t shown for brevity.
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Generalisable Container Semantics

]

CGeneral i sabl e

Cont ai ner
[ d ass/ Cont ai ner, Senanti cs()

ALtribute/ Cont ai ned] A [ Cbj ect / Cont ai ner | nst ance,
: Sl ot / Cont ai nedl nst ance]
|
|
1

Abst ract Synt ax Senant i cDonai n

par ent s par ent s
d ass oj ect
1 d ass 1 j ect
par ent s par ent s
* | Atributes * Sots
Attribute Sl ot
Senmant i cMappi ng
1 *
d ass (pj ect
of i nst ances
1 *
Attribute - Sl ot
of i nst ances

Figure 29. GeneralisableContainer Semantics Example
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Generalisable Relatedl Semantics

4.16. Generalisable Related1 Semantics

ummary

Defines the semantic relationship between generalisable related elements and their
instances.

Definition

General i sabl e Gener al i sabl e
Rel at ed1() Semant i cs()
A A

\ -
[ <El ement 1>/ El ement 1, *-[ <El ement 11 nst ance>/ Cont ai ner,

I
I
I
<nanmel>/ nanel, <name2>/ nanel !

<El ement 2>/ El ement 2]  <El ement 21 nst ance>/ Cont ai ned] [ <El ement 1>/ Model Cl ass,
\ N <El ement 11 nst ance>/ | nst anceCl ass]
\ \\
Y Y [ <El ement 2>/ Model Cl ass,
\ Y <El ement 2l nst ance>/ | nst anceCl ass]
\ ~ '

~
Gener al i sabl eRel at ed1Semantics
“(El ement 1, nanel, El ement 2, “~_
El ement“ll nst ance, nane2, Eenent 21 nst anc‘e)\

) \\
\
\ s
\ N
Abstract Synt ax Semant i cDomai n
parent s parents
<El ement 1
<El ement 1> I ntance>
* *
parent s parents
RS 1 <nanme2>
1
<El ement 2
El ement 2 I nst ance>

Semant i cMappi ng
: i El 1
<El ement
<El ement 1>
f I nstance>
° i nstances
1 *
<El ement 2
<El ement 2> .
of i nstances I nst ance>
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Generalisable Related1l Semantics

WAl |-formedness Rules

I nstanceElementsCommute;

cont ext <El enent 1l nstance> inv:
i nv | nstanceEl enent sComrut e
sel f.of . <<namel>> =
sel f. <<nanme2>>. of _

Description

The generalisable relatable semantics (GRS) template merges properties of containa-
ble, generalisable and instantiable modelling elements. Any element E that isrelated to
other elements must guarantee to have instances that are related to instances corre-
sponding to the elements of E. Furthermore, the parents of an instance should reflect
the same generalisation hierarchy asthe element.

Example

A classic example is the relationship between an attribute and its type (a class), and
their instances (dots and objects). Specialising an attribute must result in the type being
specialised, and their instances must reflect the same generalisation hierarchy.
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Generali sableFeatureContainerSemantics

4.17. GeneralisableFeatureContainerSemantics

ummary

A generalisable feature container guaranteesto have the same number of contained ele-
ments as it contained instances.

Definition
To be defined in the final submission.
Description

Example

4.18. Expression Semantics

ummary

Expressions can be evaluated against an instance to return aresult.
Definition

To be defined in the final submission.

Description

Example

4.19. Binding

ummary

Elements can be bound to instances.
Definition

To be defined in the final submission.
Description

Example
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4.20. Mapping

ummary

A mapping relates elements to elements.
Definition

To be defined in the final submission.
Description

Example

4.21. Container Map

ummary

A container map relates containersto containers.
Definition

To be defined in the final submission.
Description

Example

4.22. Refinement

ummary

A refinement is a relation between two containers, an abstraction and a realization, in
which some guarantees of the abstraction are maintained by the realization with a suit-
ablere-interpretation. The kind of refinement relation dictates the required mapping.

Definition

To be defined in the final submission.

Description

Refinement will include automated translations from platform-independent specificai-

ton models to platform-specific implementation models, as well as less automated
refinement of specifications e.g. by decomposing objects or actions.
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Graph

4.23. Graph

ummary

A graph isan arbitrary structure of connected nodes.

Definition
Gr aph( Node)
<Node> ]i ’
children
Figure 30. Graph
Description

A graph is an arbitrary structure of connected nodes. The children of a Node are its
connectors to other nodes.

Example

In the context of a meta-model, one can readily visualise modelling elements such as
classes, packages, attributes as nodesin a graph, where the children of each node repre-
sent the connections that exist between the modelling elements (associations, links, and
S0 on).
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Tree

4.24. Tree

ummary

A rooted directed acyclic graph with a single path from root to any other node.

Definition
Graph()
?
Tr ee( Node) \‘
’7
<Node> *
al I Children() chil dren
Figure31l. Tree
Queries
To be defined.
Description

A treeisaspecial kind of graph.
Example
Tree structures are common in meta-models, typically where there is a containment

hierarchy between elements, for example a package contains other packages, but can-
not contain itself or be contained by any of its sub-packages.
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4.25. Object Reflection

ummary

Defines a mapping, G, between containers and their object and slot representation at
the next meta-level up.

Di sti ngui shabl e Cont ai ner
Cont ai ner () Semanti cs()
> )
[ <Cont ai ner >/ Cont ai ner, \\ /’V [9' ass/Conta! ner,
<Cont ai ned>/ Cont ai ned] S .7 . AtLTI buFe/ Cont ai ned,
N e Obj ect/ Cont ai ner |l nst ance,
R Sl ot / Cont ai nedl nst ance]

Obj ect Ref | ecti on( Cont ai ned, Cont ai ned)

Abstract Synt axN Semant i cDomai nN+1
val ue _ of tlype
<Cont ai ner > — Obj ect Cl ass =<
L 1
1 Cont ai ner 1 Obj ect 1 G ass
* <Cont ai ned>s * Sl ots * Attributels
of .
<Cont ai ned> — Sl ot Attribute =

Semant i cMappi ng

<Cont ai ner > Obj ect

<Cont ai ned> Sl ot

Description

Every element at alevel N in alayered meta-model architecture can be mapped to an
object of class “element.name’ at the Nth+1 level. This formalises the rules defined in
[AlvarezO1b]. Note, additional reflection templates will be required for other struc-
tures, e.g. generalisable elements, named el ements.
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Object Reflection

WAl |-formedness Rules

<Container >sArel nstancesOf TheClass<Container>: A container is an instance of
the class whose name is the same as the container.

cont ext <Contai ner> inv:
<Cont ai ner >sAr el nst ancesOf TheCl ass<Cont ai ner >
G of . nane = <Cont ai ner >

<Contained>sAr el nstancesOf TheClass<Contained>: A contained element is an
instance of the class whose nameis the same as the contai ned element.

cont ext <Contai ned> inv:
<Cont ai ned>sAr el nst ancesOf TheCl ass<Cont ai ned>
G of . nane = <Cont ai ned>

<Container >sAreObjectsWithSlots:

cont ext <Contai ner> inv:
<Cont ai ner >sArehj ect sWthSl ots
sel f.<Contai ned>s -> forAll(c | self.Gslots ->
exists(s | s.of.nane = <Contai ned>s and
s.value = ¢c. Q)
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Object Reflection

Example

Obj ect Refl ection()

[ Cl ass/ Cont ai ner, A
Attri bute/ Contai ned]

Abstract Synt axN Semant i cDomai nN+1
val ue of type
Cl ass = Obj ect Cl ass =
4 1
1 Cont ai ner 1 Obj ect 1 ¢ ase
* <Cont ai ned>s * Sl ots * Attributes
) of )
Attribute — Sl ot Attribute —

Semant i cMappi ng

Cl ass Obj ect

Attribute Sl ot

ClasssAr el nstancesOfTheClassClass: A class is an instance of the class named
“Class”.
context Class inv:

Cl asssArel nst ancesOf TheCl assCl ass
G of . nanme = C ass

AttributesArel nstancesOfTheClassAttribute: An attribute is an instance of the class
named “ Attribute”.

context Attribute inv:
Attri but esArel nstancesOf TheCl assAttri bute
G of.nanme = Attribute

ClasssAreObjectsWithSlots:

context Class inv:
Cl asssAreObj ect sWthSl ots
self.Attributes -> forAll(c | self.Gslots ->
exists(s | s.of.nane = “Attributes” and s.value = c. Q)
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Class Reflection

4.26. Class Reflection

ummary

Defines a mapping between a container and their meta-class.

Di sti ngui shabl e
Cont ai ner ()

[ <Cont ai ner >/ Cont ai ner, A [ <Cl ass>/ Cont ai ner,
<Cont ai ned>/ Cont ai ned] <Attribute>/ Contai ned]

Cl assRef |l ecti on

Abstract Synt axN Semant i cDomai NnN+1
type
<Cont ai ner > Cl ass < 1
1 Cont ai ner 1 Cl ass
* <Cont ai ned>s * Attributes
<Cont ai ned> Attribute =

Semant i cMappi ng

<Cont ai ner > Cl ass

<Cont ai ned> Sl ot

Description

Every element at a level N in a layered metamodel architecture can be viewed as a
meta-instance of the class “element.name”’ at the Nth+1 level. This formalises the
dashed arrow commonly used to describe the meta-instance relationship between
model elements. It also formalises the approach used in [Atkinson01]. Note, additional
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reflection templates will be required for other structures, e.g. generalisable elements,
named elements.

WAl -formedness Rules

<Container>sArel nstancesOfTheM etaClass<Container>: A container IS an
instance of the class whose name is the same as the container.

cont ext <Cont ai ner> inv:
<Cont ai ner >sAr el nst anceCf TheMet aCl ass<Cont ai ner >
nmet a. nane = <Cont ai ner >

<Contained>sArel nstancesOfTheM etaClass<Contained>: A contained element is
an instance of the class whose name is the same as the contained element.

cont ext <Cont ai ned> i nv:
<Cont ai ned>sAr el nst ancesOf TheMet aCl ass<Cont ai ned>
met a. nane = <Cont ai ned>

<Container>sHaveM etaClassesWithAttributes:

cont ext <Container> inv
<Cont ai ner >sHaveMet aCl assesW t hAttri butes
sel f.<Contained>s -> forAll(c | self.neta.<Contained>s ->
exi sts(s | s.nanme = <Contai ned>s and
s.type = c.neta))
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4.27. Abstract Container

ummary

A containment relationship between elements that specialises an abstract Container
class. Abstract Container isareified version of the Tree template (see Section 4.24.).

Definition
Abst ract Cont ai ner ( Cont ai ner, Cont ai ned) ‘
=
Cont ai ner * Model El ement
; =
T contents T
<Cont ai ner > *
<Cont ai ner > <Cont ai ned>
1 <Cont ai ned>s
Figure 32. AbstractContainer
Queries

nestedContents() : returns the set of nested contents of a container

cont ext Cont ai ner
nestedContents() : Set(El enment)
self.contents -> iterate(elenment S = Set |
S -> uni on(el enent . nest edContents()))

WAl |-formedness Rules

NoCircular Containment: acontainer cannot contain itself directly or indirectly

cont ext Contai ner
NoCi r cul ar Cont ai nnent i nv:
not (sel f. nestedContents() -> includes(self))

Description

This template makes explicit the relationship between the Container template (see Sec-
tion 4.2.) and the traditional framework based approach in UML 1.X, whereby con-
crete container classes specialise a single abstract class. A benefit of this approach is
that global constraints on relationships across containers can be easily described. For
example, a container forms part of adirected acyclic graph - a container must therefore
not contain itself or be contained by any of its containers. This property can be
described by ano circular containment constraint on the abstract container class.
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Example

A class contains queries and attributes. The no circular containment rules ensures that
an attribute or method cannot contain their class.

Abstract
Cont ai ner ()

[ Cl ass/ Cont ai ner, Attribute/ Contai ned]
[ Cl ass/ Cont ai ner, Met hod/ Cont ai ned]

3

Cont ai ner * Model El enent

Cl ass

Cl ass e Attribute
1 Attributes

contents

1 Cl ass

Query

Querys

Figure 33. AbstractContainer Example
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4.28. Abstract GeneralisableElement

ummary

A generalisable element that specialises an abstract GeneralisableElement class aa
UML 1.X.

Definition
General i zabl e( Type)
General i sabl e
El ement
’7
<Type> *
al | Local Parents() \parent s
Figure 34. AbstractGeneralisableElement

Queries
None.

WAl |-formedness Rules

None.

Description
This template makes explicit the relationship between the Generalisable template (see

Section 4.6.) and the traditional framework based approach in UML 1.X, whereby con-
crete generalisable classes speciaise asingle abstract class.

Example

None.
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4.29. Abstract NameSpace

ummary

A NameSpace template that specialises an abstract NameSpace class alaUML 1.X.

Definition
Abst ract NameSpace( Nam ngCont ext, NamedEl ement )
ownedEl enent s Model El ement
NanmeSpace
0..1 * nane : String
LT T
<NamedEl enent >
<Nam ngCont ext >
name()
N o1
V1
N NameX
<NanmedEl enent > _ <NanmedEl enent >
NanmeSpace -
defs name: String
Figure 35. AbstractNameSpace
Queries
Asfor Section 4.3 on page48.

W&l l-formedness Rules
NamedElementsAreOwnedElements : A <NamingContext>'s NameSpace contains
names for all its owned elements.

cont ext <Nam ngCont ext> i nv:
NanmedEl ement sAr eOwmnedEl enent s
sel f. ownedEl enents ->
i ncl udesAl | (sel f. <NanmedEl enent >NaneSpace. ran())

Description

This template makes explicit the relationship between the NameSpace template (see
Section 4.3.) and the traditional framework based approach used in UML 1.X, whereby
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concrete namespace classes specialise a single abstract class. Unfortunately, UML 1.X
confuses containment with namespace, even though they are orthogonal concepts
(hence the association “ownedElement” on the abstract class), which means that this
model is likely to need updating.

Example

None.
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Chapter 5
Static Core

This chapter describes the core aspects of UML that are neces-
sary to describe static models of systems: classes, packages,
associations, datatypes, expressions, constraints, queries, tem-
plates and reflection.

5.1. Introduction

This chapter defines the core aspects of UML that are necessary to describe static mod-
els of systems. It is structured as follows: an overview of the package structure is
given, followed by a description of the sub-packages. Each sub-package addresses a
different aspect of static modelling. Each sub-package will consist of a description of
concrete syntax, abstract syntax and semantics. The presentation of semantics will
depend on the sub-package. For example a semantic domain and semantic mapping
may be used; alternatively the syntax may be defined as sugar using a syntax to syntax

mapping.

The components of the static core package are shown in Figure 36. In order to make the
definition manageable and adaptable, a layered, extensible architecture has been
adopted. Packages are used to separate out different concepts in the language. Package
generalisation is then used to combine and extend these conceptsin alogically consist-
ent manner.

UML2. St ati cCore

ﬁ Expr essi ons
7 5

Packages Dat aTypes Constraints

Q / A\ \
| . |
Associ at i ons Refl ecti on Tenpl at es ‘ Queri es

Figure 36. Package Structure of UML .Static Package
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A brief description of each package follows:

Classes. this package provides a definition of classes and attributes, but not queries,
which are dealt with in the Queries package.

Packages. genera mechanisms for managing collections of UML elements. The pri-
mary extension mechanism provided is package generalisation.

Associations: contains a definition of UML associations.

Datatypes: a package of UML data types, including basic data types such as integers
and strings. It also includes collection types, such as sets, sequences and bags.

Expressions: a collection of expression primitives that support a family of expression
languages.

Constraints: constructs relating to the expression of constraints. It defines a minimal
constraint language for UML that is similar to OCL, but which has a precise meta-
model semantics.

Queries: adefinition of static methods or queries. A static method has parameters and
areturn type, but no side effects.

Templates. a definition of package templates, which are the foundation of our meta-
modelling approach.

Reflection: adefinition of meta-levels and meta-instances. It provides a precise defini-
tion of what it means for a model to be a meta-instance of another model, a pre-requi-
site for defining the meaning of reflection and layered meta-modelsin the UML.

As described in the introductory chapters, each component of the static core is further
divided into a strict pattern of abstract syntax, semantic domain and semantics pack-
ages. The abstract syntax package describes the modelling concepts defined in a com-
ponent, the semantic domain package describes the semantic elements which are
denoted by the modelling concepts. A mapping from each concept to its semantic
domain is given in the semantics package, which extends both packages.

Theremainder of this chapter gives adetailed description of the contents of these pack-
ages, thus providing a definition of the semantics of the core static language. In each
case, adescription is given of how each package of concepts has been generated using
the package templates described in chapter 4.

Details of the syntax packages will be left until the final submission.
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5.2. Classes

5.2.1 Overview

This package defines the essential abstract syntax and semantics of classes. Classes are
key modelling concepts in the UML. They describe the structure of objectsin terms of
attributes and queries. Classes also support the notion of generalisation: the ability to
reuse structural definitions from one class (the parent, or super-class) in another (the
child, or sub-class).

5.2.2 Templates

Figure 37 shows the templates used to “ stamp out” the Classes package (see chapter 4
for afull description)

General i sabl e General i sabl e
Feat ur eCont ai ner Rel atedl
Semantics Semantics
[ Cl ass_/ Cont ai ner, b\ //d
Attribute_/ Contained, \\\ L
Obj ect _/ Cont ai ner | nstance, AN 7
Sl ot _/ Cont ai nedl nst ance] N ,/
\\ //
N\ 7/
CGeneral i sabl e Cl asses NS
Rel atedl
Semantics
Abst ract Synt ax ‘ Senmant i cDonai n
\/\\\\

[Attribute_/El errent\lf‘\\
"type"/ <nanel>,

Cl ass_/ El ement 2, - -
Sl ot __/ El enent 11 nst ance, Semant i cMappi ng
"val ue"/ <nane2>,

CObj ct _/ El enent 2l nst ance]

Figure 37. Templates used in the Classes Package

Classes have namespaces for the things they contain. Classes are containers of
attributes. Classes are generalisable. Attributes are related to their types and are also
generalisable. The semantics of classes are described by their instances. Instances of
classes are objects; instances of attributes are slots. Objects are namespaces for their
dots. Objects are generalisable. Slots are related to their values and are also generalis-
able.
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5.2.3 Abstract Syntax

Figure 38 defines a model for classes. Each class defines a number of locally defined
attributes.

arepts .
P & |Clozs_ Attribute_Mames |Atfribute_PomeSpace

}

type
Attribute_=
= defs "
parepts
x W Attribute_ | target MlamexAttribute_

Figure 38. UM L 2.Static.Classes.Abstract Syntax

Further attributes are inherited from the parents of the class. Each class contains a
name space for the attributes. Each name space contains a set of definition pairs associ-
ating each local attribute with a name.

]

I

Class_

parents

allLocalParents(1:5et(Attribute )
hllDerivedParents(:5et (At ribute H
allParent=(1:5et(Clazs )
allAttribute_=s(:5et[(Attribute 1
name(Closz_MameSpace):String

ar

1

Figure 39. Class Queries

Figure 39 shows the definition of class queries. The name of the class can be requested
with respect to a given name space. The attributes which are both defined and inherited
by the class are given by Class ::alAttribute_s(). Thelocaly defined parents of a class
are given by Class ::parents. The transitive closure of this relationship is Class ::all-
L ocal Parents().
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WAl |-formedness Rules

[1] All attributes in a class s namespace have different names.

context Class_ inv
Al | Attribute_sHaveDi stinct Nanes
self.Attribute_s->forAll (el enent, elenent’ |
el enent . nanme(sel f. Attri bute_Nanes) =
el enent' . nane(sel f. Attri bute_Nanes) inplies
el enent = elenent'))

[2] The parents of an attribute’s type are related to the attribute’s parents

context Class_ inv:
Rel at edPar ent sConmut e
sel f.type. parents = self.parents ->
iterate(p s = Set{} | s->including(p.type))

Queries

[1] Returnsall attributes of a classincluding its local attributes and those derived from
its parents (except those with the same name as the class' s local attributes or those that
are redefined).

context Class_
all Attribute_s() : Set(Attribute )
self.all Parents() ->
iterate(p s = self.Attribute_s |
s->union(p.all Attribute_s()->
reject(c | s->exists(c' |
c.nanme(sel f. Attri bute_Nanes) =
c'.nane(sel f.Attribute_Nanes) or
or c¢'.parents ->includes(c)))))

[2] Returns al the derived parents of an attribute. A parent is derived if the container of
the attribute (i.e. its class) or any of the container s parents contain an attribute with the
same name.

context Attribute_
al | DerivedParents() : Set(Attribute )
if self.Class_ <> self then
self.Class_.all Parents() -> iterate(p s = Set{} |
s->union(p. Attribute_s -> select(c |
c.name(sel f. Attri bute_Nanes) =
sel f.nane(sel f. Attri bute_Nanes))))
el se Set{} endif

[3] Returns all parents of an attribute, including itslocal and derived parents.

context Attribute_
all Parents(): Set(Attribute )
sel f.all Local Parents()->union(self.allDerivedParents());

[4] Returns all local parents of an attribute.

context Attribute_
al |l Local Parents() : Set(Attribute )
sel f.parents->iterate(parent S = self.parents |
S->uni on(parent. al | Local Parents()))
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Example

:Attribute_MomeSpace defs | ssmsXATte,

name=h
Attribute_Mames defz
WClass
PamexAttribute_
narme =
type hame za.
type
target
Attribute
nameza.
target
Attribute
name=b

Figure 40. A classwith two attributes

Figure 40 shows the definition of a single class named C with two attributes named a
and b respectively.

5.2.4 Semantic Domain

The classes semantic domain package is shown in Figure 41. Classes denote objects.
Each object is an instance of a class. Each object contains a collection of slotswhich is
referred to asits state. A dot has aname and avalue. The value of aglot is an object.

parents

Chject_

Dﬂ_ * Slot_=

parents *

Figure41. UML 2.Static.Classes.SemanticDomain

Both objects and dots have parents. This structure reflects the parent relationships
between classes and attributes respectively. An object haslocal slots and inherited slots
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which correspond exactly to the local and inherited attributes of its class. In thisway a
semantic domain element that is an instance of a class C may easily be viewed as an
instance of a super-class of C by selecting the appropriate super-object. This structur-
ing facilitates varieties of object-oriented polymorphism and the notion of run-super as
pioneered by Smalltalk.

WAl |-formedness Rules

[1] All dotsin aobject’s namespace have different names.

context Object_ inv
Al | Sl ot _sHaveDi sti nct Narres
self.Slot_s->forAll (el enent, elenent’
el enent . nane(sel f. Sl ot _Nanes) =
el enent' . nane(sel f. Sl ot _Nanes) inplies elenment = elenment'))

[2] The parents of aslot’s value are related to the slot’ s parents

context Slot_ inv:
Rel at edPar ent sConmut e
sel f.val ue. parents = self.parents ->
iterate(p s = Set{} | s->including(p.value))

Queries

[1] Returnsall slots of an object including its local slots and those derived from its par-
ents (except those with the same name as the object’ slocal slots or those that are rede-
fined).

cont ext Object _
all Slots() : Set(Slot )
self.all Parents() ->
iterate(p s = self.Slot_s |
s->union(p.all Slot_s()->
reject(c | s->exists(c'
c. nanme(sel f. Sl ot _Nanes) =
c' . nane(sel f. Sl ot _Nanes) or
c'.parents ->includes(c)))))

[2] Returnsall the derived parents of an dot. A parent is derived if the container of the
dot (i.e. its object) or any of the containe’ s parents contain a slot with the same name.

context Slot_
al | DerivedParents() : Set(Slot )
if self.Cbject_ <> self then
self.Object_.allParents() -> iterate(p s = Set{} |
s->union(p.Slot_s -> select(c |
c. name(sel f. Sl ot _Nanes) =
sel f. nane(sel f. Sl ot _Nanes))))
el se Set{}
endi f

[3] Returns all parents of aslot, including itslocal and derived parents.

context Slot_
al | Parents(): Set(Slot )
sel f.all Local Parents()->union(self.allDerivedParents());
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[4] Returnsall local parents of adlot.

context Slot_
al |l Local Parents() : Set(Slot )
sel f.parents->iterate(parent S = self.parents |
S->uni on(parent . all Local Parents()))

5.2.5 Semantic Mapping

The semantic mapping package for classes (see Figure 42) defines all possible legal
configurations of objects and dotsfor a class and its attributes. In other words, given a
candidate object, the semantic mapping package tells us, for any given class whether or
not the object is alegal instance of the class.

# parents

Chject

walue

instpfices

# parents
& T P
paregts
Class_ Slat_

W of

typ

* ihstonces

* parghts

w Attribute_s Attribute

of

Figure42. UML 2.Static.Classes.SemanticM apping

In order for an object to be an instance of a class the object must define otsfor all the
local attributes of the class, the dot values must be instances of attribute types (or a
super-class thereof) and the super-objects must be instances of appropriate super-
classes.

WAl -formedness Rules

[1] Every dot belonging to an object is an instance of the object’ s class's attributes.

cont ext Object _
i nv | nstanceCont ent sComut e
self.of . Attribute_s =
self.Slots -> iterate(p s = Set{} | s->union(Set{p.of _}))

[2] An object contains the same number of slots as the number of attributes contained
by its class.

cont ext Object _
i nv SanmeNumber O El ement sAsCont ai ner
self.Slots -> size =
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self.of . Attribute_s -> size

[3] A dot’s parents are instance’ s of its attribute’ s parents.

context Slot_
sel f.of _.parents =
self.parents -> iterate(p s = Set{} | s->union(Set{p.of _}))

[4] The value of aslot isan instance of it’ s attribute s type.

context Slot_ inv:
i nv I nstanceEl enent sCommut e
sel f.of _.type =
sel f.val ue. of _

Example
Attribute_ instances | 2ot _
of
hameza name 2,
Slat_s
Attributg_=
vilue
type |wClosz_ instonces |‘CBjset_
narme= | of narE S0
halue
Attrifute_s Slat
:Attribute o e :Slot_
narme b of riame=h

Figure43. A classand an instance

Figure 43 shows an example of class and a legal instance. Because the class defines
two attributes named a and b itsinstance must have two slots with the same names. The
values of the slots must be instances of the types of the attributes (for simplicity we
reuse the type C and the value 0)

Figure 44 shows a class D with a single super-class C. Class C defines one attribute
named a and D defines an attribute named b. D has a single instance with a slot for b
and a parent link to an instance of C with dot for a. The instance of D therefore has two
dots named a and b; the structure of the instance of D reflects its ability to be thought
of asan instance of C.
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Attribute_s Attribute_

homeza | of instances | :S|at_
WClass_
type FIOiE =0,
hame=( of Slot_=
pargnts
Object
instance
name o
pargnts
valu
Object_
insto
hame =0
walue
Slat_=
2alat_
instancesz
e Aftribute_= narme =b
WAttribute
o
rame=h

Figure44. A classwith parentsand instances.
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5.3. Packages

5.3.1 Overview

Packages provide away of grouping together and managing related parts of amodel. In
the static core, packages can contain sub-packages, associations and classes. Package
extension is the basic mechanism for reusing models. A package may reuse another
package by specialising it. In this case, the contents of the generalised package are also
available in the specialised package, and may also be extended.

5.3.2 Templates

Figure 45 shows the templates used to “stamp out” the Packages package (see chapter
4 for full descriptions)

Gener al i sabl e
Cont ai ner
Semanti cs

[ Package_/ Cont ai ner, Package_/ Cont ai ned, Snapshof/ Cont ai ner | nst ance, Snapshot / Cont ai nedl nst ance]

[ Package_/ Cont ai ner, d ass_/ Cont ai ned, Snapshot/ q:ont ai ner | nstance, Obj ect _/ Cont ai nedl nst ance]

[ Package_/ Cont ai ner, Associ ati on_/ Cont ai ned, Sna;loshot/ Cont ai ner I nstance, Li nk/ Cont ai nedl nstance]
]

]
Packages :
1

Abst ract Synt ax ‘ Semant i cDomai n

Semanti cMappi ng

Figure 45. Templates used in the Packages package

Packages are containers of classes, associations and sub-packages, and have name-
gpaces for the things they contain. The semantics of packages are described by their
instances. Instances of packages are snapshots. A snapshot is a container of objects,
links and sub-snapshots and has namespaces for its contents. Links are instances of
associations; classes are instances of objects, sub-snapshots are instances of sub-pack-
ages. Packages and snapshots are generalisable.
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5.3.3 Abstract Syntax

Figure 46 defines the abstract syntax package for packages. Each package contains a
number of locally defined classes, associations and sub-packages.

parents |

* porents * Association_

Package_s

E
Aszzociation_s

targe
farget

MomeXPockage_

MamexAssociation_

[ defs

defs

Aszsociation_Mames /

Azzociation_MNomeSpace

Fockage_Mames

Package_MameSpoce

target

MamexClazs

Clazz_Mames

defs

Closz_MomeSpoce

Figure46. UM L 2.Static.Packages.AbstractSyntax

Further classes, associations and sub-packages can be inherited from the parents of the
package. Each package contains a name space for its classes, associations and sub-
packages. Each name space contains a set of name/element pairs associating each con-
tained element with a name.

.

Pochage_

allLozalParent=():3et (Package_)
allDerivedParents):5et (Fockage )
] allFarents():5et (Fockage ) ]
allAzsociation_s():Set{Association )
allClozs_s0):5et(Closs_)
allPackage_s:5et (Fackage
nome (Fockage_Pame Space]:String

=

Figure 47. Package Queries

Figure 47 shows the definition of package queries. The name of the package can be
requested with respect to a package name space. The classes which are both defined
and inherited by the package are given by Package ::alClass s(). identical operations
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exist for associations and sub-packages. The locally defined parents of a package are
given by Package ::parents. The transitive closure of this relationship is Package ::all-
LocalParents().

WAl |-formedness Rules

[1] All classesin a package's namespace have different names.

cont ext Package_ inv
Al | Cl ass_sHaveDi sti nct Nanes
self.Class_s->forAll (el enent, elenent’ |
el enent . nane(sel f. Cl ass_Nanes) =
el enent' . nane(sel f. C ass_Nanes) inplies
el enent = elenent'))

[2] All associationsin a package's namespace have different names.

cont ext Package_ inv
Al | Associ ati on_sHaveDi sti nct Nanes
self.Class_s->forAll (el enent, elenent’ |
el enent . nanme(sel f. Associ ati on_Nanes) =
el enent' . nane(sel f. Associ ati on_Nanes) inplies
el enent = elenment'))

[2] All sub-packages in a package’s namespace have different names.

cont ext Package_ inv
Al | Package_sHaveDi sti nct Nanes
sel f. Package_s->forAl |l (el enent, el enent’
el enent . nanme(sel f. Package_Nanes) =
el enent' . nane(sel f. Package_Nanes) inmplies
el enent = elenent'))

Queries

[1] Returns all classes contained in a package including its local classes and those
derived from its parents (except those with the same name as the package's local
classes or those that are redefined).

cont ext Package_
all Class_s() : Set(Cass )
self.all Parents() ->
iterate(p s = self.d ass_s |
s->union(p.all dass_s()->
reject(c | s->exists(c'
c.nanme(sel f.C ass_Nanes) =
c' . nane(sel f.C ass_Nanes) or
c'.parents ->includes(c)))))
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[2] Returns al associations contained in a package including its local associations and
those derived from its parents (except those with the same name as the package s local
associations or those that are redefined).

cont ext Package_
al | Association_s() : Set(Association_)
self.all Parents() ->
iterate(p s = self.Association_s |
s->uni on(p. al I Associ ation_s()->
reject(c | s->exists(c' |
c. nanme(sel f. Associ ati on_Nanes) =
c' . nanme(sel f. Associ ati on_Nanes or
c'.parents ->includes(c))))))

[3] Returns all sub-packages contained in a package including its local sub-packages
and those derived from its parents (except those with the same name as the package's
local sub-packages or those that are redefined).

cont ext Package_
al | Package_s() : Set(Package )
self.all Parents() ->

iterate(p s = sel f.Package_s |
s->uni on( p. al | Package_s()->
reject(c | s->exists(c' |

c. nane(sel f. Package_Nanes) =

c' . nane(sel f. Package_Nanes or

c'.parents ->includes(c))))))

[4] Returns all the derived parents of aclass. A parent is derived if the container of the
class (i.e. its package) or any of the container’s parents contain a class with the same
name.

context C ass_
al | DerivedParents() : Set(C ass_)
if self.Package_ <> self then
sel f. Package_.all Parents() -> iterate(p s = Set{}
s->union(p.C ass_s -> select(c
c. nanme(sel f.C ass_Nanes) =
sel f. nane(sel f.C ass_Nanes))))
el se Set{}
endi f

Identical queries are generated for Association_ and Package .

[5] Returnsall parents of aclass, including itslocal and derived parents.

context Class_
all Parents(): Set (Cl ass_)
sel f.al |l Local Parents()->uni on(sel f.all DerivedParents())

Identical queries are generated for Association_ and Package .

[6] Returnsal local parents of aclass.

context Class_
al | Local Parents() : Set(C ass_)
sel f.parents->iterate(parent S = self.parents
S->uni on(parent. al |l Local Parents()))
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Identical queries are generated for Association and Package .

Example

Packages

Pockage_ Closs_s | iClass_
narme = narne =B
Package_s target
Pmkﬂgwﬂ/ MamexClass
Pack
aeeE Pockage_MMomeSpoce niame =B
N =
defs
target
Liog=is Clazz_Mames
daie e {Class_MameSpoes
nase =4,
MomexPackage_

narne =)

target

defs

MamexClass

e = A,

Figure 48. A package with a sub-package and classes

Figure 48 shows an example of a single package named P with a sub-package Q and
classes named A and B respectively.

5.3.4 Semantic Domain

Packages denote snapshots. Each snapshot is an instance of a package. Each snapshot
has a collection of objects, links and sub-snapshots. An object is an instance of a class
and contains dots (see section 5.2). A link is an instance of an association and contains
linkends (see section 5.4). The semantic domain package is shown in Figure 49.
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Object_Mames Chbject_MameSpace 5
defs

Figure 49. UML 2.Static.Packages.SemanticDomain

Snapshots have parents and contain objects, links and sub-snapshots, which themselves
may have parents. This structure reflects the parent rel ationships between packages and
their classes, associations and sub-packages. A snapshot has local objects, links and
sub-snapshots and inherited objects, links and snapshots which correspond exactly to
the local and inherited contents of its package. In this way a semantic domain element
that is an instance of a package P may easily be viewed as an instance of a super-class
of P by selecting the appropriate super-snapshot.

W&l -formedness Rules

[1] All objects in a snapshot’s namespace have different names.

cont ext Snapshot inv
Al | Obj ect _sHaveDi sti nct Nanes
sel f. bject _s->forAll (el enent, elenment’ |
el enent . nane(sel f. Obj ect _Nanes) =
el enent' . name(sel f. Obj ect _Nanes) inplies
element = elenent'))

[2] All links in asnapshot’ s namespace have different names.

cont ext Snapshot inv
Al'l Li nksHaveDi sti nct Nanmes
sel f.bject _s->forAll (el enent, elenment’ |
el enent . nane(sel f. Li nkNanes) =
el enent' . nanme(sel f. Li nkNanes) inplies
elenment = elenent'))
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[2] All sub-snapshotsin a snapshot’s namespace have different names.

cont ext Snapshot inv
Al | Shapshot sHaveDi sti nct Nanes
sel f. Snapshots->forAl | (el enent, el enent’ |
el enent . nanme(sel f. Snapshot Nanes) =
el enent' . nane(sel f. Snapshot Nanes) inplies
el enent = elenent'))

Queries

[1] Returns al objects contained in a snapshot including its local objects and those
derived from its parents (except those with the same name as the snapshot’s local
objects or those that are redefined).

cont ext Snapshot
all Gbject_s() : Set(Object )
self.all Parents() ->
iterate(p s = self.vject_s |
s->uni on(p.all Object_s()->
reject(c | s->exists(c'
c. nanme(sel f. Obj ect _Nanes) =
c' . nane(sel f.Obj ect _Nanes) or
c'.parents ->includes(c)))))

[2] Returns all links contained in a snapshot including its local links and those derived
from its parents (except those with the same name as the snapshat’ slocal links or those
that are redefined).

cont ext Snapshot
al I Li nks() : Set (Link)
self.all Parents() ->
iterate(p s = self.Links
s->uni on(p. al | Li nks() ->
reject(c | s->exists(c'
c. nanme(sel f.Li nkNanes) =
c' . nane(sel f.Li nkNanmes or
c'.parents ->includes(c))))))

[3] Returns all sub-snapshots contained in a snapshot including its local sub-snapshots
and those derived from its parents (except those with the same name as the snapshot’s
local sub-snapshots or those that are redefined).

cont ext Snapshot
al | Snapshots() : Set(Snapshot)
self.all Parents() ->
iterate(p s = self. Snapshots
s->uni on(p. al | Snapshots() ->
reject(c | s->exists(c'
c. nanme(sel f. Snapshot Nanes) =
c' . nane(sel f. Snapshot Nanes) or
c'.parents ->includes(c)))))
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[4] Returns all the derived parents of aobject. A parent isderived if the container of the
object (i.e. its snapshot) or any of the container’ s parents contain a object with the same
name.

cont ext Object
al | DerivedParents() : Set(Object )
if self.Snapshot <> self then
sel f. Snapshot. all Parents() -> iterate(p s = Set{}
s->uni on(p. Object _s -> select(c |
c. nanme(sel f. Obj ect _Nanes) =
sel f. nanme(sel f. Obj ect _Nanes))))
el se Set{}
endi f

Identical queries are generated for Link and Snapshot.

[5] Returnsall parents of an object, including its local and derived parents.

cont ext Object _
al | Parents(): Set ((hj ect )
sel f.al |l Local Parents()->uni on(sel f.all DerivedParents())

Identical queries are generated for Link and Snapshot.

[6] Returnsall local parents of an object.

cont ext Obj ect
al |l Local Parents() : Set(Ohject )
sel f.parents->iterate(parent S = self.parents
S->uni on(parent. al |l Local Parents()))

Identical queries are generated for Link and Snapshot.
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5.3.5 Semantic Mapping

The semantic mapping for packages defines all possible legal configurations of snap-
shots for a package and its contents. In other words, given a candidate snapshot, the
semantic mapping package tells us, for any given package whether or not the snapshot
isalega instance of the package.

Phikage_s| = SM *
Paskage_ instanges | Shopshot

of *
Aszociation_s Links
Aszociation_ instances || jnk &
Class_= * Chbject_s *
Class_ instances (Object_
of *

Figure 50. UM L 2.Static.Packages.M apping

In order for an snapshot to be an instance of a package the snapshot must define
objects, links and sub-snapshots for all the local classes, associations and sub-packages
of the package, and each of their parents must be instances of appropriate super-
classes, associations or packages.

WAl |-formedness Rules

[1] Every object belonging to an snapshot is an instance of the snapshot’s package’'s
classes.

cont ext Snapshot _
i nv | nstanceContent sComrut e
self.of _.Class_s =
self.Object_s -> iterate(p s = Set{} | s->union(Set{p.of_}))

[2] Every link belonging to a snapshot is an instance of the snapshot’s package's asso-
ciations.
cont ext Snapshot _
i nv | nstanceContent sComrut e

sel f.of . Association_s =
self.Links -> iterate(p s = Set{} | s->union(Set{p.of_}))
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[3] Every sub-snapshot belonging to an snapshot is an instance of the snapshot’ s pack-
age's sub-packages.

cont ext Snapshot _
i nv | nstanceCont ent sComut e
sel f. of _. Package_s =
sel f. Snapshots -> iterate(p s = Set{} | s->union(Set{p.of_}))

[4] A snapshot’s parents are instance’ s of its package' s parents.
cont ext Snapshot _
sel f.of _.parents =
sel f.parents -> iterate(p s = Set{} | s->union(Set{p.of _}))
[5] An object s parents are instance s of its class s parents.

cont ext Object
sel f.of _.parents =
self.parents -> iterate(p s = Set{} | s->union(Set{p.of _}))
[6] A link’s parents are instance’ s of its association’ s parents.

cont ext Link
sel f.of _.parents =
sel f.parents -> iterate(p s = Set{} | s->union(Set{p.of _}))

Example

Figure 51 shows a package and alegal instance. The package defines a sub-package

Package_ instances |:Snapshot
narne =P of name=snl
hoge_ nopshot
Closs_ instances | [Objeet_
055 _s
name=4 | of narme=zobj 1
Class_ instances | :Object_ Chject_=
Class_s L
namezg | of narmezohj 2
Packoge_s Snapshots
Packags_ instances | Shapshat
e =) of hame Zsh 2

Figure51. A package with instances.

and two classes named A and B. The snapshot is a valid instance of the package
because its sub-snapshots and objects are valid instances of the contents of the pack-

age.
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Figure 52 shows a package P with a single super-package Q. Package P defines one
class named B, Q defines one class named A whose parent is B. P has a single instance
with an object for A and a parent link to an instance of Q. The instance of B aso hasa
parent link to the instance of A reflecting its ability to be thought of as an instance of Q.

Package | of instonees | :3napzhot
e (s boige Snapshet name=zzhd
L
parents parents
Class_ | of  jnstonces | ‘Object_ .
i Ohject_=
narme =4, narne zoh j 1
parents parsnts
Pockage_ | of inztonees | :Shopshot
niarme =P narme =zn1l
Pochage_ ASnapshat
Clazz_= Llase_| of instances | ‘Object_ Chject_=
narne =B naomezobj 2

Figure 52. A package with parents and instances.
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5.4. Associations

5.4.1 Overview
Classes are related by associations. Association have association ends that connect the

association to two or more classes. Each association end defines the number of objects
that can be related by instances of the association through its multiplicity.

5.4.2 Templates

Figure 53 shows the templates used to “stamp out” the Classes package (see chapter 4
for afull description).

General i sabl e General i sabl e
Feat ureCont ai ner Rel at ed1
Semantics Semantics
[ Associ ati on_/ Cont ai ner, b\ ’fdA i ati onEnd/ El (1t / 1
i ati ; N ssoci ati onEn enent 1, "type"/ nanel,
flsii/cg:t ;?Eg?{ g?;:lc;ed' \\\ ,’/ Cl ass_/ El enent 2, Li nkEnd/ El ement 11 nst ance,
. ) ’ AN ,/ val ue/"name2", Obj ect _/ El enent 2 nst ance]
Li nkEnd/ Cont ai nedl nst ance] N , -
\\ //
. AY 7
CGeneral i sabl e Associ ati on N
Rel at ed1
Semantics
Abstract Synt ax ‘ Senmanti cDonai n
N-~<

[ Associ ati onEnd_/ Hl e\m\eh&l,\
"type"/ <nanel>,

Cl ass_/ El enent 2,

Li nkEnd/ El enent 11 nst ance, Semanti cMappi ng
"val ue"/ <nane2>,

CObj ct _/ El enent 21 nst ance]

Figure 53. Templates used in the Associations package

Associations are containers of association ends. Associations have a hamespace for
their association ends. Links are instances of associations. Linkends are instances of
association ends. Each linkend relates instances of associated classes according to the
multiplicity of their association ends. Links are containers of Linkends. Associations
are generalisable.
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5.4.3 Abstract Syntax

Figure 54 defines a model for associations. An association is generalisable and con-
tains a number of association ends.

parepts
Aszociotion_

E 3

=
AzsociationEnd type Class_

\\| * AszociationEnds *| parents
parents

AzzociatiohEndiames *

target
AzzociationEndMomeSpaoce

I
= MamexAssociotionEnd

L

Figure54. UML 2.Static.Associations.AbstractSyntax

Each association contains a name space for its association ends. Each name space con-
tains a set of definition pairs associating each association end with a name. An associa-
tion end has amultiplicity, and is related to a class (a participant in the association).

Azszociation_

t
R allLecalParent=(1:5et (Aszociotion_

allCe rivedParents (:Set (Association )
allParents):5et (Fockage )
allAssociationEnds [1:5et (AssociationEnd)
name [Aszociation_MomeSpace]):String

Figure 55. Association Queries

Figure 55 shows the definition of association queries. The name of the association can
be requested with respect to a given name space. The association ends which are both
defined and inherited by the association are given by
Association_::allAssociationEnd (). The locally defined parents of an association are

given by Association ::parents. The transitive closure of this relationship is
Association_::allLocal Parents().
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W&l -formedness Rules

[1] All association ends in a association’s namespace have different names.

context Association_ inv
Al | Associ ati onEndsHaveDi sti nct Nanes
sel f. Associ ati onEnds->forAll (el ement, elenent’ |
el enent . nane(sel f. Associ ati onEndNanes) =
el ement' . nane(sel f. Associ ati onEndNanes) inplies
element = elenent'))

[2] The parents of an associationend’s type are related to the associationend s parents

cont ext Associ ati onEnd inv:
Rel at edPar ent sComut e
sel f.type. parents = self.parents ->
iterate(p s = Set{} | s->including(p.type)

Queries

[1] Returns al association ends of an association including its local association ends
and those derived from its parents (except those with the same name as the associa-
tion’slocal association ends or those that are redefined).

cont ext Association_
al | Associ ati onEnds() : Set(Associ ati onEnd)
self.all Parents() ->
iterate(p s = sel f.Associ ati onEnd
s->uni on(p. al | Associ ati onEnds() - >
reject(c | s->exists(c' |

c. nanme(sel f. Associ ati onEndNanes) =
c' . nane(sel f. Associ ati onEndNanes) or
c'.parents ->includes(c)))))

[2] Returnsall the derived parents of an association end. A parent isderived if the con-
tainer of the association end (i.e. its association) or any of the container’s parents con-
tain an association end with the same name.

cont ext Associ ati onEnd
al | DerivedParents() : Set(Association_)
if self.Association_ <> self then
sel f. Association_.allParents() -> iterate(p s = Set{}
s->uni on( p. Associ ati onEnds -> select(c
c. nane(sel f. Associ ati onEndNanes) =
sel f. name(sel f. Associ ati onEndNanes))))
el se Set{}
endi f

[3] Returns all parents of an association end, including itslocal and derived parents.

cont ext Associ ati onEnd
al | Parent s(): Set (Associ ati onEnd)
sel f.all Local Parents()->uni on(sel f.all DerivedParents())
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[4] Returns all local parents of an association end.

cont ext Associ ati onEnd
al | Local Parents() : Set(Associ ati onkEnd)
sel f.parents->iterate(parent S = self.parents |
S->uni on(parent. al | Local Parents()))

[2] The parents of an linkend’s value are related to the linkend’s parents

cont ext LinkEnd inv:
Rel at edPar ent sConmut e
sel f.val ue. parents = self.parents ->
iterate(p s = Set{} | s->including(p.value)

Example
I T o T [
:lEIu:lss_f,:l.F,lEt ‘AszociationEnd Azsociation_ AzsociationEnd 1,ﬂ:lsﬂluss_
namezA nome=n AzsociationEnds namezC AszociationEnds nome:zb narme =B
1 L

target target

AzzociatiopEndMames

]
PomexAszociationEnd 4o 5- defs MomeXAzzociationEnd

:AzzociationEndMame Spoce

naMme za. name b

Figure 56. An association with two association ends

Figure 56 gives an example of a single association named C with two association ends
named a and b respectively that relate two classes A and B.

5.4.4 Semantic Domain

Associations denote links, whilst association ends denote linkends. A link contains two
or more linkends depending on the arity of the association. A linkend hasanameand a
value. The value of the linkend is an object. The semantic domain is shown in Figure
57.
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Figure 57. UM L 2.Static.Associations.SemanticDomain

Both links and linkends have parents. This structure reflects the parent relationships
between associations and association ends respectively. A link has local linkends and
inherited linkends which correspond exactly to the local and inherited association ends
of its association. This permits a semantic domain element that is an instance of a asso-
ciation C to be easily be viewed as an instance of a super-class of C by selecting the
appropriate super-links.

W&l -formedness Rules

[1] All linkendsin alink’s namespace have different names.

context Link inv
Al'l Li nkEndsHaveDi sti nct Nanes
sel f. Li nkEnds->forAll (el enent, elenment’ |
el enent . nane(sel f. Li nkEndNanes) =
el enent' . name(sel f. Li nkEndNanes) inplies
element = elenent'))

Queries

[1] Returnsall linkends of alink including itslocal linkends and those derived from its
parents (except those with the same name as the link’s local linkends or those that are
redefined).

cont ext Link
al I Li nkEnds() : Set (Li nkEnd)
self.all Parents() ->
iterate(p s = self.LinkEnd
s->uni on(p. al I Li nkEnds() - >
reject(c | s->exists(c' |
c. nanme(sel f. Li nkEndNanes) =
c' . nane(sel f.Li nkEndNanes) or
c'.parents ->includes(c)))))
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[2] Returns all the derived parents of alinkend. A parent is derived if the container of
the linkend (i.e. its link) or any of the container’s parents contain a linkend with the
same name.

cont ext LinkEnd
al | DerivedParents() : Set(LinkEnd)
if self.Link <> self then
self.Link.allParents() -> iterate(p s = Set{} |
s->uni on(p. Li nkEnds -> select(c
c. name(sel f. Li nkEndNanes) =
sel f. nane(sel f.Li nkEndNanes))))
el se Set{}
endi f

[3] Returns all parents of alinkend, including its local and derived parents.

cont ext Link
al | Parent s(): Set (Li nkEnd)
sel f.all Local Parents()->union(self.allDerivedParents());

[4] Returns all local parents of alink end.

cont ext Link
al | Local Parents() : Set(LinkEnd)
sel f.parents->iterate(parent S = self.parents
S->uni on(parent. al | Local Parents()))

5.4.5 Semantic Mapping

The semantic mapping for associations (see Figure 58) defines all possible legal con-
figurations of links and linkends for every legal configuration of association and asso-
ciation ends. In other words, given acandidate link and linkends, the semantic mapping
package tells us, for any given association whether or not the link isalegal instance of
the association. In order for a link to be an instance of an association the link must
define linkends for al the local association ends of the class, the link end values must
be instances of association types (or a super-class thereof) and the super-links must be
instances of appropriate super-associations
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Aszociotion_ instonces |Link
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= | AszociationEnds * LinkEnds=
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Class_ instonces  [Clbject_

of =

Figure58. UM L 2.Static.Associations.SemanticM apping

WAl -formedness Rules

[1] Every linkend belonging to an link is an instance of the link’ s association’ s associa
tion ends.

cont ext Link
i nv I nstanceCont ent sComrut e
sel f. of _. Associ ati onEnds =
self.LinkEnds -> iterate(p s = Set{} | s->union(Set{p.of_}))

[2]A link contains the same number of linkends as the number of association ends con-
tained by its association.
cont ext Link

i nv SameNumnber Of El enent sAsCont ai ner
sel f. LinkEnds -> size = self.of . AssociationEnds -> size

[3] A linkend's parents are instance’ s of its association end’ s parents.

cont ext Li nkEnd
sel f.of _.parents =
sel f.parents -> iterate(p s = Set{} | s->union(Set{p.of _}))

[4] The value of alinkend is an instance of it’s association end’ s type.

context LinkEnd inv:
i nv | nstanceEl enent sCommut e
sel f.of _.type =
sel f.val ue. of _
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[5] The number of links between two objects must conform to the multiplicity of their
association ends.

To be defined in the final subni ssion.

Figure 59 shows an association and a legal instance.

AgzociationEnds i AszociationEnds
Azzociation_

ik, type AssociationEnd D eoel tian ‘AssociationEnd type Flass_

naMmeE 20, name=b
i of of of of

instanoes instances instances instances inztonce:

Object_ value kR Link ik sl Object_

name=a, | LinkEnds LinkEnds | namezh

Link

Figure59. An association and an instance

The association defines two association ends named a and b. Therefore its instance
must have two link ends with the same names. The values of the link ends must be
instances of the types of the association end (for simplicity we reuse the type C and the
value 0)

AszzociotionEndz AszociationEnds
(Class_ ‘AssociationEnd Association_ :AzsociationEnd type Class_
narme =A | Hype FigE =0, name=C name=b name =B
Associotion_ Association_
parents parents pargnts parents parents
Azzociation_ Aszociation_
Class_ | type :AszsociationEnd Azsociation AszsociationEnd type [ Class_
nome =B narme ze name=0 narme=f name=F
AsszociationEnds AssociationEnds

Figure 60. An association with parents

Figure 60 shows an association D with a single super-association C. Association C
defines two association ends named a and b associated with classes A and B. D defines
two association ends named e and f that specialise a and b and which are associated
with classes E and F. Because the association ends e and f redefine the association ends
aand b, then D::alAssociationEnds() will return e and f as its association ends. Fur-
thermore, because e and f are subclasses, their types must also be specialised (see sec-
tion 5.4.3, constraint [2]). Interestingly, if C and D were binary associations (i.e.
C,D::alAssociationEnds() -> size must be equal to 2) then association ends must be
redefined to avoid inheriting additional association ends. Because the association ends
are specialised, their type's must be specialised too, leading to the traditional kind of
type specialisation and roleend redefinition seen in the literature.
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5.5. DataTypes

UML provides a number of built-in data types. There are two categories of data type:
ground data types such as Integer and Char, and parametric datatypes such as Collec-
tion and its associated sub-classes (Set, Bag, Seq), Functions and Tuples. Ground data
types are classes (named Integer, Boolean etc.) that define a standard interface (+, >,
not, and etc.). Therefore instances of ground data types are objects that behave in the
expected way.

Parametric data types are classes whose instances are ground data types. For example
Set is a classwhose instances are data types Set(I nteger), Set(Class), Set(Set(Boolean))
etc. Each parametric data type defines a standard interface which applies uniformly to
all the instance data types. For example Set defines an operation size whose definition
appliesto al ground set types: the size of an instance of Set(Integer) is calculated in the
same waly as the size of an instance of Set(Set(Class)).

5.5.1 Templates

To be defined in the final submission.

5.5.2 Abstract Syntax

The DataTypes abstract syntax package defines ground data types (Integer, etc.).
Ground data types are sub-classes of the class Class . Ground data types are meta-
instances of Class_ (not shown here) thus ensuring that only a single instance of each
ground data type can exist within amodel. A tupleis defined over a sequence of types,
for example (Integer x String x String). A function is defined over a binary Tuple (its
domain and range types).

elementTypes |Class_ | slement Type

o

Tuple

Integer String Boolean Char Caollection

type

Function T

Feal

Figure61. UML 2.Static.DataTypes.AbstractSyntax
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WAl |-formedness Rules

[1] A Function has adomain and range (a binary tuple type).

cont ext Function
sel f.type. el ement Types -> size = 2

5.5.3 Semantic Domain

The DataTypes semantic domain package introduces instances of collections, tuples
and functions. A collection value is a set of objects. A tuple value is a sequence of
objects. A function isaset of binary tuple values.

slements  |Object

Collectionvalue Tuplstfalue values Funetion'alue

E g

Figure 62. UM L 2.Static.DataTypes.SemanticDomain Package

WAl |-formedness Rules

None.

5.5.4 Semantic Mapping

A collection value is an instance of a collection. A tuple value is an instance of atuple.
A function value is and instance of afunction.

Collection instances |Collectionalue
of =
Tuple inztonces Tuple'falus
of i
instonces
Funation Funetion'alue
of E
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W&l|-formedness Rules
[1] A tuple value's object’s are instances of its tuple’ s types.
[2] A collection valu€ s objects are instances its collection’ s type.

[3] A function’stuple value's are instances of the function’stuple type.

To be defined.
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5.6. Expressions

Languages which navigate static models and which express properties of semantic
modelswill rely on abasic collection of expression primitives. Examples of languages
which require these facilities are OCL and action languages.

UML 2.0 must support families of expression languages and therefore must provide a
suitably expressive collection of expression primitives. In addition to providing sup-
port for basic expression types such as constants and variables, a package of expression
primitives must address more complex features such as method invocation, local varia-
ble binding and recursion. This is achieved using the standard technique which pro-
vides first class functions as basic semantic elements, thereby addressing all binding
and invocation issues in a single language feature.

5.6.1 Templates

To be defined in the final submission.

5.6.2 Abstract Syntax

The key features of all expression languages are as follows:

» Constants, for example integers, booleans and the empty sequence. We view every-
thing as an object. Therefore, constants are a collection of predetermined objects.
For example the integer constant 1 isa predefined object which behaves in the usual
way when asked for its successor, predecessor etc.

» Variables which are bound to values in expressions and may be introduced by bind-
ing constructs such as method parameters, let expressions and iteration expressions.

» Reationa expressions. Relations include boolean relations (e.g. >), integer func-
tions (e.g. +) and object field references (e.g. name). We do not prescribe a fixed
collection of relations beyond the relations which are necessary to support the defi-
nition of the kernel language. This allows the expression language to be extended
with new relations to support language families.

» Coallection expressions. The most important forms of collection are sets and
sequences. Other forms of collection can be constructed as objects implemented in
terms of basic collection types. For example OCL bags can be implemented as
objects that use sequences for data storage.

» Conditional expressions.

* Query invocation. A class may define queries. A method is a parameterised expres-
sion. Thisisto be contrasted with general method invocation which may cause
object side effects. Side effects are not supported by the expression primitives.

» Functions. A function is a parametric expression. Queries are functions, invariants
are functions, and functions can be used to represent all possible expression con-
structs that compute values over amodel (for example iterate expressionsin OCL).
Functions are applied to argument values.

* Recursion. Recursion is wide-spread in expression languages. For example OCL
allows query operationsto refer to themselves. In order to support families of
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expression languages we must provide a general purpose recursion mechanism that
isnot tied to any particular language features.

» Tuples. A tupleisan ordered collection of values. A tupleis different from a collec-
tion in that the elements of the tuple may have different types (all elements of a
sequence must be instances of a given type). Elements of atuple are referenced by
position in the tuple. Tuples are useful when operations wish to produce more than

one value with unrelated types.
« =ub
—
Exp free Fresifar

kg

body j

Felation

AnExp

Send

Lambda

War

L] L]

Figure 63. UML 2.Static.Expressions.AbstractSyntax

Figure 63 on pagel24 shows a model of the abstract syntax for expression primitives.
An expression contains an ordered collection of sub-expressions and has a set of free
variables and atype. Each free variable has a name and a type:

context Env inv: free = sub->iterate(e F = Set{} | F->union(e.free))

The class Exp has three abstract sub-classes. An AnExp has no sub-expressions. An
UnExp has exactly one sub-expression. A BinExp has exactly two sub-expressions.
Therest of this section describes the concrete expression classes.

Figure 64 shows the definition of the primitive expression classes. In order to provide
motivation for these classes we will incrementally construct an example expression.
Suppose that we have a set of people and wish to add up their ages. If each person is
called ‘person’ and the current running total of ages is ‘ages then the following
expression:

person.age + ages
adds the current person to the current total. Therefore we have a relational expression

(+) including arelational expression (.age) and a variable expression (ages). The rela-
tional expression contains a single variable expression (person).
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The particular person will be varied, as will the current running total so we abstract
over these names:

\(person,ages) person.age + ages

which is a function expression. Call this function ‘body’ we will use it later. Suppose
that the collection of peopleis called ‘ people’.We can check whether there any further
people using arelation expression:

people.isEmpty

NB thisis not OCL, but we support a builtin relation which OCL could use. Another
relation is selectElement:

people.sel ectElement

If the set of people is empty then we produce the current running total otherwise we
select a person and add it to the current running total using a conditional expression:

if people.isEmpty
then ages
€l se people.sel ectElement.age + ages

We already have a function that performs the increment so:

if people.isEmpty
then ages
€l se body(peopl e.sel ectElement,ages)

The expression above adds one person’s age to the running total. We must do this for
all elements of ‘people’. We can reduce the current set of people by the selected ele-
ment if using the send expression ‘excluding'’:

peopl e.excluding(peopl e.sel ectElement)

We must do thisfor the selected element supplied to body. Suppose that ‘iterate’ (to be
defined below) is applied to a set of people, a body and a running total. The operator
‘iterate’ applies the body to all the elements and returns the running total :

iterate(people,body,0)

applies ‘body’ to all people, adds up their ages and adds it to 0. Then we can use ‘iter-
ate’ to add up therest of the people:

if people.isEmpty
then ages
else let person = people.selectElement
in iterate(people.excluding(person),body, body(person,ages))

The above is the definition of ‘iterate’. Therefore, ‘iterate’ is a recursive operator. We
can construct such operatorsusingy':
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let iterate =
Y \(iterate) \(people,body,ages)
if people.isEmpty
then ages
else let person = people.sel ectElement
in iterate(people.excluding(person),body,body(person,ages))
in iterate(people,\(person,ages) person.age + ages,0)

which isequivalent to the following OCL expression:
people->iterate(person ages = 0 | person.age + ages)

Of course the OCL expression above is much more succinct. But the expression primi-
tive language is much smaller is more expressive and can therefore by used as the basis
of afamily of expression languagesincluding OCL.

Therest of this section gives the OCL well-formedness constraints for the abstract syn-
tax of the expression primitives.

A constant has a value:

context Constant inv: value.of = type and free->size=0

A variable has a name and atype. The free variablesin this expressionis itself:
context Var inv: free->forAll(f | f.name = name and f.type = type)

A relation isimplemented as a function that, when applied to elements from its domain
produces an el ement in the range.

The free variables of afunction are those of its body with the arguments removed™:

context Lambda inv: free = body.free->SetDifference(args->asSet)

1. Notethat afunction with 0 argumentsiswell-formed. It is equivaent to its body expression; although
the value of the expression must be ‘released’ by function application. This provides a systematic way
of modelling queriesin Section 5.7 on pa gel35.
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NB This sectionrequires type constraints.

Constant War Eelation

free:Set(Freeifor) | |free:Set (Freeifar]| (free:Set(Fresiiar])

type:Closs typeClass type:Class
sub:Seq(Exp) zub:Seq(Esxp) zub:Seq(Exp)
value:Objeot naome:String relation:Function
W Tuple Send
free:Set(Freeiar) | |fres:Set(Freeiar) [ |fres:Set(Fresilar)
typeCloss type Closs type:Closs
sub:Seq(Exp) sub:Seq(Exp) zub:Seq(Exp)
mezzage:String
Larmbda SetExp
SeqBxp
free:Set (Freelfar] | [free:Set(Fresiar)
type:Closs type:Closs free:Set (Freeifar]
zub:Seq(Expl sub:SeqiExp) type:Clozs
body:Exp sub:Seq(Exp)
argz:Seq(String)
If o
Apply
free:Set(Freeifar)
type:Closs ]free:Se’r[Free'l.l'uer
sub:Seq(Exp) type:Closs
zub:Seq(Exp)l

|}

Figure 64. Definition of Expression Classes

5.6.3 Semantic Domain

Expressions calculate in a given context to produce values. Therefore, we will talk of
expressions having instances called calculations. An expression (cf. Class) may con-
tain variables (cf. attributes). A calculation (cf. Object) defines particular values for all
of the variables (cf. dots).

A calculation is an historical record of one particular execution of an expression. It
records the values of the variables that were required by the expression and also
records the result. Since expressions can be nested, calculations are also nested. Nested
calculations record data dependencies; typically, the value produced by a calculation
will depend on the values of the calculations it contains.

In order to motivate the use of calculations we present a smple example. Consider a
calculation that involves adding two constant numbers together. Three individual cal-
culations are involved: two independent cal culations produce the numbers and a con-
taining calculation adds them together. If the number are 3 and 4 then the structure of
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the calculation is shown in This can be represented on a smple diagram as shown in

Figure 65.
7

Figure 65. A simple calculation adding two constants.

Now suppose that the calculations producing numbers 3 and 4 were performed in a
context involving variables. The sub-calculation producing 3 could have arisen from
the evaluation of a variable whose value was 3. In this case the context for the sub-cal-

culation would associate the variable with the value 3. The sub-calculation producing 4
could have arisen from the doubling of a variable whose value was 2. In this case the
context for the sub-cal culation would associate the variable with the value 2.

x=3y=2

Figure 66. Calculationsinvolving context.

Figure 66 shows a calculation involving contexts. The diagram shows contexts being
fed into a calculation and values being produced by the a calculation. Notice that sub-
calculations must have sub-contexts with respect to their containers.

NB calculations don’t record what they did with the values. There is no labelling of the
calculations, for example to show that it arose froman addition expression. This seems
unnecessary but could be added in the form of specializations of an abstract calcula-
tion class or in terms of tags.
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Figure 67 shows a model of calculations. A calculation is a container of sub-calcula-
tions. Each calculation has a context, referred to as an environment, containing varia-
ble-value pairs. The class Binding has a name of type string and avalue of type Object.
Each calculation produces a single value.

A closureis the result produced by evaluating a function expression. A closure has the
following structure:

Closure

body:Exp
env:Set(Binding)
argzs:Seq(String)

where args is a sequence of argument names, body is an expression that will be evalu-
ated when the function is invoked and env is a collection of bindings for all of the free

variablesin the body of env.
* =yb
Cale

o EhY

Binding

wilue

ehy value |Object [ * elements

Closure Tup

Figure 67. UM L 2.Static.Expressions.SemanticDomain
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5.6.4 Semantic Mapping

Expressions have calculations as instances as shown in Figure 68. Each expression

* =ub
Cala

#x instances

* zuh
Exp

of _

Figure 68. UM L 2.Static.Expressions.SemanticM apping
contains variables whose values are defined in the corresponding environment of the
calculation. The types of the variables in the expression must be matched by the types
of the values in the environment. Each expression contains sub-expressions; this con-
tainment structure is reflected in the calculations although it is not an exact match (see
below). Expressions have types and cal culations produce values; the type of the value
produced by a calculation must conform to the type of the classifying expression.

There are three types of instantiating containment pattern (referred to as Instantiable

Containerl, Instantiable Container2 and Instantiable Container3 respectively?)
involved in defining the expressions semantic mapping. In each case we have an
expression e and an instance c. We are interested in the relationship between the sub-
expressions of e and the sub-calculations of c:

1. the sub-calculations of ¢ isasub-set of the instances of the sub-expressions of e

For example, this situation occurs when e isa conditiona expression and when c
contains calculations describing either the test and consequent or the test and alter-

native.

- .

e C

2. the sub-expressions of eisasub-set of the classifiers of the sub-calculations of c:

For example this situation occurs when e is a method call (of one argument in the
case shown above) and when ¢ contains the calculations for the target expression,
the single argument and also the cal culation arising from the evaluation of the
method body. The calculation ¢ therefore contains sub-calculations arising form the

1. Note, InstantiableContainerl is equivalent to ContainerSemanticsin section 4.13.
InstantiableContainer2 and I nstantiableContainer3 are variations on the same template and will be

defined later.
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sub-expressions of e but also contains an extra calcul ation which arises from the
method body.

3. the classifiers of the sub-calculations of ¢ are exactly the sub-expressions of e. This
situation occurswhen eisarelational expression: every sub-calculation must corre-
spond to exactly one sub-expression and vice versa.

.1 \ .

Expressions have free variables and calculations have environments. Free variables
describe the names and types of the variables which are used in the expression. Envi-
ronments describe the names and the values of the variables which are used in the cal-
culation. A calculation is an instance of an expression only if the environment
corresponds to the free variables in terms of names and types:

context Exp inv: instances->forAll(i | i.env.name = free.name)

context Exp inv: i.env->forAll(b |
free->exists( f | f.name = b.name and f.type.instances->includes(b.value)))

Expressions have types and cal culations produce values. A calculation is an instance of
an expression providing that the value produced by the calculation is of the corre-

sponding type:
context Exp inv: instances->forAll(i | type.instances->includes(i.value))
The rest of this section describes the meaning of each type of expression in turn.

Constants are | nstantiable Container3. The value produced by an instance of a constant
expression must be the value of the constant:

context Constant inv: instances->forAll(i | i.value = value)

Variables are InstantiableContainer3. The free variable constraint on expressions and
calculations requires the calculation to produce avalue which is defined in the environ-
ment and has the correct type.

Relations are Instantiable Container3. The value produced by an instance of arelation
expression must be the value in the range of the relation corresponding to the values of
the sub-calculations in the domain:
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context Relation inv: instances->forAll(i |
i.value = relation(i.sub->collect(c | c.value)))

A'Y expression isused to create recursive values. It is an Instantiable Container2. The
calculation arising froma'’Y expression is shown in Figure 69.

Figure 69. Calculation creating arecursive value.

The calculation contains two sub-calculations. The first (shown on the left) is an
instance of the sub-expression of Y. It describes an evaluation which produces a clo-
sure <v,€',b> containing a single argument v, an environment € and an expression (the
body of afunction) b. The second sub-calculation (shown on the right) is an instance of
the function body b. The context is €' ,v=x which is the environment € contained in the
closure extended with a value for the argument v. The particular value x must be the
same as that produced by the calculation (creating arecursive value).

context Y inv: instances->forAll(i | i.sub->size = 2)
context Y inv: instances->forAll(i | i.sub->at(0).env = env)
context Y inv: instances->forAll(i | tie(i.value,i.sub->at(0).value,i.sub->at(1).env))

context Y inv: instances->forAll(i |
i.sub->at(1).value.body.instances->includes(i.sub->at(1))

Y::tig(v:Object,c:Closure,s. Set(Binding)):Boolean
c.env->subSet(s) and
let b=s-cenv
in b.name = c.args->at(0) and b.value=v
end)

Tupleisan Instantiable Container 3. The elements of the tuple produced by atuple cal-
culation must be the values of the sub-calculations:
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context Tuple inv: instances->forAll(i | i.value.elements = i.sub.value)

Send is an Instantiable Container 2. An extra calculation arises from the evaluation of
the query body. Given an object o and a message name m, 0.getQuery(m) produces the
guery named m defined by the classifier of 0. The query isa closure:

Figure 70. Calculation describing message passing

Figure 70shows a send calculation involving a single message argument. It consists of
three sub-calculations. Thefirst calculation (on the left) describes the evaluation of the
target of the message. The target of the message is an object 0. The second calculation
(in the middle) describes the evaluation of the single message argument. In generate a
message may have any number of arguments. Assuming that:

0.getQuery(m) = <v,e’ ,b>

Where v is the query formal argument, € isthe method context and b isthe query body
then the third calculation (on the right) arises from the evaluation of the query body in
the appropriate context.

context Send inv: instances->forAll(i | i.sub->size = 3)

context Send inv: instance->forAll(i |
let ¢ =i.sub->at(2); o = i.sub->at(2).value; a=i.sub->at(1).value
in isSend(c,0.getQuery(name),a,val ue)
end

Send::isSend(c:Calc,m:Closure,arg: Object,result: Obj ect):Boolean
m.env->subSet(c.env) and
let b=c.env- menv
in b.name = m.args->at(0) and b.value = arg and c.value = result
end
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Lambdais an Instantiable Container 3. The result produced by the calculation isaclo-
sure that captures the current context which must contain values for all the free varia-
bles of the function:

context Lambda inv: instances->forAll(i |
i.valueargs = args and i.valuebody = body and i.value.env = i.env and
i.env.name = body.free.name)

SetExp is an Instantiable Container 3. The result produced by the calculation is a set
containing the elements of the sub-calculations:

context SetExp inv: instances->forAll(i |i.value = i.sub.value)
SegEXxp isan Instantiable Container 3. Theresult isapair:

context SeqExp inv: instances->forAll(i |
i.value->first = i.sub->at(0).value and i.value->rest = i.sub->at(1).value)

If isan Instantiable Container 1. A calculation is an instance of an if expression when
it contains exactly 2 sub-calculations. The first sub-calculation must produce a boolean
value. If the outcomeis true then the second sub-calculation is an instance of the conse-
guent of theif. If the outcome is false then the second sub-calculation is an instance of
the alternative of theif.

context If inv: instances->forAll(i |
i.sub->size = 2 and sub.instances->includes(i.sub->at(0))

context If inv: instances->forAll(i |
i.sub->at(0).value implies sub->at(1).instances->includes(i.sub->at(1)))

context If inv: instances->forAll(i |
not i.sub->at(0).value implies sub->at(2).instances->includes(i.sub->at(1)))

Apply isan Instantiable Container 2. The semantics of applicationsis exactly the same
as that for send expressions except that instead of the extracting a closure from an
object given a message name, the first sub-expression produces the closure directly.
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5.7. Queries

A model snapshot is a configuration of objects. Given a snapshot we may wish to apply
a predicate to test whether the objects satisfy a particular property (an example predi-
cate tests whether all the people in the model are over 18 years old). We may also wish
to apply an operation to the objects in the snapshot that computes some value (an
example operation finds the oldest person in a collection of people). Collectively these
predicates and operations are referred to as queries.

A classisacontainer of queries. Each query hasaname and O or more parameters. The
body of the query is an expression. Queries are inherited by sub-classes and al queries

in agiven class must have different names?.

L0 Person
le:Set people
people:Set (Person) 4 ageTnteger
iz0dest (Perzon):Boolean name:String
totaldges():Integer

Figure 71. Exampleclass with queries

Figure 71 shows a simple model involving a collection of people. The class People
defines a query operation:

People::tota Ages()
people->iterate(person ages = 0 | person.age + ages)

The expression representation of the body of this query given in section 5.6.2. The sec-
ond query involves an argument:

People::isOldest(p:Person):Boolean
not people->exists(person | person.age > p.age)

5.7.1 Templates

To be defined in the final submission.

1. Thisrequirement could be relaxed to allow interesting variations. For example, aclass may define
multiple queries with the same name providing the argument signature of each query isdifferent in
some way for example having different arities or different argument types. An interesting variationis
to order the queries of a class and to allow overlapping definitions via a Smallta k-like run-super
mechanism.
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5.7.2 Abstract Syntax.

Cuery = argTypes
Class_
result Type:Class_ result Type
argTypes:Seq(Class_) qus rigs:Set (Huery)
nome:3tring

* queri35|

Figure 72. UM L 2.Static.Queries. Abstract Syntax

The abstract syntax for queries is given in Figure 72. A query is a specialisation of a
function. The query is hamed, has argument types and a result type. A classis a con-
tainer of queries. A classis also an inheritor of queries. A class defines a query called
‘alQueries which returns all the queries defined locally by the class and al the queries
inherited by the class.

Every query has a special argument named ‘ self’ which is used to refer to the target of
the message (in a send expression) that caused the query to be performed. By conven-
tion we supply the value of thisargument first:

context Query inv: args->at(0) = “self” and argTypes->at(0) = self.Class

5.7.3 Semantic Domain

Chject_ queries |Cale

o

Figure 73. UM L 2.Static.Queries.SemanticDomain

Figure 73 showsthe semantic domain for queries. An object is associated with acollec-
tion of query calculations. Each query calculation describes a particular query evalua-
tion with respect to the current state of the object. The query calculation must have an
environment that includes all the slot values of the object and associates the free varia-
ble “self” with the object:

context Object inv: queries->forAll(q |
allSlots()->forAll(a| g.env->exists(b | b.name = s.name and b.value = s.value)) and
g.env->exists(b | b.name = “self” and b.value = self)
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5.7.4 Semantic Mapping

Lambda

Gl queries [Suery

Ed

getQuery(String):Query

o of _

# jnstances o
# instonces

Ohject queries |Cale

o

qetGuery(String):Clozure

Figure 74. UML 2.Static.Queries.SemanticM apping

Figure 74 shows the semantic mapping for queries. Objects are instances of classes and
calculations are instances of queries. In order to be well-formed, the query calculations
of an object must be instances of the corresponding queries of its class:

context Classinv: instances->forAll(o |
o.alQueries()->forAll(c | alQueries()->exists(q | g.instances->includes(c)))

An object defines a query operation getQuery that is used to find aquery closure:

context Object inv:
getQuery(m).args = of .getQuery(m).args->tail and
getQuery(m).env->exists(b | b.name = “self” and b.value = self) and
get(Query(m).body = of .getQuery(m).body
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5.8. Constraints

Given a snapshot consisting of a configuration of instances there are a number of prop-
erties which must hold true. These properties are referred to asstatic constraints. Static
constraints may refer to individual objects, in which case they are defined for the clas-
sfier of the objects. Static constraints may also refer to collections of objectsin a snap-
shot in which case they are defined for the classifier of the snapshot (i.e. a package).

Each gatic constraint is a function of one argument which returns a boolean result.

Constraints are contained by classifiers. Every constraint contained by a classifier must

produce the value true when supplied with an instance of the classifier. In the case of

class congtraints, every constraint must return true for all objects that are instances of

the class. In the case of packages, every constraint must return true for all the snapshots
that are instances of the package.

Constraint differ from queries since they cannot be arbitrarily parameterised. A con-
straint isa function of a single argument named ‘self’.

5.8.1 Templates

To be defined in the final submission.

5.8.2 Abstract Syntax

Lambda,

T o
Clazs_ queries [Constraint| =
£l L]

* queries [ |

Figure 75. UML 2.Static.Constraints.AbstractSyntax

Figure 75 shows the abstract syntax of constraints. Both classes and packages are con-
tainers of constraints. Classes and packages are also inheritors of constraints. They
define queries ‘Class::allConstraints’ and ‘ Package::allConstraints which return the
union of thelocally defined and inherited queriesin both cases.
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5.8.3 Semantic Domain

Dbjecf_ constraints [Cale| * Sr‘llJ.pShl:lf

L cohstraints

Figure 76. UM L 2.Static.Constraints.SemanticDomain

Figure 76 defines the semantic domain for constraints. Objects have calculations that
arise from evaluating constraints in the context of the object. Snapshots have calcula-
tions that arise from evaluating constraints in the context of the snapshot. In each case
the calculations must produce a boolean value. Objects and snapshots are containers

and inheritors of constraint calculations; they both define queries‘alConstraints'.

context Object inv: constraints->forAll(c | c.value.of = Bool ean)

context Cbject inv: constraints->forAll(c |
all Slots()->forAll (s | c.env->exists(b | b.name = s.nanme and
b.val ue = s.val ue))

context Cbject inv: constraints->forAll(c |
c.env->exists(b | b.nane = “self” and b.value = self)

cont ext Snapshot inv: constraints->forAll(c | c.value.of = Bool ean)

cont ext Snapshot inv: constraints->forAll(c |
c.env->exists(b | b.nane = “self” and b.value = self)
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5.8.4 Semantic Mapping

Pocloage_ of PSS POt T Shopshaot
getConstraint (String):Constraint getCanstraint (String):Closure
* gqueries * copstroints
Conztraint * instances |Caols
of _
& i * [constraints
queries
Class_ i Ohject

» instances

getConstraint (3tring):Constraint getConst raint (3tring]:Closure

Figure 77. UM L 2.Static.Constraints.SemanticM apping

Figure 77 shows the semantics of constraints. For both classes and packages, al the
constraints must hold for their instances. Every constraint calculation must be an
instance of the associated constraint:

context Cbject inv: allConstraints()->forAll(calc
of . al | Constrai nts()->exists(constraint
constraint. body.instances->i ncl udes(calc)))

context Snapshot inv: allConstraints()->forAll(calc
of . al | Constrai nts()->exists(constraint
constraint. body.instances->i ncludes(calc)))

Every constraint must be performed so for each classifier the set of constraint calcula-
tions for each instance must match the set of all constraints.

context Class inv: instances->forAll (instance
all Constraints()->forAll (constraint
i nstance. al | Constrai nts()->exists(calc
constraint.instances->i ncl udes(cal c)
and cal c.val ue)))

cont ext Package inv: instances->forAll (instance
all Constraints()->forAll (constraint
i nstance. al | Constrai nts()->exists(calc
constraint.instances->i ncl udes(cal c)
and cal c.val ue)))
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5.9. Templates
A templateisamodel element that contains replaceable names. Model elementsthat do
not contain replaceable names are referred to as ground model elements. Templates are

translated to ground model elements by supplying concrete names for replaceable
names.

Templates will be defined in the final submission.

5.9.1 Abstract Syntax

Classes for Template and ReplaceableName.

5.9.2 Semantic Domain

Template instantiation can be conveniently expressed using graph transformations.
Definition of Graph, Node, Edge, Mapping.

5.9.3 Semantic Mapping

Definition of PackageX Graph; ClassX Graph; AttributeXGraph.
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5.10. Reflection

The Static UML Core should be expressive enough to be self describing. In other
words, it should be possible to view the core as an instance of itself. This package
describes the necessary mapping from core abstract syntax elements to core instances
to show that thisisfeasible.

5.10.1 Templates

Obj ect
Refl ection()

Attribute_/ Contained],

[ Package_/ Cont ai ner,
Snapshot _/ Cont ai ned] ,

[ Associ ati on_/ Cont ai ner,
Associ ati onEnd/ Cont ai ned],

4 [ Cl ass_/ Cont ai ner,
I
|
I
I
I
I
I
Cl asses :
1

Semant i cDomai n
Abstract Synt axN N+1

Semant i cMappi ng
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5.10.2 Semantic Mapping

type Class_
of
S
Atfribute_s sia e
Attribute * et s Clbject_
5
value
instonces Slat_ E
& Slat_=

Figure 78. UML 2.Static.Reflection.SemanticM apping

Every element in the Static UML Core will have a G mapping to its instance represen-
tation at the next level-up in a meta-model architecture. Figure 78 shows the G map-
pings that are generated for classes and attributes. Here, classes and attributes have a G
mapping to a object that is an instance of the Static UML Core. Note, G mappings will
be required for other structures, e.g. generalisable elements, named elements.

WAl l-for mednessRules

[1] A classis an instance of the class named “ Class”.

context Cl ass inv:
Cl asssArel nstancesOf Thed assC ass
G of . nanme = C ass

[2] An attribute is an instance of the class named “ Attribute” .

context Attribute inv:
Attri but esArel nstancesOf TheCl assAttri bute
G of . nane = <Cont ai ned>

[3] Classes are objects with slots whose values are their attributes as objects:

context Class inv:
self.Attributes -> forAll(c | self.Gslots ->
exists(s | s.of.nane = “Attributes” and s.value = c. Q)
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Example Shapshot

Figure 78 shows that applying G to a class Dog with attribute “breed” maps Dog to a
meta-object of class“Class’ and “breed” to ameta-object of class “Attribute”, with an
intermediate slot that maps the dog object to its attribute object.

{Llass & Dhject instances of | iClass
nomezdoq | £ lozs niapme s<unknown: name=Class
Object_
Slet_=
Slat_ of WAttribote_
nomezAttributes | instonces nimezAttributes
walus
instances
Attribute i Ohject_ of Class_
Attribute_s
name=breed niame z<unknowsn: namezAttribute
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Chapter 6
Dynamic Core

This chapter describes a primitive language for constructing a
family of precisely defined action languages for UML. An
exampleis given of the trandation of state machinesinto the
action language as proof of concept.

6.1. Introduction

UML has a variety of notations for expressing dynamic behaviour. The Actions pack-
age defines a primitive language for constructing many different action languages. The
essential features of dynamic behaviour in UML are:

» Evaluation of simple side-effect free expressions as defined in chapter 5.

» Messages between objects. There are anumber of alternative message passing
schemes including synchronous and asynchronous. An action may cause a synchro-
nous or asynchronous message to be set. Sub-types of message action must support
awide variety of user defined message passing protocols.

» Object update. Everything in UML is ultimately an object which has an internal
state. An action may cause the internal state of an object to change.

» Concurrent actions. Dynamic behaviour in UML supports both possible concur-
rency and necessary concurrency. Possible concurrency occurs when the models
place no restrictions on the order in which the actions take place. Necessary concur-
rency occurs when the models require actions to occur concurrently, for examplein
order to satisfy timing constraints or to satisfy reactivity constraints.

» Sequential actions. An ordering can be imposed on actions. Thisisin addition to the
ordering which arises due to logical data dependencies.

Dynamic aspects of UML models are explained in terms of histories of execution or
calculations. UML supports concurrent execution and a variety of operation invocation
mechanisms. A calculation is a structure that records just the logical dependencies
between objectsin an historical record of execution. The intended interpretation is that
a given UML model is implemented and executed on a class of machines. The
machines all execute in terms of objects and actions. A machine will give rise to its
own historical records of execution. A machine correctly executes a model implemen-
tation when the machine calculations are consistent with the calculations defined for
the model by the UML standard.

Certain actions are atomic, for example slot update. Such actions cannot occur concur-
rently with any other actions at a given object. Given atomic actions and a suitably
expressive collection of action primitives it is possible to construct a wide range of
control constructs.
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6.2. Actions

6.2.1 Templates

To be defined in the final submission.

6.2.2 Abstract Syntax

sub |Exp | =ub
* *
BinExp
Mew | type |Closz_
ot Update
Seq_

Figure 79. UM L 2.Dynamic.Actions.Abstract Syntax

The primitive action language is an extension of the primitive expression language
defined in chapter 5. All expressions are specialised to become actions. Figure 79
shows the new types of action expressions. The class Par defines parallel actions. The
class Seq defines sequential actions. The class Update defines slot update actions. The
class New defines object creation.

The collection of action primitives can be extended to develop action languages. Sup-
pose we want to define a class of objects that handle message pools. Clients of the
objects send asynchronous messages. Messages are conveyed through the ether and are
placed in the message pool of the receiver. Object which handle messages in this way
must treat the message pool as a shared resource. Suppose that we extend the action
primitives with aflipif primitive. This atomic primitive toggles a boolean value provid-
ing the current value of the boolean variable istrue:
Obj ect: : monitor()
i f !pool->i senpty
then flipif pool Free;
I et m = pool.sel ect El enent

in pool := pool->excluding(m;
handl e(nm) |
pool Free : = true;
nmoni t or ()
end
el se nonitor()

endi f
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New messages are handled by ‘receive':

bj ect: :recei ve(m Message)
flipif pool Free;
pool := pool ->incl udi ng(m;
pool Free : = true

When an object is created it starts the monitor. Callsto ‘receive’ will occur in paraldl:
Qbject::init()

pool Free : = true;
pool := Set{};
nmoni t or ()

By extending the basic action primitives with a simple atomic operator it is possible to
conveniently ensure that ‘monitor’ and ‘ receive can occur concurrently without inter-
ference.

6.2.3 Semantic Domain

Actions are described in terms of histories of execution. These are referred to as calcu-
lations. Chapter 5 defines calculations for expressions with no side-effects. Actions
involve changes to object states. Therefore expression calculations are extended with
two state descriptions. The pre state defines a set of objects required by the action. The
post state defines aset of objects modified or produced by the action Given a collection
of bindings e, apre state B, avalue v and a post state A, a calculation that describes the
result of performing an action in the context e and B producing value v and new state A
can bedrawn as..

v A
»
e B

» post
Cale value |Object

o

zub

o | B

Binding

Figure 80. UM L 2.Dynamic.Actions.SemanticDomain
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Figure 80 on pagel47 showsthe definition of the action semantic domain as an exten-
sion of the semantic domain for expressions. The pre state of acalculation may contain
any objects supplied to its containing calculation and any objects produced or modified
by its siblings. The post state of a calculation may contain any objects in the post state
of its sub-calculations:

context Calc inv:
pre = sub.pre and post = sub. post

Notice that the above constraint rules out calculations that describe inconsistent
updates to the same object since objects cannot contain multiple dots with the same
name and different values. Therefore, two sub-calculations may change a slot inde-
pendently providing they change the sot to the same value.

6.2.4 Semantic Mapping

The semantic mapping for actions defines legal calculation instances for action calcu-
lations. The definition of expression instances generalises with no further modification
to action instances.

Consider the case of an update action. There are two sub-actions which evaluate to pro-
duce an object 0 and avalue v respectivdy. The update action causes the value of a dlot
named s to be updated to the value v in the object 0. This producesa an object o’ which
is exactly the same as 0 except that the ot named s has changed. The update calcula-
tion has the following form::

AUA U{0}

eUe BUB’U{O}

Thisis expressed as a constraint as follows:

context Update inv:
i nstances->forAll(c
val ue = sub->at(1).value and
sub->at (0). post - >uni on(sub->at (1). post->subSet (post) and
obj ect Changed(sub->at (0) . val ue, post, nane, sub->at (1) . val ue)

where ‘ objectChanged’ relatesthe objects o and 0’ on the diagram above.

A new action smply produces an instance of an object. The well-formedness con-
straints for action calculations will require the instance to be unique:
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context New inv: instances->forAll(c
type. i nstances->i ncl udes(c. val ue) and
c. post = Set{c.val ue})

Sequential composition of actions requires an ordering on the processing of states:
context Seq inv: instances->forAll (i
i.sub->at(1).pre = i.sub->at(0). post)

There are no further constraints on Par action instances other than those required by the
well-formedness constraints on calculations. Therefore Par actions are free to be per-

formed concurrently.
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6.3. Operations

UML operations are equivalent to queries (see chapter 5) except the body of the of the
operation is an action. A classis a container and inheritor of operations. An operation
has anumber of parameters and areturn type. An example of asimple operation is Peo-
ple::addPerson which adds a person to a collection of people. Using a simple concrete
syntax based on OCL with attribute update:

Per son: : addPer son(p: Person) peopl e : = peopl e->i ncl udi ng( per son)

6.3.1 Templates

To be defined in the final submission

6.3.2 Abstract Syntax

Lambda.

Clperation

« Operations

resulfType  [Closs_ « ofgTypes

Figure 81. UML 2.Dynamic.Operations.Abstract Syntax

Figure 81 shows the definition of the operations abstract syntax. Class defines a query
‘alOperations which returnsthe local operations defined by the class and those that it
inherits from its parents.

6.3.3 Semantic Domain

Ohbjest_ operotions (g)q

o

Figure 82. UM L 2.Dynamic.Oper ations.SemanticDomain

Figure 82 shows the semantic domain for operations. Each object has a collection of
calculations which arise from performing operations. The context for the calculations
includes the dots of the object and the variable ‘self’ which is bound to the object.
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6.4. State Machines

Dynamic behaviour can be expressed in UML using state machines. A state machineis
associated with a class and consists of a collection of states and transitions. This sec-

tion describes how state machines can be given a precise semantics using a translation

to an operation. Thisis an example of trandational semantics. Trandational semantics
isto be contrasted with model based semantics. A model based semantics defines three
components. a syntax domain; a semantic domain; and, a semantic mapping. Instances
of the semantic domain provides a model for instances of the syntax domain. A transla-

tional semantics involves three components: a source syntax domain; a target syntax

domain; and, atrandation from the source to the target. The source language is defined

entirely in terms of atranslation to the target language. No new semantic domain ele-

ments are introduced for the source language.

A state machine is defined using a translation to an operation. The operation handles
messages. The operation has a test for each transition of the machine. Each test
involves a check for the current state of the object, the message and performs the action
associated with the transition.

This section is intended to show how a ssimple model of state machines can be trans-
lated to operations. Consider the following state transition machine associated with a
class X:

The machine can be trandated to an operation as follows:

C. : machi ne(m Message)
if inA()
then if m=p then b endif | if m= g then c endif
endi f;
if inC()
then if m=r then d endif
endi f
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6.4.1 Abstract Syntax

Tranzition

action:Exp

oction (Exp
target:State

Closs machine |Machine transition

Ed

source:Jtote
meszage:String

operdtions

Clperation L State | A source

» =tates

Figure 83. UM L 2.Dynamic.StateM achines. Abstract Syntax

6.4.2 Translation

# operations Dperuﬁnn
if
& map -
Class offeration
= TransIf
]
machine ranzition & C]
==
]

Figure 84. UM L 2.Dynamic.State<achines.SemanticM apping

Figure 84 on page 152shows the trandational semantics for state machines. Each
machine is associated with an operation. The machine is to be viewed as sugar for the
operation. The class Translf defines pairs consisting of a machine transition and a con-
ditional expression. The test of the conditional expression isaconjunct of atest for the
source state and a message. The consequent of the conditional expression is the action
of the transition:

context Translf inv:
if test.andL eft.name = transition.source.name and
test.andRight.eglLeft.name = “m” and
test.andRight.eqlLeft.value = transition.message and
conseguent = transition.action
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