
     Initial Submission to OMG RFP’s: 

    ad/00-09-01 (UML 2.0 Infrastructure) 

          ad/00-09-03 (UML 2.0 OCL) 

                                          20 August 2001

Submitted by
Data Access

Project Technology1

Kinetium
Softlab
Siemens

In association with
Dr A. Clark, pUML group & Kings College, London, UK
Dr A. Evans, pUML group & University of York, UK
Dr S. Kent, pUML group & University of Kent, UK

Supported by
University of Kent
Kings College London
University of York

1. Project Technology is an Infrastructure submittor only



Copyright submitters and associates.

The companies and individuals listed above hereby grant a royalty-free licence to the Object 

Management Group, Inc. (OMG) for worldwide distribution of this document or any deriva-

tive works thereof within OMG and to OMG members for evaluation purposes, so long as the 

OMG reproduces the copyright notices and the following paragraphs on all distributed copies. 

The material in this document is submitted to the OMG for evaluation.

Submission of this document does not represent a commitment to implement any portion of 

this specification in the products of the submitters. WHILE THE INFORMATION IN THIS 

DOCUMENT IS BELIEVED TO BE ACCURATE, THE COMPANIES and INDIVIDUALS 

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATE-

RIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-

ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies and individuals 

listed above shall not be liable for errors contained herein or for incidental or consequential 

damages in connection with the furnishing, performance or use of this material. The informa-

tion contained in this document is subject to change without notice.

This document contains information, which is protected by copyright. All Rights Reserved.

Except as otherwise provided herein, no part of this work may be reproduced or used in any

form or by any means—graphic, electronic or mechanical, including photocopying, recording,

taping, or information storage and retrieval systems—without the permission of one of the

copyright owners. All copies of this document must include the copyright and other informa-

tion contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited 

number of copies of this document (up to 50 copies) for their internal use as part of the OMG 

evaluation process. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by gov-

ernment is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical 

Data and Computer Software Clause at DFARS 252.227.7013.

CORBA, Object Request Broker, UML, Unified Modeling Language, MOF, Meta-Object Facil-

ity and OMG are trademarks of Object Management Group.



Contents

Preface 11

0.1. Submission Summary................................................................................... 11
Submission contact point .................................................................... 11

Guide to material in the submission ................................................... 11
Overall design rationale ...................................................................... 11

Statement of proof of concept............................................................. 11

0.2. Resolution of Infrastructure RFP Requirements ..........................................11
0.2.1 General Requirements.............................................................................. 11
0.2.2 Architectural alignment and restructuring ............................................... 12

0.2.3 Extensibility ............................................................................................. 13
0.2.4  Architectural alignment and restructuring .............................................. 14

0.2.5 Extensibility ............................................................................................. 14
0.2.6 Issues to be discussed .............................................................................. 14

0.3. Resolution of OCL RFP Requirements ........................................................15
0.3.1 Mandatory requirements .......................................................................... 15

0.3.2 Optional requirements.............................................................................. 15

Chapter 1: Introduction 17

1.1. Aims and Objectives.....................................................................................17

1.2. Key contributions .........................................................................................17

1.3. To be completed............................................................................................18

1.4. Outline ..........................................................................................................19

1.5. Acknowledgements ......................................................................................19

Chapter 2: Context 21

2.1. Introduction ..................................................................................................21
2.1.1 Pattern-based infrastructure ..................................................................... 21

2.1.2 Main Principles ........................................................................................ 21
2.1.3 The Meta-Model - Semantics and Composition at Core ......................... 22

2.2. Support for a Family of Languages ..............................................................24
2.2.1 Language Definition ................................................................................ 25

2.2.2 Architectural Consistency across Language Definitions ......................... 26
2.2.3 N-level Meta-modelling........................................................................... 27

2.2.4 Relationships and Translations across Languages................................... 27
2.2.5 Improved Model Interchange................................................................... 29

2.3. Unified Concepts ..........................................................................................30

Chapter 3: Meta-Modelling Approach 33

3.1. Introduction ..................................................................................................33



3.1.1 The Meta-modelling language .................................................................33
3.1.2 Deployment ..............................................................................................34

3.1.3 Organisation of chapter ............................................................................35

3.2. Classes ......................................................................................................... 35

3.3. Binary associations ...................................................................................... 35

3.4. Packages....................................................................................................... 35

3.5. Constraint Language.................................................................................... 37

3.6. Package Templates....................................................................................... 37

Chapter 4: Templates 43

4.1. Introduction.................................................................................................. 43

4.2. Contains ....................................................................................................... 46
Summary .............................................................................................46

Definition ............................................................................................46
Queries ................................................................................................46

Well-formedness Rules .......................................................................46
Description ..........................................................................................46

4.3. NameSpace .................................................................................................. 48
Summary .............................................................................................48

Definition ............................................................................................48
Queries ................................................................................................48

Well-formedness Rules .......................................................................49
Description ..........................................................................................49

Example...............................................................................................49
.............................................................................................................49

Example Snapshot...............................................................................50

4.4. Distinguishable Container............................................................................ 51
Summary .............................................................................................51
Definition ............................................................................................51

Queries ................................................................................................51
Well-formedness Rules .......................................................................51

Description ..........................................................................................52
Example...............................................................................................52

Generated Constraints .........................................................................53

4.5. Related1 ....................................................................................................... 54
Summary .............................................................................................54

Definition ............................................................................................54
Description ..........................................................................................54

Example...............................................................................................54

4.6. Generalisable ............................................................................................... 55
Summary .............................................................................................55
Definition ............................................................................................55

Queries ................................................................................................55
UML2 infrastructure initial submission 4



Well-formedness Rules....................................................................... 55
Description.......................................................................................... 55

Example .............................................................................................. 55
Example Snapshot .............................................................................. 56

4.7. Semantics......................................................................................................57
Summary............................................................................................. 57

Definition ............................................................................................ 57
Queries ................................................................................................ 57

Well-formedness Rules....................................................................... 57
Description.......................................................................................... 57

4.8. Generalisable Container ...............................................................................59
Summary............................................................................................. 59

Definition ............................................................................................ 59
Queries ................................................................................................ 59

Well-formedness Rules....................................................................... 60
Description.......................................................................................... 60

Example .............................................................................................. 60
Example Snapshot .............................................................................. 61

4.9. Declarative Generalisable Container ............................................................62
Summary............................................................................................. 62
Definition ............................................................................................ 62

Queries ................................................................................................ 62
Well-formedness Rules....................................................................... 63

Description.......................................................................................... 63
Example .............................................................................................. 63

Snapshot Example .............................................................................. 64

4.10. Generalisable Related1 .................................................................................65
Summary............................................................................................. 65
Definition ............................................................................................ 65

Well-formedness Rules....................................................................... 65
Description.......................................................................................... 65

Example .............................................................................................. 65

4.11. Importable Container....................................................................................66
Summary............................................................................................. 66
Definition ............................................................................................ 66

Description.......................................................................................... 66
Example .............................................................................................. 66

4.12. Mergeable Container ....................................................................................66
Summary............................................................................................. 66
Definition ............................................................................................ 66

Description.......................................................................................... 66

4.13. Container Semantics.....................................................................................67
Summary............................................................................................. 67
Definition ............................................................................................ 67
UML2 infrastructure initial submission 5



Queries ................................................................................................67
Description ..........................................................................................68

Example...............................................................................................68

4.14. Generalisable Semantics .............................................................................. 69
Summary .............................................................................................69
Definition ............................................................................................69

Queries ................................................................................................69
Well-formedness Rules .......................................................................70

Description ..........................................................................................70
Example...............................................................................................70

4.15. Generalisable Container Semantics ............................................................. 71
Summary .............................................................................................71

Definition ............................................................................................71
Queries ................................................................................................72

Well-formedness Rules .......................................................................72
Description ..........................................................................................72

4.16. Generalisable Related1 Semantics............................................................... 74
Summary .............................................................................................74
Definition ............................................................................................74

Well-formedness Rules .......................................................................75
Description ..........................................................................................75

Example...............................................................................................75

4.17. GeneralisableFeatureContainerSemantics ................................................... 76
Summary .............................................................................................76
Definition ............................................................................................76

Description ..........................................................................................76
Example...............................................................................................76

4.18. Expression Semantics .................................................................................. 76
Summary .............................................................................................76

Definition ............................................................................................76
Description ..........................................................................................76

Example...............................................................................................76

4.19. Binding......................................................................................................... 76
Summary .............................................................................................76

Definition ............................................................................................76
Description ..........................................................................................76

Example...............................................................................................76

4.20. Mapping....................................................................................................... 77
Summary .............................................................................................77
Definition ............................................................................................77

To be defined in the final submission. ................................................77
Description ..........................................................................................77

Example...............................................................................................77

4.21. Container Map ............................................................................................. 77
UML2 infrastructure initial submission 6



Summary............................................................................................. 77
Definition ............................................................................................ 77

To be defined in the final submission................................................. 77
Description.......................................................................................... 77

Example .............................................................................................. 77

4.22. Refinement ...................................................................................................77
Summary............................................................................................. 77
Definition ............................................................................................ 77

Description.......................................................................................... 77

4.23. Graph ............................................................................................................78
Summary............................................................................................. 78
Definition ............................................................................................ 78

Description.......................................................................................... 78

4.24. Tree ...............................................................................................................79
Summary............................................................................................. 79

Definition ............................................................................................ 79

4.25. Object Reflection..........................................................................................80
Summary............................................................................................. 80
Description.......................................................................................... 80

Well-formedness Rules....................................................................... 81
Example .............................................................................................. 82

4.26. Class Reflection............................................................................................83
Summary............................................................................................. 83

Description.......................................................................................... 83
Well-formedness Rules....................................................................... 84

............................................................................................................ 84

4.27. Abstract Container........................................................................................85
Summary............................................................................................. 85

Definition ............................................................................................ 85
Queries ................................................................................................ 85

Well-formedness Rules....................................................................... 85
Description.......................................................................................... 85

4.28. Abstract GeneralisableElement ....................................................................87
Summary............................................................................................. 87

Definition ............................................................................................ 87
Queries ................................................................................................ 87

Well-formedness Rules....................................................................... 87
Description.......................................................................................... 87

4.29. Abstract NameSpace ....................................................................................88
Summary............................................................................................. 88

Definition ............................................................................................ 88
Queries ................................................................................................ 88

Well-formedness Rules....................................................................... 88
Description.......................................................................................... 88
UML2 infrastructure initial submission 7



Chapter 5: Static Core 91

5.1. Introduction.................................................................................................. 91

5.2. Classes ......................................................................................................... 93
5.2.1 Overview ..................................................................................................93
5.2.2 Templates..................................................................................................93

5.2.3 Abstract Syntax ........................................................................................94
Well-formedness Rules .......................................................................95

Queries ................................................................................................95
5.2.4 Semantic Domain .....................................................................................96

Well-formedness Rules .......................................................................97
Queries ................................................................................................97

5.2.5 Semantic Mapping....................................................................................98
Well-formedness Rules .......................................................................98

Example...............................................................................................99

5.3. Packages..................................................................................................... 101
5.3.1 Overview ................................................................................................101
5.3.2 Templates................................................................................................101

5.3.3 Abstract Syntax ......................................................................................102
Well-formedness Rules .....................................................................103

Queries ..............................................................................................103
Example.............................................................................................105

5.3.4 Semantic Domain ...................................................................................105
Well-formedness Rules .....................................................................106

Queries ..............................................................................................107
5.3.5 Semantic Mapping..................................................................................109

Well-formedness Rules .....................................................................109
Example.............................................................................................110

5.4. Associations ................................................................................................112
5.4.1 Overview ................................................................................................112
5.4.2 Templates................................................................................................112

5.4.3 Abstract Syntax ......................................................................................113
Well-formedness Rules .....................................................................114

Queries ..............................................................................................114
5.4.4 Semantic Domain ................................................................................... 115

Well-formedness Rules .....................................................................116
Queries ..............................................................................................116

5.4.5 Semantic Mapping..................................................................................117
Well-formedness Rules .....................................................................118

5.5. DataTypes .................................................................................................. 120
5.5.1 Templates................................................................................................120

5.5.2 Abstract Syntax ......................................................................................120
Well-formedness Rules .....................................................................121

5.5.3 Semantic Domain ...................................................................................121
Well-formedness Rules .....................................................................121

5.5.4 Semantic Mapping..................................................................................121
UML2 infrastructure initial submission 8



Well-formedness Rules..................................................................... 122

5.6. Expressions.................................................................................................123
5.6.1 Templates ............................................................................................... 123
5.6.2 Abstract Syntax...................................................................................... 123

5.6.3 Semantic Domain................................................................................... 127
5.6.4 Semantic Mapping ................................................................................. 130

5.7. Queries........................................................................................................135
5.7.1 Templates ............................................................................................... 135

5.7.2 Abstract Syntax...................................................................................... 136
5.7.3 Semantic Domain................................................................................... 136

5.7.4 Semantic Mapping ................................................................................. 137

5.8. Constraints ..................................................................................................138
5.8.1 Templates ............................................................................................... 138

5.8.2 Abstract Syntax...................................................................................... 138
5.8.3 Semantic Domain................................................................................... 139

5.8.4 Semantic Mapping ................................................................................. 140

5.9. Templates....................................................................................................141
5.9.1 Abstract Syntax...................................................................................... 141
5.9.2 Semantic Domain................................................................................... 141

5.9.3 Semantic Mapping ................................................................................. 141

5.10. Reflection ...................................................................................................142
5.10.1 Templates ............................................................................................... 142
5.10.2 Semantic Mapping ................................................................................. 143

Well-formednessRules...................................................................... 143
.......................................................................................................... 143

Example Snapshot ............................................................................ 144

Chapter 6: Dynamic Core 145

6.1. Introduction ................................................................................................145

6.2. Actions........................................................................................................146
6.2.1 Templates ............................................................................................... 146

6.2.2 Abstract Syntax...................................................................................... 146
6.2.3 Semantic Domain................................................................................... 147

6.2.4 Semantic Mapping ................................................................................. 148

6.3. Operations...................................................................................................150
6.3.1 Templates ............................................................................................... 150
6.3.2 Abstract Syntax...................................................................................... 150

6.3.3 Semantic Domain................................................................................... 150

6.4. State Machines............................................................................................151
6.4.1 Abstract Syntax...................................................................................... 152
6.4.2 Translation ............................................................................................. 152

References 153
UML2 infrastructure initial submission 9



UML2 infrastructure initial submission 10



Preface

This submission is a response to the Object Management Group’s Request For Propos-
als ad/00-09-01 (UML 2.0 Infrastructure) and ad/00-09-03 (UML 2.0 OCL). An 
updated version of this document will be submitted for the superstructure RFP. This 
Preface summarizes the relationship of this submission to the RFPs. The main body of 
the document describes the technical submission itself.

0.1. Submission Summary

Submission contact point

Stephen J. Mellor: steve@projtech.com

Desmond D'Souza: desmond.dsouza@kinetium.com

pUML: 

Tony Clark: anclark@dcs.kcl.ac.uk

Andy Evans: andye@cs.york.ac.uk

Stuart Kent: s.j.h.kent@ukc.ac.uk

Guide to material in the submission

See Chapter 1: Introduction.

Overall design rationale

See Chapter 1: Introduction, Chapter 2: Context, and the Resolution of RFP Issues in
this Preface.

Statement of proof of concept

The approach outlined in this submission has been implemented in a prototype tool
(MMT) that creates instances of objects in a semantics domain and verifies that the cor-
rect instances of metamodel concepts then exist. Many of the models defined in this
submission have been automatically checked using MMT and are known to be well
defined and consistent.

0.2. Resolution of Infrastructure RFP Requirements
The infrastructure RFP requirements are addressed in detail below.

0.2.1  General Requirements

§ Proposals shall enforce a clear separation of concerns between the specifica-
tion of the metamodel semantics and notation, including precise bi-directional map-
pings between them.



Resolution of Infrastructure RFP Requirements
The initial submission clearly separates metamodel semantics and notation.  The map-
ping between them is bidirectional and expressed using precisely formulated associa-
tions in the metamodel.

§ Proposals shall minimize the impact on users of the current UML 1.x, XMI 1.x 
and MOF 1.x specifications, and will provide a precise mapping between the current 
UML 1.x and the UML 2.0 metamodels. Proposals shall ensure that there is a well-
defined upgrade path from the XMI DTD for UML 1.x to the XMI DTD for UML 2.0. 
Wherever changes have adversely impacted backward compatibility with previous 
specifications, submissions shall provide rationales and change summaries along with 
their precise mappings.  

The initial submission minimizes the impact of the current UML 1.x, XMI 1.x and
MOF 1.x specifications.  

The final submission will provide a precise mapping between the current UML 1.x and
the UML 2.0 metamodels.  As a consequence of the precise mapping between UML
1.x and UML 2.0, the final submission will ensure that there is a well-defined upgrade
path from the XMI DTD for UML 1.x to the XMI DTD for UML 2.0. 

The final submission will list changes that have adversely impacted backward compati-
bility with previous specifications and rationales and change summaries for these
changes along with the precise mappings. 

Proposals shall identify language elements to be retired from the language for 
reasons such as being vague, gratuitous, too specific, or not used.

The final submission will identify language elements to be retired from the language
for reasons such as being vague, gratuitous, too specific, or not used.

Proposals shall specify an XMI DTD for the UML metamodel.

The final submission will specify an XMI DTD for the UML metamodel.  The initial
submission relies on the fact that an XMI DTD can be generated from the UML 2.0
metamodel provided by the submission.

0.2.2  Architectural alignment and restructuring

§ Proposals shall specify the UML metamodel in a manner that is strictly aligned 
with the MOF meta-metamodel by conformance to a 4-layer metamodel architectural 
pattern. Stated otherwise, every UML metamodel element must be an instance of 
exactly one MOF meta-metamodel element. If this architectural alignment requires that 
the MOF meta-metamodel also needs to be changed, then those changes (including 
changes to XML and IDL mappings) should be fully documented in the proposal.

The submission takes an innovative approach to addressing this issue once and for all.

The submission provides the tools to generate both UML 2.0 and MOF from the same
source.  As a consequence, UML X.x and MOF will forever be mutually compatible.
The approach is to define the meta-model for UML 1.x. and MOF 1.x., and then meta-
model a 2-way translation mapping between these and UML 2.0. This mapping defines
precisely how to move from one meta-model to another. XMI can be viewed as an
XML concrete syntax for the abstract syntax of UML/MOF. Both concrete syntax and
abstract syntax, and the mappings between them can be defined using a meta-model.
Thus we can also define mappings from XMI into UML 1.x., MOF 1.x. and UML 2.
UML2 infrastructure initial submission 12



Resolution of Infrastructure RFP Requirements
These mappings, combined with the mappings between UML/MOF 1.x. and UML 2
(abstract syntax) meta-models, deals with backwards compatibility of XMI. These
mappings would also make clear the differences between the old and new meta-mod-
els. 

Note that the above mappings would be defined as part of the final submission. 

Because this submission focuses first on providing the tools to generate a UML 2.0,
there is a marked dearth of abstract metaclasses defining the conceptual entities actu-
ally in UML 2.0. 

The issue of whether to generate MOF-compliant models first, then abstract meta-
classes for UML 2.0 or vice versa is left open in the initial submission.

The final submission will benefit from the combined wisdom of the ADTF and com-
peting proposals.

§ Proposals shall strive to share the same metamodel elements between the UML 
kernel and the MOF kernel, so that there is an isomorphic mapping between MOF 
meta-metamodel kernel elements and UML metamodel kernel elements. 

See above.

§ Proposals shall restructure the UML metamodel to separate kernel language 
constructs from the standard elements that depend on them. The standard elements 
shall be restructured consistent with the requirements in 6.5.3.

The submission separates the kernel language constructs from the standard elements
that depend on them, as described in Chapter 6.

§ Proposals shall decompose the metamodel into a package structure that sup-
ports compliance points and efficient implementation.

See above.

§ Proposals shall identify all semantic variation points in the metamodel.  

None.

0.2.3  Extensibility

§ Proposals shall specify how profiles are defined.

Profiles will be defined using two methods: 

(1) Model extension. This involves using first class extension mechanisms to extend
both syntax and semantics. This is required if the base language is not expressive
enough to start out with (e.g. adding filmstrips or time to a semantics that does not sup-
port them). There are many examples of this approach in the submission. For example,
extending classes with constraints.

(2) Translational. This involves no extensions. Instead, syntax and semantics are trans-
lated via a mapping from the new language to the old. It is useful since no new con-
cepts are involved - everything is viewed as sugar. However, it requires the base
language to be sufficiently expressive, which may not be the case.
UML2 infrastructure initial submission 13



Resolution of Infrastructure RFP Requirements
Stereotypes will be viewed as syntactic sugar for both mechanisms. Tools may or may
not implement this interpretation of stereotypes, however, if they do, they will gain the
ability to check that extensions are both well-defined and consistant.

§ Proposals shall specify a first-class extension mechanism that will allow model-
ers to add their own metaclasses, which will be instances of MOF meta-metaclasses. 
This mechanism must be compatible with profiles and consistent with the 4-layer meta-
model architecture described in 6.5.2. 

A first class extension mechanism based on the use of packages and package generali-
sation has been precisely defined in Chapter 5.

§ Proposals shall identify model elements whose detailed semantics preclude spe-
cialization in a profile. If proposals need to generalize these model elements, they 
should propose refactoring consistent with the architecture and restructuring require-
ments described in 6.5.2. 

Not applicable.

0.2.4   Architectural alignment and restructuring

§ Proposals may refactor the UML metamodel to improve its structure if they can 
demonstrate that the refactoring will make it easier to implement, maintain or extend.

The submission refactors the UML metamodel somewhat. The refactoring is a direct
consequence of defining the semantics in terms of primitives on which the remainder of
UML 2.0 is built. This layered approach is easier to implement, maintain and modify.

§ Proposals may consider architectural alignment with other specification lan-
guage standards.

Not applicable.

0.2.5  Extensibility

§ Proposals may support the definition of new kinds of diagrams using profiles.  

Not applicable.

0.2.6  Issues to be discussed

Proposals should provide guidelines to determine what constructs should be 
defined in the kernel language and what constructs should be defined in UML profiles 
and standard model libraries.

This issue is discussed at length in Chapter 1: Introduction and Chapter 2: Context.

Proposals should stipulate the mechanisms by which compliance to the specifi-
cation will be determined, recognizing that determination of conformance is on a sub-
set of the specification and that not all parts of a metamodel package are always 
needed.  For example, proposals might submit XMI DTDs to test the compliance of a 
tool to the specification in a subset of a metamodel package.

The separation of concerns in the proposed architecture of the UML infrastructure,
means that a statement of conformance can be factored by elements in that architecture.
For example, one can claim to support only the static core. Or one can claim only to
UML2 infrastructure initial submission 14



Resolution of OCL RFP Requirements
support the graphical syntax, or only to support a textual syntax, etc. The precise nature
of the definition, makes automatic conformance checking feasible.

Proposals should discuss the impact of any changes to the UML metamodel on adopted 
profiles. In particular, the impact of any refactoring should be discussed.

The initial submission has no comment.

0.3. Resolution of OCL RFP Requirements

0.3.1  Mandatory requirements

Proposals shall provide a metamodel for OCL that integrates with the UML 
metamodel.

A meta-model for the abstract syntax of OCL, as used for writing static, invariant con-
straints, is defined, and this integrates with the proposed meta-model for the static core
of UML. The final submission will extend this with a meta-model for those aspects of
OCL used only to write dynamic constraints (pre/post conditions).

0.3.2  Optional requirements

Proposals may define a formal semantics for OCL.

A semantics is defined using a metamodelling approach.

Proposals may define changes or extensions to OCL that increase its expressive
power, for example, that improve its applicability to behavioral specification or to com-
ponent assembly. Such proposals shall preserve the declarative nature and side-effect-
freeness of OCL expressions.

The proposed OCL metamodel is a specialisation of the metamodel that provides the
foundation for the definition of a family of expression languages. This will make it
easy to adapt or extend OCL for other purposes. It will also make clearer the similari-
ties and differences between expression languages used in conjunction with UML.
UML2 infrastructure initial submission 15



Resolution of OCL RFP Requirements
UML2 infrastructure initial submission 16



Chapter 1

Introduction

This introduction highlights the key contributions of our submis-
sion, and where we think more work would be required to fully 
address the RFP requirements. It provides an outline for the rest 
of the document.

1.1. Aims and Objectives

The main aim of this submission is to address the problems defined in the UML 2.0
Infrastructure and OCL RFP’s by delivering the methods and notations necessary to
fully support the infrastructure of UML 2.0 and a family of OCL like constraint lan-

guages1. The specific objectives are as follows:

1. To propose a systematic method for the precise and complete definition of UML 2.0 
in terms of modular components. A complete definition means that semantics and 
notation are defined to the same precision as the abstract syntax.

2. Using the method defined in (1), to define a kernel of the UML meta-model which 
provides a firm foundation for the UML superstructure, including the language 
defined in (2).

3. Using the method defined in (1), to define the meta-model of the meta-modelling 
language used in the method.

4. To address issues concerned with alignment and backwards compatibility with 
UML 1.4 and MOF 1.3.

1.2. Key contributions
• A meta-modelling approach that is able to deliver modularity and reuse of language 

component definitions with precision. Specifically, we extend the meta-modelling 
language with a notion of templates and package/template extension and composi-
tion.

Templates allow patterns of language definition to be captured precisely and then 
used to stamp out language components. Templates deliver the following benefits to 
the meta-modeller:

– They enforce a high degree of architectural integrity over the meta-models they 
are used to build – the meta-models must conform to templates! This makes 
meta-models much easier to comprehend. Architectural integrity is virtually 
impossible to maintain in a vanilla meta-modelling approach, especially for lan-
guages on the scale of UML.

1. As such, this work is a follow on from [Clark00], re-architected using templates (c.f. frameworks in 
Catalysis) that capture meta-modelling patterns suitable for modelling UML as a family of languages.



To be completed
– They lead to more complete meta-models. Ensuring that a meta-model is com-
plete and consistent requires considerable skill and hard work. Templates allow 
this work to be reused many times over.

– Once a set of templates has been established, constructioin of new (and compre-
hensive) meta-models proceeds very quickly. This allows more ground to be 
covered in the time available, as well as leading to a higher quality and more 
comprehensive result.

Package extension and composition constructs allow language components and 
templates to be composed, merged and specialised. This is essential to support the 
notion of a language family and to allow that family to be extended.

• An approach to defining all aspects of a language, including notation and semantics, 
to the same level of precision. Specifically, we identify a set of templates that allow 
us to mimic formal language theory using a meta-modelling approach.

• A transformation-based solution to the backwards compatibility/alignment issue, 
that does not leave the meta-modeller shackled to UML 1.4 and MOF 1.3.

1.3. To be completed

As this is an initial submission, there are some omissions that we would expect to be
included in a final submission. The key ones are:

• The meta-modelling language itself has not been completely defined in itself. Spe-
cifically, we have not yet provided a meta-model definition for templates. All other 
aspects of the language have been defined using the approach. A meta-model for 
templates will be provided in the final submission.

• A transformational approach to dealing with alignment/backwards compatibility 
issues has been outlined, but not fully implemented. The complete meta-model defi-
nitions of (two way) translations between UML 1.4/MOF 1.3 and UML 2.0 would 
be provided as part of the final submission. These translations would also provide a 
precise definition of the exact relationship between UML 1.4/MOF 1.3 and UML 
2.0. Separate documentation of the changes would not be required, though informal 
explanation of the decisions made in defining the transformations would no doubt 
be helpful for users to make the transition from UML 1.4/MOF 1.3 to UML 2.0. The 
translations will also support the continued use of MOF 1.3 to provide repository 
services for UML 2.0 models. Of course this would not be necessary, if MOF 1.3 
was revised to be an extension of the meta-modelling language used here; this 
would require extension with a new capability (templates and composition/merging 
mechanisms) and revision of its meta-model definition to confirm with the UML 2.0 
architecture.

• Already in this submission, we have dealt with some aspects of superstructure as 
proof of concept of our approach. The final submission to provide complete meta-
models for superstructure as required by the RFPs.

• Meta-model definitions of concrete notation, and their mapping to abstract syntax, 
have not been provided. These will be included in the final submission, with parti-
ucular emphasis on XML and graphical syntax.
UML2 infrastructure initial submission 18



Outline
1.4. Outline

The objectives outlined in section 1.1, if achieved, deliver more than is required by the
RFP. Chapter 2 describes the background and motivation for the approach used here. It
discusses how the approach can both address the issue of backwards compatibility with
existing meta-models and frontwards compatibility with the challenges of MDA.
Chapter 3 describes our approach to meta-modelling, in particular describing the meta-
modelling language employed. Chapter 4 describes a set of templates for language
engineering, that are instantiated to deliver language components that can be combined
in the definition of UML 2. Chapter 5 defines a core set of static modelling concepts.
Chapter 6 extends these modelling concepts to deal with dynamic aspects.

1.5. Acknowledgements

The authors wish to thank Laurence Tratt (Kings College London) and Paul Sammut
(University of York) for their invaluable help in the preparation of this document.
UML2 infrastructure initial submission 19



Acknowledgements
UML2 infrastructure initial submission 20



Chapter 2

Context

This chapter provides an overview of the submission, describing 
it’s philosophy and overall architecture, and the problems 
addressed. It includes an informal explanation of how the 
approach relates to the 4-level architecture adopted by the 
OMG., describes the different aspects of a language definition 
and how these relate. It rehearses the motivation for using a 
meta-modelling approach, defines what that means, and explains 
how such an approach can be used to cleanly specify the differ-
ent language aspects and relationships between them. It moti-
vates the use of package composition and templates to support 
the definition of UML as a family of languages. Lastly, it 
explains how backwards compatibility can be ensured by a 
transformation-based approach, and discusses options for align-
ment with MOF in its present or future form.

2.1. Introduction

2.1.1  Pattern-based infrastructure

The class/object centric view of the 1990’s, based on subclassing, is not the best way to
structure models. Most interesting properties we wish to model are about the patterns
of static and dynamic relationships between all granularity of objects, both when defin-
ing the UML family of modelling languages as well as when defining end-user models
of some problem domain. Hence our submission focuses strongly on the package as a
unit of extensible models, as well as a unit of modelling patterns.

The overall submission defines:

1. How packages can be extended and used as patterns.

2. A library of reusable patterns for defining families of related languages.

3. A static core (and examples of a dynamic core) built using the above two.

2.1.2  Main Principles

The main principles behind this submission are the following:

1. Extensible core: core language constructs are extended using package generaliza-
tion and package templates. A new modelling construct is defined, optionally with 
its own concrete syntax, with clear semantics including a translation into more 
familiar constructs where needed. This is a powerful way to leverage patterns of 
arbitrary model fragments to define both modelling languages and end-user models.

2. Minimal core and layered definitions: we use as few constructs as possible. Addi-
tional constructs (associations, qualifiers, n-ary associations) are defined consist-



Introduction
ently in terms of this core constructs using the extensibility features. Our goal is that 
the UML 2.0 superstructure can use this to properly unify objects and values, 
attributes with associations and qualifiers, states and attributes, template packages 
and template classes/ collaborations, activities and actions and state transitions, etc.

3. No duplication: we aim to define any class, attribute, constraint, or recurrent pattern 
across any of these, exactly once. Language definitions should re-use these defini-
tions at whatever granularity is suitable.

4. Effectively factored and easily re-factored: the semantics of both package generali-
zation and package templates make it easy to re-factor parts of a package into other 
packages (including template packages) with no impact on clients of that package. 
The submission itself has factored the definitions into small, easily understandable 
parts, themselves built using a library of patterns.

5. Incremental definition and composition: classes, packages, and even patterns can be 
incrementally defined. The proposal specifies clearly the meaning of such incre-
mental definition in the semantic domain by defining multiple views of the 
“instances” of a class or a package. This will form the basis for the UML 2.0 super-
structure to uniformly support incremental definition and composition of state 
charts, sequence and collaboration diagrams, etc.

6. Patterns for consistent architecture: We use the facilities of package templates to 
define major architectural patterns that structure the entire meta-model for the infra-
structure (and the corresponding superstructure, OCL, profiles, etc.).

2.1.3  The Meta-Model - Semantics and Composition at Core

The Static Core model is described in detail in Chapter 5; the Dynamic Core is intro-
duced in Chapter 6 (and will be expanded in the superstructure submission). However,
the constructs used in these core language definitions themselves make use of architec-
tural patterns for all major language definition tasks: structuring syntax, semantics, lan-
guage structure, naming, etc. Hence, this core is itself built using a library of model
UML2 infrastructure initial submission 22



Introduction
templates that is part of this submission. These templates are equally applicable to the
definition of any new profiles, and to end-user models. 

The definitions are based on a consistent structure of language syntax and semantics,
and an underlying approach of incremental definitions that can be readily composed.
The StaticCore, in essence, describes:

• The semantic domain: states described as snapshots of interconnected objects that 
we wish to model.

• The abstract syntax domain: modelling constructs to define static invariants that dis-
tinguish valid snapshots from invalid ones, including a consistent expression-based 
language for static constraints.

• Notations: concrete syntax that is used to express the abstract syntax.

• Multiple views: ways to incrementally define static models syntactically in terms of 
other models (e.g. one class extending another, or one package extending another), 
with corresponding definitions of how the snapshots in the semantic domain can be 
viewed from these different partial and composed syntactic constructs.

The Dynamic Core, briefly introduced in this submission, describes:

• The semantic domain: histories of executions representing partial orderings of 
action occurrences, each with at least its before and after states.

• The abstract syntax domain: modelling constructs to define dynamic invariants that 
distinguish valid histories from invalid ones; including an expression-based action 
language for dynamic constraints.

• Notations: concrete syntax used to express the abstract syntax.

UML2.DynamicCore

UML2.Patterns

apply patterns
substituting
static constructs

apply patterns
substituting
dynamic constructs
UML2 infrastructure initial submission 23



Support for a Family of Languages
• Multiple views: ways to incrementally define dynamic models syntactically in terms 
of other models (e.g. one state machine specializing another, or two collaboration 
models being composed with some objects playing roles in both collaborations), 
with definitions of how the corresponding snapshots and histories of executions cor-
respond to these different partial and composed syntactic constructs.

There is clearly a large-grained structural similarity across the static and dynamic
cores. That architectural pattern is itself defined once, as a pattern in a template pack-
age, and used across many parts of the language definition. 

In addition, relationships across models can be as important as an individual model. We
believe that “Refinement” is an essential construct for describing large-scale models,
and for the separations between platform-independent and platform-dependent models
required by the MDA. In particular, we are interested in refinement of both objects and
actions, as shown below: 

• “Zooming” out of a model showing a complex network of objects, and have a sim-
plified model with fewer large-grained objects and attributes; and correspondingly 
zoom in to see those details.

• “Zooming” out of a model of a detailed interaction protocol to get a simplified 
model with a single more abstract action with the same overall effect; and corre-
spondingly zoom in to see those detailed interactions.

There will be different kinds of refinement needed, some corresponding to automated
translations or model/code generation; others having at best some helpful patterns that
are selected manually by a modeller. Refinement should definitely be supported by the
UML superstructure; it is not clear whether MOF or the UML infrastructure will incor-
porate support for refinement. In the final submission, we will include some underlying
patterns needed for refinement in Chapter 4, based on Declarative Generalizable Con-
tainers (Section 4.9).

2.2. Support for a Family of Languages

UML 2.0 and MOF will form the foundation for a family of different dialects of model-
ling languages. It is essential that these languages share a consistent language architec-
ture, with clear semantics, to enable interoperability. For example:

• The OMG already has multiple, independent, and overlapping constructs in the area 
of defining connection points on components separately from the connections 

(a) Zooming in/out – objects (b) Zooming in/out – interactions

out

in

out

in

out

in
UML2 infrastructure initial submission 24



Support for a Family of Languages
between those points. The real-time UML profile defines constructs such as cap-
sules. The EDOC profile defines ports, connectors and protocols. The Corba com-
ponent model uses facets, receptacles.

• Even within the UML, there are multiple ways of defining dynamic behaviors, with 
poorly defined relation between their semantics: preconditions and postconditions 
on operations, state transitions on state charts, activities and object flows in activity 
diagrams, and sequence and collaboration diagrams.

Architectural consistency across a large family of complex languages is not easy. Our
submission enables this consistency by starting with precise definition of any language,
and sharing patterns of partial language definitions across languages.

Based on this submission, a “profile”, or language dialect, is simply another package
defined using sharing of the relevant partial language packages and patterns.

2.2.1  Language Definition

A modelling language has a concrete syntax or notation, an abstract syntax with its

well-formedness rules, and semantics that give meaning to the syntax1.

• Abstract syntax domain: defines the structure of the modelling constructs and the 
rules for that abstract syntax to be well-formed in a given model e.g. a class has 
attributes and static invariants; static invariants can refer only to attributes of self.

• Semantics domain: defines the elements that are being described by the abstract 
syntax e.g. objects have slots, and at any point in time a snapshot of object defines 
the values of those slots as references to other objects. 

• Semantic mapping: gives the “meaning” of a model in the abstract syntax, either by 
translating it into a more basic abstract syntax that has a well-defined meaning, or 
by relating the syntax to constraints on things in the semantic domain e.g. a static 
invariant on a class must hold true of any snapshot of an instance of that class.

• Notation: a concrete (graphical or textual) syntax, with its rules of well-formedness. 
e.g. a static invariant is written context class inv: boolean_expression

• Syntax mappings: rules that map concrete syntax to abstract syntax, and back.

1. These have often been mis-characterized in prior UML and MOF work.
UML2 infrastructure initial submission 25



Support for a Family of Languages
The submission defines patterns for these aspects of languages definition. An example
is shown below, detailed in Section 4.7. 

2.2.2  Architectural Consistency across Language Definitions

In addition to the macro pattern of concrete syntax, abstract syntax, and semantics, lan-
guage dialects have to repeatedly address recurring language definition issues: naming
and namespaces, the tree “container” structure of abstract syntax elements, variables
and constants in expressions, run-time semantics of expressions, etc.

We use package generalization and package templates to define these language ele-
ments in a way which addresses numerous shortcomings of the subclass-based
approach prevalent in UML 1.x and MOF 1.x. Chapter 4 includes several templates,
some of which are listed below: 

Basic Templates: templates used as a foundation for most language constructs.

• Container: one element is contained within another.

• NameSpace: a naming context binds names to a set of elements.

• Semantics: separation and mapping between abstract syntax and semantic domain.

Extensions: capture “extension” relationships between modelling elements.

• Generalisable Container: contents of container are derived from its parents.

• Declarative Generalisable Container: container obliged to extend parents’ contents.

Semantics: templates that capture meaning relationships between modelling elements.

• Container Semantics: how container and contents constrain their semantic domain.

• Generalisable Semantics: how generalization constrains its semantic domain.

Constraints: templates for the definition of constraint languages, such as OCL.

• Expression Semantics: how syntactic expressions constrain semantic calculations.
UML2 infrastructure initial submission 26



Support for a Family of Languages
• Binding: binding syntactic elements (e.g. variables) to semantic ones (instances).

Mappings: express transformations across modelling elements and across languages.

• Container Mapping: maps one kind of container to another.

Graphs: graphs, trees, etc. which are very useful to define languages.

• Graph: a nodes-and-edges description of a relation.

• Tree: a graph with specific constraints on its structure.

Reflection: relate model elements to their reified representation as metaobjects,
addressing the core issues of the OMG’s 4-level meta-modelling architecture and
MOF.

• Object Reflection: a container model element has an object + slot representation.

Abstract Class Hierarchy: these patterns painlessly construct an abstract class hierar-
chy similar to that used in UML 1.x.

2.2.3  N-level Meta-modelling 

The OMG standards have long described the benefits of “strict” 4-level meta-mode-
ling. However, the UML and MOF have never satisfied the few clear definitions of
what strict N-level meta-modelling means. Moreover, “strict” 4-layer rules make some
simple things difficult, even impossible:

• Modelling concepts that cross layers e.g. the class-instance relationship.

• Having one definition of “pattern” used in MOF, UML, Profiles, and user models.

• Specific patterns, such as Namespace, Tree, Graph, DAG, … used at all levels.

This submission provides a precise and clear basis for representing a model element in
more than one way e.g. reified as an object in the semantic domain, or as an element in
the abstract syntax domain. These approaches to reflection are represented as patterns.
Using these, we can define the meta-model for UML and MOF, and then model a 2-
way translation mapping between these and UML 2.0. Thanks to our clean handling of
abstract syntax, concrete syntax, and semantics, we can view XMI as a concrete syntax
for the abstract syntax of UML/MOF. 

Based on this, we can generate both UML 2.0 and MOF from the same source, so UML
and MOF 2.0 and beyond could forever be mutually compatible. In fact, this submis-
sion enables MOF to be the UML 2.0 core, without need for any translation or isomor-
phic mapping between them.

2.2.4  Relationships and Translations across Languages

The template facility in this submission can be used to define relations and transforma-
tions across languages, at the level of abstract syntax, concrete syntax, or semantic
domain. We illustrate this with some simple examples.
UML2 infrastructure initial submission 27



Support for a Family of Languages
• Templates can parameterize any model by designating elements as placeholders. 
Thus, <Container> and <Contained> could be placeholders in a template that 
described the structure and OCL constraints for containment. 

• Templates can parameterize identifiers (names) used in a model. For example, given 
an attribute name <attr>, a template can define set_<attr> and get_<attr> 
methods.

• UML 1.x constructs such as N-ary associations and qualified associations can be 
easily represented as templates, with a translation into, for example, simple 
attributes and queries with parameters. 

• Since we make a complete separation of abstract syntax, concrete syntax, and 
semantic domains, languages such as XMI and IDL could be defined as alternate 

syntaxes to UML 2.01; OCL could be used with a far more friendly syntax.

• The mapping from MOF to XMI or IDL could be easily represented as a template, 
even through to concrete IDL syntax such as:
module <PackageName> {

typedef 

sequence < <BuiltInType> > <BuiltInTypeName> <CollectionKind>;

... }

1. In the case of IDL, this might require the definition of some new #pragma’s in IDL.
UML2 infrastructure initial submission 28



Support for a Family of Languages
Two examples from the MOF 1.3 specification are included here. Their representa-
tion as a template will be included in the final submission.

2.2.5  Improved Model Interchange

In the presence of a family of modeling languages, model interchange takes on some
new nuances. For example, suppose you have a model in Profile-A, which includes
states and state-charts. In pseudo-text form, your model might define class Person
with a state child and disjoint substates infant, toddler:

class Person {  States: child substates (infant, toddler) }
UML2 infrastructure initial submission 29



Unified Concepts
Suppose someone else has a tool which does not understand Profile-A (states), but
does understand attributes and static invariants (Profile-B). The approach in this sub-
mission enables model interchange to transfer a profile-based model as:

class Person {
   attributes  child, infant, toddler: Boolean
   static invariants:  
         child = infant OR toddler
         EXCLUSIVE (infant, toddler)
}

In the presence of multiple profiles, with unresolved overlapping areas across profiles
and across the domains the models address, and with tools picking and choosing what
they implement, such smart interchange will be a blessing.

2.3. Unified Concepts

This submission (with its corresponding OCL and UML/superstructure submissions)
unifies several disparate concepts that are not cleanly related in UML 1.x, including:

• Template packages: unifies the current concepts of packages and renaming, collabo-
ration patterns, and parameterized classes. In addition, it replaces many inappropri-
ate uses of abstract classes in UML and MOF 1.x, and supports patterns of 
packages, patterns of refinement, etc.

• Objects and values: these are unified in the current submission, so the same 

approach can be used to define OCL collections, integers, strings, and enumeration 
types, as is used to define other UML classes, user-defined classes, or user-defined 
“value” types. Concepts such as tuples and n-ary associations become easy to 
define as patterns. A particular platform’s call-by-value rules are deferred to the 
appropriate language dialect or “profile”, as would be required by MDA.

• Actions: this submission unifies and makes consistent the current UML notion of 
action, state transition, activity, and collaboration.

• Language semantics and syntax: many elements of UML have their abstract syntax 
and well-formedness rules of the abstract syntax defined; few have clearly defined  
semantics. This submission unifies and make consistent the approach to defining 
and relating concrete notation, abstract syntax, and semantics.

• Inter-language mappings: this submission provides a systematic way to define map-
pings that cross languages, at the level of concrete syntax, abstract syntax, or seman-
tics domains.

joeBrown: 
Person

joesmith: 
Person

"joe": 
String

3: 
Integer

firstName

age

firstName

stringLength

true: 
Boolean

alive
UML2 infrastructure initial submission 30



Unified Concepts
• UML 1.x concepts of system, subsystem, model are unified using packages and 
refinement of the basic concepts of object and action.

• UML 1.x concepts of role, object, classifier role, etc. are unified using the clear sep-
aration of objects in the semantic domain, from variables and bindings. 

• Containment and ownership have been separated from namespace. The definition of 
a class should be considered independently from the name by which you refer to 
that class definition, hence name bindings should be separated from the model ele-
ments being named. 
UML2 infrastructure initial submission 31



Unified Concepts
UML2 infrastructure initial submission 32



Chapter 3

Meta-Modelling Approach

This chapter introduces our approach to meta-modelling, in par-
ticular the language being used. The language is the expected 
subset of UML, extended to include a rich notion of package 
templates and package inheritance, both crucial to defining fam-
ilies of languages.

3.1. Introduction

The meta-modelling approach is dictated by the meta-modelling language chosen and 
the way in which that language is deployed.

3.1.1  The Meta-modelling language

Unsurprisingly, our approach uses a meta-modelling language based on well-under-
stood object modelling principles which are at the heart of UML and MOF. There are 
four main components of the language:

Static basics.  Includes the usual constructs (classes, attributes, associations, query-
operations) for capturing the static structure of a meta-model.

Packages. For organising meta-models into manageable chunks. Includes facilities to 
handle package composition and merging.

A constraint language (OCL). For expressing well-formedness constraints on the 
structures admitted by the meta-model.

Templates. Allows meta-modelling patterns to be encoded in a precise and effective 
way. Includes facilities to handle template composition and merging.

These four components are described in the main body of the chapter.

The static core, hence this meta-modelling language, is formally defined in Chapter 5.1    

Meta-models will be presented using diagrams and text. Text is used only to write out 
the OCL constraints and write out the definition of supplementary operations. 

1. It should be noted that templates have not been formally defined for this initial submission, although 
there is a placeholder in Chapter 5. They will be formally defined in the final submission. Templates 
have been implemented in a prototype tool as proof of concept.



Introduction
3.1.2  Deployment

Our deployment of the meta-modelling language is considerably affected by the inclu-
sion of templates. Templates deliver three key benefits for the meta-modeller:

• They allow commonality between language components to be captured in one place, 
which leads to a high degree of architectural integrity in the definition of languages 
constructed through the application of templates;

• They take much of the slog out of producing meta-models, in particular well-
formedness constraints, which allows more complete definitions to be constructed 
more quickly;

• They avoid the proliferation of abstract meta-classes, which are an ineffective 
mechanism (we argue) for supporting reuse and extensibility. 

Thus, when deploying the meta-modelling language, one should strive to isolate tem-
plates that capture useful patterns of language definition. The templates used in this 
submission are described in Chapter 5.

One should also strive to deliver complete meta-models, especially for a definition of a 
standard language. The component of a meta-model that is most often omitted is the 
well-formedness constraints. There are three good reasons for putting the effort into 
defining well-formedness constraints:

• Writing such constraints helps to uncover ambiguities and subtleties in the language 
that would otherwise be missed, and often this can precipitate changes to other 
aspects of the definition, such as class diagrams.

• Constraints capture important aspects of the language definition that can not be cap-
tured through structure diagrams alone. This becomes particularly noticeable in 
complex aspects such as semantics and even the syntax of some sophisticated lan-
guage constructs.

• If the constraints are written precisely enough they can be directly processed by 
tools that have a constraint capability. This can be used, for example, to check 
whether a model satisfies the well-formedness conditions defined in the abstract 
syntax component of a meta-model; or whether an instance of a model satisfies a 
model, as defined by the semantics captured by the constraints in the meta-model. 
Indeed, if the meta-model language itself is cast as a meta-model, then meta-models 
(which will be models of this cast) can be checked to ensure that they are well-
formed meta-models using the proposed tool.

This submission has been careful to define constraints as precisely and completely as 
possible. Templates have been of considerable benefit here, both by delivering many 
constraints automatically through their instantiation, and by helping us to identify 
where constraints need to be added by language components which instantiate a tem-
plate.

All the meta-models in this submission have been checked by a prototype tool that 
understands and checks constraints. The same tool also supports the expansion of tem-
plates, which has helped to ensure that the template mechanisms employed in this sub-
mission give the expected results.      
UML2 infrastructure initial submission 34



Classes
3.1.3  Organisation of chapter

The remainder of this chapter focuses on providing a description of the meta-modelling 
language itself, dealing with each main component in sequence. More attention is paid 
to the novel aspects of the language (templates & package/template specialisation/
composition/merging). Subsequent chapters deploy that language to deliver the UML 2 
infrastructure.

3.2. Classes

Classes and associations (next section) are used to describe structural aspects of a 
meta-model. In the meta-modelling language used, classes are restricted to contain

• Attributes

• take the form x:T, where T may take the form X, Set(X), Seq(X)and X may be 
a class or a basic data type – Integer, Boolean or String.

• Query operations

• take the form q(x1:T1,...,xn:Tn):T, where Ti and T take the same form as T 
above.

Visibility distinctions on attributes or query operations are not needed. 

Classes may only be defined in the context of a package.

The usual UML graphical notation for classes will be used.

3.3. Binary associations

Binary associations have two ends. An association end is identified with a source class 
C and target class D, a cardinality constraint m..n and a label s.

Associations which are only navigable in one direction are also allowed, in which case 
their semantics is given by the semantics of the association end which can be navi-
gated.

A fuller treatment of UML associations, including n-ary associations, is given as part 
of Chapter 5. The translational semantics given here is consistent with that definition.

Associations may only be defined in the context of a package.

The usual UML graphical notation for binary associations will be used.

3.4. Packages

Packages may contain classes, associations and other packages. The ends of an associ-
ation in a package must be sourced on classes contained in that package. This avoids 
associations delivering new attributes on classes in distant packages. In practice, this 
means that only one-way associations may refer to classes of a different package (with 
UML2 infrastructure initial submission 35



Packages
the source being in the package owning the association). Of course, attributes and que-
ries can refer to classes of different packages.

A package generalisation mechanism is also supported. This is illustrated by the exam-
ple in Figure 1, which shows a package with multiple (two) parents.

Figure 1. Package generalisation example

The UML graphical notation for packages is used. The UML class generalisation arrow 
is used to show a generalisation relationship between packages. Anything shown in 
blue in the child is generated from the parent. Although it is not strictly necessary to 
show these elements, it can be extremely helpful to the modeller to see them displayed. 
In some cases it is essential to show generated elements as they interact with new ele-
ments introduced in the package (so, for example, class R.C interacts with R.X).

The basic rule is that the child gets everything from each parent, where model elements 
of the same kind (class, attribute, constraint, etc.) and which are “indistinguishable” get 
merged. What it means for a model element to be distinguishable from another ele-
ment, and how a model element is merged with another, depends on the kind of model 
element. For example, two classes will be deemed indistinguishable if they have the 
same name, and the merge of two classes will require the list of attributes of each to be 
merged, merging attributes as appropriate. Two attributes are also deemed indistin-
guishable if they have the same name, and their merge replaces the type with one that is 

a subtype of the types of the attributes being merged.1

1. This is the not the only possibility for merging attributes, but it is the one adopted here.

Q

R

P

a : X
b : Y

A

a : X
c : Z

AX

X

Z

a : X
b : Y
c : Z

A

Y

Y

X

Z

C

UML2 infrastructure initial submission 36



Constraint Language
The child may also specialise any model element from any parent in a conformant way, 
where the definition of conformance depends on the kind of model element. So, for 
example, the cardinalities on association ends may be strengthened. 

Clearly this merging idea can be extended to class generalisation, and this is assumed 
for the meta-modelling approach used here.

In principle, one may wish to prevent a merger taking place or, indeed, force a merge to 
happen. This could be achieved through a renaming mechanism. However, we have 
found no need to do this (or at least nothing that can not be easily circumvented), when 
templates are deployed. The need for renaming will be reconsidered in the final sub-
mission.

3.5. Constraint Language

OCL as defined in UML is used to write invariant constraints using our meta-model-
ling approach. There is a single caveat: constraints are given names, where the name is 
a single text string on a separate line below the context clause (see constraints in Sec-
tion 3.3 for an example).

OCL expressions are also used to provide the definition of queries, using the syntax

class C
q(x1:T1,...,xn:Tn):T

OCLexp

where OCLexp is an expression of type T, which may depend on the arguments of q and 
attributes of C.

3.6. Package Templates

Package templates are used to provide chunks of (meta-)model with substitutable parts. 
They are very effective in encoding modelling patterns. Figure 2 gives a simple exam-
ple of a template.

Figure 2. Simple example of template

The parameters to the template are just strings, representing names of things. The 
names of these parameters are declared in brackets after the package name. The argu-

Contains(Container,Contained)

<Container> <Contained>
*

<Contained>s

<Container>

1

UML2 infrastructure initial submission 37



Package Templates
ments may be quoted anywhere a string is required. Quoting is shown by angled brack-

ets.1

Templates may be instantiated to generate standard packages or other templates. The 
former is illustrated by Figure 3.

Figure 3. Template instantiation

Template instantiation is shown by a dashed generalisation arrow, which is annotated 
by substitutions for the parameters of the template. More than one substitution may be 
given, in which case the template is instantiated for each substitution and the results 
merged.

So, in the example, the template is instantiated twice. In both cases, Container is sub-
stituted for Class, but in the first case Contained is substituted for Attribute and, in 
the second, Container is substituted for Query. By merging rules, only one copy of 
Class appears in the child package.

The syntax of a substitution takes the form [A1/X1, ..., An/Xn] which means, for a 
template with parameters X1, ..., Xn that A1 is substituted for X1 and so on. A 
parameter may only be substituted once for any single template instantiation, but there 
may be more than one instantiation of the same template into the same package.

1. Rather than just allowing quoting, one can instead introduce the concept of string expression, and use 
a small string expression language involving the parameters to generate names. For this submission, 
we have found concatenation to be sufficient.

Class Attribute
*

Attributes

Class

1

Container()

[Class/Container, Attribute/Contained]
[Class/Container, Query/Contained]

Query
*

Querys

Class1
UML2 infrastructure initial submission 38



Package Templates
A package resulting from an instantiation of a template may specialise, in a conformant 
way, the elements generated from the template through the instantiation. This is analo-
gous to the package generalisation case.

Of course templates may contain more that just classes and associations. For example, 
they may also contain constraints, query definitions and so on. Consider the template 
defined by Figure 4, and query definitions that follow.

Figure 4. Template with method definitions

nameFor<NamedElement>(): Returns a name for a NamedElement in a NameSpace.

context <NamedElement>NameSpace
nameFor<NamedElement>(a:<NamedElement>):String
  self.defs->select(pair | pair.name = a).selectElement().name

<NamedElement>For(): Returns a NamedElement for a name in a NameSpace.

 context <NamedElement>NameSpace
<NamedElement>For(s:String):<NamedElement>
  self.defs->select(pair | pair.name = s).selectElement().target

dom(): All names in the NameSpace.

 context <NamedElement>NameSpace
dom():Set(String)
  self.defs->collect(pair | pair.name)

ran(): All named elements in the NameSpace.
context <NamedElement>NameSpace 
  ran():Set(<NamedElement>)
    self.defs->collect(pair | pair.target)

name(): Returns the name of an element in the context of a NameSpace.

  context <NamedElement>
  name(nameSpace:<NamedElement>NameSpace) : String
    nameSpace.nameFor(self)

NameSpace(NamingContext,NamedElement)

nameFor<NamedElement>(a:<NamedElement>):String
<NamedElement>_For(s:String):<NamedElement>
dom():Set(String)
ran():Set(<NamedElement>)

<NamedElement>NameSpace

name:String

NameX
<NamedElement>)*

<NamingContext>

name():String

<NamedElement>

1

defs

1

UML2 infrastructure initial submission 39



Package Templates
When this template is instantiated the effect will be to generate methods with the right 
names and appropriate definitions. So given the instantiation in Figure 5, the following 
method will be generated, for example:

 context Attribute_NameSpace
Attribute_For(s:String):Attribute_
  self.defs->select(pair | pair.name = s).selectElement().target

Figure 5. Instantiation of template with query definitions

Templates may also be generated from other templates. This is illustrated by Figure 6.

Attribute_Name

Space

NameX
Attribute_

name:String

*

Class_

Attribute_

name()

1

defs

1

NameSpace()

[Class_/NamingContext,
 Attribute_/NamedElement]
UML2 infrastructure initial submission 40



Package Templates
Figure 6. Template generation from templates

As shown by the diagram, this is achieved by instantiating one or more templates, with 
parameter substitutions that substitute parameters of parent templates with parameters 
(or not) of the child template. This technique is used extensively in the meta-modelling 
approach adopted here.

Contains() NameSpace()

Distinguishable(Container,Contained)

<Contained>
NameSpace

NameX
<Contained>

name:String

*

<Container>
<Contained>

name():String

1

defs

1

[<Container>/NamingContext,
 <Contained>/NamedElement]

<Contained>s

<Container>

[<Container>/Container,
 <Contained>/Contained]
UML2 infrastructure initial submission 41



Package Templates
UML2 infrastructure initial submission 42



Chapter 4

Templates

This chapter describes a number of templates that are key to 
defining modelling languages. The application of these tem-
plates is demonstrated using fragments of UML2.

4.1. Introduction

The purpose of this chapter is to describe the templates used to define UML 2. Each of
the templates described in this chapter represent a self-contained unit of concepts and
properties that capture a specific aspect of language design. Taken as a whole they con-
stitute a standard library of template definitions, and for this reason this chapter is pre-
sented in the form of a reference manual. 

The templates can be broadly categorised as follows:

Basic Templates: fundamental templates that are used to define more complex lan-
guage templates. 

• Contains (Section 4.2 on page  46)

• NameSpace (Section 4.3 on page  48)

• Distinguishable Container (Section 4.4 on page  51)

• Related1 (Section 4.5 on page  54)

• Generalisable (Section 4.6 on page  55)

• Semantics (Section 4.7 on page  57)

Extensions: templates that capture relationships between modelling elements, where
one modelling element can be viewed as an extension of another modelling element. 

• Generalisable Container (Section 4.8 on page  59) 

• Declarative Generalisable Container (Section 4.9 on page  62)

• Generalisable Related1 (Figure 4.10 on pa ge65)

• Importable Container (Section 4.11 on page  66)

• Mergeable Container (Section 4.12 on page  66)

Semantics: templates that capture meaning relationships between modelling elements,
where the meaning of a modelling element is defined in terms of a mapping to a
semantic domain (which is itself a model). 

• Container Semantics (Section 4.13 on page  67)

• Generalisable Semantics (Section 4.14 on page  69)

• Generalisable Container Semantics (Section 4.15 on page  71)



Introduction
• Generalisable Related1 Semantics (Figure 4.16 on page74)

• Generalisable Feature Container Semantics (Section 4.17 on page  76)

Constraints: templates necessary for the definition of constraint languages, such as the
Object Constraint Language. 

• Expression Semantics (Section 4.18 on pa ge  76)

• Binding (Section 4.19 on page   76)

Mappings: templates that define a vocabulary for expressing transformations between
modelling elements and between languages. 

• Mapping (Section 4.20 on page  77)

• Container Mapping (Section 4.21 on pa ge  77)

Refinement: templates that define a refinement relationship between modelling ele-
ments. 

• Refinement (Figure 4.22, “Refinement,” on page  77)

Graphs: templates that define variants of graphs. Graphs and trees have an important
role to play in the definition of modelling languages. Many of the templates used in this
document are related to these concepts (although this relationship has not been made
explicit as yet). 

• Graph (Section 4.23 on pag e  78)

• Tree (Section 4.24 on page  79)

Reflection: templates that define the relationship between model elements, their meta-
objects (ObjectReflection) and their meta-classes (Class Reflection).

• Object Reflection (Section 4.25 on page  80)

• Class Reflection (Section 4.26 on page  83)

Abstract Class Hierarchy: templates that can be used to construct an abstract class
hierarchy similar to that used in UML 1.X. Abstract class hierarchies have a useful role
to play for the tool vendor, who may use them to define plug-points for new modelling
elements (using a traditional framework style). The following abstract class templates
are defined:

• Abstract Container (Section 4.28 on page  87)

• Abstract GeneralisableElement (Section 4.28 on page  87)

• Abstract NameSpace (Section 4.29 on page  88)

The remainder of this chapter consists almost entirely of independent sections, each
introducing a definition of a template, a summary of its purpose, a description of the
definition and small examples of its usage (including some snapshots). Full examples
of the use of the templates can be found in the remaining chapters of the submission.
An introduction to the template notation and their informal semantics can be found in
chapter 3. An overview of the most important templates and their relationship to each
other is shown in Figure 7.
UML2 infrastructure initial submission                                                                                                   44



Introduction
Figure 7. Overview of Templates

Container()

Generalisable()

NameSpace()

Distinguishable
Container()

Generalisable
Container()

Related1()

Generalisable
Related1()

Semantics()

Generalisable
Container
Semantics()

Generalisable
Related1

Semantics()

Map()

Container
Map()

Refinement()

Generalisable
Feature
Container
Semantics()

Reflection()
UML2 infrastructure initial submission                                                                                                     45



Contains
4.2. Contains

Summary

A containment relationship, in which one element, the Container, conceptually con-
tains another element (the Contained element).

Definition

Figure 8. Contains

Queries

None.

Well-formedness Rules

None.

Description

Containers are one of the most fundamental patterns found in a modelling language.
Many language elements “contain” other language elements. 

Contains(Container,Contained)

<Container> <Contained>
*

<Contained>s

<Container>

1

UML2 infrastructure initial submission                                                                                                   46



Contains
Example

A class contains its attributes and queries.

Figure 9. Contains Example

Class Attribute
*

Attributes

Class

1

Container()

[Class/Container, Attribute/Contained]
[Class/Container, Queries/Contained]

Queries
*

Queries

Class1
UML2 infrastructure initial submission                                                                                                     47



NameSpace
4.3. NameSpace

Summary

Defines a name space for a named element in a naming context. A namespace is a col-
lection of mappings from names to named elements.

Definition

Figure 10. NameSpace

Queries

nameFor<NamedElement>(): Returns a name for a NamedElement in a NameSpace.

context <NamedElement>NameSpace
"nameFor"<NamedElement>(a:<NamedElement>):String
  self.defs->select(pair | pair.name = a).selectElement().name

<NamedElement>_For(): Returns a NamedElement for a name in a NameSpace.

 context <NamedElement>NameSpace
<NamedElement>_For(s:String):<NamedElement>
  self.defs->select(pair | pair.name = s).selectElement().target

dom(): All names in the NameSpace.

 context <NamedElement>NameSpace
dom():Set(String)
  self.defs->collect(pair | pair.name)

ran(): All named elements in the NameSpace.
context <NamedElement>NameSpace 
  ran():Set(<NamedElement>)
    self.defs->collect(pair | pair.target)

NameSpace(NamingContext,NamedElement)

nameFor<NamedElement>(a:<NamedElement>):String
<NamedElement>_For(s:String):<NamedElement>
dom():Set(String)
ran():Set(<NamedElement>)

<NamedElement>NameSpace

name:String

NameX
<NamedElement>*

<NamingContext>

name():String

<NamedElement>

1

defs

1

UML2 infrastructure initial submission                                                                                                   48



NameSpace
name(): Returns the name of an element in the context of a NameSpace.

  context <NamedElement>
  name(nameSpace:<NamedElement>NameSpace) : String
    nameSpace.nameFor(self)

Well-formedness Rules

None.

Description

Namespaces are a mechanism for decoupling names from modelling elements. A nam-
ing context defines a namespace for all the elements that it can name. Lookup queries
are provided for retrieving names and named elements from a namespace.

Example

A class has a namespace for its attributes.

Attribute_Name

Space

NameX
Attribute_

name:String

*

Class_

Attribute_

name()

1

defs

1

NameSpace()

[Class_/NamingContext,
 Attribute_/NamedElement]
UML2 infrastructure initial submission                                                                                                     49



NameSpace
Example Snapshot

Figure 11 shows the definition of a single class named C with two attributes named a
and b respectively. Note, in practice, attributes and other namespace elements will not
have name attributes. However, we have found that local names considerably reduce
the noise associated with name spaces, and should be viewed as interchangeable, i.e. an
attribute with name “a” is equivalent to an attribute that is named “a” in a attribute
namespace.

Figure 11. NameSpace Example
UML2 infrastructure initial submission                                                                                                   50



Distinguishable Container
4.4. Distinguishable Container

Summary

A distinguishable container is a container that cannot contain two or more elements
with the same name.

Definition

Figure 12. DistinguishableContainer

Queries

None.

Well-formedness Rules

All<Contained>sHaveDistinctNames: All contained elements have distinct names.

context <Container> inv:
All<Contained>sHaveDistinctNames
  self.<Contained>s->forAll(element, element’ |
    element.name(self.<Contained>NameSpace) = 
    element'.name(self.<Contained>NameSpace) implies 
       element = element')

Contains() NameSpace()

DistinguishableContainer(Container,Contained)

<Contained>
NameSpace

NameX
<Contained>

name:String

*

<Container>
<Contained>

name():Sring

1

defs

1

[<Container>/NamingContext,
 <Contained>/NamedElement]

<Contained>s

<Container>

[<Container>/Container,
 <Contained>/Contained]
UML2 infrastructure initial submission                                                                                                     51



Distinguishable Container
Description

A distinguishable container contains elements that are distinguishable by name through
their name() method. This method is defined in the context of a namespace of con-
tained elements (see NameSpace template, Section 4.3 on page  48).

Example

A class’s queries and attributes are distinguishable by their name, i.e. no two attributes
can share the same name. However, because two separate constraints are generated for
each contained element, it is quite legal for a class to contain an attribute and a method
with the same name.

Figure 13. DistinguishableContainer Example

Class
Attribute*

Attributes

Class

1

Distinguishable
Container()

[Class/Container, Attribute/Contained]
[Class/Container, Query/Contained]

Query*

Querys

Class1

name() : String

name() : String

Attribute
NameSpace

NameX
Attribute

name:String

*

1

defs

1

Query
NameSpace

NameX
Query

name:String

*

defs

1

UML2 infrastructure initial submission                                                                                                   52



Distinguishable Container
Generated Constraints

AllAttributesHaveDistinctNames: All attributes have distinct names as defined by
their namespace.

context Class inv:
AllAttributesHaveDistinctNames
  self.Attributes->forAll(element, element’ |
    element.name(self.AttributeNameSpace) = 
    element'.name(self.AttributeNameSpace) implies 
      element = element')

AllQuerysHaveDistinctNames: All queries have distinct names as defined by their
namespace.

context Class inv:
AllQuerysHaveDistinctNames
  self.Querys->forAll(element, element’ |
    element.name(self.QueryNameSpace) = 
    element'.name(self.QueryNameSpace) implies 
      element = element')
UML2 infrastructure initial submission                                                                                                     53



Related1
4.5. Related1

Summary

Defines a many to one relationship between two elements.

Definition

Figure 14. Related1

Description

Related1 is just one of many “relation” templates that can be defined between two ele-
ments. It describes a function, where many instances of <Element1> are mapped to a
single instance of <Element2>. In future, this template will be generalised to permit
the substitution of multiplicities (thus avoiding the need to define N templates for N
different relations). The Contains template (section 4.2) is probably just another vari-
ant.

Example

Attribute, owner, “type” and Class can be readily substituted for <Element1>,
<name1>, and <Element2> respectively to model the relationship between an Attribute
and its type.

Related1(Element1,name1,Element2)

<Element1> <Element2>

1

<name1>*
UML2 infrastructure initial submission                                                                                                   54



Generalisable
4.6. Generalisable

Summary

A generalisable type has parents and children.

Definition

Figure 15. Generalisable

Queries

allLocalParents(): Returns all local parents of the type.

context <Type>
allLocalParents() : Set(<Type>)
   self.parents->iterate(parent S = self.parents |
     S->union(parent.allParents()))

Well-formedness Rules

No Circular Inheritance: A generalisable element cannot specialise itself.

context <Type> inv:
NoCircularInheritance
self.allLocalParents() -> excludes(self)

Description

Model elements are generalisable when they have parents. 

Example

Class and Package can both be substituted for <Type>. The result of substituting Class
into the template is shown in Figure 16.

Generalisable(Type)

<Type> *

parentsallLocalParents()

Class *

parentsallLocalParents()
UML2 infrastructure initial submission                                                                                                     55



Generalisable
Figure 16. Generalisable Example

Example Snapshot

A snapshot satisfying the properties of Figure 16 is shown on the left hand side of Fig-
ure 17. Note that the right hand side shows an example of a snapshot that invalidates
the circular inheritance rule.

Figure 17. Generalisable Snapshots
UML2 infrastructure initial submission                                                                                                   56



Semantics
4.7. Semantics

Summary

The semantics of a model element are defined in terms of a mapping to multiple
instance elements in a semantic domain.

Definition

Figure 18. Semantics

Queries

None.

Well-formedness Rules

None.

Description

The Semantics template captures the model element/instance relationship that occurs
between abstract syntax elements and their instances in a semantic domain. The differ-
ent roles played by elements in a semantic definition are clearly delineated by parti-
tioning the Semantics package into an AbstractSyntax package (which contains all
model elements), a SemanticDomain package (which contains all instance elements)
and a SemanticMapping package. The SemanticMapping Package specialises both the
abstract syntax and semantic domain packages and defines an instances/of association
between model elements and their instances. Thus, an instance will always be able to
determine what it is an instance of.

Semantics(ModelElement,InstanceElement)

AbstractSyntax SemanticDomain

<Model
Element>

<Instance
Element>

SemanticMapping

<Model
Element>

<Instance
Element>instancesof

1 *
UML2 infrastructure initial submission                                                                                                     57



Semantics
Example

Instances of associations are links.

Figure 19.  Semantics Example

AbstractSyntax SemanticDomain

Association Link

SemanticMapping

Association Link
instancesof

1 *

Semantics()

[Association/ModelElement,
 Link/InstanceElement]
UML2 infrastructure initial submission                                                                                                   58



Generalisable Container
4.8. Generalisable Container

Summary

Defines a query-based generalisable container, in which the contents of a container are
calculated from its parents contents. Note, namespaces are not shown for brevity.

Definition

Figure 20. GeneralisableContainer

Queries

allParents(): Returns all parents of a contained element, including all local parents and
all derived parents.

  context class <Contained>
  allParents():Set(<Contained>)
    self.allLocalParents()->union(self.allDerivedParents());

all<Contained>s(): Returns all contained element.

context class <Container>
  all<Contained>s() : Set(<Contained>)
    self.allParents() -> iterate(p s = self.<Contained>s | 
        s->union(p.all<Contained>s()->
          reject(c | s->exists(c' | 
            c.name(self.<Contained>NameSpace) = 
            c'.name(self.<Contained>NameSpace) or 
            c'.parents ->includes(c)))))

Generalisable()

[<Container>/Type]
[<Contained>/Type]

GeneralisableContainer(Container,Contained)

<Container>
<Contained>

<Contained>s

parents
parents

allLocalParents()

* *

allLocalParents()
name():String

*

1

Distinguishable
Container()

<Container>
UML2 infrastructure initial submission                                                                                                     59



Generalisable Container
allDerivedParents(): Returns all parents of an element that share the same name as the
contents of its container’s parents.

context class <Contained>  
  allDerivedParents() : Set(<Contained>)
    if self.<Container> <> self then
      self.<Container>.allParents() -> iterate(p s = Set{} |
        s->union(p.<Contained>s -> 
          select(c | 
            c.name(self.<Contained>NameSpace) =
            self.name(self.<Contained>NameSpace))))
      else Set{}  
    endif

Well-formedness Rules

None.

Description

A generalisable container can calculate its contents by finding the contents of all its
parents, and determining whether it indirectly inherits from them.

Example

Figure 21 shows the template applied twice to Package and Class (a Package contains
Classes) and to Class and Attribute (a Class contains its Attributes). Note. namespaces
aren’t shown for brevity. 

Figure 21. GeneralisableContainer Example

Package Class

Classs

parents parents

allLocalParents()

* *

allLocalParents()
name():String

*

1

[Package/Container,
Class/Contained]
[Class/Container,
Attribute/Contained]

Package

Attribute

Attributes

allLocalParents()
name():String

*

1 Class

*

parents

Generalisable
Container()
UML2 infrastructure initial submission                                                                                                   60



Generalisable Container
A class can now calculate all its attributes (including those inherited from its parents)
via the query:

context Class
  allAttributes() : Set(Class)
    self.allParents() -> iterate(p s = self.Attributes | 
        s->union(p.allAttributes()->
          reject(c | s->exists(c' | 
            c.name(self.AttributeNameSpace) = 
            c'.name(self.AttributeNameSpace) or 
            c'.parents ->includes(c)))))

This will iterate through all the parents of the class including all its derived parents (see
below) rejecting any duplicate attributes that might otherwise be inherited from the
parents or any redefined attributes.

All derived parents of Class will return all parents of Class that share the same name as
the classes of its package’s parents.

context Class  
  allDerivedParents() : Set(Class)
    if self.Package <> self then
      self.Package.allParents() -> iterate(p s = Set{} |
        s->union(p.Attributes -> select(c | 
          c.name(self.ClassNameSpace) =
          self.name(self.ClassNameSpace))))      
      else Set{}  
    endif

Example Snapshot

In Figure 22, allAttributes() of the class class c in the package a will return the
attributes {e, f, g}. Attribute f is inherited from the localParents of the class c in the
package a, whilst attribute e is inherited from the derived parent of c (i.e. the class c in
package b). Note that for brevity, names shown on objects are the names that would be
returned by their container’s namespace.

Figure 22. GeneralisableContainer Snapshot
UML2 infrastructure initial submission                                                                                                     61



Declarative Generalisable Container
4.9. Declarative Generalisable Container

Summary

A declarative generalisable container has the property that it must specialise the con-
tents of its parents. It is given as an example of a more specification-oriented approach
to defining generalisable containers. Note, namespaces aren’t shown for brevity.

Definition

Figure 23. DeclarativeGeneralisableContainer

Queries

parents<Contained>s(): Returns the contents of all parents of a container.

context class <Container>
parents<Contained>s() : Set(<Contained>)
   self.parents->iterate(parent S = Set{} | S->
   union(parent.<Contained>s));

<Contained>sParents(): Returns the parents of all contents of a container.

context class <Container>
<Contained>parents() : Set(<Contained>)
    self.<Contained>s->iterate(
    x S = Set{} | S->union(x.parents))

Generalizable()

[<Container>/Type]
[<Contained>/Type]

DeclGeneralizableContainer(Container,Contained)

<Container> <Contained>

<Contained>s

parents parents

allLocalParents()

* *

allLocalParents()
name():String

*

1

Distinguishable
Container()

[<Container>/Container,
<Contained>/Contained]

<Container>
UML2 infrastructure initial submission                                                                                                   62



Declarative Generalisable Container
Well-formedness Rules

<Contained>sParents(): A container’s parents’ contents must be a subset of its con-
tents’ parents.

context class <Container>
ContentsParentsAreCorrect inv:
   self.parents<Contained>s().subset(self.<Contained>sParents())

Description

A declarative generalisable container does not calculate its contents like a generalisa-
ble container. Instead it must guarantee that it will specialise the contents of its parents,
whilst also permitting the addition of new contents. 

Example

Note, namespaces aren’t shown for brevity.

Figure 24. DeclarativeGeneralisableContainer Example

Package Class

Classs

parents parents

allLocalParents()

* *

allLocalParents()
name():String

*

1

[Package/Container,
Class/Contained]
[Class/Container,
Attribute/Contained]

Package

Attribute

Attributes

allLocalParents()
name():String

*

1 Class

*

parents

DeclGeneralisable
Container()
UML2 infrastructure initial submission                                                                                                     63



Declarative Generalisable Container
Snapshot Example

Figure 25 shows an example of a snapshot that satisfies the well-formedness rules of
the model shown in Figure 24. Here, class c in package a must contain additional
attributes f and e as specialisations of the attributes of classes b.c and a.d. Note that for
brevity, the names shown on the objects are the names that would be returned by a
namespace.

Figure 25. DeclarativeGeneralisableContainer Snapshot
UML2 infrastructure initial submission                                                                                                   64



Generalisable Related1
4.10. Generalisable Related1

Summary

Defines the relationship between two generalisable element, where one element is
related to the other.

Definition

Well-formedness Rules

RelatedElementCommute: All an elements parents must be related to the parents of
the elements its is related to.

context <Element1> inv:
RelatedParentsCommute
self.<<name1>>.parents = self.parents -> 
  iterate(p s = Set{} | s->including(p.<<name1>>))

Description

A generalisable related element has the property that all its parents must be related to
the parents of the elements it is related to.

Example

None.

Generalizable()

[<Element1>/Type]
<Element2>/Type]

GeneralisableRelated1(Element1,name1,Elment2)

<Element1> <Element2>

<name1>

parents parents

allLocalParents()

* *

allLocalParents()

1

*

Related1()
UML2 infrastructure initial submission                                                                                                     65



Importable Container
4.11. Importable Container

Summary

An importable container can import another containers namespace.

Definition

To be defined in the final submission.

Description

Example

4.12. Mergeable Container

Summary

A mergeable container can be merged with another container.

Definition

To be defined in the final submission.

Description

Example
UML2 infrastructure initial submission                                                                                                   66



Container Semantics
4.13. Container Semantics

Summary

Containers have instances, whose elements are instances of the container's contents.

Definition

Figure 26. ContainerSemantics

Queries

None.

ContainerSemantics(Container,Contained,
ContainerInstance,ContainedInstance)

AbstractSyntax SemanticDomain

<Container>

<Contained>

<Container
Instance>

<Contained
Instance>

Semantics()Container()

[<Container>/Container,
<Contained>/Contained]

[AbstractSyntax.<Container>/AbstractSyntax.ModelClass,
SemanticDomain.<ContainerInstance>/SemanticDomain.InstanceClass]

[AbstractSyntax.<Contained>/AbstractSyntax.ModelClass,
SemanticDomain.<ContainedInstance>/SemanticDomain.InstanceClass]

[<ContainerInstance>/Container,
<ContainedInstance>/Contained]

SemanticMapping

<Container>
<Container
Instance>

instances
of

<Contained>
<Contained
Instance>

instances
of

<Container> <Container
Instance>

<Contained>s
<Contained
Instance>s *

*

*

*

1

1

1 1
UML2 infrastructure initial submission                                                                                                     67



Container Semantics
Well-formedness Rules

InstanceContentsCommute: Instance contents commute.

context class <ContainerInstance> inv:
InstanceContentsCommute
   self.of.<Contained>s = self.<ContainedInstance>s ->
   iterate(element S = Set{} | S->union(Set{element.of}))

Description

This template describes the relationship between containers and their instances. A con-
tainer’s structure is reflected on the instance side. Each instance of a container will
contain instances of the container’s contents.

Example

See Generalisable Container Semantics, Section 4.15.
UML2 infrastructure initial submission                                                                                                   68



Generalisable Semantics
4.14. Generalisable Semantics

Summary

Defines the semantics of generalisation as an inheritance preserving relationship
between elements and their instances.

Definition

Figure 27. GeneralisableSemantics

Queries

None.

GeneralisableSemantics(ModelClass,InstanceClass)

AbstractSyntax SemanticDomain

<Model
Class>

Semantics()Generalizable()

[<ModelClass>/Type]

[<InstanceClass>/Type]

SemanticMapping

<Model
Class>

<Instance
Class>

instances

of

parents

<Instance
Class>

parents

*

**

1

UML2 infrastructure initial submission                                                                                                     69



Generalisable Semantics
Well-formedness Rules

InstanceParentsCommute: Instance parents commute.

context class <InstanceClass> inv:
InstanceParentsCommute
   self.of.parents = self.parents ->
   iterate(parent S = Set{} | S->union(Set{parent.of}))

Description

Instances of generalisable elements have the same generalisation hierarchy as their ele-
ments. The intention is that a semantic domain element that is an instance of an ele-
ment may easily be viewed as an instance of a parent by selecting the appropriate
super-instances. 

Example

See Generalisable Container Semantics (Section 4.15 on page  71).
UML2 infrastructure initial submission                                                                                                   70



Generalisable Container Semantics
4.15. Generalisable Container Semantics

Summary

Query-based generalisable container semantics (note namespaces aren’t shown for
brevity).

Definition

Figure 28. GeneralisableContainerSemantics

GeneralisableContainerSemantics
(Container,Contained,ContainerI

nstance,ContainedInstance)

AbstractSyntax SemanticDomain

<Container>

<Contained>

<Container
Instance>

<Contained
Instance>

Container
Semantics()

Generalisable
Semantics()

[<Container>/ModelClass,
<ContainerInstance>/InstanceClass]

[<Contained>/ModelClass,
<ContainedInstance>/InstanceClass]

SemanticMapping

<Container>
<Container
Instance>

instancesof

<Contained>
<Contained
Instance>instancesof

<Container>
<Container
Instance>

<Contained>s
<Contained
Instance>s

parents

parents

parents

parents

Generalisable
Container()

[<Container>/Container,
<Contained>/Contained]

[<ContainerInstance>/Container,
<ContainedInstance>/Contained]

11

1

1

* *

*

*

UML2 infrastructure initial submission                                                                                                     71



Generalisable Container Semantics
Queries

None.

Well-formedness Rules

None.

Description

The generalisable container semantics (GCS) template merges properties of containa-
ble, generalisable and instantiable modelling elements. Any element E that contains
other elements must guarantee to have instances that contain instances corresponding
to the elements of E. Furthermore, the parents of an instance should reflect the same
generalisation hierarchy as the element. In this way, a GCS element can itself be
viewed as a template for stamping out its instances, i.e. each of its instances will guar-
antee to preserve the structure of the GCS element.

Example

Figure 29 shows an example of defining a partial semantics for classes and attributes.
Instances of classes are objects using the GCS template. Instances of attributes are
slots. The slots contained by an object must match the attributes contained by its class
and the object must preserve the same inheritance hierarchy as its class. Note name-
spaces aren’t shown for brevity.
UML2 infrastructure initial submission                                                                                                   72



Generalisable Container Semantics
Figure 29. GeneralisableContainerSemantics Example

AbstractSyntax SemanticDomain

Class

Attribute

Object

Slot

SemanticMapping

Class Object

instancesof

Attribute Slot
instancesof

Class Object

Attributes Slots

parents

parents

parents

parents

Generalisable
Container
Semantics()[Class/Container,

Attribute/Contained] [Object/ContainerInstance,
Slot/ContainedInstance]

1

**

1

*

*1

1

UML2 infrastructure initial submission                                                                                                     73



Generalisable Related1 Semantics
4.16. Generalisable Related1 Semantics

Summary

Defines the semantic relationship between generalisable related elements and their
instances.

Definition

GeneralisableRelated1Semantics
(Element1,name1,Element2,

Element1Instance,name2,Eement2Instance)

AbstractSyntax SemanticDomain

<Element1>

Element2

<Element1
Intance>

<Element2
Instance>

Generalisable
Semantics()

[<Element1>/ModelClass,
<Element1Instance>/InstanceClass]

[<Element2>/ModelClass,
<Element2Instance>/InstanceClass]

SemanticMapping

<Element1>
<Element1
Instance>

instancesof

<Element2>
<Element2
Instance>instancesof

* *

<name1> <name2>

parents

parents

parents

parents

Generalisable
Related1()

[<Element1>/Element1,
<name1>/name1,

<Element2>/Element2]

[<Element1Instance>/Container,
<name2>/name1

<Element2Instance>/Contained]

1 1

*

*1

1

UML2 infrastructure initial submission                                                                                                   74



Generalisable Related1 Semantics
Well-formedness Rules

InstanceElementsCommute: 

context <Element1Instance> inv:
inv InstanceElementsCommute
  self.of_.<<name1>> = 
  self.<<name2>>.of_

Description

The generalisable relatable semantics (GRS) template merges properties of containa-
ble, generalisable and instantiable modelling elements. Any element E that is related to
other elements must guarantee to have instances that are related to instances corre-
sponding to the elements of E. Furthermore, the parents of an instance should reflect
the same generalisation hierarchy as the element. 

Example

A classic example is the relationship between an attribute and its type (a class), and
their instances (slots and objects). Specialising an attribute must result in the type being
specialised, and their instances must reflect the same generalisation hierarchy. 
UML2 infrastructure initial submission                                                                                                     75



GeneralisableFeatureContainerSemantics
4.17. GeneralisableFeatureContainerSemantics

Summary

A generalisable feature container guarantees to have the same number of contained ele-
ments as it contained instances. 

Definition

To be defined in the final submission.

Description

Example

4.18. Expression Semantics

Summary

Expressions can be evaluated against an instance to return a result.

Definition

To be defined in the final submission.

Description

Example

4.19. Binding

Summary

Elements can be bound to instances.

Definition

To be defined in the final submission.

Description

Example
UML2 infrastructure initial submission                                                                                                   76



Mapping
4.20. Mapping

Summary

A mapping relates elements to elements.

Definition

To be defined in the final submission.

Description

Example

4.21. Container Map

Summary

A container map relates containers to containers.

Definition

To be defined in the final submission.

Description

Example

4.22. Refinement

Summary

A refinement is a relation between two containers, an abstraction and a realization, in
which some guarantees of the abstraction are maintained by the realization with a suit-
able re-interpretation. The kind of refinement relation dictates the required mapping.

Definition

To be defined in the final submission.

Description

Refinement will include automated translations from platform-independent specificai-
ton models to platform-specific implementation models, as well as less automated
refinement of specifications e.g. by decomposing objects or actions.
UML2 infrastructure initial submission                                                                                                     77



Graph
4.23. Graph

Summary

A graph is an arbitrary structure of connected nodes.

Definition

Figure 30. Graph

Description

A graph is an arbitrary structure of connected nodes. The children of a Node are its
connectors to other nodes.

Example

In the context of a meta-model, one can readily visualise modelling elements such as
classes, packages, attributes as nodes in a graph, where the children of each node repre-
sent the connections that exist between the modelling elements (associations, links, and
so on).

Graph(Node)

<Node>
*

children
UML2 infrastructure initial submission                                                                                                   78



Tree
4.24. Tree

Summary

A rooted directed acyclic graph with a single path from root to any other node.

Definition

Figure 31. Tree

Queries

To be defined.

Description

A tree is a special kind of graph.

Example

Tree structures are common in meta-models, typically where there is a containment
hierarchy between elements, for example a package contains other packages, but can-
not contain itself or be contained by any of its sub-packages.

Graph()

Tree(Node)

<Node>

allChildren()

*

children
UML2 infrastructure initial submission                                                                                                     79



Object Reflection
4.25. Object Reflection

Summary

Defines a mapping, G, between containers and their object and slot representation at
the next meta-level up. 

Description

Every element at a level N in a layered meta-model architecture can be mapped to an
object of class “element.name” at the Nth+1 level. This formalises the rules defined in
[Alvarez01b]. Note, additional reflection templates will be required for other struc-
tures, e.g. generalisable elements, named elements.

ObjectReflection(Contained,Contained)

AbstractSyntaxN SemanticDomainN+1

<Container>

<Contained>

Object

Slot

SemanticMapping

<Container> Object

G

<Contained> Slot
G

Container Object

<Contained>s Slots

Distinguishable
Container()

[<Container>/Container,
<Contained>/Contained]

[Class/Container,
Attribute/Contained,

Object/ContainerInstance,
Slot/ContainedInstance]

value

1

**

Container
Semantics()

Class

Attribute

Class

Attributes

type

1

*

of

of

1 11

1

1

UML2 infrastructure initial submission                                                                                                   80



Object Reflection
Well-formedness Rules

<Container>sAreInstancesOfTheClass<Container>: A container is an instance of
the class whose name is the same as the container.

context <Container> inv:
<Container>sAreInstancesOfTheClass<Container>
G.of.name = <Container>

<Contained>sAreInstancesOfTheClass<Contained>: A contained element is an
instance of the class whose name is the same as the contained element.

context <Contained> inv:
<Contained>sAreInstancesOfTheClass<Contained>
G.of.name = <Contained>

<Container>sAreObjectsWithSlots:

context <Container> inv:
<Container>sAreObjectsWithSlots
self.<Contained>s -> forAll(c | self.G.slots ->
  exists(s | s.of.name = <Contained>s and
              s.value = c.G))
UML2 infrastructure initial submission                                                                                                     81



Object Reflection
Example

ClasssAreInstancesOfTheClassClass: A class is an instance of the class named
“Class”.

context Class inv:
ClasssAreInstancesOfTheClassClass
G.of.name = Class

AttributesAreInstancesOfTheClassAttribute: An attribute is an instance of the class
named “Attribute”.

context Attribute inv:
AttributesAreInstancesOfTheClassAttribute
G.of.name = Attribute

ClasssAreObjectsWithSlots:

context Class inv:
ClasssAreObjectsWithSlots
self.Attributes -> forAll(c | self.G.slots ->
  exists(s | s.of.name = “Attributes” and s.value = c.G))

AbstractSyntaxN SemanticDomainN+1

Class

Attribute

Object

Slot

SemanticMapping

Class Object

G

Attribute Slot
G

Container Object

<Contained>s Slots

ObjectReflection()

[Class/Container,
Attribute/Contained]

value

1

**

Class

Attribute

Class

Attributes

type

1

*

of

of

1 11
UML2 infrastructure initial submission                                                                                                   82



Class Reflection
4.26. Class Reflection

Summary

Defines a mapping between a container and their meta-class.  

Description

Every element at a level N in a layered meta-model architecture can be viewed as a
meta-instance of the class “element.name” at the Nth+1 level. This formalises the
dashed arrow commonly used to describe the meta-instance relationship between
model elements. It also formalises the approach used in [Atkinson01]. Note, additional

ClassReflection

AbstractSyntaxN SemanticDomainN+1

<Container>

<Contained>

SemanticMapping

<Container> Class

meta

<Contained> Slot
meta

Container

<Contained>s

Distinguishable
Container()

[<Container>/Container,
<Contained>/Contained]

*

Class

Attribute

Class

Attributes

type

1

*

[<Class>/Container,
<Attribute>/Contained]

11
UML2 infrastructure initial submission                                                                                                     83



Class Reflection
reflection templates will be required for other structures, e.g. generalisable elements,
named elements.

Well-formedness Rules

<Container>sAreInstancesOfTheMetaClass<Container>: A container is an
instance of the class whose name is the same as the container.

context <Container> inv:
<Container>sAreInstanceOfTheMetaClass<Container>
meta.name = <Container>

<Contained>sAreInstancesOfTheMetaClass<Contained>: A contained element is
an instance of the class whose name is the same as the contained element.

context <Contained> inv:
<Contained>sAreInstancesOfTheMetaClass<Contained>
meta.name = <Contained>

<Container>sHaveMetaClassesWithAttributes:

context <Container> inv
<Container>sHaveMetaClassesWithAttributes
self.<Contained>s -> forAll(c | self.meta.<Contained>s ->
  exists(s | s.name = <Contained>s and
              s.type = c.meta))
UML2 infrastructure initial submission                                                                                                   84



Abstract Container
4.27. Abstract Container

Summary

A containment relationship between elements that specialises an abstract Container
class. Abstract Container is a reified version of the Tree template (see Section 4.24.).

Definition

Figure 32. AbstractContainer

Queries

nestedContents() : returns the set of nested contents of a container

context Container
nestedContents() : Set(Element)
  self.contents -> iterate(element S = Set | 
    S -> union(element.nestedContents()))

Well-formedness Rules

NoCircularContainment: a container cannot contain itself directly or indirectly

context Container
NoCircularContainment inv:
  not(self.nestedContents() -> includes(self))

Description

This template makes explicit the relationship between the Container template (see Sec-
tion 4.2.) and the traditional framework based approach in UML 1.X, whereby con-
crete container classes specialise a single abstract class. A benefit of this approach is
that global constraints on relationships across containers can be easily described. For
example, a container forms part of a directed acyclic graph - a container must therefore
not contain itself or be contained by any of its containers. This property can be
described by a no circular containment constraint on the abstract container class. 

AbstractContainer(Container,Contained)

<Container> <Contained>

*

<Contained>s

<Container>

1

Container ModelElement*

contents
UML2 infrastructure initial submission                                                                                                     85



Abstract Container
Example

A class contains queries and attributes. The no circular containment rules ensures that
an attribute or method cannot contain their class.

Figure 33. AbstractContainer Example

Class Attribute

*

Attributes

Class

1

Container ModelElement*

contents

Abstract
Container()

[Class/Container, Attribute/Contained]
[Class/Container, Method/Contained]

Query

Querys

Class1
*

UML2 infrastructure initial submission                                                                                                   86



Abstract GeneralisableElement
4.28. Abstract GeneralisableElement

Summary

A generalisable element that specialises an abstract GeneralisableElement class ala
UML 1.X.

Definition

Figure 34. AbstractGeneralisableElement

Queries

None.

Well-formedness Rules

None.

Description

This template makes explicit the relationship between the Generalisable template (see
Section 4.6.) and the traditional framework based approach in UML 1.X, whereby con-
crete generalisable classes specialise a single abstract class. 

Example

None.

Generalizable(Type)

<Type> *

parentsallLocalParents()

Generalisable

Element
UML2 infrastructure initial submission                                                                                                     87



Abstract NameSpace
4.29. Abstract NameSpace

Summary

A NameSpace template that specialises an abstract NameSpace class ala UML 1.X.

Definition

Figure 35. AbstractNameSpace

Queries

As for Section 4.3 on page  48.

Well-formedness Rules

NamedElementsAreOwnedElements : A <NamingContext>’s NameSpace contains
names for all its owned elements. 

context <NamingContext> inv:
NamedElementsAreOwnedElements
self.ownedElements ->   
  includesAll(self.<NamedElement>NameSpace.ran())

Description

This template makes explicit the relationship between the NameSpace template (see
Section 4.3.) and the traditional framework based approach used in UML 1.X, whereby

AbstractNameSpace(NamingContext,NamedElement)

<NamedElement>
NameSpace

NameX
<NamedElement>

name:String

*

<NamingContext>
<NamedElement>

name()

1

ownedElements

1

NameSpace
ModelElement

name : String

*

defs

0..1
UML2 infrastructure initial submission                                                                                                   88



Abstract NameSpace
concrete namespace classes specialise a single abstract class. Unfortunately, UML 1.X
confuses containment with namespace, even though they are orthogonal concepts
(hence the association “ownedElement” on the abstract class), which means that this
model is likely to need updating.

Example

None.
UML2 infrastructure initial submission                                                                                                     89



Abstract NameSpace
UML2 infrastructure initial submission                                                                                                   90



Chapter 5

Static Core

This chapter describes the core aspects of UML that are neces-
sary to describe static models of systems: classes, packages, 
associations, datatypes, expressions, constraints, queries, tem-
plates and reflection. 

5.1. Introduction

This chapter defines the core aspects of UML that are necessary to describe static mod-
els of systems. It is structured as follows: an overview of the package structure is
given, followed by a description of the sub-packages. Each sub-package addresses a
different aspect of static modelling. Each sub-package will consist of a description of
concrete syntax, abstract syntax and semantics. The presentation of semantics will
depend on the sub-package. For example a semantic domain and semantic mapping
may be used; alternatively the syntax may be defined as sugar using a syntax to syntax
mapping.

The components of the static core package are shown in Figure 36. In order to make the
definition manageable and adaptable, a layered, extensible architecture has been
adopted. Packages are used to separate out different concepts in the language. Package
generalisation is then used to combine and extend these concepts in a logically consist-
ent manner.

Figure 36. Package Structure of UML.Static Package

UML2.StaticCore

Classes Expressions

Packages DataTypes Constraints

Associations Reflection Templates Queries



Introduction
A brief description of each package follows:

Classes: this package provides a definition of classes and attributes, but not queries,
which are dealt with in the Queries package.

Packages: general mechanisms for managing collections of UML elements. The pri-
mary extension mechanism provided is package generalisation.

Associations: contains a definition of UML associations.

Datatypes: a package of UML data types, including basic data types such as integers
and strings. It also includes collection types, such as sets, sequences and bags.

Expressions: a collection of expression primitives that support a family of expression
languages.

Constraints: constructs relating to the expression of constraints. It defines a minimal
constraint language for UML that is similar to OCL, but which has a precise meta-
model semantics.

Queries: a definition of static methods or queries. A static method has parameters and
a return type, but no side effects.

Templates: a definition of package templates, which are the foundation of our meta-
modelling approach.

Reflection: a definition of meta-levels and meta-instances. It provides a precise defini-
tion of what it means for a model to be a meta-instance of another model, a pre-requi-
site for defining the meaning of reflection and layered meta-models in the UML.

As described in the introductory chapters, each component of the static core is further
divided into a strict pattern of abstract syntax, semantic domain and semantics pack-
ages. The abstract syntax package describes the modelling concepts defined in a com-
ponent, the semantic domain package describes the semantic elements which are
denoted by the modelling concepts. A mapping from each concept to its semantic
domain is given in the semantics package, which extends both packages. 

The remainder of this chapter gives a detailed description of the contents of these pack-
ages, thus providing a definition of the semantics of the core static language. In each
case, a description is given of how each package of concepts has been generated using
the package templates described in chapter 4. 

Details of the syntax packages will be left until the final submission.
UML2 infrastructure initial submission 92



Classes
5.2. Classes

5.2.1  Overview

This package defines the essential abstract syntax and semantics of classes. Classes are
key modelling concepts in the UML. They describe the structure of objects in terms of
attributes and queries. Classes also support the notion of generalisation: the ability to
reuse structural definitions from one class (the parent, or super-class) in another (the
child, or sub-class).

5.2.2  Templates

Figure 37 shows the templates used to “stamp out” the Classes package (see chapter 4
for a full description) 

Figure 37. Templates used in the Classes Package

Classes have namespaces for the things they contain. Classes are containers of
attributes. Classes are generalisable. Attributes are related to their types and are also
generalisable. The semantics of classes are described by their instances. Instances of
classes are objects; instances of attributes are slots. Objects are namespaces for their
slots. Objects are generalisable. Slots are related to their values and are also generalis-
able.

Generalisable
Related1
Semantics

Generalisable
FeatureContainer

Semantics

[Class_/Container,
Attribute_/Contained,
Object_/ContainerInstance,
Slot_/ContainedInstance]

Classes

AbstractSyntax SemanticDomain

SemanticMapping

Generalisable
Related1
Semantics

[Attribute_/Element1,
"type"/<name1>,
Class_/Element2,
Slot__/Element1Instance,
"value"/<name2>,
Objct_/Element2Instance]
UML2 infrastructure initial submission 93



Classes
5.2.3  Abstract Syntax

Figure 38 defines a model for classes. Each class defines a number of locally defined
attributes.

Further attributes are inherited from the parents of the class. Each class contains a
name space for the attributes. Each name space contains a set of definition pairs associ-
ating each local attribute with a name.

Figure 39 shows the definition of class queries. The name of the class can be requested
with respect to a given name space. The attributes which are both defined and inherited
by the class are given by Class_::allAttribute_s(). The locally defined parents of a class
are given by Class_::parents. The transitive closure of this relationship is Class_::all-
LocalParents().

Figure 38. UML2.Static.Classes.AbstractSyntax

Figure 39. Class Queries
UML2 infrastructure initial submission 94



Classes
Well-formedness Rules

[1] All attributes in a class’s namespace have different names.

context Class_ inv
AllAttribute_sHaveDistinctNames
  self.Attribute_s->forAll(element, element’ |
    element.name(self.Attribute_Names) = 
    element'.name(self.Attribute_Names) implies 
      element = element'))

[2] The parents of an attribute’s type are related to the attribute’s parents

context Class_ inv:
RelatedParentsCommute
  self.type.parents = self.parents ->
  iterate(p s = Set{} | s->including(p.type))

Queries

[1] Returns all attributes of a class including its local attributes and those derived from
its parents (except those with the same name as the class’s local attributes or those that
are redefined).

context Class_
allAttribute_s() : Set(Attribute_)
  self.allParents() ->
    iterate(p s = self.Attribute_s | 
      s->union(p.allAttribute_s()->
        reject(c | s->exists(c' | 
          c.name(self.Attribute_Names) = 
          c'.name(self.Attribute_Names) or 
          or c'.parents ->includes(c)))))

[2] Returns all the derived parents of an attribute. A parent is derived if the container of
the attribute (i.e. its class) or any of the container’s parents contain an attribute with the
same name.

context Attribute_
allDerivedParents() : Set(Attribute_)
  if self.Class_ <> self then
    self.Class_.allParents() -> iterate(p s = Set{} |
      s->union(p.Attribute_s -> select(c |
        c.name(self.Attribute_Names) =             
        self.name(self.Attribute_Names))))
    else Set{} endif

[3] Returns all parents of an attribute, including its local and derived parents.

context Attribute_
allParents():Set(Attribute_)
  self.allLocalParents()->union(self.allDerivedParents());

[4] Returns all local parents of an attribute.

context Attribute_
allLocalParents() : Set(Attribute_)
  self.parents->iterate(parent S = self.parents |
    S->union(parent.allLocalParents()))
UML2 infrastructure initial submission 95



Classes
Example

Figure 40 shows the definition of a single class named C with two attributes named a
and b respectively.

5.2.4  Semantic Domain

The classes semantic domain package is shown in Figure 41. Classes denote objects.
Each object is an instance of a class. Each object contains a collection of slots which is
referred to as its state. A slot has a name and a value. The value of a slot is an object.

Both objects and slots have parents. This structure reflects the parent relationships
between classes and attributes respectively. An object has local slots and inherited slots

Figure 40. A class with two attributes

Figure 41. UML2.Static.Classes.SemanticDomain
UML2 infrastructure initial submission 96



Classes
which correspond exactly to the local and inherited attributes of its class. In this way a
semantic domain element that is an instance of a class C may easily be viewed as an
instance of a super-class of C by selecting the appropriate super-object. This structur-
ing facilitates varieties of object-oriented polymorphism and the notion of run-super as
pioneered by Smalltalk.

Well-formedness Rules

[1] All slots in a object’s namespace have different names.

context Object_ inv
AllSlot_sHaveDistinctNames
  self.Slot_s->forAll(element, element’ |
    element.name(self.Slot_Names) = 
    element'.name(self.Slot_Names) implies element = element'))

[2] The parents of a slot’s value are related to the slot’s parents

context Slot_ inv:
RelatedParentsCommute
  self.value.parents = self.parents ->
  iterate(p s = Set{} | s->including(p.value))

Queries

[1] Returns all slots of an object including its local slots and those derived from its par-
ents (except those with the same name as the object’s local slots or those that are rede-
fined).

context Object_
allSlots() : Set(Slot_)
  self.allParents() ->
    iterate(p s = self.Slot_s | 
      s->union(p.allSlot_s()->
        reject(c | s->exists(c' | 
          c.name(self.Slot_Names) = 
          c'.name(self.Slot_Names) or
          c'.parents ->includes(c)))))

[2] Returns all the derived parents of an slot. A parent is derived if the container of the
slot (i.e. its object) or any of the container’s parents contain a slot with the same name.

 context Slot_
allDerivedParents() : Set(Slot_)
  if self.Object_ <> self then
    self.Object_.allParents() -> iterate(p s = Set{} |
      s->union(p.Slot_s -> select(c |
        c.name(self.Slot_Names) =             
        self.name(self.Slot_Names))))
    else Set{}
  endif

[3] Returns all parents of a slot, including its local and derived parents.

context Slot_
allParents():Set(Slot_)
  self.allLocalParents()->union(self.allDerivedParents());
UML2 infrastructure initial submission 97



Classes
[4] Returns all local parents of a slot.

context Slot_
allLocalParents() : Set(Slot_)
  self.parents->iterate(parent S = self.parents |
    S->union(parent.allLocalParents()))

5.2.5  Semantic Mapping

The semantic mapping package for classes (see Figure 42) defines all possible legal
configurations of objects and slots for a class and its attributes. In other words, given a
candidate object, the semantic mapping package tells us, for any given class whether or
not the object is a legal instance of the class.

In order for an object to be an instance of a class the object must define slots for all the
local attributes of the class, the slot values must be instances of attribute types (or a
super-class thereof) and the super-objects must be instances of appropriate super-
classes.

Well-formedness Rules

[1] Every slot belonging to an object is an instance of the object’s class’s attributes.

context Object_
inv InstanceContentsCommute
  self.of_.Attribute_s = 
    self.Slots -> iterate(p s = Set{} | s->union(Set{p.of_}))

[2] An object contains the same number of slots as the number of attributes contained
by its class.

context Object_
inv SameNumberOfElementsAsContainer
  self.Slots -> size =

Figure 42. UML2.Static.Classes.SemanticMapping
UML2 infrastructure initial submission 98



Classes
  self.of_.Attribute_s -> size

[3] A slot’s parents are instance’s of its attribute’s parents.

 context Slot_
self.of_.parents = 
self.parents -> iterate(p s = Set{} | s->union(Set{p.of_}))

[4] The value of a slot is an instance of it’s attribute’s type.

context Slot_ inv:
inv InstanceElementsCommute
self.of_.type =
self.value.of_

Example

Figure 43 shows an example of class and a legal instance. Because the class defines
two attributes named a and b its instance must have two slots with the same names. The
values of the slots must be instances of the types of the attributes (for simplicity we
reuse the type C and the value o)

Figure 44 shows a class D with a single super-class C. Class C defines one attribute
named a and D defines an attribute named b. D has a single instance with a slot for b
and a parent link to an instance of C with slot for a. The instance of D therefore has two
slots named a and b; the structure of the instance of D reflects its ability to be thought
of as an instance of C.

Figure 43. A class and an instance
UML2 infrastructure initial submission 99



Classes
Figure 44. A class with parents and instances.
UML2 infrastructure initial submission 100



Packages
5.3. Packages

5.3.1  Overview

Packages provide a way of grouping together and managing related parts of a model. In
the static core, packages can contain sub-packages, associations and classes. Package
extension is the basic mechanism for reusing models. A package may reuse another
package by specialising it. In this case, the contents of the generalised package are also
available in the specialised package, and may also be extended.

5.3.2  Templates

Figure 45 shows the templates used to “stamp out” the Packages package (see chapter
4 for full descriptions)

Figure 45. Templates used in the Packages package 

Packages are containers of classes, associations and sub-packages, and have name-
spaces for the things they contain. The semantics of packages are described by their
instances. Instances of packages are snapshots. A snapshot is a container of objects,
links and sub-snapshots and has namespaces for its contents. Links are instances of
associations; classes are instances of objects, sub-snapshots are instances of sub-pack-
ages. Packages and snapshots are generalisable.

Generalisable
Container
Semantics

[Package_/Container,Package_/Contained,Snapshot/ContainerInstance,Snapshot/ContainedInstance]
[Package_/Container,Class_/Contained,Snapshot/ContainerInstance,Object_/ContainedInstance]
[Package_/Container,Association_/Contained,Snapshot/ContainerInstance,Link/ContainedInstance]

Packages

AbstractSyntax SemanticDomain

SemanticMapping
UML2 infrastructure initial submission 101



Packages
5.3.3  Abstract Syntax

Figure 46 defines the abstract syntax package for packages. Each package contains a
number of locally defined classes, associations and sub-packages. 

Figure 46. UML2.Static.Packages.AbstractSyntax

Further classes, associations and sub-packages can be inherited from the parents of the
package. Each package contains a name space for its classes, associations and sub-
packages. Each name space contains a set of name/element pairs associating each con-
tained element with a name.

Figure 47. Package Queries

Figure 47 shows the definition of package queries. The name of the package can be
requested with respect to a package name space. The classes which are both defined
and inherited by the package are given by Package_::allClass_s(). identical operations
UML2 infrastructure initial submission 102



Packages
exist for associations and sub-packages. The locally defined parents of a package are
given by Package_::parents. The transitive closure of this relationship is Package_::all-
LocalParents().

Well-formedness Rules

[1] All classes in a package’s namespace have different names.

context Package_ inv
AllClass_sHaveDistinctNames
  self.Class_s->forAll(element, element’ |
    element.name(self.Class_Names) = 
    element'.name(self.Class_Names) implies 
      element = element'))

[2] All associations in a package’s namespace have different names.

context Package_ inv
AllAssociation_sHaveDistinctNames
  self.Class_s->forAll(element, element’ |
    element.name(self.Association_Names) = 
    element'.name(self.Association_Names) implies 
      element = element'))

[2] All sub-packages in a package’s namespace have different names.

context Package_ inv
AllPackage_sHaveDistinctNames
  self.Package_s->forAll(element, element’ |
    element.name(self.Package_Names) = 
    element'.name(self.Package_Names) implies 
      element = element'))

Queries

[1] Returns all classes contained in a package including its local classes and those
derived from its parents (except those with the same name as the package’s local
classes or those that are redefined).

context Package_
allClass_s() : Set(Class_)
  self.allParents() ->
    iterate(p s = self.Class_s | 
      s->union(p.allClass_s()->
        reject(c | s->exists(c' | 
          c.name(self.Class_Names) = 
          c'.name(self.Class_Names) or
          c'.parents ->includes(c)))))
UML2 infrastructure initial submission 103



Packages
[2] Returns all associations contained in a package including its local associations and
those derived from its parents (except those with the same name as the package’s local
associations or those that are redefined).

context Package_
allAssociation_s() : Set(Association_)
  self.allParents() ->
    iterate(p s = self.Association_s | 
      s->union(p.allAssociation_s()->
        reject(c | s->exists(c' | 
          c.name(self.Association_Names) = 
          c'.name(self.Association_Names or
          c'.parents ->includes(c))))))

[3] Returns all sub-packages contained in a package including its local sub-packages
and those derived from its parents (except those with the same name as the package’s
local sub-packages or those that are redefined).

context Package_
allPackage_s() : Set(Package_)
  self.allParents() ->
    iterate(p s = self.Package_s | 
      s->union(p.allPackage_s()->
        reject(c | s->exists(c' | 
          c.name(self.Package_Names) = 
          c'.name(self.Package_Names or
          c'.parents ->includes(c))))))

[4] Returns all the derived parents of a class. A parent is derived if the container of the
class (i.e. its package) or any of the container’s parents contain a class with the same
name.

 context Class_
allDerivedParents() : Set(Class_)
  if self.Package_ <> self then
    self.Package_.allParents() -> iterate(p s = Set{} |
      s->union(p.Class_s -> select(c |
        c.name(self.Class_Names) =             
        self.name(self.Class_Names))))
    else Set{}
  endif

Identical queries are generated for Association_ and Package_.

[5] Returns all parents of a class, including its local and derived parents.

context Class_
allParents():Set(Class_)
  self.allLocalParents()->union(self.allDerivedParents())

Identical queries are generated for Association_ and Package_.

[6] Returns all local parents of a class.

context Class_
allLocalParents() : Set(Class_)
  self.parents->iterate(parent S = self.parents |
    S->union(parent.allLocalParents()))
UML2 infrastructure initial submission 104



Packages
Identical queries are generated for Association_ and Package_.

Example

Figure 48. A package with a sub-package and classes

Figure 48 shows an example of a single package named P with a sub-package Q and
classes named A and B respectively.

5.3.4  Semantic Domain

Packages denote snapshots. Each snapshot is an instance of a package. Each snapshot
has a collection of objects, links and sub-snapshots . An object is an instance of a class
and contains slots (see section 5.2). A link is an instance of an association and contains
linkends (see section 5.4). The semantic domain package is shown in Figure 49. 
UML2 infrastructure initial submission 105



Packages
Figure 49. UML2.Static.Packages.SemanticDomain

Snapshots have parents and contain objects, links and sub-snapshots, which themselves
may have parents. This structure reflects the parent relationships between packages and
their classes, associations and sub-packages. A snapshot has local objects, links and
sub-snapshots and inherited objects, links and snapshots which correspond exactly to
the local and inherited contents of its package. In this way a semantic domain element
that is an instance of a package P may easily be viewed as an instance of a super-class
of P by selecting the appropriate super-snapshot.

Well-formedness Rules

[1] All objects in a snapshot’s namespace have different names.

context Snapshot inv
AllObject_sHaveDistinctNames
  self.Object_s->forAll(element, element’ |
    element.name(self.Object_Names) = 
    element'.name(self.Object_Names) implies 
      element = element'))

[2] All links in a snapshot’s namespace have different names.

context Snapshot inv
AllLinksHaveDistinctNames
  self.Object_s->forAll(element, element’ |
    element.name(self.LinkNames) = 
    element'.name(self.LinkNames) implies 
      element = element'))
UML2 infrastructure initial submission 106



Packages
[2] All sub-snapshots in a snapshot’s namespace have different names.

context Snapshot inv
AllSnapshotsHaveDistinctNames
  self.Snapshots->forAll(element, element’ |
    element.name(self.SnapshotNames) = 
    element'.name(self.SnapshotNames) implies 
      element = element'))

Queries

[1] Returns all objects contained in a snapshot including its local objects and those
derived from its parents (except those with the same name as the snapshot’s local
objects or those that are redefined).

context Snapshot
allObject_s() : Set(Object_)
  self.allParents() ->
    iterate(p s = self.Object_s | 
      s->union(p.allObject_s()->
        reject(c | s->exists(c' | 
          c.name(self.Object_Names) = 
          c'.name(self.Object_Names) or
          c'.parents ->includes(c)))))

[2] Returns all links contained in a snapshot including its local links and those derived
from its parents (except those with the same name as the snapshot’s local links or those
that are redefined).

context Snapshot
allLinks() : Set(Link)
  self.allParents() ->
    iterate(p s = self.Links | 
      s->union(p.allLinks()->
        reject(c | s->exists(c' | 
          c.name(self.LinkNames) = 
          c'.name(self.LinkNames or
          c'.parents ->includes(c))))))

[3] Returns all sub-snapshots contained in a snapshot including its local sub-snapshots
and those derived from its parents (except those with the same name as the snapshot’s
local sub-snapshots or those that are redefined).

context Snapshot
allSnapshots() : Set(Snapshot)
  self.allParents() ->
    iterate(p s = self.Snapshots | 
      s->union(p.allSnapshots()->
        reject(c | s->exists(c' | 
          c.name(self.SnapshotNames) = 
          c'.name(self.SnapshotNames)or
          c'.parents ->includes(c)))))
UML2 infrastructure initial submission 107



Packages
[4] Returns all the derived parents of a object. A parent is derived if the container of the
object (i.e. its snapshot) or any of the container’s parents contain a object with the same
name.

 context Object_
allDerivedParents() : Set(Object_)
  if self.Snapshot <> self then
    self.Snapshot.allParents() -> iterate(p s = Set{} |
      s->union(p.Object_s -> select(c |
        c.name(self.Object_Names) =             
        self.name(self.Object_Names))))
    else Set{}
  endif

Identical queries are generated for Link and Snapshot.

[5] Returns all parents of an object, including its local and derived parents.

context Object_
allParents():Set(Object_)
  self.allLocalParents()->union(self.allDerivedParents())

Identical queries are generated for Link and Snapshot.

[6] Returns all local parents of an object.

context Object
allLocalParents() : Set(Object_)
  self.parents->iterate(parent S = self.parents |
    S->union(parent.allLocalParents()))

Identical queries are generated for Link and Snapshot.
UML2 infrastructure initial submission 108



Packages
5.3.5  Semantic Mapping

The semantic mapping for packages defines all possible legal configurations of snap-
shots for a package and its contents. In other words, given a candidate snapshot, the
semantic mapping package tells us, for any given package whether or not the snapshot
is a legal instance of the package.

Figure 50. UML2.Static.Packages.Mapping

In order for an snapshot to be an instance of a package the snapshot must define
objects, links and sub-snapshots for all the local classes, associations and sub-packages
of the package, and each of their parents must be instances of appropriate super-
classes, associations or packages.

Well-formedness Rules

[1] Every object belonging to an snapshot is an instance of the snapshot’s package’s
classes.

context Snapshot_
inv InstanceContentsCommute
  self.of_.Class_s = 
    self.Object_s -> iterate(p s = Set{} | s->union(Set{p.of_}))

[2] Every link belonging to a snapshot is an instance of the snapshot’s package’s asso-
ciations.

context Snapshot_
inv InstanceContentsCommute
  self.of_.Association_s = 
    self.Links -> iterate(p s = Set{} | s->union(Set{p.of_}))
UML2 infrastructure initial submission 109



Packages
[3] Every sub-snapshot belonging to an snapshot is an instance of the snapshot’s pack-
age’s sub-packages.

context Snapshot_
inv InstanceContentsCommute
  self.of_.Package_s = 
    self.Snapshots -> iterate(p s = Set{} | s->union(Set{p.of_}))

[4] A snapshot’s parents are instance’s of its package’s parents.

 context Snapshot_
self.of_.parents = 
self.parents -> iterate(p s = Set{} | s->union(Set{p.of_}))

[5] An object’s parents are instance’s of its class’s parents.

 context Object_
self.of_.parents = 
self.parents -> iterate(p s = Set{} | s->union(Set{p.of_}))

[6] A link’s parents are instance’s of its association’s parents.

 context Link
self.of_.parents = 
self.parents -> iterate(p s = Set{} | s->union(Set{p.of_}))

Example

Figure 51 shows a package and a legal instance. The package defines a sub-package

Figure 51. A package with instances.

and two classes named A and B. The snapshot is a valid instance of the package
because its sub-snapshots and objects are valid instances of the contents of the pack-
age. 
UML2 infrastructure initial submission 110



Packages
Figure 52 shows a package P with a single super-package Q. Package P defines one
class named B, Q defines one class named A whose parent is B. P has a single instance
with an object for A and a parent link to an instance of Q. The instance of B also has a
parent link to the instance of A reflecting its ability to be thought of as an instance of Q.

Figure 52. A package with parents and instances.
UML2 infrastructure initial submission 111



Associations
5.4. Associations

5.4.1  Overview

Classes are related by associations. Association have association ends that connect the
association to two or more classes. Each association end defines the number of objects
that can be related by instances of the association through its multiplicity.

5.4.2  Templates

Figure 53 shows the templates used to “stamp out” the Classes package (see chapter 4
for a full description).

Figure 53. Templates used in the Associations package

Associations are containers of association ends. Associations have a namespace for
their association ends. Links are instances of associations. Linkends are instances of
association ends. Each linkend relates instances of associated classes according to the
multiplicity of their association ends. Links are containers of Linkends. Associations
are generalisable.

Generalisable
Related1
Semantics

[AssociationEnd/Element1,"type"/name1,
Class_/Element2,LinkEnd/Element1Instance,
value/"name2",Object_/Element2Instance]

Generalisable
FeatureContainer

Semantics

[Association_/Container,
AssociationEnd/Contained,
Link/ContainerInstance,
LinkEnd/ContainedInstance]

Association

AbstractSyntax SemanticDomain

SemanticMapping

Generalisable
Related1
Semantics

[AssociationEnd_/Element1,
"type"/<name1>,
Class_/Element2,
LinkEnd/Element1Instance,
"value"/<name2>,
Objct_/Element2Instance]
UML2 infrastructure initial submission 112



Associations
5.4.3  Abstract Syntax

Figure 54 defines a model for associations. An association is generalisable and con-
tains a number of association ends.

Figure 54. UML2.Static.Associations.AbstractSyntax

Each association contains a name space for its association ends. Each name space con-
tains a set of definition pairs associating each association end with a name. An associa-
tion end has a multiplicity, and is related to a class (a participant in the association).

Figure 55. Association Queries

Figure 55 shows the definition of association queries. The name of the association can
be requested with respect to a given name space. The association ends which are both
defined and inherited by the association are given by
Association_::allAssociationEnd_s(). The locally defined parents of an association are
given by Association_::parents. The transitive closure of this relationship is
Association_::allLocalParents().
UML2 infrastructure initial submission 113



Associations
Well-formedness Rules

[1] All association ends in a association’s namespace have different names.

context Association_ inv
AllAssociationEndsHaveDistinctNames
  self.AssociationEnds->forAll(element, element’ |
    element.name(self.AssociationEndNames) = 
    element'.name(self.AssociationEndNames) implies 
      element = element'))

[2] The parents of an associationend’s type are related to the associationend’s parents

context AssociationEnd inv:
RelatedParentsCommute
  self.type.parents = self.parents ->
  iterate(p s = Set{} | s->including(p.type)

Queries

[1] Returns all association ends of an association including its local association ends
and those derived from its parents (except those with the same name as the associa-
tion’s local association ends or those that are redefined).

context Association_
allAssociationEnds() : Set(AssociationEnd)
  self.allParents() ->
    iterate(p s = self.AssociationEnd | 
      s->union(p.allAssociationEnds()->
        reject(c | s->exists(c' | 
          c.name(self.AssociationEndNames) = 
          c'.name(self.AssociationEndNames)or
          c'.parents ->includes(c)))))

[2] Returns all the derived parents of an association end. A parent is derived if the con-
tainer of the association end (i.e. its association) or any of the container’s parents con-
tain an association end with the same name.

 context AssociationEnd
allDerivedParents() : Set(Association_)
  if self.Association_ <> self then
    self.Association_.allParents() -> iterate(p s = Set{} |
      s->union(p.AssociationEnds -> select(c |
        c.name(self.AssociationEndNames) =             
        self.name(self.AssociationEndNames))))
    else Set{}
  endif

[3] Returns all parents of an association end, including its local and derived parents.

context AssociationEnd
allParents():Set(AssociationEnd)
  self.allLocalParents()->union(self.allDerivedParents())
UML2 infrastructure initial submission 114



Associations
[4] Returns all local parents of an association end.

context AssociationEnd
allLocalParents() : Set(AssociationEnd)
  self.parents->iterate(parent S = self.parents |
    S->union(parent.allLocalParents()))

[2] The parents of an linkend’s value are related to the linkend’s parents

context LinkEnd inv:
RelatedParentsCommute
  self.value.parents = self.parents ->
  iterate(p s = Set{} | s->including(p.value)

Example

Figure 56. An association with two association ends

Figure 56 gives an example of a single association named C with two association ends
named a and b respectively that relate two classes A and B.

5.4.4  Semantic Domain

Associations denote links, whilst association ends denote linkends. A link contains two
or more linkends depending on the arity of the association. A linkend has a name and  a
value. The value of the linkend is an object. The semantic domain is shown in Figure
57.
UML2 infrastructure initial submission 115



Associations
Figure 57. UML2.Static.Associations.SemanticDomain

Both links and linkends have parents. This structure reflects the parent relationships
between associations and association ends respectively. A link has local linkends and
inherited linkends which correspond exactly to the local and inherited association ends
of its association. This permits a semantic domain element that is an instance of a asso-
ciation C to be easily be viewed as an instance of a super-class of C by selecting the
appropriate super-links. 

Well-formedness Rules

[1] All linkends in a link’s namespace have different names.

context Link inv
AllLinkEndsHaveDistinctNames
  self.LinkEnds->forAll(element, element’ |
    element.name(self.LinkEndNames) = 
    element'.name(self.LinkEndNames) implies 
      element = element'))

Queries

[1] Returns all linkends of a link including its local linkends and those derived from its
parents (except those with the same name as the link’s local linkends or those that are
redefined).

context Link
allLinkEnds() : Set(LinkEnd)
  self.allParents() ->
    iterate(p s = self.LinkEnd | 
      s->union(p.allLinkEnds()->
        reject(c | s->exists(c' | 
          c.name(self.LinkEndNames) = 
          c'.name(self.LinkEndNames)or
          c'.parents ->includes(c)))))
UML2 infrastructure initial submission 116



Associations
[2] Returns all the derived parents of a linkend. A parent is derived if the container of
the linkend (i.e. its link) or any of the container’s parents contain a linkend with the
same name.

 context LinkEnd
allDerivedParents() : Set(LinkEnd)
  if self.Link <> self then
    self.Link.allParents() -> iterate(p s = Set{} |
      s->union(p.LinkEnds -> select(c |
        c.name(self.LinkEndNames) =             
        self.name(self.LinkEndNames))))
    else Set{}
  endif

[3] Returns all parents of a linkend, including its local and derived parents.

context Link
allParents():Set(LinkEnd)
  self.allLocalParents()->union(self.allDerivedParents());

[4] Returns all local parents of a link end.

context Link
allLocalParents() : Set(LinkEnd)
  self.parents->iterate(parent S = self.parents |
    S->union(parent.allLocalParents()))

5.4.5  Semantic Mapping

The semantic mapping for associations (see Figure 58) defines all possible legal con-
figurations of links and linkends for every legal configuration of association and asso-
ciation ends. In other words, given a candidate link and linkends, the semantic mapping
package tells us, for any given association whether or not the link is a legal instance of
the association. In order for a link to be an instance of an association the link must
define linkends for all the local association ends of the class, the link end values must
be instances of association types (or a super-class thereof) and the super-links must be
instances of appropriate super-associations
UML2 infrastructure initial submission 117



Associations
.

Figure 58. UML2.Static.Associations.SemanticMapping

Well-formedness Rules

[1] Every linkend belonging to an link is an instance of the link’s association’s associa-
tion ends.

context Link
inv InstanceContentsCommute
  self.of_.AssociationEnds = 
    self.LinkEnds -> iterate(p s = Set{} | s->union(Set{p.of_}))

[2]A link contains the same number of linkends as the number of association ends con-
tained by its association.

context Link
inv SameNumberOfElementsAsContainer
  self.LinkEnds -> size = self.of_.AssociationEnds -> size

[3] A linkend’s parents are instance’s of its association end’s parents.

 context LinkEnd
self.of_.parents = 
self.parents -> iterate(p s = Set{} | s->union(Set{p.of_}))

[4] The value of a linkend is an instance of it’s association end’s type.

context LinkEnd inv:
inv InstanceElementsCommute
self.of_.type =
self.value.of_
UML2 infrastructure initial submission 118



Associations
[5] The number of links between two objects must conform to the multiplicity of their
association ends.

To be defined in the final submission.

Figure 59 shows an association and a legal instance. 

Figure 59. An association and an instance

The association defines two association ends named a and b. Therefore its instance
must have two link ends with the same names. The values of the link ends must be
instances of the types of the association end (for simplicity we reuse the type C and the
value o)

Figure 60. An association with parents

Figure 60 shows an association D with a single super-association C. Association C
defines two association ends named a and b associated with classes A and B. D defines
two association ends named e and f that specialise a and b and which are associated
with classes E and F. Because the association ends e and f redefine the association ends
a and b, then D::allAssociationEnds() will return e and f as its association ends. Fur-
thermore, because e and f are subclasses, their types must also be specialised (see sec-
tion 5.4.3, constraint [2]). Interestingly, if C and D were binary associations (i.e.
C,D::allAssociationEnds() -> size must be equal to 2) then association ends must be
redefined to avoid inheriting additional association ends. Because the association ends
are specialised, their type’s must be specialised too, leading to the traditional kind of
type specialisation and roleend redefinition seen in the literature. 
UML2 infrastructure initial submission 119



DataTypes
5.5. DataTypes

UML provides a number of built-in data types. There are two categories of data type:
ground data types such as Integer and Char, and parametric data types such as Collec-
tion and its associated sub-classes (Set, Bag, Seq), Functions and Tuples. Ground data
types are classes (named Integer, Boolean etc.) that define a standard interface (+, >,
not, and etc.). Therefore instances of ground data types are objects that behave in the
expected way.

Parametric data types are classes whose instances are ground data types. For example
Set is a class whose instances are data types Set(Integer), Set(Class), Set(Set(Boolean))
etc. Each parametric data type defines a standard interface which applies uniformly to
all the instance data types. For example Set defines an operation size whose definition
applies to all ground set types: the size of an instance of Set(Integer) is calculated in the
same way as the size of an instance of Set(Set(Class)).

5.5.1  Templates

To be defined in the final submission.

5.5.2  Abstract Syntax

The DataTypes abstract syntax package defines ground data types (Integer, etc.).
Ground data types are sub-classes of the class Class_. Ground data types are meta-
instances of Class_ (not shown here) thus ensuring that only a single instance of each
ground data type can exist within a model. A tuple is defined over a sequence of types,
for example (Integer x String x String). A function is defined over a binary Tuple (its
domain and range types).

Figure 61. UML2.Static.DataTypes.AbstractSyntax
UML2 infrastructure initial submission 120



DataTypes
Well-formedness Rules

[1] A Function has a domain and range (a binary tuple type).

context Function
self.type.elementTypes -> size = 2

5.5.3  Semantic Domain

The DataTypes semantic domain package introduces instances of collections, tuples
and functions. A collection value is a set of objects. A tuple value is a sequence of
objects. A function is a set of binary tuple values.

Figure 62. UML2.Static.DataTypes.SemanticDomain Package

Well-formedness Rules

None.

5.5.4  Semantic Mapping

A collection value is an instance of a collection. A tuple value is an instance of a tuple.
A function value is and instance of a function.
UML2 infrastructure initial submission 121



DataTypes
Well-formedness Rules

[1] A tuple value’s object’s are instances of its tuple’s types.

[2] A collection value’s objects are instances its collection’s type.

[3] A function’s tuple value’s are instances of the function’s tuple type.

To be defined.
UML2 infrastructure initial submission 122



Expressions
5.6. Expressions

Languages which navigate static models and which express properties of semantic
models will rely on a basic collection of expression primitives. Examples of languages
which require these facilities are OCL and action languages. 

UML 2.0 must support families of expression languages and therefore must provide a
suitably expressive collection of expression primitives. In addition to providing sup-
port for basic expression types such as constants and variables, a package of expression
primitives must address more complex features such as method invocation, local varia-
ble binding and recursion. This is achieved using the standard technique which pro-
vides first class functions as basic semantic elements, thereby addressing all binding
and invocation issues in a single language feature.

5.6.1  Templates

To be defined in the final submission.

5.6.2  Abstract Syntax

The key features of all expression languages are as follows:

• Constants, for example integers, booleans and the empty sequence. We view every-
thing as an object. Therefore, constants are a collection of predetermined objects. 
For example the integer constant 1 is a predefined object which behaves in the usual 
way when asked for its successor, predecessor etc.

• Variables which are bound to values in expressions and may be introduced by bind-
ing constructs such as method parameters, let expressions and iteration expressions.

• Relational expressions. Relations include boolean relations (e.g. >), integer func-
tions (e.g. +) and object field references (e.g. name). We do not prescribe a fixed 
collection of relations beyond the relations which are necessary to support the defi-
nition of the kernel language. This allows the expression language to be extended 
with new relations to support language families.

• Collection expressions. The most important forms of collection are sets and 
sequences. Other forms of collection can be constructed as objects implemented in 
terms of basic collection types. For example OCL bags can be implemented as 
objects that use sequences for data storage.

• Conditional expressions.

• Query invocation. A class may define queries. A method is a parameterised expres-
sion. This is to be contrasted with general method invocation which may cause 
object side effects. Side effects are not supported by the expression primitives.

• Functions. A function is a parametric expression. Queries are functions, invariants 
are functions, and functions can be used to represent all possible expression con-
structs that compute values over a model (for example iterate expressions in OCL). 
Functions are applied to argument values.

• Recursion. Recursion is wide-spread in expression languages. For example OCL 
allows query operations to refer to themselves. In order to support families of 
UML2 infrastructure initial submission 123



Expressions
expression languages we must provide a general purpose recursion mechanism that 
is not tied to any particular language features. 

• Tuples. A tuple is an ordered collection of values. A tuple is different from a collec-
tion in that the elements of the tuple may have different types (all elements of a 
sequence must be instances of a given type). Elements of a tuple are referenced by 
position in the tuple. Tuples are useful when operations wish to produce more than 
one value with unrelated types.

Figure 63 on page124 shows a model of the abstract syntax for expression primitives.
An expression contains an ordered collection of sub-expressions and has a set of free
variables and a type. Each free variable has a name and a type:

context Env inv: free = sub->iterate(e F = Set{} | F->union(e.free))

The class Exp has three abstract sub-classes. An AnExp has no sub-expressions. An
UnExp has exactly one sub-expression. A BinExp has exactly two sub-expressions.
The rest of this section describes the concrete expression classes.

Figure 64 shows the definition of the primitive expression classes. In order to provide
motivation for these classes we will incrementally construct an example expression.
Suppose that we have a set of people and wish to add up their ages. If each person is
called ‘person’ and the current running total of ages is ‘ages’ then the following
expression:

person.age + ages

adds the current person to the current total. Therefore we have a relational expression
(+) including a relational expression (.age) and a variable expression (ages). The rela-
tional expression contains a single variable expression (person). 

Figure 63. UML2.Static.Expressions.AbstractSyntax
UML2 infrastructure initial submission 124



Expressions
The particular person will be varied, as will the current running total so we abstract
over these names:

\(person,ages) person.age + ages

which is a function expression. Call this function ‘body’ we will use it later. Suppose
that the collection of people is called ‘people’. We can check whether there any further
people using a relation expression:

people.isEmpty

NB this is not OCL, but we support a builtin relation which OCL could use. Another
relation is selectElement:

people.selectElement

If the set of people is empty then we produce the current running total otherwise we
select a person and add it to the current running total using a conditional expression:

if people.isEmpty
then ages
else people.selectElement.age + ages

We already have a function that performs the increment so:

if people.isEmpty
then ages
else body(people.selectElement,ages)

The expression above adds one person’s age to the running total. We must do this for
all elements of ‘people’. We can reduce the current set of people by the selected ele-
ment if using the send expression ‘excluding’:

people.excluding(people.selectElement)

We must do this for the selected element supplied to body. Suppose that ‘iterate’ (to be
defined below) is applied to a set of people, a body and a running total. The operator
‘iterate’ applies the body to all the elements and returns the running total:

iterate(people,body,0)

applies ‘body’ to all people, adds up their ages and adds it to 0. Then we can use ‘iter-
ate’ to add up the rest of the people:

if people.isEmpty
then ages
else let person = people.selectElement 
        in iterate(people.excluding(person),body,body(person,ages))

The above is the definition of ‘iterate’. Therefore, ‘iterate’ is a recursive operator. We
can construct such operators using Y:
UML2 infrastructure initial submission 125



Expressions
let iterate = 
    Y \(iterate) \(people,body,ages)
            if people.isEmpty
            then ages
            else let person = people.selectElement
                   in iterate(people.excluding(person),body,body(person,ages))
in iterate(people,\(person,ages) person.age + ages,0)

which is equivalent to the following OCL expression:

people->iterate(person ages = 0 | person.age + ages)

Of course the OCL expression above is much more succinct. But the expression primi-
tive language is much smaller is more expressive and can therefore by used as the basis
of a family of expression languages including OCL.

The rest of this section gives the OCL well-formedness constraints for the abstract syn-
tax of the expression primitives.

A constant has a value:

context Constant inv: value.of = type and free->size = 0

A variable has a name and a type. The free variables in this expression is itself:

context Var inv: free->forAll(f | f.name = name and f.type = type)

A relation is implemented as a function that, when applied to elements from its domain
produces an element in the range.

The free variables of a function are those of its body with the arguments removed1:

context Lambda inv: free = body.free->SetDifference(args->asSet)

1. Note that a function with 0 arguments is well-formed. It is equivalent to its body expression; although 
the value of the expression must be ‘released’ by function application. This provides a systematic way 
of modelling queries in Section 5.7 on pa ge135.
UML2 infrastructure initial submission 126



Expressions
NB This section requires type constraints.

5.6.3  Semantic Domain

Expressions calculate in a given context to produce values. Therefore, we will talk of
expressions having instances called calculations. An expression (cf. Class) may con-
tain variables (cf. attributes). A calculation (cf. Object) defines particular values for all
of the variables (cf. slots).

A calculation is an historical record of one particular execution of an expression. It
records the values of the variables that were required by the expression and also
records the result. Since expressions can be nested, calculations are also nested. Nested
calculations record data dependencies; typically, the value produced by a calculation
will depend on the values of the calculations it contains.

In order to motivate the use of calculations we present a simple example. Consider a
calculation that involves adding two constant numbers together. Three individual cal-
culations are involved: two independent calculations produce the numbers and a con-
taining calculation adds them together. If the number are 3 and 4 then the structure of

Figure 64. Definition of Expression Classes
UML2 infrastructure initial submission 127



Expressions
the calculation is shown in This can be represented on a simple diagram as shown in
Figure 65.

Now suppose that the calculations producing numbers 3 and 4 were performed in a
context involving variables. The sub-calculation producing 3 could have arisen from
the evaluation of a variable whose value was 3. In this case the context for the sub-cal-
culation would associate the variable with the value 3. The sub-calculation producing 4
could have arisen from the doubling of a variable whose value was 2. In this case the
context for the sub-calculation would associate the variable with the value 2.

Figure 66 shows a calculation involving contexts. The diagram shows contexts being
fed into a calculation and values being produced by the a calculation. Notice that sub-
calculations must have sub-contexts with respect to their containers.

NB calculations don’t record what they did with the values. There is no labelling of the
calculations, for example to show that it arose from an addition expression. This seems
unnecessary but could be added in the form of specializations of an abstract calcula-
tion class or in terms of tags.

Figure 65. A simple calculation adding two constants.

Figure 66. Calculations involving context.

3 4

7

3

x = 3

2

y = 2

2

y = 2

4

y=2

x = 3,y = 2

7

UML2 infrastructure initial submission 128



Expressions
Figure 67 shows a model of calculations. A calculation is a container of sub-calcula-
tions. Each calculation has a context, referred to as an environment, containing varia-
ble-value pairs. The class Binding has a name of type string and a value of type Object.
Each calculation produces a single value.

A closure is the result produced by evaluating a function expression. A closure has the
following structure:

where args is a sequence of argument names, body is an expression that will be evalu-
ated when the function is invoked and env is a collection of bindings for all of the free
variables in the body of env.

Figure 67. UML2.Static.Expressions.SemanticDomain
UML2 infrastructure initial submission 129



Expressions
5.6.4  Semantic Mapping

Expressions have calculations as instances as shown in Figure 68. Each expression

contains variables whose values are defined in the corresponding environment of the
calculation. The types of the variables in the expression must be matched by the types
of the values in the environment. Each expression contains sub-expressions; this con-
tainment structure is reflected in the calculations although it is not an exact match (see
below). Expressions have types and calculations produce values; the type of the value
produced by a calculation must conform to the type of the classifying expression.

There are three types of instantiating containment pattern (referred to as Instantiable

Container1, Instantiable Container2 and Instantiable Container3 respectively1)
involved in defining the expressions semantic mapping. In each case we have an
expression e and an instance c. We are interested in the relationship between the sub-
expressions of e and the sub-calculations of c:

1.  the sub-calculations of c is a sub-set of the instances of the sub-expressions of e 

For example, this situation occurs when e is a conditional expression and when c 
contains calculations describing either the test and consequent or the test and alter-
native.

2.  the sub-expressions of e is a sub-set of the classifiers of the sub-calculations of c:

For example this situation occurs when e is a method call (of one argument in the 
case shown above) and when c contains the calculations for the target expression, 
the single argument and also the calculation arising from the evaluation of the 
method body. The calculation c therefore contains sub-calculations arising form the 

Figure 68. UML2.Static.Expressions.SemanticMapping

1. Note, InstantiableContainer1 is equivalent to ContainerSemantics in section 4.13. 
InstantiableContainer2 and InstantiableContainer3 are variations on the same template and will be 
defined later.

e c
UML2 infrastructure initial submission 130



Expressions
sub-expressions of e but also contains an extra calculation which arises from the 
method body.

3. the classifiers of the sub-calculations of c are exactly the sub-expressions of e. This 
situation occurs when e is a relational expression: every sub-calculation must corre-
spond to exactly one sub-expression and vice versa.

Expressions have free variables and calculations have environments. Free variables
describe the names and types of the variables which are used in the expression. Envi-
ronments describe the names and the values of the variables which are used in the cal-
culation. A calculation is an instance of an expression only if the environment
corresponds to the free variables in terms of names and types:

context Exp inv: instances->forAll(i |  i.env.name = free.name)

context Exp inv: i.env->forAll(b | 
free->exists( f | f.name = b.name and f.type.instances->includes(b.value)))

Expressions have types and calculations produce values. A calculation is an instance of
an expression providing that the value produced by the calculation is of the corre-
sponding type:

context Exp inv: instances->forAll(i | type.instances->includes(i.value))

The rest of this section describes the meaning of each type of expression in turn.

Constants are Instantiable Container3. The value produced by an instance of a constant
expression must be the value of the constant:

context Constant inv: instances->forAll(i | i.value = value)

Variables are InstantiableContainer3. The free variable constraint on expressions and
calculations requires the calculation to produce a value which is defined in the environ-
ment and has the correct type.

Relations are Instantiable Container3. The value produced by an instance of a relation
expression must be the value in the range of the relation corresponding to the values of
the sub-calculations in the domain:

e c

e c
UML2 infrastructure initial submission 131



Expressions
context Relation inv: instances->forAll(i | 
i.value = relation(i.sub->collect(c | c.value)))

A Y expression is used to create recursive values. It is an Instantiable Container2. The
calculation arising from a Y expression is shown in Figure 69.

The calculation contains two sub-calculations. The first (shown on the left) is an
instance of the sub-expression of Y. It describes an evaluation which produces a clo-
sure <v,e’,b> containing a single argument v, an environment e’ and an expression (the
body of a function) b. The second sub-calculation (shown on the right) is an instance of
the function body b. The context is e’,v=x which is the environment e’ contained in the
closure extended with a value for the argument v. The particular value x must be the
same as that produced by the calculation (creating a recursive value).

context Y inv: instances->forAll(i | i.sub->size = 2)

context Y inv: instances->forAll(i | i.sub->at(0).env = env)

context Y inv: instances->forAll(i | tie(i.value,i.sub->at(0).value,i.sub->at(1).env))

context Y inv: instances->forAll(i | 
i.sub->at(1).value.body.instances->includes(i.sub->at(1))

Y::tie(v:Object,c:Closure,s:Set(Binding)):Boolean 
c.env->subSet(s) and 
let b = s - c.env
in b.name = c.args->at(0) and b.value = v 
end)

Tuple is an Instantiable Container 3. The elements of the tuple produced by a tuple cal-
culation must be the values of the sub-calculations:

Figure 69. Calculation creating a recursive value.

<v,e’,b>

e e’,v = x

x

x

e

UML2 infrastructure initial submission 132



Expressions
context Tuple inv: instances->forAll(i | i.value.elements = i.sub.value)

Send is an Instantiable Container 2. An extra calculation arises from the evaluation of
the query body. Given an object o and a message name m, o.getQuery(m) produces the
query named m defined by the classifier of o. The query is a closure:

Figure 70shows a send calculation involving a single message argument. It consists of
three sub-calculations. The first calculation (on the left) describes the evaluation of the
target of the message. The target of the message is an object o. The second calculation
(in the middle) describes the evaluation of the single message argument. In generate a
message may have any number of arguments. Assuming that:

o.getQuery(m) = <v,e’,b>

Where v is the query formal argument, e’ is the method context and b is the query body
then the third calculation (on the right) arises from the evaluation of the query body in
the appropriate context.

context Send inv: instances->forAll(i | i.sub->size = 3)

context Send inv: instance->forAll(i | 
let c = i.sub->at(2); o = i.sub->at(2).value; a = i.sub->at(1).value
in isSend(c,o.getQuery(name),a,value)
end

Send::isSend(c:Calc,m:Closure,arg:Object,result:Object):Boolean
m.env->subSet(c.env) and
let b = c.env - m.env 
in b.name = m.args->at(0) and b.value = arg and c.value = result
end

Figure 70. Calculation describing message passing

     o

e e

x

e’,v  =  x

y

y

e

UML2 infrastructure initial submission 133



Expressions
Lambda is an Instantiable Container 3. The result produced by the calculation is a clo-
sure that captures the current context which must contain values for all the free varia-
bles of the function:

context Lambda inv: instances->forAll(i |
i.value.args = args and i.value.body = body and i.value.env = i.env and
i.env.name = body.free.name)

SetExp is an Instantiable Container 3. The result produced by the calculation is a set
containing the elements of the sub-calculations:

context SetExp inv: instances->forAll(i | i.value = i.sub.value)

SeqExp is an Instantiable Container 3. The result is a pair:

context SeqExp inv: instances->forAll(i | 
i.value->first = i.sub->at(0).value and i.value->rest = i.sub->at(1).value)

If is an Instantiable Container 1. A calculation is an instance of an if expression when
it contains exactly 2 sub-calculations. The first sub-calculation must produce a boolean
value. If the outcome is true then the second sub-calculation is an instance of the conse-
quent of the if. If the outcome is false then the second sub-calculation is an instance of
the alternative of the if.

context If inv: instances->forAll(i | 
i.sub->size = 2 and sub.instances->includes(i.sub->at(0))

context If inv: instances->forAll(i | 
i.sub->at(0).value implies sub->at(1).instances->includes(i.sub->at(1)))

context If inv: instances->forAll(i | 
not i.sub->at(0).value implies sub->at(2).instances->includes(i.sub->at(1)))

Apply is an Instantiable Container 2. The semantics of applications is exactly the same
as that for send expressions except that instead of the extracting a closure from an
object given a message name, the first sub-expression produces the closure directly.
UML2 infrastructure initial submission 134



Queries
5.7. Queries

A model snapshot is a configuration of objects. Given a snapshot we may wish to apply
a predicate to test whether the objects satisfy a particular property (an example predi-
cate tests whether all the people in the model are over 18 years old). We may also wish
to apply an operation to the objects in the snapshot that computes some value (an
example operation finds the oldest person in a collection of people). Collectively these
predicates and operations are referred to as queries.

A class is a container of queries. Each query has a name and 0 or more parameters. The
body of the query is an expression. Queries are inherited by sub-classes and all queries

in a given class must have different names1.

Figure 71 shows a simple model involving a collection of people. The class People
defines a query operation:

People::totalAges()
people->iterate(person ages = 0 | person.age + ages)

The expression representation of the body of this query given in section 5.6.2. The sec-
ond query involves an argument:

People::isOldest(p:Person):Boolean
not people->exists(person | person.age > p.age)

5.7.1  Templates

To be defined in the final submission.

Figure 71. Example class with queries

1. This requirement could be relaxed to allow interesting variations. For example, a class may define 
multiple queries with the same name providing the argument signature of each query is different in 
some way for example having different arities or different argument types. An interesting variation is 
to order the queries of a class and to allow overlapping definitions via a Smalltalk-like run-super 
mechanism.
UML2 infrastructure initial submission 135



Queries
5.7.2  Abstract Syntax.

The abstract syntax for queries is given in Figure 72. A query is a specialisation of a
function. The query is named, has argument types and a result type. A class is a con-
tainer of queries. A class is also an inheritor of queries. A class defines a query called
‘allQueries’ which returns all the queries defined locally by the class and all the queries
inherited by the class.

Every query has a special argument named ‘self’ which is used to refer to the target of
the message (in a send expression) that caused the query to be performed. By conven-
tion we supply the value of this argument first:

context Query inv: args->at(0) = “self” and argTypes->at(0) = self.Class

5.7.3  Semantic Domain

Figure 73 shows the semantic domain for queries. An object is associated with a collec-
tion of query calculations. Each query calculation describes a particular query evalua-
tion with respect to the current state of the object. The query calculation must have an
environment that includes all the slot values of the object and associates the free varia-
ble “self” with the object:

context Object inv: queries->forAll(q | 
allSlots()->forAll(a | q.env->exists(b | b.name = s.name and b.value = s.value)) and
q.env->exists(b | b.name = “self” and b.value = self)

Figure 72. UML2.Static.Queries.AbstractSyntax

Figure 73. UML2.Static.Queries.SemanticDomain
UML2 infrastructure initial submission 136



Queries
5.7.4  Semantic Mapping

Figure 74 shows the semantic mapping for queries. Objects are instances of classes and
calculations are instances of queries. In order to be well-formed, the query calculations
of an object must be instances of the corresponding queries of its class:

context Class inv: instances->forAll(o | 
o.allQueries()->forAll(c | allQueries()->exists(q | q.instances->includes(c)))

An object defines a query operation getQuery that is used to find a query closure:

context Object inv:
getQuery(m).args = of.getQuery(m).args->tail and
getQuery(m).env->exists(b | b.name = “self” and b.value = self) and
get(Query(m).body = of.getQuery(m).body

Figure 74. UML2.Static.Queries.SemanticMapping
UML2 infrastructure initial submission 137



Constraints
5.8. Constraints

Given a snapshot consisting of a configuration of instances there are a number of prop-
erties which must hold true. These properties are referred to as static constraints. Static
constraints may refer to individual objects, in which case they are defined for the clas-
sifier of the objects. Static constraints may also refer to collections of objects in a snap-
shot in which case they are defined for the classifier of the snapshot (i.e. a package). 

Each static constraint is a function of one argument which returns a boolean result.
Constraints are contained by classifiers. Every constraint contained by a classifier must
produce the value true when supplied with an instance of the classifier. In the case of
class constraints, every constraint must return true for all objects that are instances of
the class. In the case of packages, every constraint must return true for all the snapshots
that are instances of the package.

Constraint differ from queries since they cannot be arbitrarily parameterised. A con-
straint is a function of a single argument named ‘self’. 

5.8.1  Templates

To be defined in the final submission.

5.8.2  Abstract Syntax

Figure 75 shows the abstract syntax of constraints. Both classes and packages are con-
tainers of constraints. Classes and packages are also inheritors of constraints. They
define queries ‘Class::allConstraints’ and ‘Package::allConstraints’ which return the
union of the locally defined and inherited queries in both cases.

Figure 75. UML2.Static.Constraints.AbstractSyntax
UML2 infrastructure initial submission 138



Constraints
5.8.3  Semantic Domain

Figure 76 defines the semantic domain for constraints. Objects have calculations that
arise from evaluating constraints in the context of the object. Snapshots have calcula-
tions that arise from evaluating constraints in the context of the snapshot. In each case
the calculations must produce a boolean value. Objects and snapshots are containers
and inheritors of constraint calculations; they both define queries ‘allConstraints’.

context Object inv: constraints->forAll(c | c.value.of = Boolean)

context Object inv: constraints->forAll(c | 
allSlots()->forAll(s | c.env->exists(b | b.name = s.name and 
b.value = s.value))

context Object inv: constraints->forAll(c | 
c.env->exists(b | b.name = “self” and b.value = self)

context Snapshot inv: constraints->forAll(c | c.value.of = Boolean)

context Snapshot inv: constraints->forAll(c | 
c.env->exists(b | b.name = “self” and b.value = self)

Figure 76. UML2.Static.Constraints.SemanticDomain
UML2 infrastructure initial submission 139



Constraints
5.8.4  Semantic Mapping

Figure 77 shows the semantics of constraints. For both classes and packages, all the
constraints must hold for their instances. Every constraint calculation must be an
instance of the associated constraint:

context Object inv: allConstraints()->forAll(calc | 
of.allConstraints()->exists(constraint | 
constraint.body.instances->includes(calc)))

context Snapshot inv: allConstraints()->forAll(calc |
of.allConstraints()->exists(constraint | 
constraint.body.instances->includes(calc)))

Every constraint must be performed so for each classifier the set of constraint calcula-
tions for each instance must match the set of all constraints.

context Class inv: instances->forAll(instance | 
allConstraints()->forAll(constraint | 
           instance.allConstraints()->exists(calc | 
                     constraint.instances->includes(calc) 
                         and calc.value)))

context Package inv: instances->forAll(instance | 
allConstraints()->forAll(constraint | 
           instance.allConstraints()->exists(calc | 
                     constraint.instances->includes(calc) 
                         and calc.value)))

Figure 77. UML2.Static.Constraints.SemanticMapping
UML2 infrastructure initial submission 140



Templates
5.9. Templates

A template is a model element that contains replaceable names. Model elements that do
not contain replaceable names are referred to as ground model elements. Templates are
translated to ground model elements by supplying concrete names for replaceable
names.

Templates will be defined in the final submission.

5.9.1  Abstract Syntax

Classes for Template and ReplaceableName.

5.9.2  Semantic Domain

Template instantiation can be conveniently expressed using graph transformations.
Definition of Graph, Node, Edge, Mapping.

5.9.3  Semantic Mapping

Definition of PackageXGraph; ClassXGraph; AttributeXGraph.
UML2 infrastructure initial submission 141



Reflection
5.10. Reflection

The Static UML Core should be expressive enough to be self describing. In other
words, it should be possible to view the core as an instance of itself. This package
describes the necessary mapping from core abstract syntax elements to core instances
to show that this is feasible. 

5.10.1  Templates

Object
Reflection()

[Class_/Container,
Attribute_/Contained],
[Package_/Container,
Snapshot_/Contained],
[Association_/Container,
AssociationEnd/Contained],
...Classes

AbstractSyntaxN
SemanticDomain

N+1

SemanticMapping
UML2 infrastructure initial submission 142



Reflection
5.10.2  Semantic Mapping

Figure 78. UML2.Static.Reflection.SemanticMapping

Every element in the Static UML Core will have a G mapping to its instance represen-
tation at the next level-up in a meta-model architecture. Figure 78 shows the G map-
pings that are generated for classes and attributes. Here, classes and attributes have a G
mapping to a object that is an instance of the Static UML Core. Note, G mappings will
be required for other structures, e.g. generalisable elements, named elements.

Well-formednessRules

[1] A class is an instance of the class named “Class”.

context Class inv:
ClasssAreInstancesOfTheClassClass
G.of.name = Class

[2] An attribute is an instance of the class named “Attribute”.

context Attribute inv:
AttributesAreInstancesOfTheClassAttribute
G.of.name = <Contained>

[3] Classes are objects with slots whose values are their attributes as objects:

context Class inv:
self.Attributes -> forAll(c | self.G.slots ->
  exists(s | s.of.name = “Attributes” and s.value = c.G))
UML2 infrastructure initial submission 143



Reflection
Example Snapshot

Figure 78 shows that applying G to a class Dog with attribute “breed” maps Dog to a
meta-object of class “Class” and “breed” to a meta-object of class “Attribute”, with an
intermediate slot that maps the dog object to its attribute object.
UML2 infrastructure initial submission 144



Chapter 6

Dynamic Core

This chapter describes a primitive language for constructing a 
family of precisely defined action languages for UML. An 
example is given of the translation of state machines into the 
action language as proof of concept.

6.1. Introduction

UML has a variety of notations for expressing dynamic behaviour. The Actions pack-
age defines a primitive language for constructing many different action languages. The
essential features of dynamic behaviour in UML are:

• Evaluation of simple side-effect free expressions as defined in chapter 5.

• Messages between objects. There are a number of alternative message passing 
schemes including synchronous and asynchronous. An action may cause a synchro-
nous or asynchronous message to be set. Sub-types of message action must support 
a wide variety of user defined message passing protocols.

• Object update. Everything in UML is ultimately an object which has an internal 
state. An action may cause the internal state of an object to change.

• Concurrent actions. Dynamic behaviour in UML supports both possible concur-
rency and necessary concurrency. Possible concurrency occurs when the models 
place no restrictions on the order in which the actions take place. Necessary concur-
rency occurs when the models require actions to occur concurrently, for example in 
order to satisfy timing constraints or to satisfy reactivity constraints.

• Sequential actions. An ordering can be imposed on actions. This is in addition to the 
ordering which arises due to logical data dependencies.

Dynamic aspects of UML models are explained in terms of histories of execution or
calculations. UML supports concurrent execution and a variety of operation invocation
mechanisms. A calculation is a structure that records just the logical dependencies
between objects in an historical record of execution. The intended interpretation is that
a given UML model is implemented and executed on a class of machines. The
machines all execute in terms of objects and actions. A machine will give rise to its
own historical records of execution. A machine correctly executes a model implemen-
tation when the machine calculations are consistent with the calculations defined for
the model by the UML standard.

Certain actions are atomic, for example slot update. Such actions cannot occur concur-
rently with any other actions at a given object. Given atomic actions and a suitably
expressive collection of action primitives it is possible to construct a wide range of
control constructs.



Actions
6.2. Actions

6.2.1  Templates

To be defined in the final submission.

6.2.2  Abstract Syntax

The primitive action language is an extension of the primitive expression language
defined in chapter 5. All expressions are specialised to become actions. Figure 79
shows the new types of action expressions. The class Par defines parallel actions. The
class Seq defines sequential actions. The class Update defines slot update actions. The
class New defines object creation.

The collection of action primitives can be extended to develop action languages. Sup-
pose we want to define a class of objects that handle message pools. Clients of the
objects send asynchronous messages. Messages are conveyed through the ether and are
placed in the message pool of the receiver. Object which handle messages in this way
must treat the message pool as a shared resource. Suppose that we extend the action
primitives with a flipif primitive. This atomic primitive toggles a boolean value provid-
ing the current value of the boolean variable is true:

Object::monitor()
if !pool->isEmpty
then flipif poolFree; 
         let m = pool.selectElement 
         in pool := pool->excluding(m); 
              handle(m) | 
              poolFree := true; 
              monitor() 
         end 
else monitor()
endif

Figure 79. UML2.Dynamic.Actions.AbstractSyntax
UML2 infrastructure initial submission –  146



Actions
New messages are handled by ‘receive’:

Object::receive(m:Message)
flipif poolFree; 
pool := pool->including(m);
poolFree := true

When an object is created it starts the monitor. Calls to ‘receive’ will occur in parallel:

Object::init()
poolFree := true;
pool := Set{};
monitor()

By extending the basic action primitives with a simple atomic operator it is possible to
conveniently ensure that ‘monitor’ and ‘receive can occur concurrently without inter-
ference. 

6.2.3  Semantic Domain

Actions are described in terms of histories of execution. These are referred to as calcu-
lations. Chapter 5 defines calculations for expressions with no side-effects. Actions
involve changes to object states. Therefore expression calculations are extended with
two state descriptions. The pre state defines a set of objects required by the action. The
post state defines a set of objects modified or produced by the action Given a collection
of bindings e, a pre state B, a value v and a post state A, a calculation that describes the
result of performing an action in the context e and B producing value v and new state A
can be drawn as:.

Figure 80. UML2.Dynamic.Actions.SemanticDomain

e B

v A
UML2 infrastructure initial submission 147



Actions
Figure 80 on page147 shows the definition of the action semantic domain as an exten-
sion of the semantic domain for expressions. The pre state of a calculation may contain
any objects supplied to its containing calculation and any objects produced or modified
by its siblings. The post state of a calculation may contain any objects in the post state
of its sub-calculations:

context Calc inv: 
pre = sub.pre and post = sub.post 

Notice that the above constraint rules out calculations that describe inconsistent
updates to the same object since objects cannot contain multiple slots with the same
name and different values. Therefore, two sub-calculations may change a slot inde-
pendently providing they change the slot to the same value.

6.2.4  Semantic Mapping

The semantic mapping for actions defines legal calculation instances for action calcu-
lations. The definition of expression instances generalises with no further modification
to action instances. 

Consider the case of an update action. There are two sub-actions which evaluate to pro-
duce an object o and a value v respectively. The update action causes the value of a slot
named s to be updated to the value v in the object o. This produces a an object o’ which
is exactly the same as o except that the slot named s has changed. The update calcula-
tion has the following form::

This is expressed as a constraint as follows:

context Update inv: 
instances->forAll(c | 
  value = sub->at(1).value and
  sub->at(0).post->union(sub->at(1).post->subSet(post) and
  objectChanged(sub->at(0).value,post,name,sub->at(1).value)

where ‘objectChanged’ relates the objects o and o’ on the diagram above.

A new action simply produces an instance of an object. The well-formedness con-
straints for action calculations will require the instance to be unique:

e B

A

e’ B ’

A’o v

v
A  U  A’ U  {o’}

e U  e’ B  U  B ’ U  {o}
UML2 infrastructure initial submission –  148



Actions
context New inv: instances->forAll(c | 
type.instances->includes(c.value) and
c.post = Set{c.value})

Sequential composition of actions requires an ordering on the processing of states:

context Seq inv: instances->forAll(i |
 i.sub->at(1).pre = i.sub->at(0).post)

There are no further constraints on Par action instances other than those required by the
well-formedness constraints on calculations. Therefore Par actions are free to be per-
formed concurrently.
UML2 infrastructure initial submission 149



Operations
6.3. Operations

UML operations are equivalent to queries (see chapter 5) except the body of the of the
operation is an action. A class is a container and inheritor of operations. An operation
has a number of parameters and a return type. An example of a simple operation is Peo-
ple::addPerson which adds a person to a collection of people. Using a simple concrete
syntax based on OCL with attribute update:

Person::addPerson(p:Person) people := people->including(person)

6.3.1  Templates

To be defined in the final submission

6.3.2  Abstract Syntax

Figure 81 shows the definition of the operations abstract syntax. Class defines a query
‘allOperations’ which returns the local operations defined by the class and those that it
inherits from its parents.

6.3.3  Semantic Domain

Figure 82 shows the semantic domain for operations. Each object has a collection of
calculations which arise from performing operations. The context for the calculations
includes the slots of the object and the variable ‘self’ which is bound to the object.

Figure 81. UML2.Dynamic.Operations.AbstractSyntax

Figure 82. UML2.Dynamic.Operations.SemanticDomain
UML2 infrastructure initial submission –  150



State Machines
6.4. State Machines

Dynamic behaviour can be expressed in UML using state machines. A state machine is
associated with a class and consists of a collection of states and transitions. This sec-
tion describes how state machines can be given a precise semantics using a translation
to an operation. This is an example of translational semantics. Translational semantics
is to be contrasted with model based semantics. A model based semantics defines three
components: a syntax domain; a semantic domain; and, a semantic mapping. Instances
of the semantic domain provides a model for instances of the syntax domain. A transla-
tional semantics involves three components: a source syntax domain; a target syntax
domain; and, a translation from the source to the target. The source language is defined
entirely in terms of a translation to the target language. No new semantic domain ele-
ments are introduced for the source language.

A state machine is defined using a translation to an operation. The operation handles
messages. The operation has a test for each transition of the machine. Each test
involves a check for the current state of the object, the message and performs the action
associated with the transition.

This section is intended to show how a simple model of state machines can be trans-
lated to operations. Consider the following state transition machine associated with a
class X:

The machine can be translated to an operation as follows:

C::machine(m:Message)
if inA()
then if m = p then b endif | if m = q then c endif
endif;
if inC()
then if m = r then d endif
endif

A

B

C

p/b

q/c

r/d
UML2 infrastructure initial submission 151



State Machines
6.4.1  Abstract Syntax

6.4.2  Translation

Figure 84 on page 152shows the translational semantics for state machines. Each
machine is associated with an operation. The machine is to be viewed as sugar for the
operation. The class TransIf defines pairs consisting of a machine transition and a con-
ditional expression. The test of the conditional expression is a conjunct of a test for the
source state and a message. The consequent of the conditional expression is the action
of the transition:

context TransIf inv: 
if.test.andLeft.name = transition.source.name and 
test.andRight.eqlLeft.name = “m” and 
test.andRight.eqlLeft.value = transition.message and
consequent = transition.action 

Figure 83. UML2.Dynamic.StateMachines.AbstractSyntax

Figure 84. UML2.Dynamic.State<achines.SemanticMapping
UML2 infrastructure initial submission –  152



References

[Alvarez01a] Alvarez A, Clark A, Evans A. and Sammut, A. (2001) An Action Seman-
tics for MML, in [Gogolla01].

[Alvarez01b] Alvarez A, Evans A. and Sammut, A. (2001) Mapping Between Levels in 
the Metamodel Architecture, in [Gogolla01]

[Atkinson01] Atkinson C. and Kühne T. (2001) The Essence of Multilevel Metamodel-
ing, in [Gogolla01].

[Catalysis00] http://www.catalysis.org/publications/papers/UML-Infrastructure.pdf 

[Clark99] Clark A, Evans A, Kent S, France R. and Rumpe B. (1999)  pUML Response 
to UML2.0 RFI, available from www.puml.org.

[Clark00] Clark A, Evans A. and Kent S. (2000) Re-architecting UML as a Family of 
Languages using a Precise Meta-Modeling Approach,  available from www.puml.org.

[D'Souza98] D'Souza D. and Wills A. (1998) Objects, components and frameworks 
with UML, Object Technology Series, Addison-Wesley.

[D’Souza99] D'Souza D, Sane A. and Birchenough A. (1999) First-Class Extensibility 
for UML - Packaging of Profiles, Stereotypes and Patterns, in [France99], (1999).

[France99] France R. and Rumpe B. (eds.) (1999) Proceedings of UML'99 - The Uni-
fied Modeling Language, Beyond the Standard: Second International Conference, Fort 
Collins, CO, USA. LNCS 1723, Springer Verlag.

[Gogolla01] Gogolla M. (ed.) (2001) Proceedings of UML'2001 - The Unified Mode-
ling Language: Fourth International Conference, Toronto, Springer Verlag

[Kleppe01] Kleppe, A. Warmer, J. Unification of Static and Dynamic Semantics of 
UML. A Study in redefining the Semantics of the UML using the pUML OO Meta Mod-
elling Approach, available at www.puml.org.

[OMG] Object Management Group (1999) OMG Unified Modeling Language Specifi-
cation, version 1.3., found at: http://www.rational.org/uml.

[OCLWK00] UoK (2000), Workshop on OCL, University of Kent, details available 
from http://www.cs.ukc.ac.uk/research/sse/oclws2k/index.html.

[Reggio01] Reggio, G. and Astesiano, E. A Proposal for a Dynamic Core for UML 
Meta-Modelling with MML, available at ftp://ftp.disi.unige.it/person/ReggioG/
ReggioAstesanio01a.pdf



UML2 infrastructure initial submission 154


	Contents
	Preface
	0.1. Submission Summary
	Submission contact point
	Guide to material in the submission
	Overall design rationale
	Statement of proof of concept

	0.2. Resolution of Infrastructure RFP Requirements
	0.2.1 General Requirements
	0.2.2 Architectural alignment and restructuring
	0.2.3 Extensibility
	0.2.4 Architectural alignment and restructuring
	0.2.5 Extensibility
	0.2.6 Issues to be discussed

	0.3. Resolution of OCL RFP Requirements
	0.3.1 Mandatory requirements
	0.3.2 Optional requirements



	Chapter 1
	Introduction
	1.1. Aims and Objectives
	1.2. Key contributions
	1.3. To be completed
	1.4. Outline
	1.5. Acknowledgements


	Chapter 2
	Context
	2.1. Introduction
	2.1.1 Pattern-based infrastructure
	2.1.2 Main Principles
	2.1.3 The Meta-Model - Semantics and Composition at Core

	2.2. Support for a Family of Languages
	2.2.1 Language Definition
	2.2.2 Architectural Consistency across Language Definitions
	2.2.3 N-level Meta-modelling
	2.2.4 Relationships and Translations across Languages
	2.2.5 Improved Model Interchange

	2.3. Unified Concepts


	Chapter 3
	Meta-Modelling Approach
	3.1. Introduction
	3.1.1 The Meta-modelling language
	3.1.2 Deployment
	3.1.3 Organisation of chapter

	3.2. Classes
	3.3. Binary associations
	3.4. Packages
	3.5. Constraint Language
	3.6. Package Templates


	Chapter 4
	Templates
	4.1. Introduction
	4.2. Contains
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description

	4.3. NameSpace
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description
	Example
	Example Snapshot

	4.4. Distinguishable Container
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description
	Example
	Generated Constraints

	4.5. Related1
	Summary
	Definition
	Description
	Example

	4.6. Generalisable
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description
	Example
	Example Snapshot

	4.7. Semantics
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description

	4.8. Generalisable Container
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description
	Example
	Example Snapshot

	4.9. Declarative Generalisable Container
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description
	Example
	Snapshot Example

	4.10. Generalisable Related1
	Summary
	Definition
	Well-formedness Rules
	Description
	Example

	4.11. Importable Container
	Summary
	Definition
	Description
	Example

	4.12. Mergeable Container
	Summary
	Definition
	Description

	4.13. Container Semantics
	Summary
	Definition
	Queries
	Description
	Example

	4.14. Generalisable Semantics
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description
	Example

	4.15. Generalisable Container Semantics
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description

	4.16. Generalisable Related1 Semantics
	Summary
	Definition
	Well-formedness Rules
	Description
	Example

	4.17. GeneralisableFeatureContainerSemantics
	Summary
	Definition
	Description
	Example

	4.18. Expression Semantics
	Summary
	Definition
	Description
	Example

	4.19. Binding
	Summary
	Definition
	Description
	Example

	4.20. Mapping
	Summary
	Definition
	To be defined in the final submission.
	Description
	Example

	4.21. Container Map
	Summary
	Definition
	To be defined in the final submission.
	Description
	Example

	4.22. Refinement
	Summary
	Definition
	Description

	4.23. Graph
	Summary
	Definition
	Description

	4.24. Tree
	Summary
	Definition

	4.25. Object Reflection
	Summary
	Description
	Well-formedness Rules
	Example

	4.26. Class Reflection
	Summary
	Description
	Well-formedness Rules

	4.27. Abstract Container
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description

	4.28. Abstract GeneralisableElement
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description

	4.29. Abstract NameSpace
	Summary
	Definition
	Queries
	Well-formedness Rules
	Description



	Chapter 5
	Static Core
	5.1. Introduction
	5.2. Classes
	5.2.1 Overview
	5.2.2 Templates
	5.2.3 Abstract Syntax
	Well-formedness Rules
	Queries
	5.2.4 Semantic Domain
	Well-formedness Rules
	Queries
	5.2.5 Semantic Mapping
	Well-formedness Rules
	Example

	5.3. Packages
	5.3.1 Overview
	5.3.2 Templates
	5.3.3 Abstract Syntax
	Well-formedness Rules
	Queries
	Example
	5.3.4 Semantic Domain
	Well-formedness Rules
	Queries
	5.3.5 Semantic Mapping
	Well-formedness Rules
	Example

	5.4. Associations
	5.4.1 Overview
	5.4.2 Templates
	5.4.3 Abstract Syntax
	Well-formedness Rules
	Queries
	5.4.4 Semantic Domain
	Well-formedness Rules
	Queries
	5.4.5 Semantic Mapping
	Well-formedness Rules

	5.5. DataTypes
	5.5.1 Templates
	5.5.2 Abstract Syntax
	Well-formedness Rules
	5.5.3 Semantic Domain
	Well-formedness Rules
	5.5.4 Semantic Mapping
	Well-formedness Rules

	5.6. Expressions
	5.6.1 Templates
	5.6.2 Abstract Syntax
	5.6.3 Semantic Domain
	5.6.4 Semantic Mapping

	5.7. Queries
	5.7.1 Templates
	5.7.2 Abstract Syntax.
	5.7.3 Semantic Domain
	5.7.4 Semantic Mapping

	5.8. Constraints
	5.8.1 Templates
	5.8.2 Abstract Syntax
	5.8.3 Semantic Domain
	5.8.4 Semantic Mapping

	5.9. Templates
	5.9.1 Abstract Syntax
	5.9.2 Semantic Domain
	5.9.3 Semantic Mapping

	5.10. Reflection
	5.10.1 Templates
	5.10.2 Semantic Mapping
	Well-formednessRules
	Example Snapshot



	Chapter 6
	Dynamic Core
	6.1. Introduction
	6.2. Actions
	6.2.1 Templates
	6.2.2 Abstract Syntax
	6.2.3 Semantic Domain
	6.2.4 Semantic Mapping

	6.3. Operations
	6.3.1 Templates
	6.3.2 Abstract Syntax
	6.3.3 Semantic Domain

	6.4. State Machines
	6.4.1 Abstract Syntax
	6.4.2 Translation


	References


