
SUPERLANGUAGES

DEVELOPING LANGUAGES AND APPLICATIONS WITH XMF

FIRST EDITION

Tony Clark, Paul Sammut, James Willans

ii

c©Ceteva 2008.

CONTENTS

1. Introduction 1
1.1. The Representation Chasm . 2
1.2. Superlanguages . 2

1.2.1. Usability . 3
1.2.2. Expressiveness . 4
1.2.3. Extensibility . 4

1.3. The Pros and Cons of Superlanguages . 5
1.4. Related Concepts . 6
1.5. Examples of Superlanguages . 7
1.6. The Superlanguage XMF . 8
1.7. Guide to Book . 9

I. XMF 11

2. Languages 13
2.1. Everything is an Element . 16
2.2. Indexing Things . 18
2.3. Naming Things and Looking Them Up . 19
2.4. Classifying Things . 21
2.5. Collections of Things . 23
2.6. Classifying Objects . 25
2.7. Performing Things . 26

3. The Executable Object Command Language (XOCL) 29
3.1. Working With Basic Elements . 29
3.2. Tables . 33
3.3. Sets . 34

c©Ceteva 2008.

iv Contents

3.4. Sequences . 35
3.5. A-Lists . 39
3.6. Iteration Expressions . 40
3.7. Variables and Scope . 42
3.8. Loops . 44
3.9. Operations . 47
3.10. Exception Handling . 48
3.11. Patterns . 50
3.12. Working with Syntax . 55
3.13. Quasi-Quotes and Lifting . 61

4. Grammars 65
4.1. Parsing and Syntheisizing . 66
4.2. Sequences of Elements . 68
4.3. Specializing Grammars . 69
4.4. Synthesizing Syntax . 70
4.5. Simple Language Constructs . 71

4.5.1. When . 71
4.5.2. Cond . 72
4.5.3. Classes and Packages . 73
4.5.4. Operations . 77
4.5.5. Enum . 78

4.6. Looping Constructs . 81
4.7. XBNF . 85

II. Application Engineering 89

5. Executable Models and Simulation 91
5.1. A Job-Shop Simulation . 92
5.2. Job-Shop Implementation . 101
5.3. Conflict Analysis . 105

6. Pretty Printing 111
6.1. Example Printing . 111
6.2. A Document Model . 114
6.3. A Pretty Printing Machine . 117
6.4. Machine Implementation . 124
6.5. A Document Mapping . 126

7. Team working 133
7.1. Overview . 133
7.2. Overview of the Proposed Approach . 135

c©Ceteva 2008.

Contents v

7.3. The Delta Machine . 137
7.4. Model Comparison . 141
7.5. Model Slices . 145
7.6. Conflicts . 148

III. Language Engineering 155

8. Domain Specific Languages 157
8.1. Software Frameworks and Domain Specific Languages 157
8.2. Example Application . 159
8.3. Abstract Syntax . 162
8.4. Implementation . 163

8.4.1. Embedded . 163
8.4.2. Translational . 164

8.5. Concrete Syntax . 165
8.5.1. Embedded . 166
8.5.2. XML . 168

8.6. Conclusion . 169

9. Data-Centric Language Constructs 171
9.1. Simple Records . 171
9.2. Trees . 173

10.Graphs 179

11.Collections and Comprehensions 187
11.1. Transforming Comprehensions . 193

12.Language Emulation 197
12.1. MicroJava . 197
12.2. Lisp . 199

13.Business Rules 207
13.1. Example Business Rules . 208
13.2. Business Rules Implementation . 213
13.3. Rete Networks . 216
13.4. Rule Compilation . 221
13.5. Network Execution . 226
13.6. Monitoring Classes . 229

14.Model View Controllers 233
14.1. Model-Diagram Synchronization . 234
14.2. Models . 235

c©Ceteva 2008.

vi Contents

14.3. Diagrams . 235
14.4. Mappings . 236
14.5. Mapping Patterns . 241
14.6. Equality Pattern . 241
14.7. Containment Pattern . 243
14.8. Model-Diagram Implementation . 245
14.9. A Simple Database Synchronizer . 246

15.Generating Text from Models 249
15.1. Introduction . 249
15.2. Examples . 249
15.3. Specification . 252
15.4. Design . 257
15.5. Implementation . 261

16.A Problem of Composition 271
16.1. Translating Executable Models . 272
16.2. Transformation Architecture . 277
16.3. A Rule Based Language . 278
16.4. Implementation . 287

16.4.1. Pattern Matching . 287
16.4.2. Documents . 291
16.4.3. Rules and Rule Bases . 294
16.4.4. Forcing Delayed Documents . 296
16.4.5. Displaying Documents . 298

17.The SECD Machine 301
17.1. Extending the SECD Machine . 306

18.Modelling with XML Data 309
18.1. Generating XML Data . 310
18.2. An XML Generator . 313
18.3. Parsing XML . 317
18.4. Resolving References . 328

19. Interactive Applications 331
19.1. Interactive Application Architecture . 332
19.2. A DSL for Interactive Applications . 333
19.3. Implementation . 337

19.3.1. Syntax . 337
19.3.2. Semantics . 346
19.3.3. Handling Events . 351

19.4. Simulation . 352

c©Ceteva 2008.

Contents vii

19.5. XML Representation for Applications . 354
19.6. Conclusion . 356

20.Choosing Between Alternatives 357
20.1. A Choice Pattern . 357
20.2. Finding a Route . 363
20.3. Explanation and NoGood Sets . 366

21.A Command Language 379
21.1. XCom - A Simple Command Language . 380
21.2. An Evaluator for XCom . 383

21.2.1. Evaluating Expressions . 383
21.2.2. Evaluating Statements . 385

21.3. A Translator for XCom with Run-Time Types 386
21.3.1. Translating Expressions . 387
21.3.2. Translating Statements . 388

21.4. A Translator for XCom without Run-Time Types 390
21.4.1. Translating Expressions . 391
21.4.2. Translating Statements . 392

21.5. Compiling XCom . 394
21.5.1. Compiling Expressions . 394
21.5.2. Compiling Statements . 396

21.6. Flow Graphs . 398
21.6.1. Flow Graph Patterns . 400

A. Implementation Issues 405
A.1. Working with Files . 405
A.2. Manifests . 407
A.3. XMF Startup Arguments . 409
A.4. Starting XMF using a Batch File . 410
A.5. Starting XMF from Java . 410
A.6. Rebuilding XMF . 411
A.7. Recompiling XMF . 411
A.8. Debugging . 412
A.9. Boolean Operations . 412
A.10.Float Operations . 412
A.11.Integer Operations . 413
A.12.Sequence Operations . 413
A.13.Set Operations . 414
A.14.String Operations . 415
A.15.OCL Syntax Classes . 416

c©Ceteva 2008.

viii Contents

Appendix 405

Bibliography 423

c©Ceteva 2008.

CHAPTER 1

INTRODUCTION

The days of monolithic languages are over. The idea that one size fits all is dead. Long
live diversity!

Applications should not, and indeed cannot, be written in a single language these
days. We have lots of technologies that are specific to different aspects of complete ap-
plication. We have SQL for databases, we have JSP for web presentation, we have XML
everywhere, we have Java and J2EE, we have frameworks and libraries. So everything
is great - just map you application to an appropriate technology and away you go!

But wait a minute, perhaps this diversity is not such a good thing. Representing
our application in these technologies can be quite hard. I understand how the ap-
plication breaks down into aspects, but those aspects don’t seem to map down onto
different aspects of the technology very well. OK, so, I’ll put a bit of each application
feature into the appropriate technologies. It takes a bit of translation, but our guys
are experts in the technologies so there should be no problem. Great - the system
works, everyone is happy.

Uh, oh - the requirements have changed. No matter - we’ll just talk it through
with the customer and modify the implementation accordingly. It will take a bit of
time to trace the requirements through to the implementation on all those different
bits of technology, er how did we implement that customer transaction again? Never
mind, we can put that other project on hold while the original developers are brought
back to reverse engineer the code.

Yikes! the original developers have left. Just great, now I have to pick through
all those technologies and try to do it myself. Crikey - I don’t really understand
this stuff, it talks about accrual periods and debentures. I know, I’ll show it to
the customer, surely they can extract some meaning from this mess. Aargh - the
customer won’t touch it and the new development team just wants to rewrite it!

c©Ceteva 2008.

2 CHAPTER 1. INTRODUCTION

1.1. The Representation Chasm

We are drowning in implementation technology. Software language engineers have
been very busy over the last 10 years inventing languages that control the new frontiers
of technology. In particular there are a huge number of languages that provide control
over distributed applications, databases and web-content. Basic technology issues are
very well provided for. This can be seen in the rise of open-source technologies and the
standardisation of architectures for information processing applications.

And yet there are still problems. Little attention has been paid to closing the gap
between the languages and the applications that they implement: the representation
chasm. The chasm is bridged by highly skilled developers who take designs and pro-
duce the application. But what if your developers are not as highly skilled as you would
like? This leads to errors and delays arising from misunderstandings. Iterative devel-
opment is compromised by the representation chasm since various project stakeholders
become disenfranchised depending on which side of the chasm they live. Maintenance
become difficult: the customers, architects and designers shout new requirements from
one side of the chasm only for the development team to mis-hear them on the other.

How do we bridge the representation chasm? The answer is in moving towards a
new breed of language technology: superlanguages 1. A superlanguage provides a
number of technical features that are specifically designed to close the gap between the
concepts in the application domain and the technologies that are used to implement the
application. Superlanguages can be used to empower development teams by increasing
the sophistication of the tools they use to implement the application.

Superlanguages can be used to de-skill various aspects of the implementation by of-
fering restricted languages suitable for the application. Superlanguages can be made
accessible to project stakeholders that would usually be unable to engage with imple-
mentation technologies. Superlanguages can radically increase the efficiency of the de-
velopment team and can radically increase the quality of the delivered products, derisk
the development process, and increase the ability of the supplier to maintain the prod-
ucts.

1.2. Superlanguages

What is a superlanguage and how does it differ from the current breed of implemen-
tation technologies? An idealised superlanguage provides control over all aspects of
representation and execution. A superlanguage can be extended with new features that
make it easy to represent concepts from the application that a customer would under-
stand. These new concepts can be weaved into the existing features of a superlanguage
or may be kept separate (as a different aspect for example). Existing execution mecha-
nisms in the superlanguage can be changed to reflect the needs of each new application.

1The term superlanguages was first coined by Christopher Diggins in [Dig08].

c©Ceteva 2008.

1.2. SUPERLANGUAGES 3

Each new feature that is added to a superlanguage has a description of how it should
execute and how it integrates with other features (where that is appropriate).

A superlanguage must provide super-features that address: usability; expressiveness;
extensibility. These are described in more detail in the following sections.

1.2.1. Usability

A superlanguage must be fit for purpose. It should support the developer in capturing
features of the application and place no unnecessary barriers in the way of development.
The following features contribute to the usability of a superlanguage:

interactive A superlanguage cannot be a batch execution language. Some form of top-
level command interpreter is essential. Developers want to interact with their pro-
grams and to deny them this pleasure is cruel. Interactivity aids development and
debugging, increases developer productivity, and facilitates a deep understand-
ing of execution mechanisms. If a superlanguage is used for language engineer-
ing then the developer will be implementing execution mechanisms which will
require a good understanding of how languages tick.

dynamic A superlanguage must be dynamic. It must be possible to load new defini-
tions into the language at any stage during execution. Why wait to recompile and
restart an application when it is not necessary? A superlanguage may be used as
the glue that binds an application made up of many different modules written in a
variety of languages. In order to be glue, the superlanguage must provide mecha-
nisms for dynamically loading and processing the modules. This is closely related
to the idea of aspects.

reflection A superlanguage must be able to reflect on its own structure and behaviour.
It should be possible for the language to query its own state and to represent and
manipulate its own syntax. Many of the domain specific languages that are repre-
sented by superlanguages will ultimately be represented in a basic core language
(an alternative is to be translated to some external language). Syntax translations
rely on having a complete representation of the superlanguage syntax available to
the language engineer.

interfaces Superlanguages must not be closed worlds. It is unrealistic to expect main-
stream programming languages to become superlanguages overnight. In addition
there are practical reasons why certain aspects of a system may need to be imple-
mented using conventional technology. Therefore, until standard languages be-
come superlanguages, a superlanguage should support interfaces to conventional
technology. Superlanguages should support provision for running as embedded
applications.

c©Ceteva 2008.

4 CHAPTER 1. INTRODUCTION

1.2.2. Expressiveness

Where possible, a superlanguage should abstract away from implementation details
in programs. It should be possible to quickly and efficiently use a superlanguage for
prototyping an application in addition to product development. Key features are:

high-level There is no excuse for a language which does not provide features that make
representation and computation easy to achieve. These include things like hetero-
geneous lists; closures; pattern matching; symbolic data; rich type systems etc.
High-level features make a language a pleasure to use and contribute to the read-
ability of the code. Closures are particularly important since they can be used to
engineer applications that would be complex and difficult to understand without
them (particularly search related applications).

dynamic(duck)typing Languages that are limited to static type systems are too restric-
tive to be superlanguages. It is difficult to achieve interaction and meta-features
with exclusively statically typed languages. Trust the developer - they really do
know what they are doing! The type-system of a superlanguage should be exten-
sible just like all other aspects of the language. A superlanguage may optionally
impose static typing (static typing is a good thing), but should not mandate it.

garbage-collection The days of direct pointer manipulation and user defined memory
management are surely behind us. All but the very specialized real-time or hard-
ware related applications cannot justify the exposure of raw machine-level details
in this way.

1.2.3. Extensibility

A superlanguage must be extensible. In principle, all aspects of the language from the
syntax to the execution engine should be available to the developer. Extensibility fea-
tures must be fullsome and integrated with the rest of the language. It does not count
if you provide a couple of system calls that changes the mode of the execution engine.
It does count if you can write a complete new execution algorithm and plug it in. It
does not count if you write a pre-processor for your language. It does count if you can
write a source code translator and integrate it into the language compiler using all of
the context that the compiler manipulates. Key features are:

aspects A superlanguage must support the idea of aspects whereby new definitions
can be added to existing language components. Ideally the superlanguage will be
written in itself and must be extensible so that it can be tailored through exten-
sion to suit different application domains. Groups of definitions added to existing
components are grouped into logically related packages or aspects. It should be
possible to manipulate aspects as a unit, minimally in terms of addition, deletion
and debugging.

c©Ceteva 2008.

1.3. THE PROS AND CONS OF SUPERLANGUAGES 5

reflexive A superlanguage should be reflexive. This is related to reflection, but differs
in that the language can affect its own behaviour. Debuggers for languages rely on
the ability to be reflexive since they have to change the trace state of the operations
that they are tracing. An ideal superlanguage will be meta-circular since this is
the best way of ensuring (given the characteristic features listed here) that the
language will be sufficiently expressive.

meta-protocols Execution engines for languages are like software frameworks. To
plug into the framework you supply program code written in a language that
the framework understands. The framework executes and processes the program
code. The key steps in execution forms an execution protocol for the framework.
The execution protocol for a superlanguage must be clearly defined. A meta-
protocol is a collection of features that can be used to extend or redefine the ex-
ecution protocol. A superlanguage should offer a meta-protocol that allows new
languages to hook into the existing execution framework, but which allows them
to change it. A typical example is the protocol for an object-oriented language that
includes: send; setSlot; getSlot etc. A meta-object-protocol (or MOP) allows you to
replace the definition of these features for specific types of object.

lightweight-extensible-syntax The syntax of a superlanguage must be extensible and
ultimately replaceable. In order to be a power-tool for developers, the superlan-
guage must allow new language features to be added and weaved into the existing
language. New language features must be able to take full advantage of the exe-
cution framework for the superlanguage including accessing context information
such as local variables etc. Superlanguages should support the definition of new
language features that support standard programming idioms and also support
the publication of such definitions for others to reuse.

heavyweight-extensible-syntax A superlanguage should provide features that sup-
port the definition of complete external languages. Such language should support
a development method that allows different aspects of a system to be represented
by DSLs that are accessible to external stakeholders and which may also deskill
the development process. These languages are not necessarily weaved into the
main superlanguage, instead they are used externally to the main language and
loaded on demand.

1.3. The Pros and Cons of Superlanguages

The benefits of superlanguages have been outlined above. They empower the developer
to be more productive by raising the abstraction level of the programming language
and inventing standard representations for common idioms. This technique has been
used in many programming languages from the C-preprocessor through to Lisp. New
language constructs can be standardized and shared.

c©Ceteva 2008.

6 CHAPTER 1. INTRODUCTION

Superlanguages also provide an unprecedented degree of control over the language
engine via meta-features. Access to meta-features provides a way of tailoring a lan-
guage in a modular way without polluting programs. This separation of concerns is
very powerful and can be used to support a mixed paradigm application on the same
language platform without compromising the readability or maintainability of the ap-
plication.

If used to implement multiple heavyweight or external languages within the same
application, superlanguages provide the basis for addressing some of the significant
concerns raised at the beginning of the chapter relating to current implementation tech-
nology and the representation chasm. This can lead to significant commercial benefits
arising from the ability to engage more stakeholders will all aspects of an application
and the ability to control and deskill aspects of the application development.

Superlanguages are not without their problems. Since they offer advanced features
they can be used inappropriately and can be challenging for the novice programmer.
The techniques used to implement superlanguages are not as mature as those for more
conventional languages and therefore efficiency and usability issues can be an issue. It
is important to put these issues in perspective. Superlanguages represent a technology
goal for current generation programming languages to aim for. The software industry
must embrace superlanguages and help to develop the technologies and methods since
they represent a very significant step forward in software application development. Ex-
isting mainstream languages should strive to adopt super-features and thereby move
forward.

1.4. Related Concepts

The concept of superlanguages is related to several other terms used by the software
industry. These are:

LOP Language Oriented Programming [War94, Dmi04] is a term that is used to mean
the process of defining new programming concepts in order to address a given
application. A superlanguage supports LOP although not all systems that support
LOP need be superlanguages. It is not necessary to be a programming language
in the first place to support LOP - you just need to be a system that allows the
definition of programming languages. It is certainly not necessary to be meta-
circular to provide LOP.

DSL Domain Specific Languages is a term that is used to mean a language that has
been specifically designed to represent concepts from an application domain. A
superlanguage supports DSLs, however the term DSL can mean languages that
do not involve programming in any way. The term includes graphical languages,
such as profiles in UML, that are used to express designs in terms of concepts and
relationships.

c©Ceteva 2008.

1.5. EXAMPLES OF SUPERLANGUAGES 7

LDD Language Driven Development [CSW08] is a method that can be used to produce
software applications. LDD involves the use of DSLs at various points in the de-
velopment life-cycle. If LDD is used as part of the implementation phase of the
project then the use of superlanguages is almost essential.

MDA Model Driven Architecture is a term used to mean the generation of program code
from UML models, possibly involving the use of DSLs or UML profiles. Superlan-
guages are not specifically required for this process (although they may help in
the transformation process). See [Fra03] for an introduction to MDA.

Software-Factories Software factories is a term used to mean the application of stan-
dard industry practices to software development. More specifically it has been
used to refer to an approach supported by Visual Studio to develop languages
that support the construction of software components [GSCK04]. This is similar
in many ways to MDA, but is not limited to using UML.

Language-Workbenches The term language workbench was proposed by Martin Fowler
in [Fow05] to mean the IDE support for language oriented programming. Exam-
ples of language workbenches include Intentional Software, the Meta program-
ming System from JetBrains and the Visual Studio provision for Software Fac-
tories. A superlanguage is not an IDE. Programming and development processes
that are based on superlanguages do not require IDE support. However, given that
superlanguages are by nature more sophisticated than conventional languages,
IDE support and language workbenches are an important tool.

1.5. Examples of Superlanguages

The perfect superlanguage does not exist. Such a language would be arbitrarily exten-
sible, as efficient and usable as current languages, have IDE support for all aspects of
the language and would integrate with anything. The perfect superlanguage is an ideal
that should motivate current language developers to strive for better features that can
address the representation chasm.

Languages with super-features do exist and have done so for quite a while. Smalltalk
and Lisp offer a significant number of super-features although both frighten the horses
in terms of scary syntax.

C# and Java offer a degree of reflection, but offer no support for language extension
and high-level programming features. It would be very interesting to chart out a course
of language evolution for these languages which incrementally adds super-features.

Languages such as Ruby and Python offer a range of super-features, including dy-
namic typing and meta-features, but are generally fixed in their syntax. It is interesting
to note that this style of language (often referred to as scripting languages) are generally
popular with technology lead programmers. This is a good indicator that languages
with super-features are likely to find their way into the mainstream.

c©Ceteva 2008.

8 CHAPTER 1. INTRODUCTION

1.6. The Superlanguage XMF

This book is about a language system called XMF. XMF has been designed as a superlan-
guage and offers a full range of super-features. XMF is not the perfect superlanguage,
but it claims to be the language that exhibits more super-features than any other lan-
guage currently available. XMF has been in development since around 2000 and has
gone through a number of development cycles. Its roots are in the Object Management
Group initiative to define the UML 2.0 standard when an early version of XMF was
developed in order to process fragments of UML language definition. In case anyone
is wondering, this explains the terms OCL and XOCL that occur in XMF and also ex-
plains some of the syntax used in XMF. The relationship between XMF and UML/OCL
was dropped many moons ago, leaving some of the features that contribute to being a
superlanguage and dropping all others.

Since 2003, XMF has been actively developed as a commercial product and used by
real paying customers as part of a larger product called XMF-Mosaic. The Mosaic com-
ponent was a large library of XMF code (over 100K lines of XOCL) that implemented
diagram tools and property editors generated from XMF meta-descriptions. Mosaic al-
lowed XMF to run inside Eclipse. At the time, Mosaic was ahead of the game, but since
we started development on Mosaic, systems like EMF/GMF and Software Factories
have caught up and overtaken Mosaic in terms of development effort. In any case, Mo-
saic was a sophisticated working example of a fairly large XMF application and shook
most of the bugs out of the system.

The key super-strengths of XMF:

• it is written in itself and therefore it is highly self consistent. Since extensibility is
part of the language, this makes XMF completely extensible.

• it provides extensive support for working with syntax, both concrete and abstract.
XMF is a true LOP engine.

• it provides very high-level programming features including pattern matching, un-
doability, daemons, heterogeneous lists.

• it implements a MOP and is truly meta-circular. The meta-language is called
XCore which defines all the data types and behaviour for the rest of the system.
There is no fudging of meta-classes as occurs in some language systems.

• it is interactive, dynamic and multi-threaded.

• it can be embedded in Java both calling out to Java and being called from Java.

The weaknesses of XMF as a superlanguage are:

• it is not as fast as a mainstream language. For many super-applications this will
not be a problem.

c©Ceteva 2008.

1.7. GUIDE TO BOOK 9

• error handling is adequate, but no special support is provided for new languages
engineered with XMF.

• there is no static typing (although this is planned for the next major release).

1.7. Guide to Book

The aim of this book is to introduce you to the superlanguage XMF. This will be done
by defining the language, providing some examples of applications that can be written
directly in the XOCL language that comes with XMF, and then by showing how you can
use XMF for language engineering.

The main focus of this book is on language engineering by example. Although we
introduce the XOCL language in general terms, we quickly focus on the features that
make XMF good for writing new languages and then give lots of examples.

There are many super-features of XMF that we do not cover. These features include:
Java interface; daemons; undo. We don’t spend very much time on the MOP and the
meta-interfaces of XMF.

XMF is open-source technology. You can get a copy of XMF from www.ceteva.com.
Since XMF is written in itself, it is one of the best examples of how to write XMF pro-
grams. In addition to the material in this book we would encourage you to check out
the XMF source code for examples of how to write languages and how to program in
XMF.

This book is divided into the following parts:

XMF The XMF programming system consists of a language called XOCL that runs on
the XMF VM. In order to program in the XMF system you will need to learn XOCL.
This part includes a tutorial on XOCL and the main data that runs on the XMF VM.

Application Engineering This part of the book describes a number of applications
written in XOCL. None of the applications involve language engineering, just us-
ing XOCL to produce programs that runs on XMF.

Language Engineering Superlanguages allow new language constructs and even com-
plete languages to be defined. This part of the book provides a number of exam-
ples of how you can use XMF to engineer languages.

c©Ceteva 2008.

10 CHAPTER 1. INTRODUCTION

c©Ceteva 2008.

Part I.

XMF

c©Ceteva 2008.

CHAPTER 2

LANGUAGES

In order for a language to be at all useful it must mean something. Meaning is a difficult
thing to grasp since in order to talk about it at all it is necessary to use language which
itself involves a question of meaning. However, it is possible to set down some broad
ground-rules that can be used to establish a basic framework.

First of all, a language has a syntax which comes in two flavours: concrete and ab-
stract. Concrete syntax is how you read or write a language, it tends to be human-
centric. The following is an example of concrete syntax:

x + 1

Abstract syntax deals with how a language is represented as data; it tends to be computer-
centric. Here is the equivalent example represented as abstract syntax (think of the Java
data structure that is created rather than the characters making up the program):

new BinExp(new Var("x"),PLUS,new Int(1))

In order to build systems we need a language with a syntax. Rather than use any old
language, this book is about constructing languages that are a good fit for the required
system. In doing so we need control over the concrete syntax (to make it easy to work
with for a human) and control over the abstract syntax (to make it easy for a computer
to work with it).

The process by which concrete is turned into abstract syntax is called parsing. This
book deals with models of languages and provides a great deal of examples of gram-
mars that specify how to turn concrete into abstract syntax language representations.

Next, the syntax of a language does not define its meaning any more than you can

c©Ceteva 2008.

14 CHAPTER 2. LANGUAGES

judge a book by its cover. In order to have meaning, a language must have a semantic
domain. A semantic domain is a model of the elements that the language denotes. A
semantic domain for natural language (such as English) contains all the real-world con-
cepts you can think of (such as Elephants and houses) in addition to all the conceptual
things you can think of; in fact, it contains anything you can think of.

Languages used for system development are much more controlled in terms of syntax
and semantics than natural languages. The semantic domains of such languages are de-
fined by data types for elements appropriate to the systems domain. The particular data
types depend on the system domain, for example a language for expressing telecomms
will have a semantic domain containing networks, routers and devices. Languages de-
fined for general use have general purpose semantic domains containing such things as
records, integers, strings, events etc.

Finally, the meaning of a language is not defined by its syntax or its semantics alone;
the meaning is the mapping that links the syntax to the semantics. In terms of modelling
languages the mapping is often static, for example linking class definitions to sets of
objects that are the instances of the classes. This of UML-style class models. What is
the meaning of such a model? Since the class diagram does not specify any behaviour,
neither does the semantics. a suitable semantics might be all the objects that can be con-
structed whose structure matches that specified in the class model. For programming
languages the mapping is dynamic since it links programs to execution traces and all
the execution machinery that lives in the traces.

To understand a language you must be fluent in its syntax, its semantic domain and
the mapping between them.

This book defines the superlanguage XMF and describes how you use it to bridge the
representation chasm. This book is not about how you analyse the systems themselves
in order to model them; there are plenty of books about that topic. This book aims
to provide a collection of techniques that allow you to raise the abstraction-bar when
addressing system development issues.

When modelling systems it is desirable to focus on what is being expressed rather than
how the information is being represented. This is the essence of a language driven ap-
proach: we can use high-level abstractions to capture the information without worrying
about unnecessary implementation detail. The language that will be used to represent
the information in this book is designed to provide a wide range of high-level constructs
for modelling information.

Futhermore, the language has been specifically designed to be extensible: if no lan-
guage construct is provided to express the required information then the user can ex-
tend the language with a new construct that does the job. This is the ball-of-mud model
first pioneered by the Lisp family of programming languages. Rather than being a pe-
jorative term, a language is like a ball of mud when new features can be added to the
language in a way that the new features become part of the language and are indistin-
guishable from the existing features. No special actions need to be taken to use the new
extensions: they have been seamlessly integrated into the language.

Rather than being a ball of mud, it is possible to view the different languages as tow-

c©Ceteva 2008.

2.1. EVERYTHING IS AN ELEMENT 15

Figure 2.1.: Towers of Languages

ers as shown in figure 2.1. The base level is a very general language that supports
the construction of other language (ideally it will support the definition of itself). A
language is grown from the basic framework by adding successive layers of language
constructs; each layer is built from all those layers below it and the layers become pro-
gressively more tailored to specific application domains. The ball of mud principle is
maintained when the addition of a layer does not preclude the use of constructs from
lower layers and when languages build in different towers can be used in the same
application.

This chapter defines the semantic domain for the language that is used throughout
the rest of the book. The next chapter describes the syntax of the language XOCL. The
chapter after than describes language building features. On reading the rest of this
chapter you should expect to appreciate the key data values that can be expressed and
the kind of operations that are applied to the values. Each major category of value has
a section to itself.

The element types are divided into groups described in the following sections. In each
case the types that form a coherent aspect of the semantic domain are grouped together.
An overview of the aspect is given along with a collection of operations that make up
an interface for the group. Note that the interface is very general; it is intended that a
given application will extend this interface by dynamically adding more operations to
the domain types as required. In addition, the operations describes in each section are
an overview. The gold standard of operations for each type is the source code of XMF
itself.

c©Ceteva 2008.

16 CHAPTER 2. LANGUAGES

Figure 2.2.: Element and Object

2.1. Everything is an Element

Figure 2.2 shows the root class of the value domain: everything is an element - some
things are objects. When designing the value domain we had a choice: should every-
thing be an object? Objects have state represented as slots; a slot has a name and a value.
The slots of an object can be updated. Objects have an identity: when you create an ob-
ject it will be different to every other object that you have ever created (even if the slots
are the same).

But not all values have changeable state and an identity. For example: the integer 3.
Does it make sense to talk of the state of 3? Does it make sense to change the state of 3?
Given two occurrences of 3, are they the same or not?

The distinction between Element and Object allows us to make the distinction be-
tween values whose state cannot change and which have no identity. Therefore, 3 is an
element, but not an object. A set is an element and not an object, as is a string and a
boolean value.

Our language is object-oriented and computation proceeds by message passing. When
an element is sent a message, if its type defines an operation with the same name as the
message then the operation defines the actions that are performed. If T defines an op-
eration o expecting arguments (x,y,z) then T::o(x,y,z) is the operation. In the rest of this
chapter each section defines some types; the key operations for the types are described;
where the type of arguments or the return type of an operation is Element then the type
is omitted.

The main operations defined by Element are:

Element::copy()
// Returns a copy of the receiver.

Element::equals(other):Boolean
// Returns true when the arg is equal
// to the receiver.

c©Ceteva 2008.

2.2. INDEXING THINGS 17

Figure 2.3.: Indexed Collections

Element::init()
// Initializes the receiver.

Element::isKindOf(type:Classifier):Boolean
// Returns true when the receiver is an
// instance of the supplied type.

Element::of():Classifier
// Returns the type of the receiver.

Element::toString():String
// Returns a string representation
// of the receiver.

The main operations defined by Object are:

Object::get(name:String)
// Return the value of the slot or throw
// an error if the slot does not exist.

Object::hasSlot(name:String):Boolean
// Returns true when the receiver has a
// slot with the given name.

Object::set(name:String,value)
// Updates the given slot or throws an
// error if the slot does not exist.

c©Ceteva 2008.

18 CHAPTER 2. LANGUAGES

2.2. Indexing Things

When dealing with values it is desirable to build collections where the elements in the
collection are indexed by a key. The key is specified when the element is placed into
the collection and the key is used to look the element up in the collection. The value
associated with a key in a collection may be changed.

Figure 2.3 shows three classes that are used to represent basic indexed collections.
Notice these classes extend Element, not Object, therefore these indexed collections have
no slots. A table uses any element as a key, buffers and vectors use integers as keys.
The difference between a buffer and a vector is that the former grows to accommodate
elements as they are added whereas the latter is a fixed size.

What would you use these for? A table is useful when building arbitrary associations,
for example associating names of personnel with their employment records. Vectors are
useful when you know the size of the collection in advance, for example the locations
on a chess board. Buffers are useful when you need the collection to grow as required
and want to index elements by their position, for example building an output string.

The main table operations are as follows:

Table(n:Integer):Table
// Returns a table. The argument indicates the
// likely max keys.

Table::clear()
// Empties the receiver.

Table::get(key)
// Returns the value of the key or raises
// an error if the key is not present.

Table::hasKey(key):Boolean
// Returns true when the key is in the table.

Table::keys():Set(Element)
// Returns the keys in the table.

Table::put(key,value)
// Updates the table.

Table::remove(key)
// Removes the key from the table.

Table::values():Set(Element)
// Returns the set of values in the table.

The main buffer operations are as follows:

Buffer(n:Integer,isString:Boolean):Buffer
// Returns a buffer. The first arg is the size to
// grow by each time the buffer is extended. The

c©Ceteva 2008.

2.3. NAMING THINGS AND LOOKING THEM UP 19

// second indicates whether the buffer is a string
// buffer or a general buffer.

Buffer::add(element)
// Adds the element to the end of the buffer.

Buffer::append(s:String)
// Appends the chars to the end of a string buffer.

Buffer::asSeq():Seq(Element)
// returns the buffer as a sequence.

Buffer::at(i:Integer)
// Returns the element at index i or throws an error
// if the buffer has no element at position i.

Buffer::size():Integer
// Returns the number of elements currently in
// the buffer.

The main vector operations are:

Vector(n:Integer):Vector
// Returns a new vector of the specified size.

Vector::asSeq():Seq(Element)
// Returns the vector as a sequence.

Vector::put(element,index:Integer)
// Updates the vector at the specified index or
// throws an error if the index is out of range.

Vector::ref(i:Integer)
// Returns the element at the specified index.

Vector::size():Integer
// Returns the size of the vector.

2.3. Naming Things and Looking Them Up

Elements are often identified by their name and the value domain provides special sup-
port for named elements and their containers. Figure 2.4 shows the classes that define
these elements. A contained element has a link to its owner and a named element is a
contained element with a name. A container is a class that wraps up internal storage
implemented by tables, vectors and the like. An indexed container is a wrapper for a ta-
ble (allowing users to extend the class). A name space is a named element that contains
other named elements.

Notice that the structure of a name space allows name spaces to contain other name
spaces. This means that references to named elements may cross a number of nested
name spaces, leading to the idea of a path to an element. There is always a global name

c©Ceteva 2008.

20 CHAPTER 2. LANGUAGES

Figure 2.4.: Named Elements live in Name Spaces

space called Root in the value domain: everything is contained in Root. A path is a
sequence of names separated by ’::’. So Root::X references the named element with the
name X in the name space Root. If X is a name space containing a named element Y
then the path is Root::X::Y. Since Root is special, it can be omitted: X::Y.

The main operations defined by Contained are:

Contained::owner()
// Returns the owner of the receiver.

Contained::setOwner(owner)
// Updates the owner.

The main operations defined by Container are:

Container::add(element)
// Adds the element to the receiver.

Container::allContents():Set(Element)
// Returns all the elements directly
// or indirectly contained by the receiver.

Container::contents():Set(Element)
// Returns the direct contents of the
// receiver.

c©Ceteva 2008.

2.4. CLASSIFYING THINGS 21

Container::includes(element):Boolean
// Returns true when the receiver
// contains the element.

Container::remove(element)
// Removes the element from the
// receiver.

The main elements defined by NamedElement are:

NamedElement::name():String
// Returns the name.

NamedElement::path():String
// Returns the path through name-spaces to
// the receiver.

NamedElement::pathSeq():Seq(String)
// Returns the path through name-spaces to
// the receiver as a sequence of strings.

NamedElement::setName(name:String)
// Updates the name of the receiver.

The main operations defined by IndexedContainer are:

IndexedContainer():IndexedContainer
// Creates and returns an indexed container.

IndexedContainer::add(key,value)
// Updates the indexed container.

IndexedContainer::index(key)
// Returns the indexed value or throws
// an error.

A package is a special type of name-space that contains operations, classes and sub-
packages. Most of XMF is constructed around packages. When you write your own
applications in XMF you will probably define one or more packages to contain the defi-
nitions.

2.4. Classifying Things

The values in a value domain fall into different groups: the integers, the objects, the
personnel records, the update events etc. Each of these groups is a type and there is an
element that represents the type: a classifier. A classifier is a single value that defines

c©Ceteva 2008.

22 CHAPTER 2. LANGUAGES

Figure 2.5.: Classifiers

characterising features of a group of values: its instances. Each instance in the group
refers to the classifier as its type. For example the integer 3 has Integer as its type.
Furthermore, sub-groups can often be identified such that elements of a sub-group have
more characterising features - this is specialization.

Figure 2.5 shows the classes that define classification. A classifier defines a collection
of constraints: rules that govern the characterising features of its instances. A classifier
has parents, the child parents are spcializations of the parent classifiers. All the con-
straint rules of the parents are used to classify the instances of the child classifier which
may add rules of its own. Finally, a classifier has a default element, for example the
classifier Integer has a default value of 0.

Classifier defines the following operations:

Classifier::new()
// Return a new instance of the receiver.

Classifier::new(args:Seq(Element))
// Return a new instance of the receiver
// after it is initialized using the args.

Classifier::invoke(target,args:Seq(Element))
// Same as using new.

Each element in figure 2.5 is a classifier. For example NameSpace classifies all name
spaces in the value domain such that a name space must have a collection of named
elements and must itself be a named element. It is always possible to ask an element
in the value domin what its classifier is. The operation Element::of() returns a classifier;
since this is provided by Element which classifies everything, then all values in the
domain support this operation.

The basic data values such as 10, true and “a string” are all classified by distinguished
classifiers Integer, Boolean and string. These classifiers, in turn are classified by the

c©Ceteva 2008.

2.5. COLLECTIONS OF THINGS 23

Figure 2.6.: DataTypes

classifier DataType as shown in figure 2.6. The special value null is classified by Null; it
is used as the default value for all values that have internal state.

The types String, Integer, Float, Boolean and Null each define their own collection of
operations that are listed in the appendix.

2.5. Collections of Things

Two types of non-indexed collections are very useful: sets and sequences. A set is an
unordered collection, adding the same element to a set has no effect and it is not possible
to rely on the order of elements in a set. The following is a set of integers: Set{1,2,3,4}, it
is the same set as Set{4,3,2,1} and the set Set{1,1,3,2,3,4}. Figure 2.7 shows the classifiers
that apply to sets and sequences. In general the classifier of a set of elements of type
T is Set(T); since everything is classified by Element then the most general set-based
classifier is Set(Element).

A (non fixed size) sequence is either empty Seq{} or is a value v followed by a se-
quence s: Seq{v — s}. A sequence has a head, v, and a tail, s. Sequences lend themselves
to recursive processing by case analysis on the empty sequence and the non-empty se-
quence. Sequences of elements of type T are classified by type Seq(T) and the most
general sequence classifier is Seq(Element).

Figure 2.8 shows the sequence Seq{1,2,3} which is equivalent to the sequence Seq{1
— Seq{2 — Seq{3 — Seq{}}}}. The head of the sequence is the integer 1 and the tail

c©Ceteva 2008.

24 CHAPTER 2. LANGUAGES

Figure 2.7.: Collection Classifiers

Figure 2.8.: A Sequence

c©Ceteva 2008.

2.6. CLASSIFYING OBJECTS 25

Figure 2.9.: Classifying Objects

of the sequence is Seq{2,3}. The final dot in the figure represents the empty sequence
Seq{}.

Sequences of element are used heavily in this book to represent collections. They are
built-in to the implementation of the language and cannot be extended. The appendix
lists many of the operations that are provided for manipulating sequences.

2.6. Classifying Objects

Objects are values with identity and state. The identity is set when the object is created
and the state is represented as a collection of slots. Each slot has a name and a value.
Objects are used to represent elements with properties, for example personnel records
have personnel properties including the name of the employee, salary and department.
Objects can be used to represent real-world things such as companies or products and
can be used to represent abstract things such as colours (with red, green and blue prop-
erties) and system models.

Figure 2.9 shows the classes that are used to classify objects. The classifier of an object
is a class with attributes that classify the slots of the object. Each attribute has a name
(defining the name of the slot that the attribute classifies) and a type that classifies the
value of the slot. A class may be abstract in which case it does not directly classify
any objects, but may have sub-classes (linked via the parents attribute from Classifier)
whose direct instances it classifies.

Each class has a number of constructors. Each constructor is a rule that defines how
a new instance of the class is created. A constructor has a sequence of names that must

c©Ceteva 2008.

26 CHAPTER 2. LANGUAGES

correspond to the names of the attributes defined (or inherited) by the class. When a
constructor is used to create an instance of a class it is supplied with values for each of
its names. A new instance of the class is created and the slots with the corresponding
names are initialized from the supplied values. Each new instance will have a new
identity. Constructors are inherited from the parents of a class and there is always a
constructor (inherited from Object) that has no names.

For example, you can create a new object using a basic constructor with no arguments
as:

Object()

The constructor for class (inherited from named element) allows a new class to be con-
structed by supplying a name:

Class("Animal")

The constructor for Table allows you to supply the approximate number of elements to
be stored in the table:

Table(100)

2.7. Performing Things

The domain described so far contains elements that represent data, but nothing that ac-
tually does anything. It is possible to inspect the value of an object’s slot and update it,
but there is no domain element that represents what happens when an object receives
a message. the value domain contains operations that, upon being supplied with argu-
ment values, perform actions. The actions that can be performed are described in the
next section; this section describes the basic structure of an operation.

Figure 2.10 shows the classes that define the tructure of an operation. Each operation
is a named element that can be placed into a name space. An operation has a return
type and a sequence of typed arguments. The source of an operation is a performable
element; this is the source code of the operation that is performed then the operation is
invoked.

Within the source there may be variable references. A variable reference may corre-
spond to an argument, a name from an imported name space (called a dynamic vari-
able), or a variable that was in scope when the operation was created (called a global
variable). Each of these categories of variable are described with respect to examples in

c©Ceteva 2008.

2.7. PERFORMING THINGS 27

Figure 2.10.: Operations

the next section.
Operations give us the ability to run programs. Furthermore, there is no restriction

on where an operation can live in the value domain: operations may be placed as the
values of slots, may be added to collections or may be placed in tables. All data values
have to come into existence somehow: they are produced by performing the actions in
an operation. Even operations come into existence this way.

Operation defines the following operations:

Operation::arity():Integer
// The number of arguments.

Operation::fork()
// Start a new thread by calling the operations.

Operation::invoke(target,args:Seq(Element))
// Call the operation with the target and args.

Operation::sig():Seq(Element)
// Return the type signature of the operation.

Operation::source():String
// Return the source code of the operation.

Operation::trace()
// Trace calls of the operation.

Operation::untrace()
// Opposite of trace.

c©Ceteva 2008.

28 CHAPTER 2. LANGUAGES

c©Ceteva 2008.

CHAPTER 3

THE EXECUTABLE OBJECT
COMMAND LANGUAGE (XOCL)

The superlanguage XMF runs programs. XMF can run many different programming
languages, some interleaved, some completely separate. The basic language provided
with XMF is called XOCL - the executable object command language. XOCL is very
high-level and provides many features that make developing applications easy. In ad-
dition to application development, XOCL is intended for language engineering. You
are likely to be using XMF for its language engineering facilities and as such are going
to use XOCL to write languages. In order for your languages to do something you are
likely to link them to XOCL in some way, by translating them to XOCL or by writing an
language interpreter for them in XOCL.

This chapter describes the basic features of the XOCL language. XOCL executes in
terms of the concepts that were introduced in the previous chapter. In order to ensure
that we practice what we preach, XOCL is completely implemented in XOCL: it has
a grammar written in XOCL, a compiler written in XOCL and an interpreter written in
XOCL. That property should not concern us when introducing the language, but should
give you confidence that XOCL is a good language for doing language engineering!

3.1. Working With Basic Elements

The simplest components of XOCL are constants (notice that comments follow // on a
single line or within /* and */ over multiple lines as in Java):

10 // An integer.
3.145 // A float.
true // A boolean.

c©Ceteva 2008.

30 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

"Hello World" // A string.

Basic operators are: not, (unary)-, + (binary)-, *, /, ¡, ¡=, ¿, ¿=, =, and, or, andthen, orelse.
Here is an operation definition in XOCL:

context Root
@Operation fact(n)
if n = 0
then 1
else n * fact(n - 1)
end

end

The operator is named fact, takes a single argument n and is defined in the global con-
text Root which means that the name fact is available everywhere. The argument n is
local to the body of fact. All constructs in XOCL return a value; the if-expression returns
1 or calls fact again to return a value. If you want to follow along with a live XMF sys-
tem then you can type the definitions into a file and load them and run the examples.
To keep things short, we have omitted information that would be in a source file. The
file would actually look as follows:

parserImport XOCL;

context Root
@Operation fact(n)
if n = 0
then 1
else n * fact(n - 1)
end

end

To load this into your system you would do the following:

c©Ceteva 2008.

3.1. WORKING WITH BASIC ELEMENTS 31

Another example of a global operation definition is gcd below that computes the
greatest common divisor for a pair of positive integers. The example shows that op-
erations can optionally have argument and return types:

context Root
@Operation gcd(m:Integer,n:Integer):Integer

if m = n
then n
elseif m > n
then gcd(m-n,n)
else gcd(m,n-m)
end

end

Integers are arbitrary precision in XMF.
The operators ’and’ and ’or’ are overloaded to perform bit comparison when supplied

with integers. The operators lsh and rsh are defined on integers. They take the number
of bits to shift left and right respectively. The following operation adds up the number
of bits in an integer:

context Root
@Operation addBits(n:Integer):Integer

if n = 0 or n < 0
then 0
else (n and 1) + (addBits(n.rsh(1)))
end

end

c©Ceteva 2008.

32 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

In addition, integers support the following operators: mod, abs, bit, max, min and byte.
XOCL supports floating point numbers. All numeric operators described above are de-
fined for floating point numbers. In general integers and floats can be mixed in expres-
sions and the integer is translated to the equivalent float. You can construct a float using
the constructor Float so that 3.14 is created by Float(”3”,”14”). Floats are translated to
integers by the operations round (upwards) and floor (downwards).

Integer division is performed by the operation div and floating point division is per-
formed by the infix operator / (translating integers to floats as necessary). The operators
sqrt, sin and cos are defined for floats.

All values in XMF support the operation ’of’ that returns the most specific class of the
receiver. A value can be asked whether it is of a given class using the operator isKindOf.
Classes can be compared using inheritsFrom where a class is considered to inherit from
itself. We could define isKindOf as:

context Element
@Operation isKindOf(type:Classifier):Boolean
self.of().inheritsFrom(type)

end

The distinguished value null, of type Null, is special in that it returns true when asked
whether it isKindOf any class. It is used as the default value for all non-basic classes in
XMF.

XMF strings are of type String. The following operation wraps the string ”The” and
”.” around a supplied string:

context Root
@Operation makeSentence(noun:String):String
"The " + noun + "."

end

Strings are sequences of characters indexed starting from 0. Equality of strings is de-
fined by = on a character by character comparison. Characters are represented as inte-
ger ASCII codes. The following operation checks whether a string starts with an upper
case char:

context Root
@Operation startsUpperCase(s:String):Boolean
if s->size > 0

c©Ceteva 2008.

3.2. TABLES 33

then
let c = s->at(0)
in "A"->at(0) <= c and c <= "Z"->at(0)
end

else false
end

end

Strings can be compared using ¡, ¡=, ¿ and ¿= in which case the usual lexicographic
ordering applies.

Since strings are compared on a character by character basis this makes string com-
parison relatively inefficient when performing many comparisons. Strings are often
used as the keys in lookup tables (for example as the names of named elements). In
order to speed up comparison, XMF provides a specialization of String called Symbol.
A symbol is the same as a string except that two symbols with the same sequence of
characters have the same identity. Comparison of symbols by identity rather than char-
acter by character is much more efficient. A string s can be converted into a symbol by
Symbol(s).

Any value can be converted into a string using the operation toString. To get the
string representation of a number for example: 100.toString()).

3.2. Tables

A table is used to associate keys with values. A table has operations to add associations
between keys and values and lookup a given key. A table is created using the Table
constructor supplying a single argument that indicates the approximate number of ele-
ments to be stored in the table. Suppose that a library maintains records on borrowers:

context Root
@Class Library
@Attribute borrowers : Table = Table(100) end

end

A new borrower is added by supplying the id, name and address. When the new bor-
rower is added we check that no borrower has been allocated the same id. If the id is not
already in use then we register the new borrower by associating the id with a borrower
record in the table:

context Library
@Operation newBorrower(id:String,name:String,address:String)

c©Ceteva 2008.

34 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

if not borrowers.hasKey(id)
then

let borrower = Borrower(id,name,address)
in borrowers.put(id,borrower)
end

else self.error("Borrower with id = " + id + " already exists.")
end

end

The library also provides an operation that gets a borrower record:

context Library
@Operation getBorrower(id:String):Borrower

if borrowers.hasKey(id)
then borrowers.get(id)
else self.error("No borrower with id = " + id)
end

end

Tables provide operations to get all the keys and all the values:

context Library
@Operation idsInUse():Set(String)
borrowers.keys()

end
context Library

@Operation allBorrowers():Set(Borrower)
borrowers.values()

end

• Constants, BinExp, Negate

• Operations, Imports, Apply

3.3. Sets

A set is an unordered collection of elements. The elements of a set need not all be of the
same type. When T is the type of each element of the set then the set is of type Set(T).
Operations are provided to add and remove elements from sets and to combine sets.
Sets can be used in iterate expressions.

c©Ceteva 2008.

3.4. SEQUENCES 35

Sets are created by evaluating a set expression of the form: Set{x,y,z,...} where x, y, z
etc are element expressions. For example:

Set{1,true,Set{"a","b","c"},Borrower("1","Fred","3 The Cuttings")}

The expression Set{} produces the empty set. A set is unordered. An element can be
selected at random from a non-empty set by performing S-¿sel. A set is empty when
S-¿isEmpty produces true (or when it is = to Set{}). An element e is added to a set
by S-¿including(e) and removed from a set by S-¿excluding(e). The union of two sets
is produced by S1 + S2 and the difference is constructed by S1 - S2. An element is
contained in a set when S-¿includes(e).

Suppose that the set operation includes was not provided as part of XOCL. It could
be defined by:

context Set(Element)
@Operation includes(e:Element):Boolean
if self->isEmpty
then false
else

let x = self->sel
in if x = e

then true
else self->excluding(x)->includes(e)
end

end
end

end

3.4. Sequences

A sequence is an ordered collection of elements. The elements in the sequence need not
all be of the same type. When T is the type of each element in the sequence then the
sequence is of type Seq(T). Sequences can be used in iterate expressions as described in
section iterate.

Sequences are created by evaluating a sequence expression or by translating an exist-
ing element into a sequence. Sets, strings, integers and vectors can be translated to se-
quences of elements, characters, bits and elements respectively by performing e.asSeq().

The following operations are defined on sequences: + appends sequences; asSet trans-
forms a sequence into a set; asString transforms a sequence of character codes into a

c©Ceteva 2008.

36 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

string; asVector transforms a sequence into a vector; at takes an index and returns the
element at that position in the sequence, it could be defined as:

context Seq(Element)
@Operation at(n:Integer):Element

if self->size = 0
then self.error("Seq(Element).at: empty sequence.")
else if n <= 0

then self->head
else self->tail.at(n - 1)
end

end
end

The operation butLast returns all elements in a sequence but the last element. It could
have been defined as follows, note the use of Seq{head — tail} to construct a sequence
with the given head and tail:

context Seq(Element)
@Operation butLast():Seq(Element)

if self->size = 0
then self.error("Seq(Element)::butLast: empty sequence.")
elseif self->size = 1
then Seq{}
else Seq{self->head | self->tail->butLast}
end

end

The operation contains returns true when a sequence contains a supplied element; drop
takes an integer and returns a sequence that is the result of dropping the supplied num-
ber of elements; flatten maps a sequence of sequences to a sequence:

context Seq(Element)
@Operation flatten():Seq(Element)

if self->isEmpty
then self
else self->head + self->tail->flatten
end

end

The operation hasPrefix takes a sequence as an argument and returns true when the

c©Ceteva 2008.

3.4. SEQUENCES 37

receiver has a prefix that is equal to the argument; including takes an element and re-
turns a new sequence, this is the receiver if it contains to the argument or the argument
prepended to the receiver; indexOf takes an element and returns the index of the argu-
ment in the receiver:

context SeqOfElement
@Operation indexOf(element:Element):Integer
if self = Seq{}
then -1
elseif self->head = element
then 0
else self->tail->indexOf(element) + 1
end

end

The operation insertAt takes an element and an index and inserts the element at the
given index; last returns the last element in a sequence; hasSuffix takes a sequence as an
argument and returns true when the receiver ends with the argument:

context Seq(Element)
@Operation hasSuffix(suffix):Boolean
self->reverse->hasPrefix(suffix->reverse)

end

The operation head returns the head of a non-empty sequence; includes returns true
when the argument is included in the receiver; isEmpty returns true when the receiver
is empty; isProperSequence returns true when the final element in the sequence is a pair
whose tail is Seq{}; map applies an operation to each element of a sequence, the defi-
nition of map shows the varargs feature of XOCL operations where the last argument
may be preceded by a ’.’ indicating that any further supplied arguments are bundled
up into a sequence and supplied as a single value:

context Seq(Element)
@Operation map(message:String . args:Seq(Element)):Element

self->collect(x | x.send(message,args))
end

The operation max finds the maximum of a sequence of integers; prepend adds an ele-
ment to the head of a sequence; qsort takes a binary predicate operation and sorts the
receiver into an order that satisfies the predicate using the quicksort algorithm:

c©Ceteva 2008.

38 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

context Seq(Element)
@Operation qsort(pred):Seq(Element)

if self->isEmpty
then self
else

let e = self->head
in let pre = self->select(x | pred(x,e));

post = self->select(x | x <> e and not pred(x,e))
in pre->sort(pred) + Seq{e} + post->sort(pred)
end

end
end

end

The operation ref can be used to lookup a name-space path represented as a sequence
of strings to the element found at the path. The operation takes a sequence of name-
spaces as an argument; the name-space arguments are used as the basis for the lookup,
for example:

Seq{"Root","EMOF","Class","attributes"}->ref(Seq{Root})

returns the attribute named attributes. Note that name-space Root contains itself.
The operation reverse reverses the receiver:

context Seq(Element)
@Operation reverse():Seq(Element)

if self->isEmpty
then Seq{}
else self->tail->reverse + Seq{self->head}
end

end

The operation separateWith takes a string as an argument and returns the string that is
formed by placing the argument between each element of the receiver after the element
is transformed into a string using toString.

The operation subst takes three arguments: new, old and all; it returns the result
of replacing element old with new in the receiver. If all is true then all elements are
replaced otherwise just the first element is replaced.

The operation subSequence takes a staring and terminating indices and returns the
appropriate subsequence; take takes an integer argument and returns the prefix of the

c©Ceteva 2008.

3.5. A-LISTS 39

receiver with that number of elements; tail returns the tail of a non-empty sequence.
Sequences have identity in XOCL; the head and tail of a sequence can be updated

using:

S->head := e

and

S->tail := e

This makes sequences very flexible and can be used for efficient storage and update of
large collections (otherwise each time a sequence was updated it would be necessary to
copy the sequence).

3.5. A-Lists

An a-list is a sequence of pairs; each pair has a head that is a key and a tail that is the
value associated with the key in the a-list. A-lists are used as simple lookup tables. They
are much more lightweight than instances of the class Table and have the advantage that
the large number of builtin sequence operations apply to a-lists. The following class
shows how an a-list can be used to store the age of a collection of people:

context Root
@Class People
@Attribute table : Seq(Element) end
@Operation newPerson(name:String,age:Integer)
self.table := table->bind(name,age)

end
@Operation getAge(name:String):Integer
table->lookup(name)

end
@Operation hasPerson(name:String):Boolean

table->binds(name)
end
@Operation birthday(name:String)

// Assumes name is in table:
table->set(name,table->lookup(name) + 1)

end
end

c©Ceteva 2008.

40 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

3.6. Iteration Expressions

Iteration expressions in XOCL allow collections (sets and sequences) to be manipulated
in a convenient way. Iteration expressions are a shorthand for higher-order operations
that take an operation as an argument and apply the argument operation to each ele-
ment of the collection in turn. As such, iteration expressions can be viewed as sugar for
the invocation of the equivaent higher-order operations.

A collection can be filtered using a select expression:

S->select(x | e)

where x is a variable and e is a predicate expression. The result is the sub-collection of
the receiver where each element y in the sub-collection satisfies the predicate when x is
bound to y. This can be defined as follows for sequences:

context Seq(Element)
@Operation select(pred:Operation):Seq(Element)

if self->isEmpty
then self
elseif pred(self->head)
then Seq{self->head | self->tail.select(pred)}
else self->tail.select(pred)
end

end

The reject expression is like select except that it produces all elements that fail the pred-
icate; here is the definition of reject for sets:

context Set(Element)
@Operation reject(pred:Operation):Set(Element)

if self->isEmpty
then self
else

let x = self->sel
in if pred(x)

then self->excluding(x)->reject(pred)
else self->excluding(x)->reject(pred)->including(x)
end

end
end

end

c©Ceteva 2008.

3.6. ITERATION EXPRESSIONS 41

The collect expression maps a unary operation over a collection:

S->collect(x | e)

It is defined for sequences as follows:

context Seq(Element)
@Operation collect(map:Operation):Seq(Element)

if not self->isEmpty
then
let x = self->sel
in self->excluding(x)->select(map)->including(map(x))
end

else self
end

end

The expression iterate has the form:

S->iterate(x y = v | e)

This expression steps through the elements of S and repeatedly sets the value of y to be
the value of e where e may refer to x} and y. The initial value of y is the value v. The
following shows an example that adds up the value of a sequence of integers:

Seq{1,2,3,4,5}->iterate(i sum = 0 | sum + i)

The definition of iterate as a higher order operation on sequences is as follows:

context Seq(Element)
@Operation iterate(y:Element,map:Operation):Element
if self->isEmpty
then y
else self->tail.iterate(map(self->head,y),map)
end

end

c©Ceteva 2008.

42 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

3.7. Variables and Scope

Variables in XMF are of three types: slots, dynamic and lexical. When a message is
sent to an object, all of the slots defined by the object are bound to the slot values, For
example:

context Root
@Class Point
@Attribute x : Integer end
@Attribute y : Integer end
@Constructor(x,y) ! end
@Operation getX():Integer
x

end
@Operation getY():Integer

y
end

end

The references to x and y in the accessor operations defined in Point are variables of
type slot. The class definition given for Point is equivalent to the shorthand definition:

context Root
@Class Point
@Attribute x : Integer (?) end
@Attribute y : Integer (?) end
@Constructor(x,y) ! end

end

Slot variables can always be replaced with a qualified reference using self as in self.x
and self.y. Using qualified references is a matter of taste: sometimes it is more readable
to use a qualified reference. Note that it is not possible to update slots using variable
syntax: x := 0; it is always necessary to update slots using a qualified update as follows
self.x := 0.

Dynamic variables are typically values associated with names in name-spaces. Dy-
namic variables are established when the association between the variable name and
the value is created and typically persist for the rest of the lifetime of the XMF session.
Lexical variables are typically created when values are supplied as arguments to an
operation or when local definitions are executed. The association between the lexical
variable name and the value persist for the duration of the operation definition or the
execution of the body of the local block. In both cases, as the name suggests, variable
values can change by side-effect.

c©Ceteva 2008.

3.7. VARIABLES AND SCOPE 43

A dynamic variable added to the Root name-space has global scope because Root is
imported everywhere. A new dynamic variable in a name-space N is created as follows:

N::v := e;

where v is the name of the variable and e is an expression that produces the initial value.
In order to make the names in a name-space visible you need to import the name-space.
Imports are declared at the top of a source file which has the general form:

// Parser imports...
// Name-space imports...
// Definitions...

The following is a typical example:

parserImport XOCL;

import MyPackage;

// We can reference MyClass without qualification
// since it is defined in MyPackage which is imported...
context MyClass

@Operation myOperation()
// Imported names from MyPackage are available here.
// Note that MyClass is not imported - the context
// does not mean import...

end

Lexical variables are established when arguments are passed to an operation or using
a let expression. In both cases the variable can be referenced in the body of the expres-
sion, but not outside the body. In both cases the variables can be updated using v := e.
Suppose we require an operation that takes two integers and returns a pair where the
head is the smallest integer and the tail is the other integer:

context Root
@Operation orderedPair(x,y)

let min = 0;
max = 0

in if x < y then min := x else min := y end;
if x > y then max := x else max := y end;

c©Ceteva 2008.

44 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

Seq{min | max}
end

end

The definition of orderedPair shows how a let expression can introduce a number of
variables (in this case min and max). If the let-bindings are separated using’;’ then the
bindings are established in-parallel meaning that the variables cannot affect each other
(i.e. the value for max cannot refer to min and vice versa). If the bindings are separated
using then they are established in-series meaning that values in subsequent bindings
can refer to variables in earlier bindings, for example:

context Root
@Operation orderedPair(x,y)

let min = if x < y then x else y end then
max = if min = x then y else x end

in Seq{min | max}
end

end

3.8. Loops

XMF provides While and For for looping through collections and provides Find for
selecting an element in a collection that satisfies a condition. A While loop performs an
action until a condition is satisfied (not a named element may use a symbol for its name
so we ensure the name is a string using the toString operation):

context Root
@Operation findElement(N:Set(NamedElement),name:String)

let found = null
in @While not N->isEmpty do

let n = N->sel
in if n.name().toString() = name

then found := n
else N := N->excluding(n)
end

end
end;
found

end
end

c©Ceteva 2008.

3.8. LOOPS 45

It is often the case that While loops are used to iterate through a collection. This pattern
is captured by a For loop:

context Root
@Operation findElement(N:Set(NamedElement),name:String)

let found = null
in @For n in N do

if n.name().toString() = name
then found := n
end

end;
found

end
end

In general a For loop @For x in S do e end is equivalent to the following While loop:

let forColl = S;
isFirst = true

in @While not forColl->isEmpty do
let x = forColl->sel
in forColl := forColl->excluding(x);

let isLast = forColl->isEmpty
in e;

isFirst := false
end

end
end

end

where the variables forColl, isFirst and isLast are scoped over the body of the loop e.
These can be useful if we want the body action to depend on

whether this is the first or last iteration, for example turning a sequence into a string:

context Seq(Operation)
@Operation toString()
let s = "Seq{"
in @For e in self do

s := s + e.toString();
if not isLast then s := s + "," end

end;
s + "}"

c©Ceteva 2008.

46 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

end
end

A For loop may return a result. The keyword do states that the body of the For loop is
an action and that the result of performing the entire loop will be

ignored when the loop exits. Alternatively, the keyword produce states that the loop
will return a sequence of values. The values are the results returned by the loop body
each time it is performed. For example, suppose we want to calculate the sequence of
names from a sequence of people:

context Root
@Operation getNames(people:Seq(Person)):Seq(String)
@For person in people produce
person.name

end
end

The keyword in is a For-loop directive. After in the loop expects one or more collec-
tions. The in directive supports multiple variables. This feature is useful when stepping
through multiple collections in sync, as in:

context Root
@Operation createTable(names:Seq(String),addresses:Seq(String),

telNos:Seq(String))
@For name,address,telNo in names,addresses,telNos produce
Seq{name,address,telNo}

end
end

A For-loop can be used to iterate through a table. Often we want to iterate either through
the table values or the table keys. If we use the in

directive to iterate through either of these then we will create an intermediate collec-
tion:

context Root
@Operation addToAll(n:Integer,t:Table)

@For k in table.keys() do
k.put(k,t.get(k) + n)

end
end

c©Ceteva 2008.

3.9. OPERATIONS 47

The expression table.keys() creates an intermediate collection of all the keys in the ta-
ble. The collection is not returned and cannot be referenced independently within the
body of the loop. Therefore the collection is transient. The allocation of transient table
collections can be avoided using the For-loop directives inTableValues and inTableKeys:

context Root
@Operation addToAll(n:Integer,t:Table)

@For k inTableKeys table do
k.put(k,t.get(k) + n)

end
end

3.9. Operations

XMF operations are used to implement both procedures and functions. An operation
has an optional name, some parameters, a return type and a body. Operations are ob-
jects with internal state; part of the internal state is the name, parameter information,
type and body. Operations also have property lists that can be used to attach informa-
tion to the operation for use by XMF programs.

Operations can be created and stored in XMF data items. In particular, operations
can be added to name spaces and then referenced via the name space (either where the
name space is imported or directly by giving the path to the operation). We have seen
many examples of adding operations to the name space called Root. The syntax:

context Root
@Operation add(x,y) x + y end

can occur at the top-level of an XMF source file, compiled and loaded. It is equivalent
to the following expression:

Root.add(@Operation add(x,y) x + y end);

Unlike the context expression, the call to add may occur anywhere in XMF code. Oper-
ations are performed by sending them a message invoke with two arguments: the value
of self (or target) to be used in the body of the operation and a sequence of argument
values. The target of the invocation is important because it provides the value of self in
the body of the operation and supplies the values of the slot-bound variables. The add
operation can be invoked by:

c©Ceteva 2008.

48 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

add.invoke(null,Seq{1,2})

produces the value 3. Note that in this case there is no reference to self or slot-bound
variables in the body and therefore the target of the invocation is null. A shorthand for
invocation is provided:

add(1,2)

however, note that no target can be supplied with the shorthand. In this case the target
will default to the value of self that was in scope when the operation was created.

Lexically bound variables that are scoped over an operation are available within the
body of the operation event though the operation is returned from the lexical context.
This is often referred to as closing the lexical variable into the operation (or closure). This
feature is very useful when generating behaviour that differs only in terms of context.
Suppose that transition machine states have an action that is implemented as an opera-
tion and that the action is to be performed when the state is entered:

context StateMachines
@Class State
@Attribute name : String end
@Attribute action : Operation end
@Constructor(name,action) end
@Operation enter()
action()

end
end

3.10. Exception Handling

When an error occurs in XOCL, the source of the error throws an exception. The excep-
tion is a value that, in general, contains a description of the problem and any data that
might help explain the reason why the problem occurred.

An exception is thrown to the most recently established handler; intermediate code
is discarded. If no handler exists then the XOCL VM will terminate. In most cases, the
exception is caught by a user defined handler or, for example in the case of the XMF
console, a handler established by the top level command interpreter.

When an exception is caught, the handler can inspect the contents of the exception
and decide what to do. For example it may be necessary to re-throw the exception to

c©Ceteva 2008.

3.10. EXCEPTION HANDLING 49

the next-most recently established handler, since it cannot be dealt with. On the other
hand, it is usual to catch the exception, print a message, patch up the problem, or just
give up on the requested action.

For example, suppose that you have an application that reads data from a file. If the
file does not exist then an exception is raised. This can be done as follows:

@Operation readData(file:String)
if file.fileExists()
then // Read the data...
else self.error("The file does not exist.")
end

end

In the example given above, the operation ’error’ is used to raise the exception. The
operation Exception::error(message:String) is defined for all data elements and just cre-
ates a general type of exception and throws it. The class XCore::Exception contains a
message. The above example is equivalent to:

@Operation readData(file:String)
if file.fileExists()
then // Read the data...
else throw Exception("The file does not exist.")
end

end

The throw expression takes a single data element and throws it. The thrown data ele-
ment should be an instance of Exception or a sub-class of Exception. The thrown excep-
tion can be caught in a try-expression:

try
readData(someFile)

catch(x:Exception)
// Do something with x...

end

The class Exception has various sub-classes that can be used to capture specific informa-
tion about the exception when it occurs. For example, the class Exceptions::FileNotFound
can be used to create an exception when a file is not present:

@Operation readData(file:String)

c©Ceteva 2008.

50 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

if file.fileExists()
then // Read the data...
else throw FileNotFound(File)
end

end

Then specific types of exception can be caught and dealt with:

try readData(someFile)
catch(x:Exception)

@TypeCase(x)
FileNotFound do

// OK use a default data file...
readData(defaultFile)

end
else

// We cannot handle the exception so
// re-throw it to a less-specific handler...
throw x

end
end

3.11. Patterns

A pattern is matched against a value. The pattern match may succeed or fail in a given
matching context. A matching context keeps track of any variable bindings generated
by the match and maintains choice points for backtracking if the current match fails.

Pattern matching can be viewed as being performed by a pattern matching engine
that maintains the current pattern matching context as its state. The engine state consists
of a stack of patterns to be matched against a stack of values, a collection of variable
bindings and a stack of choice points. A choice point is a machine state. At any given
time there is a pattern at the head of the pattern stack and a value at the head of the
value stack. The machine executes by performing state transitions driven by the head
of the pattern stack: if the outer structure of the pattern matches that of the value at the
head of the value stack then:

• 0 or more values are bound.

• 0 or more choice points are added to the choice point stack.

• 0 or more component patterns are pushed onto the pattern stack.

c©Ceteva 2008.

3.11. PATTERNS 51

• 0 or more component values are pushed onto the value stack.

If the machine fails to match the pattern and value at the head of the respective stacks
then the most recently created choice point is popped and becomes the new machine
state. Execution continues until either the pattern stack is exhausted or the machine
fails when the choice stack is empty.

A variable pattern consists of a name, optionally another pattern and optionally a type.
The simplest form of variable pattern is just a name, for example, the formal parameter
x is a variable pattern:

let add1 = @Operation(x) x + 1 end in ...

Matching a simple variable pattern such as that shown above always succeeds and
causes the name to be bound to the corresponding value. A variable may be qualified
with a type declaration:

let add1 = @Operation(x:Integer) x + 1 end in ...

which has no effect on pattern matching. A variable may be qualified with a pattern
as in x = ¡Pattern¿ where the pattern must occur before any type declaration. Such
a qualified variable matches a value when the pattern also matches the value. Any
variables in the pattern and x are bound in the process.

A constant pattern is either a string, an integer, a boolean or an expression (in the case
of an expression the pattern consists of [followed by an expression followed by]). A
constant pattern matches a value when the values is equal to the constant (in the case
of an expression the matching process evaluates the expression each time the match
occurs). For example:

let fourArgs = @Operation(1,true,"three",x = [2 + 2]) x end in ...

is an operation that succeeds in the case:

fourArgs(1,true,"three",4)

and returns 4.
A sequence pattern consists of either a pair of patterns or a sequence of patterns. In the

case of a pair:

let head = @Operation(Seq{head | tail}) head end in ...

c©Ceteva 2008.

52 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

the pattern matches a non-empty sequence whose head must match the head pattern
and whose tail must match the tail pattern. In the case of a sequence of patterns:

let add3 = @Operation(Seq{x,y,z}) x + y + z end in ...

the pattern matches a sequence of exactly the same size where each element matches
the corresponding pattern.

A constructor pattern matches an object. A constructor pattern may be either a by-
order-of-arguments constructor pattern (or BOA-constructor pattern) or a keyword con-
structor pattern. A BOA-constructor pattern is linked with the constructors of a class. It
has the form:

let flatten = @Operation(C(x,y,z)) Seq{x,y,z} end in ...

where the class C must define a 3-argument constructor. A BOA-constructor pattern
matches an object when the object is an instance of the class (here C but in general
defined using a path) and when the object’s slot values identified by the constructor of
the class with the appropriate arity match the corresponding sub-patterns (here x, y and
z).

A keyword constructor pattern has the form:

let flatten =
@Operation(C[name=y,age=x,address=y])

Seq{x,y,z}
end

in ...

where the names of the slots are explicitly defined in any order (and may be repeated).
Such a pattern matches an object when it is an instance of the given class and when the
values of the named slots match the appropriate sub-patterns.

A conditional pattern consists of a pattern and a predicate expression. It matches a
value when the value matches the sub-pattern and when the expression evaluates to
true in the resulting variable context. For example:

let repeat = @Operation(Seq{x,y} when x = y) Seq{x} end in ...

c©Ceteva 2008.

3.11. PATTERNS 53

Note that the above example will fail (and probably throw an error depending on the
context) if it is supplied with a pair whose values are different.

Set patterns consist of an element pattern and a residual pattern. A set matches a
pattern when an element can be chosen that matches the element pattern and where the
rest of the set matches the residual pattern. For example:

let choose = @Operation(S->including(x)) x end in ...

which matches any non-empty set and selects a value from it at random. Set patterns
introduce choice into the current context because often there is more

than one way to choose a value from the set that matches the element pattern. For
example:

let chooseBigger =
@Operation(S->including(x),y where x > y)
x

end
in ...

Pattern matching in chooseBigger, for example:

chooseBigger(Set{1,2,3},2)

starts by selecting an element and binding it to x and binding S to the rest. In this case
suppose that x = 1 and S = Set{2,3}. The pattern y matches and binds 2 and then the
condition is applied. At this point, in general, there may be choices left in the context
due to there being more than one element in the set supplied as the first parameter. If
the condition x ¿ y fails then the matching process jumps to the most recent choice point
(which in this cases causes the next element in the set to be chosen and bound to x).
Suppose that 3 is chosen this time; the condition is satisfied and the call returns 3.

The following is an example that sorts a set of integers into descending order:

context Root
@Operation sort(S)
@Case S of
Set{} do
Seq{}

end
S->including(x) when S->forAll(y | y <= x) do
Seq{x | Q} where Q = sort(S)

c©Ceteva 2008.

54 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

end
end

end

Sequence patterns use the infix + operator to combine two patterns that match against
two sub-sequences. For example the following operation

removes a sequence of 0’s occurring in a sequence:

context Root
@Operation remove0s(x)
@Case x of
(S1 when S1->forAll(x | x <> 0)) +

(S2 when S2->forAll(x | x = 0)) +
(S3 when S3->forAll(x | x <> 0)) do

S1 + S3
end

end
end

Patterns may be used in the following contexts:

• Operation Parameters. Each parameter in an operation definition is a pattern. Pa-
rameter patterns are useful when defining an operation that must deconstruct one
or more values passed as arguments. Note that if the pattern match fails then the
operation invocation will raise an error. Operations defined in the same class and
with the same name are merged into a single operation in which each operation is
tried in turn when the operation is called via an instance of the class. Therefore in
the following example:

@Class P
@Operation f(Seq{}) 0 end
@Operation f(Seq{x | t}) x + self.f(t) end

end

an instance of P has a single operation f that adds up all the elements of a sequence.

• Case Arms. A case expression consists of a number of arms each of which has a se-
quence of patterns and an expression. A case expression dispatches on a sequence
of values and attempts to match them against the corresponding patterns in each
arm in turn. For example, suppose we want to calculate the set of duplicated
elements in a pair of sets:

c©Ceteva 2008.

3.12. WORKING WITH SYNTAX 55

context Root
@Operation dups(s1,s2)

@Case s1,s2 of
s1->including(x),s2->including(y) when x = y do

Set{x} + dups(s1,s2)
end
s1->including(x),s2 do

dups(s1,s2)
end
s1,s2->including(y) do

dups(s1,s2)
end
Set{},Set{} do
Set{}

end
end

end

3.12. Working with Syntax

An element is performable if it can be requested to do two tasks: compile itself to a
sequence of machine instructions and evaluate itself to produce an element. In many
ways these two tasks are similar since compilation is translation from an element in one
language to an element in another; the instructions in the machine language can each
be asked to evaluate themselves. In order to design and develop language constructs
it is important to understand how to process syntax; this section describes how XMF
represents syntax and the various ways of transforming and evaluating syntax.

Figure 3.1 is an overview of the key syntax processes. Processing starts with concrete
syntax which is represented as a sequence of characters. The characters may originate
from a variety of sources including files, strings or typed at a keyboard. A parser is a
processing engine that transforms a sequence of characters into data elements; the data
elements are referred to as abstract syntax.

Once syntax is represented in data, it can be processed in many different ways. It
can be transformed from one representation to another. It can be analysed to see if it
contains any errors. It can be executed directly. The figure shows two different ways of
evaluating syntax: interpretation and compilation.

An interpreter is a program that takes another program as input and runs it. An inter-
preter typically requires extra input to describe the context of evaluation (for example
the values for gobal variables in the program). An interpreter is a program that itself
must be written in a language. The XOCL interpreter is written in XOCL and is easy to

c©Ceteva 2008.

56 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

Figure 3.1.: Evaluation Process

extend.
A compiler is a program that translates a supplied program from a source language

to a target language. Typically the target language has an interpreter which is somehow
better than any interpreter for the source language. For example the source language
may not have an interpreter or the target interpreter is much faster than any source in-
terpreter. In this case the XOCL compiler translates XOCL source into XMF VM instruc-
tions for which there is an interpreter written in Java. The XOCL compiler is written in
XOCL and is easy to extend.

Every element that is to be used as syntax must implement the Performable interface.
Performable, requires that a syntax element knows how to evaluate itself and how to
compile itself. The interface is defined as follows:

Performable::compile(env,frame,isLast,saveSource)
// Produces a sequence of machine instructions.
// The env binds variable names that are currently
// in scope to type descriptors. The frame is an
// integer describing how many enclosing operations
// there are. isLast is true when there is nothing
// further to perform. saveSurce is true when operations
// are to make theor source code available at run-time.
Performable::eval(target,env,imports)

c©Ceteva 2008.

3.12. WORKING WITH SYNTAX 57

// Evauates the element to produce a value. The target
// is the value of ’self’ during evaluation. The
// environment associates variable names with values.
// The imports are a sequence of imported name spaces.
Performable::FV()
// Returns a set of the free variables in the
// receiver.
Performable::maxLocals()
// Returns the maximum number of loal variables that
// is required in order to evaluate the receiver.
Performable::pprint(out,indent)
// Writes a textual version of the syntax to the
// output channel using indent as the current level
// of indentation after newlines.

Any new syntax should implement the Performable interface. Fortunately, it is unusual
to have to define all of this interface in practice because sub-classes of Performable such
as XOCL::Sugar shield the user from the details. However, the following implementa-
tion of XOCL::While shows how to implement a complete interface.

The instructions produced by compiling a while-loop involve skip-instructions. The
class While is a sub-class of Performable with performable attributes for the while-test
and the while-body:

context While
@Operation compile(env,frame,isLast,saveSource)

let testCode = test.compile(env,frame,false,saveSource);
bodyCode = body.compile(env,frame,false,saveSource);
testLabel = Compiler::newLabel();
endLabel = Compiler::newLabel() then
returnValue = Compiler::labelInstrs(Seq{PushTrue()},endLabel)

in Compiler::labelInstrs(testCode,testLabel) +
Seq{SkipFalse(endLabel)} +
bodyCode +
Seq{Pop()} +
Seq{SkipBack(testLabel)} +
returnValue

end
end

Given the above definition of compile for while-loops, XMF is able to compile any file
that contains a while-loop as part of the source code. When the source file is compiled,
the text is parsed and each occurrence of concrete syntax for a while-loop is synthesized
into an instance of the class XOCL::While. The resulting syntax for the complete file is

c©Ceteva 2008.

58 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

then compiled. As part of the compilation, the while-loop will perform the operation
defined above and return the sequence of instructions. The complete sequence of in-
structions for the whole file is then written out as a binary file. The binary file is read in
at a later stage and the instructions are evaluated (either directly when the file is read in
or via the call of an operation defined in the file).

Not all occurrences of a while-loop need to be compiled before they can be performed.
Expressions typed at the top-level of XMF are not compiled, they are parsed to produce
syntax objects and then evaluated. It is also possible to evaluate the source code in a file
directly without having to compile it. The definition of eval for a while-loop is given
below:

context While
@Operation eval(target,env,imports)

@While test.eval(target,env,imports) do
body.eval(target,env,imports)

end
end

Although this definition seems at first to be self-referential (while defined in terms of
while), it is important to state that it is a compiled operation and therefore the use of
while in the body of the operation is compiled using the definition of compile given
above. The key feature to note about the definition of eval is that the test and body of
the while-loop are evaluated using their own definitions for eval.

A free variable is one that is used by a perfomable element, but which is not locally
defined by that element. In order to support compilation, each performable elment
must define FV. Since a while-loop does not make direct reference to variables, the free
variables are the union of those for the test and body:

context While
@Operation FV():Set(String)
test.FV() + body.FV()

end

The opposite of free variables are bound variables. Again, in order to support compila-
tion it is necessary for the compiler to work out how much local storage a performable
element requires. Local variables are introduced (for example) by a let-expression. A
while-loop does not directly introduce any local variables, but the test and body might:

context While
@Operation maxLocals():Integer

test.maxLocals().max(body.maxLocals())

c©Ceteva 2008.

3.12. WORKING WITH SYNTAX 59

end

Finally, if the compiler is instructed to associate the source code with each compiled
operation, each element in the body of an operation must be able to translate itself into
a textual representation. This is implemented for While as follows:

context While
@Operation pprint(out,indent)
format(out,"@While ");
test.pprint(out,indent);
format(out," do˜%˜V",Seq{indent + 2});
body.pprint(out,indent + 2);
format(out,"˜%˜Vend",Seq{indent})

end

While is a fairly simple example of a performable element. Here is the complete imple-
mentation of a let-expression to give a :

context Let
@Operation compile(env,frame,isLast,saveSource)

let valueCode = bindings->reverse->collect(b |
b.value.compile(env,frame,false,saveSource))->flatten;

letEnv = env.allocateLocals(bindings.name),env.maxLocal())
in valueCode +

// Generate SETLOC instructions...
letEnv.setLocalsCode(bindings.name) +
body.compile(letEnv,frame,isLast,saveSource)

end
end

context Let
@Operation eval(target,env,imports)

let newEnv = bindings->iterate(b e = env |
e.bind(b.name,b.value.eval(target,env,imports)))

in body.eval(target,newEnv,imports)
end

end
context Let

@Operation FV():Set(String)
bindings->iterate(binding FV = body.FV() - bindings.name->asSet |
FV + binding.value.FV())

end
context Let

c©Ceteva 2008.

60 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

@Operation maxLocals():Element
let valueMaxLocals = bindings->collect(b |

b.value.maxLocals())->max;
bindingMaxLocals = bindings->size;
bodyMaxLocals = body.maxLocals()

in valueMaxLocals.max(bindingMaxLocals + bodyMaxLocals)
end

end
context Let

@Operation pprint(out,indent)
format(out,"let ");
if bindings.isKindOf(Seq(Element))
then
@For b in bindings do

b.pprint(out,indent + 4);
if not isLast
then format(out,";˜%˜V",Seq{indent + 4})
else format(out,"˜%˜V",Seq{indent})
end

end
else bindings.pprint(out)
end;
format(out,"in ");
body.pprint(out,indent + 3);
format(out,"˜%˜Vend",Seq{indent})

end

Defining new syntax classes in XMF requires two things to be associated with the class:
it must be a sub-class of Performable and therefore implement the Performable inter-
face as described in this section; it must have a concrete syntax. Concrete syntaxes are
defined in terms of a grammar that synthesizes an instance of the syntax class. Concrete
syntaxes and grammars are the subject of the next chapter.

The class defining the Object Command Language are defined in section A.15.

Fortunately, it is not usually necessary to define the complete Performable interface
for each new syntax class. This is because a new syntax class can be defined in terms
of a translation to existing syntax classes that already implement the interface. This
process is called desugaring. Desugaring involves translating from one abstract syntax
to another. A useful technology to do this is quasi-quotes and this is the subject of the
next section.

c©Ceteva 2008.

3.13. QUASI-QUOTES AND LIFTING 61

3.13. Quasi-Quotes and Lifting

Suppose that we have a requirement for a new syntax for an until-loop. An until-loop
has the usual semantics and the syntax class has a body and a test, both of which are per-
formable. The syntax class Until can fully implement the Performable interface, how-
ever, there is sufficient syntax constructs in XOCL to support until-loops in terms of
while-loops. A traslation can be defined as follows:

context Until
@Operation translateToWhile(body,test)
Order(body,While(test,body))

end

The translateToWhile operation simply constructs instances of the classes Order and
While, supplying the appropriate body and test. With larger syntax translations it be-
comes difficult to work with target elements when they are directly constructed as in-
stances of the syntax classes. The reason is that we are used to seeing syntax in concrete
terms, not as instances of abstract classes. Worse still, there are actually two uses of
syntax in the body of translateToWhile:

1. The concrete syntax of object construction.

2. The abstract syntax of a command followed by a while-loop.

When examples get a little larger than the one above, these issues become very confus-
ing. XMF provides technology to address this issue: quasi-quotes. Quasi-quotes pro-
vide a means to construct syntax templates. The body of transateToWhile can be viewed
as a syntax template: the fixed parts of the template are the ordering and the while-loop;
the variable parts are the supplied body and test. Quasi-quotes allow the variable parts
to be dropped into the fixed parts whih are expressed using concrete syntax. Here is the
same operation using quasi-quotes:

context Until
@Operation translateToWhile(body,test)
[| <body>;

@While <test> do
<body>

end
|]

end

The quotes are [| and |] surrounding concrete syntax. Within the concrete syntax,
code can be dropped in by surrounding the expressions producing the code using <

c©Ceteva 2008.

62 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

and >. In this case the expressions producing the code are variables: body and test, but
in principle the expressions inside < and > can be anything that returns a performable
element.

A typical pattern that occurs when working with syntax involves a sequence of per-
formable elements. Consider translating a sequence of elements to produce a single
expression that performs each expression in order:

@Operation orderCommands(commands:Seq(Performable))
commands->iterate(command ordered = [| null |] |
[| <ordered>; <command> |])

end

Translating syntax often involves the introduction and subsequent reference of local
variables. Introduction of local variables is typically done via let-expressions and via
operation arguments. This is easily done using quasi-quotes, so long as you remember
that variable names are strings in let-bindings and operation arguments but variable
references are always done using the syntax class OCL::Var. Consider translating a vari-
able name, a classifier expression and a body expression into an operation that checks
the type of a supplied value, something like:

@GuardedOp name(arg:type)
body

end

is just like a normal operation except that the type of the value supplied as arg is dy-
namically checked. The following translation produces a normal operation and inserts
the check:

@Operation guardedOp(name:String,
arg:String,
type:Performable,
body:Performable)

[| @Operation <name>(<arg>)
if <Var(arg)>.isKindOf(<type>)
then <body>
else <Var(arg)>.error("Not of type " + <type>.toString())
end

end
|]

end

c©Ceteva 2008.

3.13. QUASI-QUOTES AND LIFTING 63

Suppose that each a syntax construct allows the slots of an object to be implicitly bound
to variables, equivalent to a with-statement in Pascal. Each variable is introduced using
a let-expression:

@Operation translateWith(object:Performable,
class:Class,
body:Performable)

class.allAttributes()->iterate(a exp = body |
let name = a.name().toString()
in [| <name> = <object>.<name> in <exp> end |]
end

)
end

A problem with the translateWith translation is that the object expression is performed
many times. It is usual to introduce a local variable for the value so that it is performed
once. Also, suppose that the with-translation is to be extended to put the values of the
let-bound variables back into the object at the end of the body:

@Operation translateWith(object:Performable,
class:Class,
body:Performable)

let A = class.allAttributes() then
updateSlots = A->iterate(a exp = [| withResult |] |

let name = a.name().toString()
in [| withObject.<name> := <Var(name)>; <exp> |]
end

) then
completeBody = [| let withResult = <body>

in <updateSlots>
end |]

in [| let withObject = <object>
in <A->iterate(a exp = completeBody |

let name = a.name().toString()
in [| let <name> = withObject.<name>

in <exp>
end |]

end
)>

end
|]

end
end

c©Ceteva 2008.

64 CHAPTER 3. THE EXECUTABLE OBJECT COMMAND LANGUAGE (XOCL)

Support that Point is a class with slots for the x and y position in a diagram. A node is
to be moved by dx and dy and will return the new position as a pair:

translateWith(
[| node.position |],
Point,
[| x := x + 1; y := y + 1; Seq{x,y} |])

The resulting performable element is pprinted as follows:

let withObject = node.position
in let x = node.position.x

in let y = node.position.y
in let withResult = x := x + 1;

y := y + 1;
Seq{x,y}

in withObject.x := x;
withObject.y := y;
withResult

end
end

end
end

c©Ceteva 2008.

CHAPTER 4

GRAMMARS

Computer based languages are used as communication media; either system to sys-
tem or human to system. In either case, a computer must be able to recognise phrases
expressed in the language. When phrases are presented to a computer they must be
interpreted in some way. Typically, phrases may be interpreted directly, as they are rec-
ognized, or some internal representation for the phrases may be synthesized (abstract
syntax) and subsequently passed on to an internal module for processing.

There are a variety of formats by which language may be conveyed to a computer;
a common mechanism is by text. A standard way of defining how to recognize and
process text-based languages is by supplying a grammar. A grammar is a collection
of rules that define the legal sequences of text strings in a language. In addition to
recognising language phrases, a grammar may include actions that are to be performed
as sub-phrases are processed.

In order to use grammars to process language phrases we must supply the grammar
to a program called a parser. The medium used to express the grammar is usually text.
BNF (and the extended version EBNF) is a text-based collection of grammar formation
rules. BNF defines how to express a grammar and what the grammar means in terms
of processing languages.

This chapter describes the XMF version of EBNF, called XBNF. XBNF integrates EBNF
with XOCL (and any language defined by XBNF). XMF provides an XBNF parser that
is supplied with an XBNF grammar and will then parse and synthesize XMF-defined
languages. XMF is a superlanguage because (amongst other features) it supports the
definition of new language constructs that can be weaved into XOCL or used stand-
alone.

Grammars (and therefore languages) in XMF are associated with classes. Typically
an XBNF grammar defines how to recognize legal sequences of characters in a language
and to syntheisize an instance of the associated class (and populate the instance with
instances of the class’s attribute types).

c©Ceteva 2008.

66 CHAPTER 4. GRAMMARS

4.1. Parsing and Syntheisizing

This section describes the basics of using XBNF to define simple grammars that rec-
ognize languages and synthesize XMF data values. A grammar is an instance of the
XMF class Parser::BNF::Grammar. A grammar consists of a collection of clauses each of
which is a rule that defines a non-terminal of the grammar. A non-terminal is a name
(by convention a non-terminal name starts with an upper case letter).

A clause has the following form:

NAME ::= RULE .

where the RULE part defines how to recognize a sequence of input characters. To illus-
trate the essential elements of a grammar definition we will build a simple caculator that
recognises arithmetic expressions and executes (synthesizes) the expressions (integers)
as the parse proceeds.

The grammar is constructed incrementally, the clauses are defined in the context of
an @Grammar:

@Grammar
CLAUSES

end

Typically, a grammar has a starting non-terminal; this is the clause that is used as the
starting point of a parse. There is nothing special about the starting non-terminal in the
definition. In the case of the calculator the starting non-terminal is Calc:

Calc ::= Mult ’=’ ’end’.

The clause for Calc defines that to recognize this non-terminal a parse must recognize
an Mult (defined below) followed by a terminal ’=’. A terminal is a sequences of charac-
ters in quotes; a terminal successfully matches an input when the input corresponds to
exactly the characters, possibly preceded by whitespace. Therefore, a Calc is recognized
when a Mult is recognized followed by a =.

A Mult is a multiplicative expression, possibly involving the operators * and /. We
use a standard method of defining operator precedence in the grammar, where addi-
tion operators bind tighter than multiplicative operators. This is achieved using two
different non-terminals:

Mult ::= n1 = Add (

c©Ceteva 2008.

4.1. PARSING AND SYNTHEISIZING 67

’*’ n2 = Mult { n1 * n2 }
| ’/’ n2 = Mult { n1 / n2 }
| { n1 }

).

The clause for Mult shows a number of typical grammar features. A Mult is successfully
recognized when a Add is recognized followed by an optional * or / operator.

Each non-terminal synthesizes a value when it successfully recognizes some input.
When one non-terminal calls another (for example Add is called by Mult) the value
synthesized by the called non-terminal may be optionally named in the definition of
the calling non-terminal. Once named, the syntheized value may be referenced in the
rest of the rule. Naming occurs a number of times in the definition of Mult where the
names n1 and n2 are used to refer to syntheisized numbers.

A clause may include optional parts separated by —. In general, if a clause contains
an optional component of the form A — B where A and B are arbitrary components,
then a parse is successful when either A or B is successful.

The clause for Mult contains three optional components that occur after the initial
Add is successful (hence the need for parentheses around the optional components to
force the Add to occur). Once the Add is successful then the parse is successful when
one of the following occurs:

• a * is encountered followed by a Mult.

• a + is encountered followed by a Mult

• no further input is processed (this option must occur last since it subsumes the
previous two options – options are tried in turn).

Clauses may contain actions. A action is used to synthesize arbitrary values and can
refer to values that have been named previously in the clause. An action is an XOCL
expression enclosed in { and }. Just like calls to non-terminals in the body of a clause,
an action returns a value that may be named. If the last component performed by the
successful execution of a clause is an action then the value produced by the action is the
value returned by the clause.

The clause for Mult contains a number of actions that are used to synthesize values
(in this case evaluate numeric expressions). The clause for Add is the same as that for
Mult except that the clause recognizes and synthesises addition expressions:

Add ::= n1 = Int (
’+’ n2 = Add { n1 + n2 }

| ’-’ n2 = Add { n1 - n2 }
| { n1 }

).

c©Ceteva 2008.

68 CHAPTER 4. GRAMMARS

The complete grammar definition is given below:

@Grammar
Calc ::= Mult ’=’ ’end’.
Mult ::= n1 = Add (

’*’ n2 = Mult { n1 * n2 }
| ’/’ n2 = Mult { n1 / n2 }
| { n1 }

).
Add ::= n1 = Int (

’+’ n2 = Add { n1 + n2 }
| ’-’ n2 = Add { n1 - n2 }
| { n1 }

).
end

4.2. Sequences of Elements

A grammar rule may want to specify that, at a given position in the parse, a sequence
of character strings can occur. For example, this occurs when parsing XML elements,
where a composite element can have any number of children elements each of which is
another element.

XBNF provides the postfix operators * and + that apply to a clause component X and
define that the parse may recognize sequences of occurrences of X. In the case of *, there
may be 0 or more occurrences of X and in the case of + there may be 1 or more occur-
rences of X. If X synthesizes a value each time it is used in a parse then the use of * and
+ synthesizes sequences of values, each value in the sequence is a value syntheisized by
X.

The following gramar shows an example of the use of *. XML elements are trees; each
node in the tree has a label. The following grammar recognizes XML (without attributes
and text elements) trees and synthesizes an XMF sequence representation for the XML
tree. The grammar shows the use of the builtin non-terminal Name that parses XMF
names and synthesizes the name as a string:

@Grammar
Element ::=

SingleElement
| CompositeElement.

SingleElement ::=
’<’ tag = Name ’/>’
{ Seq{tag} }.

c©Ceteva 2008.

4.3. SPECIALIZING GRAMMARS 69

CompositeElement ::=
’<’ tag = Name ’>’

children = Element*
’<’ Name ’/>’
{ Seq{tag | children} }.

end

4.3. Specializing Grammars

Grammars may be specialized by adding extra clauses or extending existing clauses. A
grammar has an extends clause that is followed by comma separated references to parent
grammars. The newly defined grammar is the merge of the parent grammars and the
newly defined clauses. Any clauses in the parents or in the body of the new definition
that have the same names are merged into a single clause using the — operator.

For example, suppose we want to extend the grammar for XML given in the previous
section with the ability to recognize text elements. A text element is supplied as a string
within string-quotes. XBNF provides a built-in non-terminal Str for strings. The new
grammar is defined as follows:

@Grammar extends XML
Element ::= Str.

end

This is equivalent to the following grammar definition:

@Grammar
Element ::=

SingleElement
| CompositeElement
| Str.

SingleElement ::=
’<’ tag = Name ’/>’
{ Seq{tag} }.

CompositeElement ::=
’<’ tag = Name ’>’

children = Element*
’<’ Name ’/>’
{ Seq{tag | children} }.

end

c©Ceteva 2008.

70 CHAPTER 4. GRAMMARS

4.4. Synthesizing Syntax

Superlanguages must support extensibility through language definition. When a gram-
mar defines a new language we will often want to synthesize syntax values that are then
passed to a compiler or an interpreter. An XMF language definition often consists of a
grammar that synthesizes XOCL. Suppose we want to modify the calculator language
defined above to produce the arithmetic expression rather than execute the expressions
directly. Assuming that the OCL package is imported:

@Grammar
Calc ::= Mult ’=’ ’end’.
Mult ::= n1 = Add (

’*’ n2 = Mult { BinExp(n1,"*",n2) }
| ’/’ n2 = Mult { BinExp(n1,"/",n2) }
| { n1 }

).
Add ::= n1 = IntExp (

’+’ n2 = Add { BinExp(n1,"+",n2) }
| ’-’ n2 = Add { BinExp(n1,"-",n2) }
| { n1 }

).
IntExp :: n = Int { IntExp(n) }.

end

Alternatively we might choose to use quasi-quotes:

@Grammar
Calc ::= Mult ’=’ ’end’.
Mult ::= n1 = Add (

’*’ n2 = Mult { [| <n1> * <n2> |] }
| ’/’ n2 = Mult { [| <n1> / <n2> |] }
| { n1 }

).
Add ::= n1 = IntExp (

’+’ n2 = Add { [| <n1> + <n2> |] }
| ’-’ n2 = Add { [| <n1> - <n2> |] }
| { n1 }

).
IntExp ::= n = Int { n.lift() }.

end

c©Ceteva 2008.

4.5. SIMPLE LANGUAGE CONSTRUCTS 71

4.5. Simple Language Constructs

Language driven development involves working with and developing high-level lan-
guages that allow us to focus on the the what, rather than the how of applications. Lan-
guages can be defined in terms of abstract syntax models or concrete syntax models.
Grammars support the definition of concrete syntax models and are used extensively
throughout the rest of this book.

A grammar for a language construct synthesizes instances of an abstract syntax model.
So long as the model has an execution engine then the synthesized data can be executed.
The syntax model and engine may be provided, such as XOCL, or may be one that has
been defined specially for the application; the latter case is referred to as a domain specific
language.

This section provides many examples of new language constructs that are defined us-
ing grammars. All of the syntax constructs are provided as part of the XMF system and
implemented as extensions to the basic XOCL language. In most cases the grammars
synthesize instances of the XOCL model and can therefore be viewed as syntactic sugar.
All of the language constructs are general purpose and should not really be viewed as
domain specific; however the techniques can be used when defining domain specific
constructs.

4.5.1. When

When is a simple language construct that behaves as sugar for an if-expression:

@When guard do
action

end

It emphasizes that there is a guarded action and there is no alternative action. Although
there is no semantic difference between a when and an if, it can be useful when reading
code to see what was in the mind of the developer. The grammar is as follows:

@Grammar extends OCL::OCL.grammar
When ::= guard = Exp ’do’ action = Exp {

[| if <guard>
then <action>
else "GUARD FAILS"
end

|]
}.

end

c©Ceteva 2008.

72 CHAPTER 4. GRAMMARS

4.5.2. Cond

Sometimes, if-expressions can become deeply nested and difficult to read. A cond-
expression is equivalent to a nested if-then-else, but promotes all of the if-then parts
to the top level:

@Cond
test1 do exp1 end
test2 do exp2 end
...
testn do expn end
else exp

end

The implementation of this construct provides an example of using syntactic sugar. A
class that inherits from XOCL::Sugar must implement an operation desugar that is used
to transform the receiver into a performable element. These classes are often useful
when the transformation is complex and is better done as a separate step after the ab-
stract syntax synthesis. The grammar for the cond-expression is as follows:

@Grammar extends OCL::OCL.grammar
Cond ::= clauses = Clause* otherwise = Otherwise ’end’ {

Cond(clauses,otherwise)
}.
Clause ::= guard = Exp ’do’ body = Exp ’end’ {

CondClause(guard,body)
}.
Otherwise ::= ’else’ Exp |

{ [| self.error("No else clause.") |] }.
end

Cond inherits from XOCL::Sugar. A Cond has attributes, clauses (of type Seq(CondClause))
and otherwise (of type Performable) and has a desugar operation as follows:

@Operation desugar():Performable
clauses->reverse->iterate(clause exp = otherwise |
[| if <clause.guard()>

then <clause.body()>
else <exp>
end

|])
end

c©Ceteva 2008.

4.5. SIMPLE LANGUAGE CONSTRUCTS 73

4.5.3. Classes and Packages

Classes and packages are name spaces: they both contain named elements. Although
name spaces can contain any type of named element, packages and classes are exam-
ples of name spaces that know about particular types of named element. Packages
know about sub-packages and classes. Classes know about attributes, operations and
constraints.

To allow extensibility, name space definitions contain sequences of element defini-
tions. An element is added to a name space through the add operation. Packages and
classes are examples of name spaces that hijack the add operation in order to manage
particular types of known named elements. The rest of this section defined package and
class definition language features.

A second feature of name spaces is mutual-reference. Definitions within a name space
may refer to each other and the references must be resolved. For example, this occurs
when attribute types refer to classes in the same package and when classes inherit from
each other in a package definition. One way to achieve resolution is via two-passes. The
named elements are added to the name space but all references are left unresolved. A
second pass then replaces all references with direct references to the appropriate named
elements. This section shows how this two-pass system can be implemented.

Firstly, consider a package definition:

@Package P
@Class A
@Attribute b : B end

end
@Class B extends A
@Attribute a : A end

end
end

This definition is equivalent to the following expression (ignoring the translation of the
classes):

Package("P")
.add(@Class A ... end)
.add(@Class B ... end)

The grammar for package definition is as follows:

@Grammar extends OCL::OCL.grammar
Package ::= n = Name defs = Exp* ’end’ {

c©Ceteva 2008.

74 CHAPTER 4. GRAMMARS

defs->iterate(def package = [| Package(<n.lift()>) |] |
[| <package>.add(<def>) |])

}.
end

Both class and attribute definitions contain references to named elements that may be
defined at the same time. For example in the package definition P above, class A refers
to B and vice versa. References are delayed until all the definitions are created. Since
they have been delayed, the references must be resolved. But references cannot be re-
solved until the outermost definition has been completed. An outermost definition is
introduced by a ’context’ clause, therefore this is the point at which resolution can be
initiated. All elements have an init operation that is used to initialise elements; name
spaces hijack the init operation so that delayed references can be resolved.

For example, attributes are defined by the following grammar (simplified so that
types are just names):

@Grammar
Attribute::= n = Name ’:’ t = Name ’end’ {
[| Attribute(<n.lift()>).type := <t.lift()> |]

}.
end

The init operation defined for attributes is:

@Operation init()
if type.isKindOf(String)
then self.type := owner.resolveRef(type)
end;
super()

end

Classes are created as follows:

@Grammar extends OCL::OCL.grammar
Class ::= n = Name ps = Parents defs = Exp* ’end’ {
ps->iterate(p classDef =

defs->iterate(def classDef = [| Class(<n.lift>) |]
| [| <classDef>.add(<def>) |])

| [| <classDef>.addParent(<p.lift>) |])
}.
Parents ::=

c©Ceteva 2008.

4.5. SIMPLE LANGUAGE CONSTRUCTS 75

’extends’ n = Name ns = (’,’ Name)* { Seq{n|ns} }
| { Seq{"Object"}.

end

The context rule is as follows:

Context ::= ’context’ nameSpace = Exp def = Exp {
[| let namedElement = <def>;

nameSpace = <nameSpace>
in nameSpace.add(namedElement);

namedElement.init()
end |]

}.

Attributes in XOCL, usually occor inside class definitions and have the following syn-
tax:

@Attribute <NAME> : <TYPE> [= <INITEXP>] [<MODIFIERS>] end

The type of an attribute is an expression that references a classifier. Usually this is done
by name (if the classifier is in scope) or by supplying a name-space path to the classifier.
If the type is a collection (set or a sequence) then it has the form Set(T) or Seq(T) for some
type T. When the attribute is instantiated to produce a slot, the slot must be initialised.
The initial value for classes is null. Each basic type (String, Integer, Boolean, Float) has
a predefined default value (“”, 0, false, 0.0). The default value for a collection type is the
empty collection of the appropriate type. A specific attribute may override the default
value by supplying an initialisation expression after the type.

An attribute within a class definition may supply modifiers. The modifiers cause the
slot to have properties and create operations within the class. Attribute modifiers have
the following form:

’(’ <ATTMOD> (’,’ <ATTMOD>)* ’)’

where an attribute modifier may be one of: ?, !, +, -, ˆ. The meaning of these modifiers
is given below:

• ? defines an accesor operation for the attribute. For an attribute named n, an
operation named n() is created that returns the value of the slot in an instance of
the class.

c©Ceteva 2008.

76 CHAPTER 4. GRAMMARS

• ! defines an updater operation for the attribute. For an attribute named n, an
operation named setN(value) is created that sets the value of the slot named n to
value in an instance of the class.

• + defines an extender operation for the attribute providing that the type is a col-
lection. For an attribute named n, an operation named addToN(value) is created
that extends the collection in the slot of an instance of the class. If the type of the
attribute is a sequence type then the new value is added to the end of the sequence.

• - defines a reducer operation for the attribute providing that the type is a collec-
tion. For an attribute named n, an operation named deleteFromN(value) is created
that extends the collection in the slot of an instance of the class.

• ˆ makes the slot a container providing that the type inherits from XCore::Contained.
In this case values in the slot will be contained objects with a slot named owner.
Using the updater and extender operations to update the slot defined by this at-
tribute will modify the owner slot when the value is added. It is often desirable to
maintain linkage between a contained value and its owner, this attribute modifier
manages this relationship automatically providing that the slot is always modified
through the updater and extender.

The grammar for attribute definitions is given below. The grammar synthesizes an in-
stance of the syntax class XOCL::Attribute that is then expanded to produce an expres-
sion that creates a new attribute in addition to being used by a class definition to add in
attribute modifier operations:

@Grammar extends OCL::OCL.grammar
Attribute ::=

name = AttName // Name may be a string.
meta = MetaClass // Defaults to XCore::Attribute
’:’ type = AttType // An expression.
init = AttInit // Optional init value.
mods = AttMods // Optional modifiers.
’end’ { Attribute(name,mult,type,init,mods,meta) }.

AttInit ::=
// Init values may be dynamic or static. A
// dynamic init value is evaluated each time
// a slot is created. A static init value is
// evaluated once when the attribute is
// created and used for all slots.
’=’ Exp

| ’=’ ’static’ e = Exp { [| static(<e>) |] }
| { null }.
AttMods ::=

mods = { AttributeModifiers() }

c©Ceteva 2008.

4.5. SIMPLE LANGUAGE CONSTRUCTS 77

[’(’ AttModifierˆ(mods) (’,’ AttModifierˆ(mods))* ’)’]
{ mods }.

AttModifier(mods) ::=
mod = AttMod { mods.defineModifier(mod) }.

AttMod ::=
’?’ { "?" }

| ’!’ { "!" }
| ’+’ { "+" }
| ’-’ { "-" }
| ’ˆ’ { "ˆ" }.
AttType ::= n = AttTypeName AttTypeTailˆ(n).
AttTypeName ::=
n = Name ns = (’::’ Name)* { Path(Var(n),ns) }.

AttTypeTail(n) ::=
’(’ args = CommaSepExps ’)’ { Apply(n,args) }

| { n }.
AttName ::= Name | Str.
MetaClass ::= ’metaclass’ Exp | { null }.

end

4.5.4. Operations

An operation has a basic form of:

@Operation [<NAME>] <ARGS> <BODY> end

The operation name may be optional and defaults to anonymous. The following exten-
sions to the form of basic operation definition are noted:

• Operations have properties (allowing them to behave like objects with slots). The
properties are optional and specified between the operation named and its argu-
ments.

• Arguments have optional types, specified as : ¡EXP¿ following the argument name.

• Argument names may be specified as XOCL patterns. The pattern matches the
supplied argument value.

• Arguments are positional except in the case of an optional multiargs specifica-
tion as the last argument position. A multiargs specification follows the special
designator ’.’. This is a mechanism that allows operations to take any number of
arguments. Arguments are matched positionally and it is an error to supply less

c©Ceteva 2008.

78 CHAPTER 4. GRAMMARS

than the number of declared positional arguments to an operation. If more than
the expected positional arguments are supplied and if the operation has a multi-
args designator then all the remaining supplied argument values are supplied as
a sequence and matched to the multiargs pattern.

The grammar for operation definition is shown below. the grammar synthesizes an
instance of XOCL::Operation (via mkOpDef) that is then analysed and expanded to an
operation creation expression:

@Grammar extends OCL::OCL.grammar
Operation ::=

name = OpName
properties = Properties
’(’ args = OpArgs multi = OpMulti ’)’
type = ReturnType
body = Exp+
’end’
{ mkOpDef(name,properties,args,multi,type,body) } .

OpName ::=
Name

| { Symbol("anonymous") }.
OpArgs ::=

arg = Pattern args = (’,’ Pattern)* { Seq{arg | args } }
| { Seq{} }.
OpMulti ::=

’.’ multi = Pattern { Seq{multi} }
| { Seq{} }.
ReturnType ::=

’:’ TypeExp
| { NamedType() }.
Properties ::=
’[’ p = Property ps = (’,’ Property)* ’]’ { Seq{p|ps} }

| { Seq{} }.
Property ::= n = Name ’=’ e = Exp { Seq{n,e} }.

4.5.5. Enum

Enumerated types occur frequently in models. An enumerated type consists of a col-
lection of predefined values; each value is classified by the enumerated type and is dif-
ferent from all other values of the type and different from all values of any other type.
Examples include Colour with values Red, Green and Blue. Another example is Direc-
tions with values North, East, West and South. Here is an example of an enumerated
type and its usage:

c©Ceteva 2008.

4.5. SIMPLE LANGUAGE CONSTRUCTS 79

context Root
@Enum Colour(Red,Green,Amber) end

context Root
@Enum Position(North,South,East,West) end

context Root
@Class TrafficLight
@Attribute colour : Colour (?,!) end
@Attribute position : Position (?,!) end
@Constructor(colour,position) ! end

end

context Root
@Class RoadCrossing
@Attribute light1 : TrafficLight

= TrafficLight(Colour::Red,Position::North)
end
@Attribute light2 : TrafficLight

= TrafficLight(Colour::Red,Position::South)
end
@Attribute light3 : TrafficLight

= TrafficLight(Colour::Green,Position::East)
end
@Attribute light4 : TrafficLight

= TrafficLight(Colour::Green,Position::West)
end
@Operation cycle()
// Cycle the traffic lights...

end
end

Many systems implement enumerated types as strings or integers. This is an approxi-
mation to the above specification for enumerated types since, if Red = 0 and West = 0
then both Colour and Direction are really Integer and Red can easily be confused with
West. An enumerated type should be a classifier, and values of the type should be clas-
sified by it.

This is a good example of the use of meta-classes to implement new types. The fol-
lowing class definition declares a class Enum; its definition shows a number of useful
features when declaring new meta-classes. Firstly the definition:

context XCore
@Class Enum extends Class

c©Ceteva 2008.

80 CHAPTER 4. GRAMMARS

@Attribute names : Seq(String) (?) end
@Constructor(name,names) !

@For name in names do
self.addName(name)

end
end
@Operation default()
self.getElement(names->head)

end
@Operation defaultParents():Set(Classifier)

Set{NamedElement}
end
@Operation add(n)
if n.isKindOf(String)
then self.addName(n)
else super(n)
end

end
@Operation addName(name:String)

self.names := names->including(name);
self.add(self(name))

end
end

Enum is a sub-class of XCore::Class. this means that instances of Enum are classes that
have their own instances - the values of the enumerated type. Therefore, Colour is
an instance of Enum and Red is an instance of Colour. The class Enum has an at-
tribute names that is used to hold the declared names of its instances. When a new
instance of Enum is created, it is supplied with a name (Colour) and a collection of
names (Red,Green,Amber).

In addition to the names being recorded as the value of the slot names, each name
gives rise to an instance of the enumerated type. Each instance of the enumerated type
is a new value that has a name, therefore Colour must inherit from NamedElement.
When a meta-class is defined it may redefine the operation inherited from Class called
defaultParents. This must return a set of classifiers that instances of the meta-class will
inherit from by default. In the case of Enum, any instance of Enum is declared to in-
herit from NamedElement, therefore the following creates two named elements that are
instances of the class Colour: Colour(“Red”) and Colour(“Green”).

The operation Enum::addName is called for each of the names declared for the enu-
merated type. An instance of Enum is a class therefore it is a name-space and can con-
tain named elements. the operation addName created an instance of the enumerated
type self(name) and then adds it to itself. Each name declared for the enumerated type
gives rise to a new instance which is named and is guaranteed to be different (when

c©Ceteva 2008.

4.6. LOOPING CONSTRUCTS 81

compared with =) to any other value.
A grammar for Enum completes the definition of enumerated types. Notice that,

since an enumerated type is a class it can contain attributes and operations in its body:

@Grammar extends OCL::OCL.grammar
Enum ::= n = Name ns = Names es = Exp* ’end’ {

exps->iterate(e x = [| Enum(<name.lift()>,<names.lift()>) |] |
[| <x>.add(<e>) |])

}.
Names ::= ’(’ n = EnumName ns = (’,’ EnumName)* ’)’ {

Seq{n | ns}
}.
EnumName ::=
Name

| Str.
end

4.6. Looping Constructs

A @For-loop has a syntax construct defined by XOCL::For. When you define a @For-
loop, the system creates an instance of XOCL::For and then desugars it. The @For-loop
is a good example of a fairly extensive syntax transformation since the construct has
many different forms controlled by a number of keywords. This section defines the
syntax of a @For-loop and provides the definition of one of the syntax transformations.

The class XOCL::For has the following attribites:

// The controlled variables...
@Attribute names : Seq(String) end
// The type of for loop...
@Attribute directive : String end
// A guard on the bound element (null = true)...
@Attribute guard : Performable end
// The collections...
@Attribute colls : Seq(Performable) end
// The body performed in the scope of ’name’...
@Attribute body : Performable end
// Returns a value...
@Attribute isExp : Boolean end

The @For-expression has the following grammar:

c©Ceteva 2008.

82 CHAPTER 4. GRAMMARS

@Grammar extends OCL::OCL.grammar
For ::=

// A for-loop may bind a sequence of names...
names = ForNames
// The directive defines how to interpret the
// collections...
dir = ForDirective
// A collection for each of the names...
colls = ForColls
// An optional boolean expression that
// must be true in order to process
// the names...
guard = (’when’ Exp | { null })
// We are either performing commands or
// producing a sequence of values...
isExp = ForType
// The body - either a command or an
// expression..
body = Exp
’end’
{ For(names,dir,colls,guard,body,isExp) }.

ForColls ::= exp = Exp exps = (’,’ Exp)* { Seq{exp | exps} }.

ForDirective ::=
// The directive controls how the collections
// are processed...
// A walker produces instances of named types...
’classifiedBy’ { "classifiedBy" }
// Select elements from the collections...

| ’in’ { "in" }
// Reverse the collections...

| ’inReverse’ { "inReverse" }
// Get keys from a table...

| ’inTableKeys’ { "inTableKeys" }
// Get values from a table...

| ’inTableValues’ { "inTableValues" }
// Call ->asSeq...

| ’inSeq’ { "inSeq" }.

ForNames ::=
name = AName
names = (’,’ AName)*
{ Seq{name | names} }.

c©Ceteva 2008.

4.6. LOOPING CONSTRUCTS 83

ForType ::=
’do’ { false }

| ’produce’ { true }.

end

Each of the different @For-directives defines a different desugar operation for the com-
ponents of a @For-expression abstract syntax construct. The following shows how a
basic @For-loop using the ’in’ directive is desugared:

context XOCL::For
@Operation desugarInAction():Performable

[| let <self.collBindings()>
in let isFirst = true

in @While not <self.emptyCollCheck()> do
let <self.bindNames()>
in <self.takeTails()>;

let isLast = <self.emptyCollCheck()>
in <self.protect(body)>;

isFirst := false
end

end
end

end
end

|]
end

The operations used by desugarInAction are defined below:

context XOCL::For
@Operation bindNames():Seq(ValueBinding)

// Bind each of the controlled variables to the head of the
// corresponding collection.
0.to(names->size-1)->collect(i |

ValueBinding(names->at(i),[| <Var("forColl" + i)> ->head |]))
end

context XOCL::For
@Operation collBindings():Seq(ValueBinding)

// Returns a sequence of bindings that guarantee the collections
// are all sequences...

c©Ceteva 2008.

84 CHAPTER 4. GRAMMARS

0.to(colls->size-1)->collect(i |
ValueBinding("forColl" + i,[| <colls->at(i)> ->asSeq |]))

end

context XOCL::For
@Operation emptyCollCheck():Performable

// Check that any of the collection variables is empty...
1.to(colls->size-1)->iterate(i test = [| <Var("forColl0")> ->

isEmpty |] |
[| <test> or <Var("forColl" + i)> ->isEmpty |])

end

context XOCL::For
@Operation protect(exp:Performable)
// If the guard is defined then check it before performing
// the expression. Otherwise perform the expression. If
// we are an expression then add the result of the expression
// to the for results; these will be returned at the end of
// the evaluation.
if guard = null
then

if isExp
then [| forResults := Seq{<exp> | forResults} |]
else exp
end

else
if isExp
then [| if <guard>

then forResults := Seq{<exp> | forResults}
end |]

else [| if <guard>
then <exp>
end |]

end
end

end

context XOCL::For
@Operation takeTails():Performable
1.to(colls->size-1)->iterate(i updates = [| <Var("forColl0")> := <

Var("forColl0")> ->tail |] |
[| <updates>; <Var("forColl" + i)> := <Var("forColl" + i)> ->

tail |])
end

c©Ceteva 2008.

4.7. XBNF 85

4.7. XBNF

This section describes the syntax for defining XBNF grammars. Since XMF is a super-
language, it can be used to define languages. XBNF is just a language and can therefore
be defined in XMF. One of the goals of a superlanguage is meta-circularity. If you look
at the source code of XMF you will find a definition of the XBNF grammar written in
the XBNF language as follows (start reading at the clause called Grammar):

@Grammar extends OCL::OCL.grammar
XBNF_Action ::=

// An action is either an expression in { and }
// which synthesizes a value or is a predicate that
// must be true for the parse to proceed...
’{’ exp = Exp ’}’
{ PreAction(exp) }

| ’?’ boolExp = Exp
{ PrePredicate(boolExp) }.

XBNF_Atom ::=
// An atom is the basic unit of a clause...
XBNF_Action

| XBNF_Literal
| XBNF_Call
| ’(’ XBNF_Disjunction ’)’.

XBNF_Binding ::=
// A clause binding performs a grammar action and
// associates the value produced with a named
// local...
name = Name ’=’ atom = XBNF_Sequence {
And(atom,Bind(name))

}.

XBNF_Call ::=
// Call a clause. The arguments are optional...
name = Name args = XBNF_CallArgs { Call(name,args) }.

XBNF_CallArgs ::=
// Arguments supplied to a clause are optional.
// The args must be preceded by a ˆ to distinguish
// the args from a pair of calls with 0 args...
’ˆ’ ’(’ n = Name ns = (’,’ Name)* ’)’ { Seq{n|ns} }

| { Seq{} }.

c©Ceteva 2008.

86 CHAPTER 4. GRAMMARS

XBNF_Clause ::=
// A clause is a named rule for parsing...
name = Name args = XBNF_ClauseArgs ’::=’
body = XBNF_Disjunction ’.’
{ Clause(name,args,body) }.

XBNF_ClauseArgs ::=
’(’ n = Name ns = (’,’ Name)* ’)’ { Seq{n|ns} }

| { Seq{} }.

XBNF_Conjunction ::=
// Conjunction is just a sequence of 1 or more
// clause elements...
elements = XBNF_Element+ {
elements->tail->iterate(e conj = elements->head |
And(conj,e))

}.

XBNF_Disjunction ::=
// A disjunction is a sequence of elements
// separated by | ...
element = XBNF_Conjunction (

’|’ rest = XBNF_Disjunction { Or(element,rest) }
| { element }).

XBNF_Element ::=
XBNF_Optional

| XBNF_Binding
| XBNF_Sequence.

Grammar ::=
parents = XBNF_GrammarParents
imports = XBNF_GrammarImports
clauses = XBNF_Clause*
’end’
{ Grammar(parents,clauses->asSet,"",imports) }.

XBNF_GrammarImports ::=
// The imports of a grammar affect the grammars that are
// available via @...
’import’ class = Exp classes = (’,’ Exp)* { Seq{class | classes}

}
| { Seq{} }.

XBNF_GrammarParents ::=

c©Ceteva 2008.

4.7. XBNF 87

// A grammar may inherit from 0 or more parent grammars.
// The parent clauses are added to the child...
’extends’ parent = Exp parents = (’,’ Exp)*
{ parents->asSet->including(parent) }

| { Set{} }.

XBNF_Literal ::=
// The following literals are built-in non-terminals of a
// grammar. The action uses getElement to reference the
// classes (and therefore the constructors) because a grammar
// cannot reference a variable with the same name as a terminal
// in an action...
// Get the next character...

’Char’ { (Parser::BNF.getElement("Char"))() }
// Get the next line...

| ’Line’ { (Parser::BNF.getElement("Line"))() }
// Get a string...

| ’Str’ { (Parser::BNF.getElement("Str"))() }
// Get a terminal (in ’ and ’)...

| ’Terminal’ { (Parser::BNF.getElement("Term"))() }
// Return the current token...

| ’Token’ { (Parser::BNF.getElement("Tok"))() }
// Get an integer...

| ’Int’ { (Parser::BNF.getElement("Int"))() }
// Get a float...

| ’Float’ { (Parser::BNF.getElement("Float"))() }
// Get a name...

| ’Name’ { (Parser::BNF.getElement("Name"))() }
// Expect end-of-file...

| ’EOF’ { (Parser::BNF.getElement("EOF"))() }
// Throw away all choice points created since starting
// the current clause...

| ’!’ { (Parser::BNF.getElement("Cut"))() }
// Dispatch to the grammar on the most recently
// synthesized value which should be a sequence of
// names the represent a path to a classifier with
// respect to the currently imported name-spaces...

| ’@’ { (Parser::BNF.getElement("At"))() }
// Add a name-space to the currently imported
// name-spaces...

| ’ImportAt’ { (Parser::BNF.getElement("ImportAt"))() }
// Get the current state of the parsing engine...

| ’pState’ { (Parser::BNF.getElement("PState"))() }
// Get the current line position...

c©Ceteva 2008.

88 CHAPTER 4. GRAMMARS

| ’LinePos’ { (Parser::BNF.getElement("LinePos"))() }
// Define a new terminal in the form NewToken(NAME,ID)...

| XBNF_NewToken
// Get a terminal name...

| terminal = Terminal { (Parser::BNF.getElement("Terminal"))(
terminal) }.

XBNF_NewToken ::=
// A new token is defined as a name and an integer id.
// The tokenizer used to parse the grammar is responsible
// for returning a token with the type set to the id...
’NewToken’ ’(’ n = Name ’,’ t = Int ’)’ {

(Parser::BNF.getElement("NewToken"))(n,t)
}.

XBNF_Optional ::=
// An optional clause element is tried and ignored if it fails..

.
’[’ opt = XBNF_Disjunction ’]’
{ Opt(opt) }.

XBNF_Path ::= name = Name names = (’::’ Name)* { Seq{name | names}
}.

XBNF_TypeCheck ::=
// An element that checks the type of the synthesized value...
element = XBNF_Atom (’:’ type = XBNF_Path { And(element,

TypeCheck(type)) }
| { element }).

XBNF_Sequence ::=
// An element an be followed by a * or a + for 0
// or more and 1 or more repetitions...
element = XBNF_TypeCheck (

’*’ { StarCons(element) }
| ’+’ { PlusCons(element) }
| { element }
).

end

c©Ceteva 2008.

Part II.

Application Engineering

c©Ceteva 2008.

CHAPTER 5

EXECUTABLE MODELS AND
SIMULATION

Superlanguages must be expressive. Apart from language engineering, superlanguages
play an important role in the design of systems by providing a technology for building
prototypes or executable models. This chapter shows how XMF can be used to construct
an executable model of a job-shop system and then be used to perform some analysis of
the modelled system.

The simplest sketch of a system on the back of a napkin is a model that can tell us
something about the intended structure and behaviour of the system. Models tend to
fall into distinct categories that reflect their intent. Models of usage (such as use-case
models) try to capture the client view of the system, i.e. what does the system offer? Ar-
chitecture models try to capture the major components of the system and how they will
communicate. Data models try to capture the information that the system processes.
Dynamic models try to produce descriptions of how the system behaves under certain
conditions. In all cases, these models may be constructed as lightweight sketches that
ignore implementation detail or constructed as detailed blueprints including key imple-
mentation features.

To be effective, modelling must be integrated with a project development method.
There are many such methods; one significant method is to use modelling to produce
a complete executable simulation of the system. The model is representative of the real
system and is used to run test cases. The model does not need to deal with complex
implementation details. Once the executable model has been developed and used to
analyse the behaviour of the required system, it can be used as an executable blueprint
for the real system.

There are a number of advantages to this approach: results can be produced in a short
time; requirements engineering can involve presenting stakeholders with a simulation
of the required system; the languages used for executable modelling support good de-

c©Ceteva 2008.

92 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

Figure 5.1.: A Job Shop Application

bugging and instrumentation; the languages provide high level support for manipulat-
ing data and representing key application components; using the executable model as a
blueprint significantly reduces the gap between design and implementation.

In order to simulate a system, a model must include the actions that the system per-
forms. There are a variety of ways of modelling actions including state machines and
model based action languages. Modelling actions falls broadly into two categories that
differ depending on whether the model is to be executable or whether it is to be used to
analyse system executions. The former allows the model to be run. The latter statically
describes the properties of executions.

Section ?? specifies a simple job-shop application and shows how the simulator will
behave. Section 5.2 describes how the simulation is implemented. Finally, section 5.3
describes how dynamic execution behaviours can be modelled and subsequently anal-
ysed.

5.1. A Job-Shop Simulation

Scheduling jobs is a typical example of an application that can benefit from simulation.
There are many ways in which jobs can be scheduled to machines that process the jobs
and the behaviour of a scheduling application can change depending on many differ-

c©Ceteva 2008.

5.1. A JOB-SHOP SIMULATION 93

(a) Initial State of the Job Shop

(b) Allocated to the Die Cast Machine

(c) Allocation to the Paint Machine

(d) Final State

Figure 5.2.: Job Shop Simulation

c©Ceteva 2008.

94 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

ent features of the application. Opportunistic scheduling is a simple type of scheduling
whereby jobs are allocated to machines as soon as the machine becomes available with-
out any fancy analysis of the best use of resources. This section describes an executable
model for opportunistic scheduling.

Figure 5.1 shows a simple jobs shop as a tree of components. The job shop contains
jobs that must be processed and machines that can process the jobs. In this case the
application is to process an aircraft wing. The single job named Wing has a plan that
specifies a sequence of processes that must be performed in order. The wing must be
case by a die casting machine and then painted by a painting machine. The job-shop
has exactly one machine of each type (therefore the task is do-able).

Figure 5.2 shows the steps in performing this simple simulation. The initial state of
the jobs shop shows that the Wing job is not allocated to any machine. The job is then
allocated to the Die Case machine for 5 units of time after which is switches to the Paint
machine for 8 units of time and finally the job is complete and not allocated to any
machines.

Figure 5.3 shows a model of a job-shop consisting of jobs to be processed and ma-
chines that can process jobs. The required application is an opportunistic scheduler that
will allocate jobs to appropriate machines as soon as they become available. Each job
has a plan that is a sequence of process descriptors: at any given time, a job is either
completed or is waiting to be allocated to a machine or is being processed by a machine.
A machine performs processes of a given type and can only process one job at a time.

The model allows various configurations of machines and jobs to be created. By at-
taching actions to the classes in the model it is then possible to simulate the execution of
the configuration. The results of the simulation can be used to analyse both the configu-
ration and the impact of modifications to the configuration. These include: determining
the overall execution time, whether there are any bottlenecks in the system; the effect of
adding and removing machines of various types; and, the amount of time machines are
left idle.

The rest of this section describes the classes in the model in detail and gives some ex-
ample executions of the simulation. The following section describes the implementation
of the executable model.

Class JobShop records the current time and has a number of jobs and machines. At
the end of the simulation, all of the jobs are complete. Each machine has a unique id,
a type and may be broken. The type of the machine determines the tasks that it can
perform. A machine has a current job that may be empty. If it is non-empty then the
machine is currently processing the job and the type of the machine must match the
process at the head of the job’s plan.

Class Job has a name, a creation time (allowing for jobs to be dynamically added to
the system) and a maximum allowed duration (allowing for the simulation to determine
whether a job is taking too long). A job becomes complete when the last process in its
plan is performed by a machine.

Each job has a plan consisting of a sequence of process descriptors. Class ProcessDe-
scriptor defines the machine that must perform the processing and the length of time

c©Ceteva 2008.

5.1. A JOB-SHOP SIMULATION 95

Figure 5.3.: JobShop Model

c©Ceteva 2008.

96 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

Figure 5.4.: A Job Shop Scenario.

that the process takes.
A job is in a current state, which may be null if it is between tasks. If the job is being

processed by a machine then the current state has a process descriptor and a machine:
the type of the machine must match the type in the process descriptor.

class ProcessState records the time at which it is created. It knows the duration that
the task must take from the process descriptor and can therefore describe when it is
complete. When a task is complete, the current state of a job is set to null, however the
job has a process history that can be used for analysis (in a real implementation a job
may not require a process history). The process history is the sequence of all process
states that the job has performed.

Figure 5.4 shows a simple initial state for a job shop that processes aircraft wings. The
job is started with an initial process state set up for the initial process descriptor in the
plan; however, the process state shows that the process has not started and is not yet
allocated to a machine.

Figure 5.5 shows the state of the simulator at time 2 when the initial process state has
started. The process state is allocated to a machine of the appropriate type, but is not
yet complete.

Figure 5.6 shows the state of the simulation at time 8. Machining at the Die Cast
has completed and is shown on the process history of the job. The process state shows
that the job is now scheduled at the paining machine. The simulation continues at the
painting machine until the time reaches 16 when the job becomes complete.

A trace of the simulation is shown below:

[1] XMF> ProcessWing::jobShop.run();
[1] Job Wing becomes scheduled at machine Die Cast:1.

c©Ceteva 2008.

5.1. A JOB-SHOP SIMULATION 97

Figure 5.5.: At time 2

c©Ceteva 2008.

98 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

Figure 5.6.: After 8 time units.

c©Ceteva 2008.

5.1. A JOB-SHOP SIMULATION 99

[2] Machine Die Cast:1 processing job Wing (1 of 5 units)
[3] Machine Die Cast:1 processing job Wing (2 of 5 units)
[4] Machine Die Cast:1 processing job Wing (3 of 5 units)
[5] Machine Die Cast:1 processing job Wing (4 of 5 units)
[6] Machine Die Cast:1 completes job Wing.
[6] Job Wing becomes scheduled at machine Paint:2.
[7] Machine Paint:2 processing job Wing (1 of 8 units)
[8] Machine Paint:2 processing job Wing (2 of 8 units)
[9] Machine Paint:2 processing job Wing (3 of 8 units)
[10] Machine Paint:2 processing job Wing (4 of 8 units)
[11] Machine Paint:2 processing job Wing (5 of 8 units)
[12] Machine Paint:2 processing job Wing (6 of 8 units)
[13] Machine Paint:2 processing job Wing (7 of 8 units)
[14] Machine Paint:2 completes job Wing.
true
[1] XMF>

Once the job shop simulation has completed, it is possible to perform analysis on the
job histories. One useful analysis is to determine when any of the machines have been
idle during the simulation. This is shown below:

[1] XMF> ProcessWing::jobShop.idleTimes();
Machine Paint:2 was idle at time 1.
Machine Paint:2 was idle at time 2.
Machine Paint:2 was idle at time 3.
Machine Paint:2 was idle at time 4.
Machine Paint:2 was idle at time 5.
Machine Die Cast:1 was idle at time 7.
Machine Die Cast:1 was idle at time 8.
Machine Die Cast:1 was idle at time 9.
Machine Die Cast:1 was idle at time 10.
Machine Die Cast:1 was idle at time 11.
Machine Die Cast:1 was idle at time 12.
Machine Die Cast:1 was idle at time 13.
true
[1] XMF>

The following shows a slightly more interesting example of a job-shop that processes
many more jobs with more machines. In this example there are several jobs compet-
ing for a single Die Cast machine; this causes a bottleneck in the processing leading
to 36 units of time for the simulation. If another Die Cast machine is added then the
simulation shows the time is reduced to 27 units:

c©Ceteva 2008.

100 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

[1] XMF> ProcessAircraft::jobShop.run();
[1] Job Wing1 becomes scheduled at machine Die Cast:3.
[2] Machine Die Cast:3 processing job Wing1 (1 of 5 units)
[3] Machine Die Cast:3 processing job Wing1 (2 of 5 units)
[4] Machine Die Cast:3 processing job Wing1 (3 of 5 units)
[5] Machine Die Cast:3 processing job Wing1 (4 of 5 units)
[6] Machine Die Cast:3 completes job Wing1.
[6] Job Wing1 becomes scheduled at machine Paint:4.
[7] Job Tail1 becomes scheduled at machine Die Cast:3.
[7] Machine Paint:4 processing job Wing1 (1 of 8 units)
[8] Machine Die Cast:3 processing job Tail1 (1 of 5 units)
[8] Machine Paint:4 processing job Wing1 (2 of 8 units)
[9] Machine Die Cast:3 processing job Tail1 (2 of 5 units)
[9] Machine Paint:4 processing job Wing1 (3 of 8 units)
[10] Machine Die Cast:3 processing job Tail1 (3 of 5 units)
[10] Machine Paint:4 processing job Wing1 (4 of 8 units)
[11] Machine Die Cast:3 processing job Tail1 (4 of 5 units)
[11] Machine Paint:4 processing job Wing1 (5 of 8 units)
[12] Machine Die Cast:3 completes job Tail1.
[12] Machine Paint:4 processing job Wing1 (6 of 8 units)
[13] Job Tail1 becomes scheduled at machine Paint:2.
[13] Job Tail2 becomes scheduled at machine Die Cast:3.
[13] Machine Paint:4 processing job Wing1 (7 of 8 units)
[14] Machine Paint:2 processing job Tail1 (1 of 8 units)
[14] Machine Die Cast:3 processing job Tail2 (1 of 5 units)
[14] Machine Paint:4 completes job Wing1.
[14] Job Wing1 becomes scheduled at machine Assemble:6.
[15] Machine Paint:2 processing job Tail1 (2 of 8 units)
[15] Machine Die Cast:3 processing job Tail2 (2 of 5 units)
[15] Machine Assemble:6 processing job Wing1 (1 of 3 units)
[16] Machine Paint:2 processing job Tail1 (3 of 8 units)
[16] Machine Die Cast:3 processing job Tail2 (3 of 5 units)
[16] Machine Assemble:6 processing job Wing1 (2 of 3 units)
[17] Machine Paint:2 processing job Tail1 (4 of 8 units)
[17] Machine Die Cast:3 processing job Tail2 (4 of 5 units)
[17] Machine Assemble:6 completes job Wing1.
[18] Machine Paint:2 processing job Tail1 (5 of 8 units)
[18] Machine Die Cast:3 completes job Tail2.
[18] Job Tail2 becomes scheduled at machine Paint:4.
[19] Machine Paint:2 processing job Tail1 (6 of 8 units)
[19] Job Nose becomes scheduled at machine Die Cast:3.
[19] Machine Paint:4 processing job Tail2 (1 of 8 units)
[20] Machine Paint:2 processing job Tail1 (7 of 8 units)
[20] Machine Die Cast:3 processing job Nose (1 of 5 units)
[20] Machine Paint:4 processing job Tail2 (2 of 8 units)

c©Ceteva 2008.

5.2. JOB-SHOP IMPLEMENTATION 101

[21] Machine Paint:2 completes job Tail1.
[21] Machine Die Cast:3 processing job Nose (2 of 5 units)
[21] Machine Paint:4 processing job Tail2 (3 of 8 units)
[21] Job Tail1 becomes scheduled at machine Assemble:6.
[22] Machine Die Cast:3 processing job Nose (3 of 5 units)
[22] Machine Paint:4 processing job Tail2 (4 of 8 units)
[22] Machine Assemble:6 processing job Tail1 (1 of 3 units)
[23] Machine Die Cast:3 processing job Nose (4 of 5 units)
[23] Machine Paint:4 processing job Tail2 (5 of 8 units)
[23] Machine Assemble:6 processing job Tail1 (2 of 3 units)
[24] Machine Die Cast:3 completes job Nose.
[24] Machine Paint:4 processing job Tail2 (6 of 8 units)
[24] Machine Assemble:6 completes job Tail1.
[25] Job Nose becomes scheduled at machine Paint:2.
[25] Machine Paint:4 processing job Tail2 (7 of 8 units)
[26] Machine Paint:2 processing job Nose (1 of 8 units)
[26] Machine Paint:4 completes job Tail2.
[26] Job Tail2 becomes scheduled at machine Assemble:6.
[27] Machine Paint:2 processing job Nose (2 of 8 units)
[27] Machine Assemble:6 processing job Tail2 (1 of 3 units)
[28] Machine Paint:2 processing job Nose (3 of 8 units)
[28] Machine Assemble:6 processing job Tail2 (2 of 3 units)
[29] Machine Paint:2 processing job Nose (4 of 8 units)
[29] Machine Assemble:6 completes job Tail2.
[30] Machine Paint:2 processing job Nose (5 of 8 units)
[31] Machine Paint:2 processing job Nose (6 of 8 units)
[32] Machine Paint:2 processing job Nose (7 of 8 units)
[33] Machine Paint:2 completes job Nose.
[33] Job Nose becomes scheduled at machine Assemble:6.
[34] Machine Assemble:6 processing job Nose (1 of 3 units)
[35] Machine Assemble:6 processing job Nose (2 of 3 units)
[36] Machine Assemble:6 completes job Nose.
true

5.2. Job-Shop Implementation

The previous section has specified a job shop scheduling simulation in terms of a general
model consisting of jobs, plans and machines. Non-executable modelling would have
to stop at this point: the execution would be left implicit, perhaps specified as pre and
post-conditions on various model operations. Executable modelling allows the models
to be brought to life in terms of simulation. Depending on the application requirements,
it is possible for the executable model to be the application, however that is not the issue

c©Ceteva 2008.

102 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

here. This section describes the implementation of the key features of the simulation by
defining operations on the classes defined in figure 5.3.

A job shop simulation is initiated by the run operation:

context JobShop
@Operation runJobs()
@While not jobs->forAll(job | job.isComplete()) do

self.time := time + 1
@For machine in machines do

machine.process(self)
end

end
end

Each machine processes the current job:

context Machine
@Operation process(jobShop:JobShop)
if not broken
then

if job <> null
then self.processJob(jobShop)
else self.findJob(jobShop)
end

else format(stdout,"˜S:˜S is broken at the moment.",Seq{type,
machineId})

end
end

The current job being processed by a machine is handled by processJob. Ticking a job
causes the process state to be modified by one time unit. If the job is complete then it
is removed from the machine. The operations for printing messages are not included in
the code, but conform to the sample runs given in the previous section:

context Machine
@Operation processJob(jobShop:JobShop)

job.tick();
if job.isComplete()
then

self.printCompleted(jobShop.time(),job);
self.setJob(null)

else self.printProcessing(jobShop.time(),job)

c©Ceteva 2008.

5.2. JOB-SHOP IMPLEMENTATION 103

end
end

A machine uses findJob to schedule the next job if the machine is not currently process-
ing a job. If a pending job is found then it becomes the current job of the machine and
the process state of the job is updated using start():

context Machine
@Operation findJob(jobShop)
@Find(job,jobShop.jobs())
when

not job.processState().hasStarted() andthen
job.processState().processDescriptor().machineType = type

do self.setJob(job);
job.processState().start(jobShop.time(),self);
self.printJobScheduled(jobShop.time(),job)

end
end

context ProcessState
@Operation start(time:Integer,machine:Machine)

self.setHasStarted(true);
self.setStartTime(time);
self.setMachine(machine)

end

When a job is processed by a machine, its tick() operation is performed. This updates
the current process state:

context Job
@Operation tick()
processState.tick();
if processState.isComplete()
then self.nextProcessState()
end

end

context ProcessState
@Operation tick()
if hasStarted and not isComplete
then

self.setDuration(duration + 1);

c©Ceteva 2008.

104 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

if duration >= processDescriptor.duration()
then self.setIsComplete(true)
end

end
end

If the process state of a job indicates that the current process is complete, then the job
moves to the next process descriptor in the plan. The current process state is added to
the process history for the job so that analysis can be performed after the cimulation has
completed. The plan is asked for a new process state. If the plan is complete then the
job becomes complete, otherwise the process state of the job contains the next process
descriptor in the plan awaiting scheduling on an appropriate machine:

context Job
@Operation nextProcessState()
self.addToProcessHistory(processState);
self.setProcessState(plan.nextProcessState(processState));
if processState = null
then self.setIsComplete(true)
end

end

context Plan
@Operation nextProcessState(current:ProcessState):ProcessState

let index = states->indexOf(current.processDescriptor())
in if index + 1 >= states->size

then null
else

let next = states->at(index + 1)
in ProcessState(next)
end

end
end

end

The operations above complete the basic simulator. It remains to perform machine idle
time analysis on a completed simulation, this is implemented as an operation idleTimes
on JobShop:

context JobShop
@Operation idleTimes()
@Count t from 1 to time do

c©Ceteva 2008.

5.3. CONFLICT ANALYSIS 105

@For machine in machines do
if not jobs->exists(job | job.processedBy(machine,t))
then self.printIdle(machine,t)
end

end
end

end

context Job
@Operation processedBy(machine,time):Boolean
processHistory->exists(state |

state.machine() = machine and
state.startTime() <= time and
(state.startTime() + state.duration()) >= time)

end

The following is another analysis operation that calculates those jobs that took longer
than their allotted time to be processed:

context JobShop
@Operation lateJobs():Set(Job)
jobs->select(job | job.maxDuration() < job.duration())

end

context Job
@Operation duration():Integer
let state = processHistory->last
in (state.startTime() + state.duration()) - creationTime
end

end

5.3. Conflict Analysis

An interesting analysis determines whether or not there are two jobs that ever require
the same machine at the same time. This analysis requires a slightly different type of
simulation from that described so far. In order to determine whether there may be a
conflict, the job shop is symbolically executed, creating histories of possible allocations of
jobs to machines. These allocations can then be analysed to determine whether any of
them overlap.

Given the initial state of the job-shop it is possible to calculate the scheduling options
by analysing the plan for each job and allocating the job to the machines it requires. The

c©Ceteva 2008.

106 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

Figure 5.7.: History Models

result of doing this for each job is a collection of possible histories for the simulation. An
execution of the simulation is represented by one possible history for each of the jobs.
If there is a machine that is required by two different jobs in all possible histories then
it is not possible to optimally schedule the jobs, i.e. there is a bottleneck arising from a
conflict.

Consider the ProcessAircraft example given in a previous section. Here are all the
histories calculated for the jobs:

Histories calculated for job Wing1:
Option:

Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 5 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13

c©Ceteva 2008.

5.3. CONFLICT ANALYSIS 107

Machine 5 is used from 13 to 16
Histories calculated for job Tail1:

Option:
Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 5 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13
Machine 5 is used from 13 to 16

Histories calculated for job Tail2:
Option:

Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 5 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13
Machine 5 is used from 13 to 16

Histories calculated for job Nose:
Option:

Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 5 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 4 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:

c©Ceteva 2008.

108 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13
Machine 6 is used from 13 to 16

Option:
Machine 3 is used from 0 to 5
Machine 2 is used from 5 to 13
Machine 5 is used from 13 to 16

Figure 5.7 shows a model of job-shop histories. A history records when a machine is
busy in terms of when a job is allocated to the machine (the start time) and when a job
is removed from the machine (the finish time). A job-shop is translated to an instance
of the class Histories, by calculating all the possible sets of histories; each history is an
ordered collection of consistent machine allocations.

Each plan produces n instance of Histories:

context Plan
@Operation histories(jobShop)
let h = Histories()
in @For state in states do

let M = jobShop.machines()->select(machine |
machine.type() = state.machineType())

in h.addMachines(state.duration(),M)
end

end;
h

end
end

A histories, adds all the machines that could occur during a given time duration. The
histories are built up incrementally by adding machines that might be used by process
descriptors. Since scheduling is opportunistic each machine is allocated at random:

context Histories
@Operation addMachines(duration,M)

// Add all the machines for the given duration at the
// end of the current histories.
@For history in histories do

self.deleteFromHistories(history);
@For machine in M do

self.addToHistories(history.extend(duration,machine))
end

end

c©Ceteva 2008.

5.3. CONFLICT ANALYSIS 109

end

context History
@Operation extend(duration,machine)
// Add a new allocation. Returns a copy so that
// other additions don’t interfere...
let newHistory = self.copy();

d = allocations->iterate(a d = 0 | d + (a.finish() - a.start()
))

in newHistory.addToAllocations(MachineAllocation(d,d + duration,
machine))

end
end

Two machine allocations conflict when they overlap:

context MachineAllocation
@Operation conflict(other:MachineAllocation):Boolean

machine = other.machine and
((start >= other.start and start <= other.finish) or
(other.start >= start and other.start <= finish))

end

Finally, the job-shop configuration has a conflict when there are two jobs that require
the same machine during the same time interval in all possible histories:

context JobShop
@Operation conflict():Boolean
jobs->exists(j1 |
jobs->exists(j2 |

j1 <> j2 and
j1.plan().histories(self).histories()->forAll(h1 |

j2.plan().histories(self).histories()->forAll(h2 |
h1.allocations()->exists(a1 |

h2.allocations()->exists(a2 | a1.conflict(a2)))))))
end

c©Ceteva 2008.

110 CHAPTER 5. EXECUTABLE MODELS AND SIMULATION

c©Ceteva 2008.

CHAPTER 6

PRETTY PRINTING

Superlanguages deal with a great deal of structured data. How is the information to
be managed? Model developers need a way of interacting with the information in a
flexible way. They should be able to look at the data in a variety of ways, slicing it up
and presenting it as appropriate.

One approach to presenting model data in a flexible way is to use an extensible pretty-
printer. A pretty-printer is a system that can be used to print out data in a convenient
form; it provides hooks to change the appearance of data items and also provides a
means of controlling the layout of large quantities of data. This chapter shows how a
pretty-printer can be modelled and implemented as an execution engine that runs the
models. It is an example of how XMF can be used to develop a language engine. The
pretty-printer language has no concrete syntax, however it is still a language and has an
engine that executes it. The superlanguage features of XMF make it idea for defining a
pretty-printer language and its execution engine.

6.1. Example Printing

Consider a database of bank records. Each record describes a bank customer in terms
of their name, age and the unique account identifiers. If the database is printed out
without any attempt at layout then the following might be the result:

DataBase[records = Seq{Record[accounts = Seq{A101,B204,
A108},age= 22,name = Fred Jones],Record[accounts =
Seq{C202},age = 32,name = Sally Brown],Record[accounts =
Seq{A102,B222},age = 24,name = Edward Clark]}]

c©Ceteva 2008.

112 CHAPTER 6. PRETTY PRINTING

Obviously no attempt has been made at structuring the information; newlines occur at
arbitrary points in the data where the right-hand edge of the output window (or page)
is reached. The following are significant factors in controlling the presentation of data:

• The type of an element determines how it should be presented. For example, an
atomic data item such as a string or a number is just printed out as is. An object
contains slots and the slot values are possibly large elements in themselves. A
basic object might be displayed as a sequence of slots where there are many choices
governing the layout of the slots. Particular types of object might be displayed in
specific ways; for example, internal features of an object may be considered as
hidden and not printed out. Other types of element that require specific display
include tables, collections and vectors.

• The width of the page is an important factor when displaying elements. Often
there may be a choice regarding how an element is to be laid out on the page, for
example an object may list its slots one after the other on the same line or list the
slots one above the other on different lines. The width of the page can be used in
deciding amongst the alternatives.

• Independent of the width of the page, is the maximum width of output on any
given line. Call this the ribbon width; it differs from the page width because it
does not take into consideration leading whitespace on a line. The ribbon width
can be used to decide amongst alternative layout strategies.

• Complex data is usually deeply nested, i.e. one element contains another, and that
contains more data etc. Sometimes a broad picture of the data is required; other
times it is necessary to drill deeply into an element.

Using the example data given above, the following shows a broad view with a wide
page width and ribbon:

DataBase[records = Seq{
Record[accounts = ...,age = 22,name = Fred Jones]

,
Record[accounts = ...,age = 32,name = Sally Brown

],
Record[accounts = ...,age = 24,name = Edward

Clark]}]

The ... shows that the level of nesting limit has been reached. If the level of nesting is
decreased by 1 then the display would show that the database had 3 records, but not
show the records themselves:

c©Ceteva 2008.

6.1. EXAMPLE PRINTING 113

DataBase[records = Seq{...,...,...}]

Alternatively, consider a short ribbon width and a deep nesting:

DataBase[records = Seq{
Record[
accounts =

Seq{A101,B204,A108}
age = 22,
name = Fred Jones],

Record[
accounts = Seq{C202}
age = 32,
name = Sally Brown],

Record[
accounts = Seq{A102,B222}
age = 24,
name = Edward Clark]}]

Finally taking this to its limit:

DataBase[
records =

Seq{
Record[
accounts =
Seq{

A101,
B204,
A108}

age =
22,

name =
Fred Jones],

Record[
accounts =
Seq{C202}

age =
32,

name =
Sally Brown],

Record[

c©Ceteva 2008.

114 CHAPTER 6. PRETTY PRINTING

Figure 6.1.: A Document Model

accounts =
Seq{

A102,
B222}

age =
24,

name =
Edward Clark]}]

6.2. A Document Model

Pretty printing can be achieved by writing an output operation for each new model
element. In the example above, the database and record classes would each define an
output operation. The output operations need to keep track of the page and ribbon
widths, and also deal with manging options for output.

The general output machinery is more or less the same for each new class; just the
details of what is being printed differs from class to class. Therefore it makes sense to
abstract the machinery into a general model of documents.

A document consists of output directives including the text to be printed. A map-

c©Ceteva 2008.

6.2. A DOCUMENT MODEL 115

ping translates instances of classes to the document model. Therefore, the machinery
for pretty-printing is defined once in the document model and domain models are not
polluted with details of printing.

The document model is shown in figure 6.1. The rest of this section describes the
classes in the document model and shows how they affect the output when printed
prettily.

A document Just(t) represents just the text t. When it is printed with a page and
ribbon width of 80, the text is displayed:

XMF> Just("some text").pprint(80,80);
some text

By itself, Just does not appear to do anything; however, as described later, Just may
cause an alternative formatting to be chosen because the text does not fit onto the current
line or the current ribbon.

Several documents can be joined together using Order. Viewing the pretty printer
as sending text to an output ribbon, Order(d1,d2) just causes the output from d1 to be
printed to the ribbon followed by the output from d2:

XMF> Order(Just("some text"),
Order(Just(" more text"),

Just(" the end."))).pprint(80,80);
some text more text the end.

Newline can be used to insert breaks into the output:

XMF> Order(Just("some text"),
Order(Newline(),

Order(Just("more text"),
Order(Newline(),
Just("the end."))))).pprint(80,80);

some text
more text
the end.

Indentation is important in output, it is often used to represent ownership or contain-
ment. For example, collections own their elements and objects own their slots. The
display of the elements and slots can be indented in order to represent ownership.

The engine that prints a document maintains a context including the current level of
indentation. Each time a new line is printed, the engine automatically tabs to the current

c©Ceteva 2008.

116 CHAPTER 6. PRETTY PRINTING

indent by adding spaces to the output ribbon. The value of the current indent can be
increased by a given value using the class Indent:

XMF> Order(Just("some text"),
Indent(2,

Order(Newline(),
Order(Just("then more text"),
Indent(2,

Order(Newline(),
Just("the end."))))))).pprint(80,80);

some text
then more text
the end.

The current level of indentation can be set using the class Block. The document Block(d)
uses the position on the current line as the level of indentation for processing d. Once d
has been processes, the level of indentation reverts back:

XMF> Order(Just("some text"),
Order(

Block(
Order(Newline(),

Just("more text"))),
Indent(2,

Order(Newline(),
Just("the end."))))).pprint(80,80);

some text
more text

the end.

The arguments to the pprint operation are the page width and ribbon width respec-
tively. The document classes described so far provide a fixed output format: the values
of page and ribbon width make no difference to the output. As described earlier, it is
desirable to be able to print an element in different formats depending on the context: a
wide page width will allow an object to list its slots on the same line whereas a narrow
page width forces the slots to be listed one above the other.

The document Alt(d1,d2) defines two alternative layouts: d1 and d2. When pretty
printing the document Alt(d1,d2), the printer first tries d1, if it finds that any of the
output of d1 exceeds the line or ribbon width then the printer discards the output from
d1 and proceeds with d2. Consider the following operations:

c©Ceteva 2008.

6.3. A PRETTY PRINTING MACHINE 117

@Operation line(.ss:Seq(String)):Doc
ss->tail->iterate(s d = Just(ss->head) | Order(d,Just(" " + s)))

end

@Operation stack(.ss:seq(string)):Doc
ss->tail->iterate(s d = Just(ss->head) | Order(d,Order(Newline(),

Just(s))))
end

The operation line transforms a sequence of strings into an ordered document. The op-
eration stack transforms a sequence of strings into a document that displays the strings
one above the other. The following code shows two uses of the same document, the first
prints on a page width of 80 with a ribbon width of 80 and the second on the same page
with a ribbon width of 10. In the first case the text can fit on the same line. In the second
case the text cannot fit onto a ribbon with of 10 and therefore the second option is used:

XMF> let strings = Seq{"some text","more text","end."}
in Alt(line(strings),stack(strings)).pprint(80,80)
end;

some text more text end.
XMF> let strings = Seq{"some text","more text","end."}

in Alt(line(strings),stack(strings)).pprint(80,10)
end;

some text
more text
end.

6.3. A Pretty Printing Machine

A document is pretty-printed by a pretty-printing machine. The machine runs the doc-
ument and the state of the machine includes the page and ribbon width and the current
text position on the page. The machine model is shown in figure 6.2, the rest of this
section describes how the machine works.

A pretty-printer is an instance of the class Machine. The state of a machine consists
of the following:

• ribbonPosition is the next output position on the current line ignoring any leading
indentation;

• linePosition is the next output position on the current line;

c©Ceteva 2008.

118 CHAPTER 6. PRETTY PRINTING

Figure 6.2.: The Pretty Print Engine

• textPosition is the next output position on the page;

• ribbonWidth is the maximum number of characters on a line ignoring any leading
indentation;

• pageWidth is the maximum number of character on a line;

• a buffer containing the output (next buffer position is given by textPosition);

• stack is a sequence of frames;

• fail is a sequence of fail frames.

The stack contains a sequence of frames. Each frame contains a sequence of documents
to be printed along with the indentation used for their output. Frames allow the inden-
tation in a document to change: when the machine runs it prints out all the documents
in the frame at the head of the stack, when those documents are completed then the
machine pops the stack and continues with the next frame. If a document wants to
change the indentation for a given document then it pushes a new frame at the head of
the stack.

A machine has a sequence of fail frames. When a Just(t) document is executed at the
head of the stack, if the text t cannot be printed out in the current page and ribbon width
then the machine attempts to fail. Failure involves returning to a choice point defined
by an instance of the class Fail containing a saved machine state. To fail, the machine
resets all the saved state in the Fail instance and then pops the fail stack.

c©Ceteva 2008.

6.3. A PRETTY PRINTING MACHINE 119

@Operation run()
@While not stack->isEmpty do
if stack->head.code()->isEmpty
then self.stack := stack->tail
else

let frame = stack->head then
instr = frame.code()->head

in stack->head.setCode(frame.code()->tail);
@Case instr of

Just(text) do
if self.canPrint(text) or fail->isEmpty
then self.write(text)
else self.fail()
end

end
Order(left,right) do

frame.setCode(Seq{left,right} + frame.code())
end
Indent(cols,doc) do

self.pushFrame(frame.indent() + cols,frame.cut(),Seq{doc
})

end
Block(doc) do

self.pushFrame(linePosition,frame.cut(),Seq{doc})
end
Cut(doc) do

self.fail := frame.cut()
end
Mark(doc) do
self.pushFrame(frame.indent(),fail,Seq{doc})

end
NewLine() do

self.newline()
end
Alt(left,right) do

frame.setCode(Seq{left | frame.code()});
self.pushFail(Seq{right | frame.code()})

end
end

end
end

end
end

c©Ceteva 2008.

120 CHAPTER 6. PRETTY PRINTING

(1)Machine[80,50,0,0,
0,

[],
Seq{Frame[0,

code = Seq{
some text;
more text;
the end.},

cut = Seq{}
]},

Seq{}]

(2)Machine[80,50,0,0,
0,

[],
Seq{Frame[0,

code = Seq{
some text,
more text;
the end.},

cut = Seq{}
]},

Seq{}]

(3)Machine[80,50,9,9,
9,

[some text],
Seq{Frame[0,

code = Seq{
more text;
the end.},

cut = Seq{}
]},

Seq{}]

(4)Machine[80,50,9,9,
9,

[some text],
Seq{Frame[0,

code = Seq{
more text,
the end.},

cut = Seq{}
]},

Seq{}]

(5)Machine[80,50,19,19,19
,

[some text more text],
Seq{Frame[0,

code = Seq{ the end.}
,

cut = Seq{}
]},

Seq{}]

(6)Machine[80,50,28,28,28,
[some text more text the

end.],
Seq{Frame[0,

code = Seq{},
cut = Seq{}
]},

Seq{}]

Figure 6.3.: Execution of Ordered Text

c©Ceteva 2008.

6.3. A PRETTY PRINTING MACHINE 121

Figure 6.3 shows the steps taken by the machine when it processes a document con-
sisting of 3 ordered strings. The machine is printed (using the pretty printer) as Ma-
chine[followed by the page width, ribbon width, text position, line position and ribbon
position. The contents of the output buffer is on the following line inside [and]. The
stack frames are printed next, followed by the fail frames. Each frame is printed as
Frame[followed by the value used for indentation. The code and cut values follow on
the next lines. To save space, Order(d1.d2) is printed as d1;d2.

State (1) is the starting state. State (2) shows that the ordered document at the head
of the stack is processed first. State (3) has output the first string, notice how the values
of the positions in the machine state have been updated. State (4) handles the ordered
document at the head of the stack. States (5) and (6) output the second and third strings.
State (6) is a terminal state because there is a single frame with empty code.

Consider pretty-printing the following:

Order(Just("some text"),
Order(

Block(
Order(Newline(),
Just("more text"))),

Indent(2,
Order(Newline(),
Just("the end.")))))

The machine starts in the following state:

Machine[80,50,0,0,0,
[],
Seq{

Frame[0,
code = Seq{

some text;
...;
Indent[2
...;
...]},

cut = Seq{}
]},

Seq{}]

The machine prints some text on the output and then encounters the block:

c©Ceteva 2008.

122 CHAPTER 6. PRETTY PRINTING

Machine[80,50,9,9,9,
[some text],
Seq{

Frame[0,
code = Seq{

Block[
doc =
...;
...];

Indent[2
...;
...]},

cut = Seq{}
]},

Seq{}]

A new frame is pushed that records the current indent position:

Machine[80,50,9,9,9,
[some text],
Seq{

Frame[9,
code = Seq{

Newline[];
more text},

cut = Seq{}
],

Frame[0,
code = Seq{

Indent[2
...;
...]},

cut = Seq{}
]},

Seq{}]

The newline and more text is printed with respect to the frame at the head of the stack:

Machine[80,50,28,18,9,
[some text

more text],
Seq{

Frame[9,

c©Ceteva 2008.

6.3. A PRETTY PRINTING MACHINE 123

code = Seq{},
cut = Seq{}
],

Frame[0,
code = Seq{

Indent[2
...;
...]},

cut = Seq{}
]},

Seq{}]

The empty frame is popped, processing resumes with the Indent causing a new frame
to be pushed with an indent of 2:

Machine[80,50,28,18,9,
[some text

more text],
Seq{

Frame[2,
code = Seq{

Newline[];
the end.},

cut = Seq{}
],

Frame[0,
code = Seq{},
cut = Seq{}
]},

Seq{}]

Finally, the newline and text is processed with respect to the frame:

Machine[80,50,39,10,8,
[some text

more text
the end.],
Seq{

Frame[2,
code = Seq{},
cut = Seq{}
],

Frame[0,

c©Ceteva 2008.

124 CHAPTER 6. PRETTY PRINTING

code = Seq{},
cut = Seq{}
]},

Seq{}]

All frames are empty and are then popped.

6.4. Machine Implementation

The machine shown in the previous section relines on a number of operations in order
to run. This section defines the operations and a machine loader that creates an initial
state.

When the machine encounters literal text to output, it must decide whether the output
will fit onto the current line given the page and ribbon width. If the text cannot fit then
the machine backtracks (if possible) to an alternative layout. The following operation
calculates whether the text will fit:

context Docs
@Operation canPrint(text,w,r,pl,pr)

pl + text->size < w and
pr + text->size < r

end

When the machine writes some text, the current state must be updated:

context Machine
@Operation write(text)
emit(text,buffer,textPosition);
self.textPosition := textPosition + text->size;
self.linePosition := linePosition + text->size;
self.ribbonPosition := ribbonPosition + text->size

end

The text output from the machine is recorded in a buffer:

context Docs
@Operation emit(s,b,i)
@Count x from i to i + s->size do
b.put(x,s->at(x - i))

end

c©Ceteva 2008.

6.4. MACHINE IMPLEMENTATION 125

end

When a context switch takes place, the machine pushes a frame:

context Machine
@Operation pushFrame(indent,code,cut)

self.stack := Seq{Frame(indent,code,cut) | stack}
end

A new choice point is pushed onto the fail stack:

context Machine
@Operation pushFail(code)
self.fail := Seq{

Fail(stack->head.indent(),
textPosition,
linePosition,
ribbonPosition,
code,
stack->head.cut()) |

fail}
end

When the machine fails, a fail frame is popped from the fail stack and the state of the
machine is reset to the point at which the choice point was recorded:

context Machine
@Operation fail()
self.stack := fail->head.stack();
self.stack := Seq{fail->head | stack};
self.textPosition := fail->head.textPosition();
self.linePosition := fail->head.linePosition();
self.ribbonPosition := fail->head.ribbonPosition();
self.fail := fail->tail

end

Writing a new-line updates the state of the machine:

context Machine
@Operation newline()

c©Ceteva 2008.

126 CHAPTER 6. PRETTY PRINTING

let frame = stack->head
in emit("\n" + spaces(frame.indent()),buffer,textPosition);

self.textPosition := textPosition + frame.indent() + 1;
self.linePosition := frame.indent();
self.ribbonPosition := 0

end
end

Finally, given a document to pretty-print, it is loaded onto a machine as follows:

context Machine
@Operation load(code)
self.stack := Seq{};
self.pushFrame(0,code,Seq{});
self.textPosition := 0;
self.linePosition := 0;
self.ribbonPosition := 0;
self.fail := Seq{};
buffer.setSize(0)

end

6.5. A Document Mapping

We have defined a language for representing documents and a machine that performs
the document language. The document language can be the target of any number of
translations from source models where we want to pretty-print the data. This section
describes a translation from XCore to the document language.

The translation from XCore to the documentation language is defined as a dispatcher.
This allows new handlers to be defined for user-defined element types and allows the
existing handlers to easily be redefined. The dispatching class is defined as follows:

context Walkers

@Class PPrint metaclass Dispatcher

// The following constants define the default
// pretty-printing parameters...

// The depth limit...
@Bind PRINTDEPTH = 5 end

c©Ceteva 2008.

6.5. A DOCUMENT MAPPING 127

// The limit on the number of elements
// in a sequence...
@Bind PRINTLENGTH = 10 end

// If possible everything should fit
// into the page width...
@Bind PAGEWIDTH = 100 end

// If possible everything should fit into
// the ribbon width on a page...
@Bind RIBBONWIDTH = 40 end

// The following controls whether or not operations
// are printed in all their glory. Should be true
// only when debugging compiled operations...
@Bind PPRINTOPS = false end

// Controls whether quasi-quotes are used to
// print expressions...
@Bind PPRINTEXP = true end

// The following constants are used throughout
// the Element pretty-printer...
@Bind EQUALS = Just(" = ") end
@Bind COMMA = Just(",") end
@Bind LSQUARE = Just("[") end
@Bind RSQUARE = Just("]") end
@Bind NOTHING = Just("") end
@Bind LCURL = Just("{") end
@Bind RCURL = Just("}") end
@Bind SEQ = Just("Seq{") end
@Bind SET = Just("Set{") end
@Bind BAR = Just(" | ") end
@Bind DOTS = Just("...") end
@Bind HASH = Just("###") end
@Bind VECTOR = Just("Vector[") end
@Bind TABLE = Just("Table[") end

// Controls the depth in each dispatcher...
@Attribute depth : Integer = PPrint::PRINTDEPTH end

// Controls the length in each dispatcher...
@Attribute length : Integer = PPrint::PRINTLENGTH end

c©Ceteva 2008.

128 CHAPTER 6. PRETTY PRINTING

// Sharing is handled by associating elements with labels
// and using the labels for subsequent occurrences of an
// element. The labels table contains an empty string
// literal that is updated with the label if the associated
// element is ever encountered twice. If the label is included
// in the first generation then it will be "" until the element
// is encountered again at which point it is replaced with
// a #(n)= which defines the label n t be the element...
@Attribute jlabels : Table = Table(10) end

// A table associating elements with tags. Each element is
// allocated a tag that can be used in subsequent references...
@Attribute tlabels : Table = Table(10) end

// A counter that is used to generate labels...
@Attribute labelc : Integer = 0 end

// Whether operations are pretty-printed in long form...
@Attribute pprintOps : Boolean = PPrint::PPRINTOPS end

// Whether expressions are pretty-printed using quasi-
// quotes...
@Attribute pprintExp : Boolean = PPrint::PPRINTEXP end

@Constructor() end

@Constructor(depth,length) ! end

@Operation dispatch(element:Element,depth:Element)

// Call dispatch to translate an element to a document.
// The current depath-level is supplied. If the max depth
// level is reached then generate a short version of the
// element...
if depth > self.depth
then Just("<a " + element.of().name() + ">")
else super(element,depth)
end

end

@Operation label(e)

// Record a label for e...
labels.put(e,self.nextLabel())

end

c©Ceteva 2008.

6.5. A DOCUMENT MAPPING 129

@Operation indent()

// Increase the indentation...
self.indent := indent + 2

end

@Operation mark(element)

// An element is marked by associating it with an
// empty label. This empty label is generated along
// with the document for the element. If the element
// is subsequently encountered then the empty label
// is replaced by a unique label and the generated
// occurrence becomes the defining occurrence...
if jlabels.hasKey(element)
then jlabels.get(element)
else
let just = Just("");

tag = self.nextLabel()
in jlabels.put(element,just);

tlabels.put(element,tag);
just

end
end

end

@Operation nextLabel()

// Get a new label...
self.labelc := labelc + 1;
labelc

end

@Operation ref(element)

// A subsequent occurrence of an element. Generates
// a reference to the label. Note that the label is
// replaced if it is empty. Therefore the original
// occurrence of the label will become the defining
// occurrence...
if jlabels.hasKey(element)
then
let just = jlabels.get(element);

tag = tlabels.get(element)

c©Ceteva 2008.

130 CHAPTER 6. PRETTY PRINTING

in just.setText("#(" + tag + ")=");
Just("#(" + tag + ")")

end
else self.error("Cannot reference " + element)
end

end

end

Every element in XMF is to be pretty-printable, therefore we define a pprint operation
on Element that uses the dispatcher to translate the receiver into a document element
and then uses the pretty-printing engine to translate the document into a string. The
definition of pprint for Element is as follows:

import Walkers;
import PPrint;

context Element
@Operation pprint()

// Uses defaults defined in PPrint...
self.pprint(PAGEWIDTH,RIBBONWIDTH,PPRINTDEPTH,PPRINTLENGTH)

end

context Element
@Operation pprint(width:Integer,

ribbon:Integer,
depth:Integer,
length:Integer,
linePosition:Integer):String

// Returns a string after pretty-printing the supplied
// value.
let printer = Walkers::PPrint(depth,length) then

doc = printer.dispatch(self,0);
machine = Machine(width,ribbon)

in machine.load(Seq{doc},linePosition);
machine.run();
machine.text()

end
end

Now, Element and appropriate sub-classes of Element must define handlers for the dis-
patcher. Each handler produces a document that describes how to prettily display the

c©Ceteva 2008.

6.5. A DOCUMENT MAPPING 131

element. Here is the handler for Element:

import Doc;

@Handler XCore::Element in PPrint(element,depth,encountered)
// If there is no handler defined for the type of the receiver then
// the toString() operation is used to produce the pretty output...
Just(element.toString())

end;

When a set is pretty-printed, we will try to print out all the elements on a single line. If
they do not fit then the elements are displayed on separate lines.

@Handler XCore::SetOfElement in PPrint(set,depth,encountered)

// Try to print the elements of the set on a single line.
// If that fails then indent and print the elements on
// separate lines.

// Sets do not have state therefore we can ignore encountered...

let seq = set->asSeq then
// Get the documents for each of the elements, truncate to the
// current value of length if necessary...
docs = seq->take(length.min(seq->size))

->collect(e | self.dispatch(e,depth+1)) then
// Add a comma after each of the documents as a separator...
docs = if docs->isEmpty

then Seq{}
else docs->butLast->collect(d |

Order(d,COMMA)) +
Seq{docs->last}

end then
// The single line option..
singleLine = docs->iterate(d l = NOTHING | Order(l,d));
// The separate lines option - add newlines
// after each element (and comma)...
nestedLine =

Indent(2,docs->iterate(d l = Just("") |
Order(l,Order(Newline(),d))))

in
// Record the current level of indentation (newlines will auto-

tab)...

c©Ceteva 2008.

132 CHAPTER 6. PRETTY PRINTING

Mark(
// Record the choice points for cut...
Block(

Order(
// Display the Set{ token...
SET,
Order(
// Try a single line, and fail to separate lines if

necessary...
Alt(singleLine,nestedLine),
// However we get here, accept the output and throw away

any
// choice points up to the recent Block...
Cut(
// If we truncated then print out ’...’ ...
Just(if seq->size <> docs->size

then ",...}"
else "}"
end))))))

end
end;

c©Ceteva 2008.

CHAPTER 7

TEAM WORKING

Superlanguages are often used to process structured data in flexible ways. The fea-
tures provided by superlanguages, such as pattern matching, make it easy to process
structured data. In addition, superlanguages are meta-aware and can reason about in-
formation in terms of its type. This chapter shows how XMF can be used to process
data that represents information from different teams and how the high-level features
can process the information to detect inconsistencies in the data.

Modelling can be used to address large-scale business problems, where teams of indi-
viduals collaborate to produce different parts of a model. Team working raises the issue
of model management: managing different versions of a model and merging different
versions into a single coherent whole. Each team works independently on their version
of the model. The different versions must be compared for consistency. Inconsisten-
cies are identified and can be offered up for conflict resolution. Once the versions are
consistent then the approach allows them to be merged into a single model.

The approach uses a meta-description of modelling data and therefore does not de-
pend on the language that has been used for modelling. This is attractive because model
comparison engines can be constructed once and then used throughout an organisation.

7.1. Overview

Systems that support team working, such as CVS and SVN provide functionality that
is shown in figure 7.1. A root system is modified independently by two or more teams.
The modifications are referred to as deltas leading to two or more new versions.

Once satisfied that their independent versions are OK, the teams want to merge. To
do this the versions must be compared for inconsistencies which must be resolved. In-
consistencies may occur because each team has modified an element in the root in a
different way. Resolution may involve one team changing their version so that it is
consistent with the other or may involve both teams removing the conflicting parts.

c©Ceteva 2008.

134 CHAPTER 7. TEAM WORKING

Figure 7.1.: Overview Of Teamworking

Once the conflicts have been resolved, the versions can be merged to provide a new
baseline of the system. This process can be performed any number of times and allows
multiple teams to work concurrently on a large system.

Conventional technologies for team working, such as CVS and SVN, work with files.
They compare the contents of the files on a character-and-line basis. Conflicts arise
when two versions of the same file have differing changes at the same position.

Modelling technologies have a similar requirement to team working as a file-content
based approach. It is worth comparing the basic features of the technologies, since the
key aspects are similar whilst the implementation details are different. When comparing
files the following features are important:

1. Files have unique identifiers: their names within the file-system. These identi-
fiers are used by the team working technology when comparing files for potential
conflicts, and when merging files.

2. Files have an internal structure: the lines and characters. The internal structure of
a file is used by the team working technology when comparing files for potential
conflicts. The internal structure is also used when merging files.

When comparing models similar features arise:

1. Model elements must have unique identifiers. These may be automatically im-
posed by the system or may be supplied by the user. For example, when a model

c©Ceteva 2008.

7.2. OVERVIEW OF THE PROPOSED APPROACH 135

let counter = 0
in @Operation newTag()

counter := counter + 1;
counter

end
end

@Class TaggedObject
@Attribute tag : Integer = newTag() (?,!) end

end

Figure 7.2.: A Class for Uniquely Tagging Instances

element is created it may be tagged with the unique combination of the user’s de-
tails and the current time and date. Alternatively, a naming scheme within the
model may be used to uniquely identify elements. In practice it may be necessary
to use a combination of system and user supplied identifiers.

2. Models have internal structure. At the meta-level, all model elements are just ob-
jects with named slots. Conflicts arise when the same slot of a uniquely tagged ob-
ject is changed by both development teams. Also, when merging models, changes
to different slots of the same object can be merged providing that it is uniquely
tagged.

For the purposes of this technical note the tags will be automatically generated for
model elements. Figure 7.2 shows a class TaggedObject whose instances are uniquely
tagged through the use of an auxiliary operation newTag with local state ’counter’.

Example elements in this technical note are taken from the model shown in figure
7.3. As noted above, model elements are just objects. Provided that they are uniquely
tagged and the structure of the data is known, model-based team working technology
can be applied to any model. The example data forms binary trees where the elements
are all uniquely tagged and the leaves of the tree have arbitrary data elements attached
to them.

7.2. Overview of the Proposed Approach

Figure 7.4 shows an overview of the proposed tool support for team working. Both
teams produce a new version from the root. The root and version are compared and pro-
duce deltas. Applying the delta to the root produces the version. The root can be sliced

c©Ceteva 2008.

136 CHAPTER 7. TEAM WORKING

Figure 7.3.: A Model of Binary Trees

Figure 7.4.: Overview of Teamworking Implementation

c©Ceteva 2008.

7.3. THE DELTA MACHINE 137

Figure 7.5.: The Delta Machine

with respect to the delta to produce just those model elements that have changed. Two
slices can be compared to see if the changes are compatible; any incompatible changes
are produced as inconsistencies.

If the two versions produce inconsistencies then they must be rationalized. An incon-
sistency involves an element from each version and the slot that has been modified. An
inconsistency is rationalized when one of the modifications (or both) is removed from
the corresponding delta. Once removed, the process is performed again, producing
fewer inconsistencies.

The rationalization process continues until no inconsistencies arise. In this case the
deltas are independent and can be performed in any order to produce a final merged
model.

7.3. The Delta Machine

Teamworking produces two or more versions based on a shared root. Each version
adds new elements and makes modifications to the root. Large parts of the root will be
left unchanged and can be ignored when the versions are compared and merged. It is

c©Ceteva 2008.

138 CHAPTER 7. TEAM WORKING

therefore useful to be able to isolate the changes or deltas that have been applied by each
team to the shared root. This section describes a language and its execution engine used
to model deltas.

Model elements are uniquely tagged objects. An object consists of slots; each slot has
a name and a value. A value is either atomic (such as an integer or a string) or is an
object. Models are arranged as graphs where the nodes in the graph are values and
the edges are slots. A model-graph may have cycles, i.e. an object can refer directly or
indirectly to itself.

A delta is a modification to a model. A delta can change a slot value. The new value
may be atomic, may introduce a reference to an existing object or may create a com-
pletely new object. Imagine a machine that takes as input a model and a delta and runs
the delta producing a new model. The delta machine is shown in figure 7.5. A delta is a
sequence of instructions, the machine is defined by a class called Update.

The delta machine execution engine is defined in figure 7.6. The machine has a stack,
used to hold for intermediate results and the model being updated. The machine also
has a table associating the tags in the model with the model elements, used to move
elements around the model. To run the machine, the root model element is pushed
onto the stack, the table is populated with all associations in the model and sequence of
instructions is loaded onto the machine.

The machine executes by case analysis on the instructions. Each instruction is popped
from the instruction stack and performed by the operation run1. Case (1) pushes an
atomic value v onto the stack. Case (2) pops the value at the head of the stack. Case (3)
expects an object at the head of the stack and pushes the value of slot n onto the stack.
Case (4) expects a value above an object on the stack. The value is popped and the slot
named n is updated. Case (5) pushes an existing element in the model (held in the table)
onto the stack. Case (6) creates a new object of type c with tag i and pushes it onto the
stack.

Figure 7.7 shows a tree before and after modification. The delta machine instructions
that perform the change are as follows:

Dot(left)
Dot(data)
Pop()
Push(E)
Set(data)
Set(left)
Dot(right)
Dot(data)
Pop()
Push(D)
Set(data)
Set(right)

c©Ceteva 2008.

7.3. THE DELTA MACHINE 139

@Operation run1(instr)
@Case instr of

(1) Push(v) do
stack.push(v)

end
(2) Pop() do

stack.pop()
end

(3) Dot(n) do
stack.push(stack.top().get(n))

end
(4) Set(n) do

stack.top().set(n,stack.pop())
end

(5) Ref(c,i) do
stack.push(table.get(i))

end
(6) New(c,i) do

let o = c()
in o.setTag(i);

table.put(i,o);
stack.push(o)

end
end
else self.error("Unknown instr: " + instr.toString())

end
end

Figure 7.6.: The Delta Machine Interpreter

c©Ceteva 2008.

140 CHAPTER 7. TEAM WORKING

(a) Tree Before Update

(b) Tree After Update

Figure 7.7.: Tree Update

c©Ceteva 2008.

7.4. MODEL COMPARISON 141

The delta machine program above runs by navigating from the root using the Dot in-
structions. Each slot is referenced, its value is pushed and then the slot is set. The delta
machine program is produced by a model comparator as described in the next section.
The instructions can be optimized by omitting redundant navigations:

Dot(left)
Push(E)
Set(data)
Set(left)
Dot(right)
Push(D)
Set(data)
Set(right)

7.4. Model Comparison

Teamworking involves a root model and two or more versions. Given a root and a ver-
sion, a delta is a machine program that is produced by comparing the root and version.
The result is a machine program that captures exactly the steps necessary to transform
the root into the version. This section describes a model comparator that is used to
produce a delta.

Consider the models shown in figure 7.7. Suppose that the before model is the root
and the after model is a version produced in a team working scenario. What steps are
necessary to produce the delta that transforms the root into the increment?

Starting with the root element of both models, compare the objects. They both have
the same tag and therefore at this stage no changes have taken place. Now compare
slots from each object. Start with the left slot: traverse the slot, emit a Dot instruction,
compare the values found there, and emit a Set instruction. At this stage the delta is:

Dot(left),...,Set(left),...

The values are both Leaf objects with the same tag. Therefore, compare the data slot
values: emit a Dot and a Set as before:

Dot(left),Dot(data),...,Set(data),Set(left),...

When the data slot values are compared, it is found that the value has changed to E.
Therefore emit a Pop instruction and Push the new value:

c©Ceteva 2008.

142 CHAPTER 7. TEAM WORKING

@Operation compareObjects(new,old,oldDB,compared)
if tag(new) = tag(old)
then
if compared.hasKey(tag(new))
then Seq{}
else

compared.put(tag(new),tag(old));
compareSlots(slots(new),slots(old),oldDB,compared)

end
elseif oldDB.hasKey(tag(new))
then
let oldSlots = slots(oldDB.get(tag(new)))
in Seq{Pop(),Ref(new.of(),tag(new))} +

compareSlots(slots(new),oldSlots,oldDB,compared)
end

else Seq{Pop()} + newObject(new,oldDB,compared)
end

end

Figure 7.8.: Object Comparison

c©Ceteva 2008.

7.4. MODEL COMPARISON 143

@Operation compareSlots(newSlots,oldSlots,oldDB,compared)
if newSlots->isEmpty
then Seq{}
else

let newSlot = newSlots->head then
name = slotName(newSlot)

in @Find(oldSlot,oldSlots)
when slotName(oldSlot) = name
do let newSlots = newSlots->tail;

oldSlots = oldSlots->excluding(oldSlot)
in compareSlot(newSlot,oldSlot,oldDB,compared) +

compareSlots(newSlots,oldSlots,oldDB,compared)
end

end
end

end

Figure 7.9.: Slot Comparison

Dot(left),Dot(data),Pop(),Push(E),Set(data),Set(left),...

If this is repeated for the right slot then the complete delta is produced as shown in the
previous section.

Figure 7.8 shows the operation which is the entry point for the object comparison. The
four arguments are: the new object (initially the root element of the new version); the
old object (initially the root element of the root model) ; a table (oldDB) associating tags
with elements from the root model; and, a table (compared) that records comparisons
as they are performed so that the any comparison happens once (otherwise cycles in the
model would lead to cycles in the comparator).

The second part of the operation shown in figure 7.8 has not been covered by the
running example. If the tags of the new and old objects are not the same then this
means that the old object has been replaced with the new object. In this case, either
some existing element from the root model has been linked into the model, or the new
model contains a completely new object. This is determined using the oldDB which
contains associations for all the tags in the root model.

Slot comparison is defined by the operation in figure 7.9. The compareSlots operation
simply runs through the new slots, finding old slots with the same name and comparing
them using the operation compareSlot.

c©Ceteva 2008.

144 CHAPTER 7. TEAM WORKING

@Operation compareSlot(newSlot,oldSlot,oldDB,compared)
let name = slotName(newSlot);

newValue = slotValue(newSlot);
oldValue = slotValue(oldSlot)

in if newValue.isReallyKindOf(Object)
then
Seq{DotObj(name,value.of(),tag(newValue))} +

compareObjects(newValue,oldValue,oldDB,compared) +
Seq{Set(name)}

else
Seq{Dot(name)} +

compareValues(value,oldValue,oldDB,compared) +
Seq{Set(name)}

end
end

end

Figure 7.10.: Comparing Slot Values

Comparing slot values is shown in figure 7.10. This operation produces the Dot ... Set
machine instructions. For reasons to be explained later, if the slot values are objects then
a DotObj instruction is used.

Figure 7.11 shows the instructions produced when a slot in the new model contains
an object that does not match that in the old model. If the object has been encountered
before then a Ref instruction is produced (the machine will push a reference to an ex-
isting object). Otherwise, the new object has not been seen before, it is recorded and
newSlots is used to process the slot of the new object.

Checking new slots is defined in figure 7.12. Each of the new sots is inspected in
turn; the job of newSlots is to emit instructions that will initialize the slots of the newly
created object at the head of the machine stack.

If the slot value is an object that also occurs in the old model then a Ref instruction is
emitted and the two objects are compared. Otherwise, if the value is an object it must be
new, so further instructions are produced by newObject. Otherwise the value must be
atomic so it is simply pushed. In all cases the last instruction emitted is a Set instruction
to modify the newly created object at the head of the machine stack.

Figure 7.13 shows a slightly more complex tree modification in which a new branch
is created and shared between two different places in the tree. Comparison of the before
and after states produces the following delta:

c©Ceteva 2008.

7.5. MODEL SLICES 145

@Operation newObject(new,oldDB,compared)
if compared.hasKey(tag(new))
then Seq{Ref(new.of(),tag(new))}
else

compared.put(tag(new),null);
Seq{New(new.of(),tag(new))} +

newSlots(slots(new),oldDB,compared)
end

end

Figure 7.11.: Creation of New Object

Dot(left)
New(<Class Branch>,14)
New(<Class Leaf>,12)
Push(G)
Set(data)
Set(left)
New(<Class Leaf>,13)
Push(H)
Set(data)
Set(right)
Set(right)
Set(left)
Ref(<Class Branch>,14)
Set(right)

7.5. Model Slices

Teamworking involves a root model and two or more version models. The version
models are produced by independent teams making modifications to the same root
model. Many of the elements in the root models may be unchanged in the increments.
When comparing the two versions for consistency it is useful to be able to ignore the
unchanged elements. A model that describes just the changed elements in a version is
called a slice. Two slices can be easily compared since they just contain the elements that
have changed. Two models are inconsistent if the same elements have been changed

c©Ceteva 2008.

146 CHAPTER 7. TEAM WORKING

@Operation newSlots(slots,oldDB,compared)
if slots->isEmpty
then Seq{}
else

let slot = slots->head
in newSlot(slot,oldDB,compared) +

newSlots(slots->tail,oldDB,compared)
end

end
end

@Operation newSlot(slot,oldDB,compared)
if value.isReallyKindOf(Object)
then

if oldDB.hasKey(tag(slotValue(slot)))
then
Seq{Ref(slotValue(slot).of(),tag(slotValue(slot)))} +
compareObjects(new,oldDB.get(tag(new)),oldDB,compared)

else newObject(slotValue(slot),oldDB,compared)
end

else Seq{Push(slotValue(slot))}
end +
Seq{Set(slotName(slot))}

end

Figure 7.12.: Checking Slots of a New Object

c©Ceteva 2008.

7.5. MODEL SLICES 147

(a) Tree Before Update

(b) Tree After Update

Figure 7.13.: A More Complex Tree Modification

c©Ceteva 2008.

148 CHAPTER 7. TEAM WORKING

in different ways; slices make consistency checking easy. This section describes how to
slice a model with respect to a delta.

Figure 7.14 shows a model used to represent a slice. Running a delta against a model
using the slicing engine produces a slice; the engine is like the delta machine except that
it interprets the delta instructions differently. To slice a model with respect to a delta,
the model is pushed onto the slicing engine, the delta is loaded onto the machine and
the instructions are performed. The result at the head of the stack is an instance of the
sliced object model; only those things that are changed are contained in the slice.

Figure 7.15 defines the interpreter that performs a single delta instruction on the slic-
ing engine. If the delta performs an update then the slicing engine records this in the
data model that is constructed at the head of the stack. It is driven by case analysis
on the instruction. Case (1) occurs when an object slot is being referenced. In an opti-
mized delta, slots that contain objects are the only slots that need referencing (otherwise
they are being updated with atomic data and do not need referencing). If the slot value
has been seen before then the object data is in the table, otherwise an object is created
(recording that the object is going to be updated) and recorded in the table.

Case (2) records the creation of a new object. Case (3) records the update of a slot; the
value is at the head of the stack. Case (4) pushes some atomic data onto the stack ready
for updating a slot.

Figure 7.16 shows a slice created by running the delta against the starting snapshot
shown in figure 7.7. It clearly shows that the changed slots are the data of the left hand
branch and the data of the right hand branch.

7.6. Conflicts

Given two slices that arise from the same root model, it remains to compare them to see
if the changes are compatible. Since slices just contain the changes that have occurred,
conflict detection involves determining whether the same slots have changed differently
in the two slices. This section defines an operation that takes two slices and produces a
set of conflicts; a conflict records two objects, a slot and two incompatible values.

Figure 7.17 shows the main conflict detection operation. It is supplied with two ob-
jects and two tables associating tags with objects. The common slot names are calculated
and used to check for any slot value conflicts (using conflictingSlots). Slots in slice o1
that do not occur in o2 cannot conflict, and vice versa. However, such slots may contain
values that conflict so these are checked using slotChanges.

Figure 7.18 shows the definition of an operation that calculates slot conflicts arising
from an object o1. If any of the slots contain an object then either the object is referenced
in the other slice via db2, or not. If the other slice contains a reference to the object then
objectConflicts is used to calculate any conflicts, otherwise slot changes is used on each
slot of v.

Figure 7.19 calculates conflicts between slots with the same name. If the values are the
same and the values are objects then the slots are compared. If the values are different

c©Ceteva 2008.

7.6. CONFLICTS 149

(a) Sliced Elements

(b) Slicing Engine

Figure 7.14.: Model Slice

c©Ceteva 2008.

150 CHAPTER 7. TEAM WORKING

@Operation slice(instr)
@Case instr of

(1) DotObj(n,c,i) do
if table.hasKey(i)
then stack.push(table.get(i))
else

let o = Object(c,i)
in table.put(i,o);

stack.push(o)
end

end
end

(2) New(c,i) do
let o = Object(c,i)
in stack.push(o);

table.put(i,o)
end

end
(3) Set(n) do

let value = stack.pop() then
obj = stack.top();
slot = Slot(n,value)

in obj.addToSlots(slot)
end

end
(4) Push(v) do

stack.push(Atom(v))
end
else self.error("Unknown instr: " + instr.toString())

end
end

Figure 7.15.: The Slicing Interpreter

c©Ceteva 2008.

7.6. CONFLICTS 151

Figure 7.16.: Model Slice

c©Ceteva 2008.

152 CHAPTER 7. TEAM WORKING

@Operation objectConflicts(o1,db1,o2,db2)
let S1 = o1.slots().name;

S2 = o2.slots().name then
common = S1->intersection(S2);
C1 = slotChanges(o1,S1 - S2,db1,db2);
C2 = slotChanges(o2,S2 - S1,db1,db2) then
Conflicts = C1 + C2

in @For name in common do
let s1 = o1.slot(name);

s2 = o2.slot(name) then
C = conflictingSlots(o1,s1,db1,o2,s2,db2)

in Conflicts := Conflicts + C
end

end;
Conflicts

end
end

Figure 7.17.: Object Conflicts

c©Ceteva 2008.

7.6. CONFLICTS 153

@Operation slotChanges(o1,slots,db1,db2)
let C = Set{};

v = s.value()
in @For name in slots do

let s = o1.slot(name)
in if v.isKindOf(Object)

then
if db2.hasKey(v.id())
then

let o2 = db2.get(v.id())
in C := C + objectConflicts(v,db1,o2,db2)
end

else C := C + slotChanges(v,slots(v),db1,db2)
end

end
end;
C

end
end

end

Figure 7.18.: Slot Changes

c©Ceteva 2008.

154 CHAPTER 7. TEAM WORKING

@Operation conflictingSlots(o1,s1,db1,o2,s2,db2)
let n = s1.name();

v1 = s1.value();
v2 = s2.value()

in if v1.equal(v2)
then

if v1.isKindOf(Object)
then objectConflicts(v1,db1,v2,db2)
else Set{}
end

else Set{Conflict(n,o1,v1,o2,v2)}
end

end

Figure 7.19.: Conflicting Slots

then a conflict is produced. Otherwise the values are the same and no conflict arises.

c©Ceteva 2008.

Part III.

Language Engineering

c©Ceteva 2008.

CHAPTER 8

DOMAIN SPECIFIC LANGUAGES

Software Frameworks and Domain Specific Languages are related in the sense that both
aim to support the construction of specific types of software application. In many ways
you can view the essence of a DSL as a software framework. Superlanguages must
support he definition of DSLs through language extension facilities.

This chapter describes the relationship between a Software Framework and a DSL. It
gives an example of a DSL based on that of Martin Fowler described here [Fow05].

8.1. Software Frameworks and Domain Specific
Languages

Domain Specific Languages are increasingly popular as a technology and an approach
to constructing applications. The idea is that a specific aspect of an application can be
supported through the design and use of a language. The language may be used to
configure parts of the application, to describe the GUI, to encode processing rules etc.
Proponents of DSLs claim that, since the language abstracts away from the implemen-
tation details of the code otherwise necessary to achieve the same effect, the overall
quality of the process and product is increased. The aspect supported by the DSL is
easier to implement, the development is less error prone (since the language is specifi-
cally designed to support the task), the debugging and maintenance of the application
is easier.

A Software Framework is a collection of classes that capture a design pattern or an
aspect of an application. The key feature of a software framework is that it represents a
reusable component where some of the features of the framework are fixed in structure
and behaviour and some are left open to extension by the user. A framework differs
from a more traditional software library in that the user provides the framework with
the implementation of services that the framework calls. In a software library this works

c©Ceteva 2008.

158 CHAPTER 8. DOMAIN SPECIFIC LANGUAGES

the other way round where the user calls services provided by the library (the so-called
Inversion of Control). There are many examples of large scale general purpose software
frameworks, such as Eclipse, but many packages provided for OO languages can be
thought of as frameworks. Frameworks are also an architectural design pattern.

Domain specific languages usually (but not always) do something. To achieve this,
the language has a semantics (a description of how it should operate) and some means
of implementing the semantics - a DSL engine. The DSL engine is supplied with a
representation of programs in the DSL. This program-as-data is then processed by the
engine to achieve the required task.

A DSL engine is exactly the same as a Software Framework. The engine expects to
be supplied with an implementation of a specific collection of services implemented as
data. The task of the framework is to perform some standard, albeit domain specific,
processing which uses the services supplied as DSL programs when appropriate.

It is a fact of Software Engineering that anything you can implement in program code,
you can also implement in data with an associated engine that processes the data. This
is exactly the relationship between Software Frameworks and DSLs. But why would
you implement the services as data rather than implement them directly as program
code (for example as an implementation of an abstract method or an interface)?

The answer is fundamentally an issue of quality. By pushing more of the framework
services into data, the framework increases its level of control - nothing can escape!
Therefore the more the framework matures, the higher the quality of the applications
that use it. Data can also be processed in many ways: checking it, repairing it, translat-
ing it. This level of control over the services is not available to frameworks that represent
their information as program code.

There are differences between a Software Framework and a DSL. Typically, a DSL will
have some concrete syntax which is used to express the data to be supplied to the engine.
Frameworks do not tend to have specific language syntax - they use a general purpose
programming language to construct the services. However, these differences are not as
significant as they might appear at first.

A DSL is usually implemented in terms of a parser that translates the concrete syn-
tax into the abstract syntax (the data structures) and then an engine that processes the
abstract syntax (the framework). The essence of the DSL is the abstract syntax and the
engine - after all that is the part which is doing all the real work. The concrete syntax
just makes the DSL easy to use and there may be many concrete syntaxes for the same
DSL. Therefore, the essence of a DSL is the data and the engine - a Software Framework!

The rest of this document drills into the view of DSL as Software Framework. We use
a simple example application to illustrate some of the points. The example (in addition
to the link to Software Frameworks) is taken from a talk given by Martin Fowler at
JAOO 06.

c©Ceteva 2008.

8.2. EXAMPLE APPLICATION 159

8.2. Example Application

Suppose we have data that contains information about customer events. A customer
event might be a service call including the name of the customer, the type of the call
(failed hardware, billing query etc) and the date. This information may be provided in
real-time or in a log file as text:

SVCLFOWLER 10101MS0120050313
SVCLHOHPE 10201DX0320050315
SVCLTWO x10301MRP220050329
USGE10301TWO x50214..7050329

The requirement is to have a Java program that processes the information. Obviously
the first task of the Java application is to split the input strings up in terms of their fields.
If there are a very small number of types of call then it would be OK to just write the
appropriate string manipulation calls on the input.

However, this will rapidly become tedious and error prone as the number of different
types of call grows. This leads to the idea of replacing the repeating patterns in the code
with a software framework. Service plug-points in the framework allow the developer
to register different types of call and the associated string manipulation that goes with
it. This might be done using an abstract class:

framework.registerStrategy(new ReaderStrategy() {

public boolean recognizes(String s) {
return hasPrefix(s,"SVCL");

}

public Record extract(String s) {
return new ServiceCall(s.subString(4,18),...);

}
});

The framework is responsible for processing the raw input text and calling the various
registered recognizers in order to process the lines.

In developing a framework such as that shown above, we observe that the services are
written in Java. There is little the framework can do to analyze each registered service in
order to make sure that it is legal. Rules governing a well-formed service might include
checking that the indices used to chop up the string are non-conflicting and that the
prefix labels for all recognizers are unique.

c©Ceteva 2008.

160 CHAPTER 8. DOMAIN SPECIFIC LANGUAGES

In addition to the quality control objections raised above, the service-as-code imple-
mentation uses a great deal of Java which is standard for each of the recognizers. Essen-
tially, there is a pattern to defining a recognizer where only the prefix name, the type of
the record and indices change. It would be much better from the point of quality to be
able to abstract away from this implementation noise.

It would be much better to represent the framework services as data. This is because
the framework can perform analysis on the well-formedness of the services and also
because data representations of services provides scope for concrete syntax which will
address the problems that arise from repeating boilerplate code.

Fowler gives a service representation something like the following:

public void ConfigureCallReader(Framework framework) {
framework.registerStrategy(ConfigureServiceCall());
framework.registerStrategy(ConfigureUsage());

}

private ReaderStrategy ConfigureServiceCall() {
ReaderStrategy result = new ReaderStrategy("SVCL",typeof(ServiceCall

));
result.addFieldExtractor(4,18,"CustomerName"));
result.addFieldExtractor(19,23,"CustomerID"));
result.addFieldExtractor(24,27,"CalltypeCode"));
result.addFieldExtractor(28,35,"DataOfCallString"));

}

private ReaderStrategy ConfigureUsage() {
ReaderStrategy result = new ReaderStrategy("USGE",typeof(Usage));
result.addFieldExtractor(4,8,"CustomerID"));
result.addFieldExtractor(9,22,"CustomerName"));
result.addFieldExtractor(30,30,"Cycle"));
result.addFieldExtractor(31,36,"ReadDate"));

}

Notice how everything about the service is now represented as data that is supplied to
the framework. The framework has a model of this language (the classes for Reader-
Strategy, FieldExtractor etc) that it can manipulate the ’program’ against. Therefore it
can perform analysis on the registered services and translate them into something else
if it wishes. Neither of these activities would be possible of the services were supplied
as code.

Finally, note that the services-as-data example above involves further boilerplate code.
In some ways this is worse than the boilerplate in the services-as-code example since
there is more of it! Furthermore, we are dealing with two languages here: Java is used
to represent a language for reader strategies. It is therefore difficult to see the wood for

c©Ceteva 2008.

8.2. EXAMPLE APPLICATION 161

the trees.
The solution is to design a concrete syntax for the call language and to have a parser

translate the concrete syntax into instances of the abstract syntax (classes ReaderStrat-
egy, FieldExtractor etc). There can be any number of concrete syntaxes for a language.
Fowler proposes both XML and a bespoke syntax.

XML is popular because it is standard. Whilst XML is widely used for configuring
tools and frameworks, it is in many ways a lowest common denominator and lacks the
variety of syntax features that is the essential reason for using a concrete syntax in the
first place. Having said that, XML might be attractive because it can be processed easily
by several tools. A suitable representation for the DSL described above is:

<ReaderConfiguration>
<Mapping code=’SVCL’ targetClass=’ServiceCall’>
<Field name=’CustomerName’ startPos=’4’ endPos=’18’/>
...

</Mapping>
<Mapping code=’USGE’ targetClass=’Usage’>
...

</Mapping>
<Strategy>

<ref name=’SVCL’/>
...

</Strategy>
</ReaderConfiguration>

A bespoke syntax for a DSL should be designed for readability and therefore to aid
development and maintainability. Here is a possible syntax:

@Reader CallReader

map(SVCL,ServiceCall)
4-18:CustomerName
19-23:CustomerID
24-27:CallTypeCode
28-35:DataOfCallString

end

map(USGE,Usage)
4-8:CustomerID
9-22:CustomerName
30-30:Cycle
31-36:ReadDate

end

c©Ceteva 2008.

162 CHAPTER 8. DOMAIN SPECIFIC LANGUAGES

Figure 8.1.: DSL Abstract Syntax

do
ServiceCall
Usage

end

8.3. Abstract Syntax

Our DSL requires an abstract syntax to represent the information that is supplied to
the framework. Figure 8.1 shows classes and relationships defined by the abstract syn-
tax.The rest of this section discusses how these classes are used in the definition of a
reader.

Named is an abstract class that defines a name of type string. A Reader is a container
of mappings and a strategy. The mappings define the tagged and formatted fields that
are received as input from the log file. Each Mapping is named and collectively they
define a library available to the containing reader reader. The Strategy is used to refer-
ence mapping by name. The strategy is used to register mappings with the framework.
In a more sophisticated language, the strategy could impose constraints on how the
mappings are used, for example by requiring them to be used in a particular order.

c©Ceteva 2008.

8.4. IMPLEMENTATION 163

8.4. Implementation

There are a number of ways in which we can implement the relationship between the
abstract syntax defined in the previous section and the software framework. Two stan-
dard ways of achieving this are: to embed the language into the same platform as the
framework; or, to translate the syntax onto a different platform. There is no real reason
why you would do one rather than the other. In many cases it will be determined by
other factors, for example when the DSL implementation technology is different from
the framework technology.

8.4.1. Embedded

Suppose that the technology platform used to represent the DSL is the same as that
for the framework. In this case we may choose to dynamically link the syntax to the
framework which will allow new reader definitions to be added while the framework
is running. Suppose that the framework is implemented in XMF and that the class
Framework implements a register operation:

context Framework
@Operation register(reader:Reader)
reader.strategy().register(self,reader)

end

context Strategy
@Operation register(framework:Framework,reader:Reader)

@For ref in mappings do
ref.register(framework,reader)

end
end

context MappingRef
@Operation register(framework:Framework,reader:Reader)

reader.getMapping(name).register(framework)
end

context Mapping
@Operation register(framework:Framework)

let r:ReaderStrategy = ReaderStrategy(tag,typeof(name)
in framework.registerStrategy(r);

@For field in fields do
field.register(r)

end
end

end

c©Ceteva 2008.

164 CHAPTER 8. DOMAIN SPECIFIC LANGUAGES

context Field
@Operation register(readerStrategy:ReaderStrategy)
readerStrategy.addFieldExtractor(startPos,endPos,name)

end

8.4.2. Translational

If the DSL is implemented in a different technology to the DSL or if you wish to im-
pose a phase distinction between the definition-time (processing the DSL) and run-time
(running the framework) then you may choose the translate the DSL to the source code
of a target language. To do this you need to write an exported that transforms instances
of the abstract syntax classes to text. Again, support hat the abstract syntax classes are
implemented in XMF and that we want to attach an operation to Reader that produces
the Java source code defined above.

XMF provides code templates that can be used to embed the source code of one lan-
guage in that of another. This is defined in the package CodeGen. CodeGen allows you
to define a class which will be used to represent code templates in terms of drop and
lift delimiters. If we define a code generation template called X using CodeGen then we
might decide to use drop delimiters < and > and to use lift delimiters [and]. Then we
can write code templates of the form:

// We are writing in the language of the
// surrounding context (e.g. XOCL)
@X
// Write syntax in language X
<
// In here we have reverted back to XOCL
[

// Now we are back with language X again.
<

// Back to XOCL
>
// Finished with XOCL, back to X

]
// Finished with X back to XOCL

>
// Finished with XOCL back to X

end
// The end of the code template - back to XOCL.

c©Ceteva 2008.

8.5. CONCRETE SYNTAX 165

The ability to switch back and forth between languages is very powerful. The templates
observe variable scoping. The only special thing to be aware of is that within a template
you must use ’e nd’ instead of ’end’ since the only time the keyword ’end’ can be used
is at the very end of the template.

Here is the code generator for Reader. The operation uses the template for Java:

context Reader
@Operation toJava(out:OutputChannel)
@Java(out,9)
public void Configure<name>(Framework framework) {
<@Loop ref in strategy.mappings() do

[framework.registerStrategy(Configure<ref.name()>());
]

e_nd>
}

<@Loop mapping in mappings do
private ReaderStrategy Configure<mapping.name()>() {

ReaderStrategy result = new ReaderStrategy("<mapping.tag()>"
,typeof(<mapping.name()>));

<@Loop field in mapping.fields() do
[result.addFieldExtractor(<field.startPos()>,<field.

termPos()>,"<field.name()>"));
]

e_nd>
}

]
e_nd>
end

end

8.5. Concrete Syntax

A DSL may have one or more concrete syntaxes. The syntax provides a way of easily
constructing the service descriptions and a way of easily maintaining them. Typically a
syntax for a DSL would be designed so that it abstracts away from the details of how the
abstract syntax structures are created. The concrete syntax also reduces to 1 the number
of languages that a develop has to deal with. For example, the developer is not using
Java in order to construct programs in another language.

This section shows how two concrete syntaxes can be added on top of the abstract
syntax for the call-data processing language. XMF is used to define the syntaxes in

c©Ceteva 2008.

166 CHAPTER 8. DOMAIN SPECIFIC LANGUAGES

both cases. The first syntax is an embedded language within XOCL, therefore call-data
processing readers can be defined in XOCL code. The second syntax is XML.

8.5.1. Embedded

XMF allows classes to have grammars. The grammar marks the class as a new syntax
construct that can be used as part of XOCL or as a stand-alone language. A new syntax
class C can be used as part of XOCL using the special ’@’ character before the name of
the class:

@C
// Syntax for the new construct here...

end

The syntax construct for new reader definition shown above can be defined as follows:

context Reader
@Grammar
// Start with the syntax rule named Reader...
Reader ::=

// A reader is a name...
n = Name
// ... followed by some mappings...
M = Mapping*
// ... and then a strategy...
s = Strategy
’end’
// The rule creates and returns a new reader...
{ Reader(n,s,M) }.

Mapping ::=
// A mapping is the tag and the name...
’map’ ’(’ t = Name ’,’ n = Name ’)’
// ... followed by some field specifications...
F = Field*
’end’
// This rule creates and returns a new mapping...
{ Mapping(t,n,F) }.
Field ::=

// A field specification is a start and end index
// followed by a record name...
s = Int ’-’ e = Int ’:’ n = Name

{ Field(s,e,n) }.
Strategy ::=

c©Ceteva 2008.

8.5. CONCRETE SYNTAX 167

// A strategy is a sequence of names...
’do’ N = Name*
// Each name is turned into a mapping ref...
{ Strategy(N->collect(n | MappingRef(n))) }.

end

Once the new syntax construct is defined, we can use it anywhere that an XOCL expres-
sion is expected. For example, we can define an operation that returns two readers:

context Root
@Operation test()
let reader1 =

@Reader CallReader
map(SVCL,ServiceCall)

4-18:CustomerName
19-23:CustomerID
24-27:CallTypeCode
28-35:DataOfCallString

end
map(USGE,Usage)

4-8:CustomerID
9-22:CustomerName
30-30:Cycle
31-36:ReadDate

end
do

ServiceCall
Usage

end;
reader2 =

@Reader BankAccountReader
map(DEPOSIT,Deposit)

0-10:Name
11-20:Account
21-30:Amount

end
map(WITHDRAW,Withdraw)

0-10:Name
11-20:Account
21-30:Amount

end
do

Deposit
Withdraw

c©Ceteva 2008.

168 CHAPTER 8. DOMAIN SPECIFIC LANGUAGES

end
in Seq{reader1,reader2}
end

end

8.5.2. XML

An alternative syntax for our language is XML. This is possibly less attractive than the
embedded syntax defined above because the XML concrete syntax is universal and
therefore could be viewed as being the lowest common denominator. In many ways,
XML is in a one-to-one correspondence with the abstract syntax and therefore really
does not add much to the readability of a language. However, there may be other rea-
sons why XML is attractive for the concrete syntax of a language. For example, you may
have other XML-based tools that need access to the reader definitions.

XMF provides many different ways of processing XML documents. A useful ap-
proach is to define XML syntax rules very similar to those defined in the previous sec-
tion. This can be done as follows:

context Reader
@Grammar ReaderXMLGrammar

Reader ::=
// An XML document containing a reader has a root
// element with a ReaderConfiguration tag. The element
// has an attribute called ’name’ and children that
// are described by the Mapping and Strategy rules...
<ReaderConfiguration n=name>

M = Mapping*
s = Strategy

</ReaderConfiguration>
// Once a ReaderConfiguration element has been
// successfully consumed according to the rules,
// A reader is created and returned...
{ Reader(n,s,M) }.

Mapping ::=
<Mapping c=code t=targetClass>

F = Field*
</Mapping>
{ Mapping(c,t,F) }.

Field ::=
<Field n=name s=startPos e=endPos/>
{ Field(n,s,e) }.

Strategy ::=

c©Ceteva 2008.

8.6. CONCLUSION 169

<Strategy>
// The children of a strategy element are all
// elements with tag ’Ref’. Each is processed in
// turn by translating it to a MappingRef and then
// all the children can be references as N...
N = (<Ref n=name/> { MappingRef(n) })*

</Strategy>
{ Strategy(N) }.

end

8.6. Conclusion

This chapter has described the relationship between Software Frameworks and Domain
Specific Languages, noting that DSLs are a special case of frameworks where the ser-
vices are all represented in data. DSLs add an extra dimension to Software Frameworks
by allowing the services to be defined using a specially designed concrete syntax. The
relationship has been described using an example DSL due to Martin Fowler which has
been implemented using XMF.

c©Ceteva 2008.

170 CHAPTER 8. DOMAIN SPECIFIC LANGUAGES

c©Ceteva 2008.

CHAPTER 9

DATA-CENTRIC LANGUAGE
CONSTRUCTS

Superlanguages must provide mechanisms that allow new language constructs to be
defined for representing data. The new constructs must make it easy to represent the
required data structures. This chapter shows how new language constructs can be de-
fined for records and trees.

9.1. Simple Records

This section provides an introduction to the definition of a new language construct.
All aspects of a new construct are covered, but the construct is rather simple since it
supports data records consisting of fields with names and values. The record construct
is an example of an integrated language construct since the field values can be any
language construct supported by XOCL. Since XOCL is itself open-ended, this allows
record field values to be expressed as any language construct including records and
those constructs we have not even thought of yet!

Our requirement is for a database containing records. Each record has a collection
of fields with a name and a value. A database may be filtered by supplying it with a
predicate that expects a record. The result is a new database containing all those fields
that satisfied the predicate.

It is usual to start off with a data definition for the elements that are required. Figure
9.1 shows the contents of a package called Records. A database consists of a set of
records. Each record is a set of fields. Each field has a value that can be of any data type
(since Element is the super-class of everything).

The next step is to define a concrete syntax for the Record construct that will syn-
thesize an expression whose evaluation produces an instance of the class Record. The

c©Ceteva 2008.

172 CHAPTER 9. DATA-CENTRIC LANGUAGE CONSTRUCTS

Figure 9.1.: A Simple Model Of Data Records

complete grammar for Record is defined below, followed by a step-by-step description:

context Record
@Grammar extends OCL::OCL.grammar

Record ::= r = { [| Record() |] } Fieldsˆ(r) ’end’.
Fields(r) ::= r = Fieldˆ(r) FieldTailˆ(r) | { r }.
Field(r) ::= n = Name ’=’ e = Exp {
[| <r>.addToFields(Field(<n.lift()>,<e>)) |]

}.
FieldTail(r) ::= ’,’ Fieldsˆ(r) | { r }.

end

When a syntax construct starts with the token @Record, XMF looks for a grammar as-
sociated with the class Record. If it finds one then the grammar should have a rule with
the name Record; this rule is the starting point for the parse.

The rule named Record defined above, creates an expression named r that will create
a new record when evaluated. The expression r is passed as an argument to the rule
named Fields. Once fields has completed its parse, the keyword ’end’ is expected. If
successful, the value returned by Fields is the result of the parse. So far we have dealt
with the following concrete syntax:

@Record
???

end

The rule Fields deals with the part labelled ??? above. Fields will either recognize
nothing (an empty record) or will recognize a sequence of fields separated by commas.
If there are fields, the rule uses Field followed by FieldTail, otherwise the rule returns
the supplied expression r. Note the repeated use of the variable r in the rule Fields. It is

c©Ceteva 2008.

9.2. TREES 173

used as a formal argument, a modified variable, an actual argument and in the body of
an action.

A field is defined by the rule Field, it is a name n, followed by = followed by an
expression e. If successful, it synthesizes an expression that adds a field to the supplied
record r. So far, the following can be recognized:

@Record
name = "Fred"

end

FieldTail is used to allow more than one field to be recognized. A FieldTail is either a
comma followed by some fields (notice how the record expression is threaded through
so that it is continually built up), or is nothing.

The grammar is complete and the following records can be recognized and the ap-
propriate expressions synthesized:

@Record
name = "Fred",
age = 35

end

which synthesizes the following expression:

Record()
.addToFields(Field("name","Fred"))
.addToFields(Field("age",35))

9.2. Trees

Information often naturally forms a tree structure where each component of information
is related to several children. Think of company structures: responsibilities from CEO
downwards or groupings from the board down. Trees are often used to model physical
entities such as cars where a car consists of a body, an engine, electrical system, interior
etc. and where a body consists of doors, a windscreen etc.

Trees are useful when we want to organise a model in terms of parent-child relation-
ships which may be physical containment or may be logical groupings (think of nested
sets). This section gives an example of a language for expressing trees for classification.

Consider a collection of bank records that are to be classified with respect to awarding

c©Ceteva 2008.

174 CHAPTER 9. DATA-CENTRIC LANGUAGE CONSTRUCTS

Figure 9.2.: Classification Trees

a loan. The first step to awarding the loan is to determine an income threshold. If the
applicant does not have an annual salary of four times the loan amount then the loan is
denied.

The next step is to consider the current debt position of the applicant. If the applicant
has debts of more than 10K then the loan is denied. If they have debts of 5 - 10K then
the loan application is referred otherwise the application might be awarded.

Finally, if the applicant has an account with the bank, then the loan is awarded other-
wise it is referred.

Figure 9.2 shows a simple model of a classification tree. A classifier is a named el-
ement (so that it can be put in name spaces and then referred to from elsewhere). A
classification is a property of some data (for example Award the loan, Deny the loan or
Refer the loan). Finally, a classify, is something that applies a predicate to some data to
determine whether the classification given by the classificationNode applies.

To construct a classification tree, proceed as follows. Start with a classifier node. Its
child nodes, will be classify nodes with disjoint predicates. The child node of a classifier
node will be either a classification or another classifier. Proceed with the tree until all
categories are classified.

The following example shows a classifier for a loan:

@Operation loan(bank,amount)

c©Ceteva 2008.

9.2. TREES 175

@Classifier Loan
@Classify(applicant)
applicant.lookup("salary") * 4 > amount
@Classifier
@Classify(applicant)
applicant.lookup("debt") >= 10000
@Classification Deny end

end
@Classify(applicant)

applicant.lookup("debt") < 10000 and
applicant.lookup("debt") >= 5000
@Classification Refer end

end
@Classify(applicant)

applicant.lookup("debt") < 5000
@Classifier

@Classify(applicant)
applicant.lookup("bank") = bank
@Classification Award end

end
@Classify(applicant)

applicant.lookup("bank") <> bank
@Classification Refer end

end
end

end
end

end
@Classify(applicant)
applicant.lookup("salary") * 4 <= amount
@Classification Deny end

end
end

end

The operation loan accepts a bank and a loan amount. It returns a classifier for the
amount. The classifier first checks that the applicant has an adequate annual salary for
the required loan. If this condition is not met then the application is denied. Otherwise,
the amount of debt is analysed. There are three outcomes: the first denies the applica-
tion; the second refers the application and the third analyses the bank of the applicant.
If the bank of the applicant is the same as that receiving the application then the load is
awarded otherwise the application is referred.

The operation loan may be applied to any number of banks and loan amounts. In
each case it returns a different classifier.

c©Ceteva 2008.

176 CHAPTER 9. DATA-CENTRIC LANGUAGE CONSTRUCTS

The classification language is defined by adding a grammar to each of the appropriate
classes in the classification model. Each class gets its own grammar so that the classifica-
tion language is not fixed. The classification language is integrated into XOCL and the
components of the language are extensible (new types of classifier node can be defined
later and they can be integrated with no changes to the existing components).

Classification is the simplest grammar:

@Grammar
Classification ::= n = Name ’end’ {
[| Classification(<n.lift()>) |]

}.
end

since it recognizes a name and synthesizes an instance of the appropriate class. Classify,
involves capturing XOCL expressions and is defined as follows:

@Grammar extends OCL::OCL.grammar
Classify ::= ’(’ n = Name ’)’ e = Exp c = Exp ’end’ {

[| Classify(@Operation(<n>) <e> end,<c>) |]
}.

end

Notice that Classify synthesizes an operation definition whose argument name is sup-
plied in the classify definition. This is a standard way the classify definition. This is a
standard way of capturing executable code (in this case e) within synthesized elements.
The body of the operation, e, may refer to any variables that are in scope. The argu-
ment n is deliberately placed in scope and allows the body to refer to data that will be
supplied by the instance of Classify.

Classification involves sequences of XOCL expressions (an arbitrary number of child
classification nodes); it is defined as follows:

@Grammar extends OCL::OCL.grammar
Classifier ::= n = OptName c = Classifications ’end’ {

[| Classifier(<n.lift()>,<c>) |]
}.
Classifications ::= e = Exp cs = Classifications {

[| <cs> ->including(<e>) |]
} | { [| Set{} |] }.
OptName ::= Name | { "anon" }.

end

c©Ceteva 2008.

9.2. TREES 177

The key aspect of the definition above is how the set of child classification nodes is
constructed using the Classifications rule. This recognizes nothing, in which case it
synthesizes an expression that creates the empty set; or, it recognizes an expression e
(a child node definition) followed by more classifications cs and then synthesizes an
expression that adds e to cs. This is an example of a recursive rule1

with a base case that creates an empty set.

• Types and simple type checking (Dynamic - type check the classifiers. vs Static)

• Rendering configuration data.

1The rule is right recursive because the recursive use of Classifications occurs after some input must be
consumed. XMF does not support left recursion where Classifications could occur on the left since
this would lead to Classifications calling itself without consuming any input.

c©Ceteva 2008.

178 CHAPTER 9. DATA-CENTRIC LANGUAGE CONSTRUCTS

c©Ceteva 2008.

CHAPTER 10

GRAPHS

Unfortunately, information is not always conveniently organised in a tree structure. A
tree structure does not make allowances for relationships that span the tree or where
cycles occur in the data. For example, what happens when a company employee fills
two roles within the company in different departments? It would be appropriate for
the employee to occur underneath both departments in the tree; the employee is shared
between the departments or equivalently there are two different paths from the root of
the tree to the employee.

Trees do not represent sharing and multiple paths very well. There are strategies; for
example, XML is a tree structured data format where labels are used to mark up the
elements in order to represent sharing. When data representation requires sharing, it is
usually because the data naturally forms a graph. Graphs can be encoded in trees (and
other forms of data representation), but if the data requires a graph then it is probably
best to use one and be done with it.

Figure 10.1 shows a model of graphs. A graph consists of a set of nodes and a set of
edges. Each node has a label and a sequence of data. The label is used to identify the
node and the data is used by applications for whatever purpose they require.

Each edge has a label and data, and also has a source and target node. Edges go
between nodes and are directed. The diagram shown in figure 10.1 is itself an example
of a graph where the nodes are displayed as class boxes and the edges are shown as
attribute edges. Notice that the node labelled Element is shared (parent-wise) between
Edge and Node; equivalently there are two paths from the rot node (labelled Graph)
to the node labelled Element: Graph, Edge, Element and Graph, Node, Element. Such
sharing is difficult to represent using trees.

Graphs are a very rich form of data representation. There is a wealth of material
written about graphs and how to process them. Here are some useful operations on
graphs defined in XOCL:

c©Ceteva 2008.

180 CHAPTER 10. GRAPHS

Figure 10.1.: Graphs

context Graph
@Operation nodeFor(label:String):Node

@Find(node,nodes)
when node.label() = label
else null

end
end

The operation nodeFor returns the node with the supplied label, or null if no such node
exists. The operation edgesFrom returns the set of edges from a given node:

context Graph
@Operation edgesFrom(n:Node):Set(Edge)

edges->select(e | e.source() = n)
end

Graphs are generally useful and therefore it is appropriate to have a general purpose
language construct to define a graph. As mentioned above, each use of a graph structure
will attach different amounts of data to the nodes and labels. The data is used to support
the application specific processing of the graph. Therefore, a general purpose language
construct for graph construction should support:

1. Arbitrary node and edge data.

c©Ceteva 2008.

181

2. Plug-points for the sub-classes of Graph, Node and Edge that are used to represent
the graph.

Here are two examples of different graph applications:

@Graph(Routes,Location,Road)
London()

M1(200) -> Leeds
A1(50) -> Cambridge

end

@Graph(Plan,Task,Dependency)
Start("January")

-> Contractors
-> Plans

Contractors("March")
Plans("April")

end

The first graph is represented as an instance of the class Routes where the nodes and
edges are instances of the classes Location and Road. These classes are sub-classes of
Graph, Node and Edge respectively. Locations have no data; the three locations have
labels London, Leeds and Cambridge.

An edge is listed below the source node. In the first example graph, there are two
edges with labels M1 and A1. The edges have data 100 and 50 (being the distance in
miles) and the label of the edge target is given after -¿.

The second example is a plan graph. The nodes have data that represents the month
at which the task is completed. Edges have no labels or data (they just represent depen-
dencies).

The proposed structure for a graph definition has plug-points for the graph, node and
edge classes and a body consisting of a sequence of node definitions. A node definition
n is a node label, followed by node data in parentheses followed by a series of edge
definitions for which the source of the node is n. An edge definition is an optional edge
label, optional edge data in parentheses, an arrow and then the label of the target node.
Here is an example:

@Graph(G,N,E)
n1(a,b,c)

e1(d) -> n2
e2() -> n3

n2()
e3() -> n1

n3()

c©Ceteva 2008.

182 CHAPTER 10. GRAPHS

When the parser encounters a graph definition it will synthesize program code that,
when evaluated, produces the required graph. Are there any rules that need to be ob-
served when this synthesis takes place? Given the model of graphs in figure 10.1, a
graph contains nodes and edges, and edges link nodes. Here is a possible program that
produces the graph above

(1) let g = G()
(2) in g.addToNodes(N("n1",Seq{a,b,c}));

g.addToNodes(N("n2"));
(3) g.addToNodes(N("n3"));
(4) g.addToEdges(E("e1",Seq{d},g.nodeFor("n1"),g.nodeFor("n2")));

g.addToEdges(E("e2",g.nodeFor("n1"),g.nodeFor("n3")));
(5) g.addToEdges(E("e3",g.nodeFor("n2"),g.nodeFor("n1")));
(6) g

end

Line (1) creates the graph using the supplied class G (a sub-class of Graph). Each node
must be added first in lines (2-3) so that edges can then be created between the nodes
in lines (4-5). Note that the supplied classes N and E are used to create the nodes and
edges. Finally the graph is returned in line (6).

The rules for graph construction are: create the graph, add the nodes and then add
the edges. Unfortunately, the graph definition construct does not follow this pattern; it
interleaves node and edge definitions. A strategy is required to untangle this interleav-
ing.

One way to address the interleaving is to have the parser synthesize an intermediate
graph definition that is processes using two or more passes. This is perfectly respectable,
and often a sensible way forward when the required processing is fairly complex.

In this case, the processing is not that complex, so another strategy is used. To see
how this works, a few definitions are required. An edge constructor expects a graph and
an edge class; it adds some edges to the supplied graph. A node constructor expects a
graph, a node class, an edge class and a collection of edge constructors; it adds some
nodes to the supplied graph and then uses the edge constructor to add some edges.

Node definitions are synthesized into node constructors and edge definitions into
edge constructors. The trick is to build up the edge constructors so that they are per-
formed after all the node constructors. Since the edge constructors are supplied to the
node constructors, this should be easy. Using the running example from above:

n3 =
@Operation(nodeConstructor)
@Operation(g,N,E,edgeConstructor)

g.addToNodes(N("n3"));
nodeConstructor(g,N,E,edgeConstructor)

c©Ceteva 2008.

183

end
end

The node definition for n3 is transformed into an operation that is supplied with a node
constructor and returns a node constructor. This construction allows n3 to be linked
with other node constructors without knowing any details – i.e. n3 can be defined in
isolation.

The node constructor for n2 is similar, but involves the addition of an edge construc-
tor:

n2 =
@Operation(nodeConstructor)
@Operation(g,N,E,edgeConstructor)

let e3 =
@Operation(g,E)

g.addToEdges(E("e3",g.nodeFor("n2"),g.nodeFor("n1")))
end

in g.addToNodes(N("n2"));
nodeConstructor(g,N,E,addEdges(edgeConstructor,e3))

end
end

end

Note how the edge constructor for e3 is added to the supplied edge constructor (using
the yet-to-be-defined addEdges) when the supplied node constructor is activated. This
is the key to deferring the construction of edges until all the nodes have been defined.

What should addEdges do? It is used to link all the edge constructors together so that
they all get activated. It takes two edge constructors and returns an edge constructor:

@Operation addEdges(ec1,ec2)
@Operation(g,E)

ec1(g,E);
ec2(g,E)

end
end

The node constructor for n1 is similar, but two edge constructors are required:

n1 =
@Operation(nodeConstructor)
@Operation(g,N,E,edgeConstructor)

c©Ceteva 2008.

184 CHAPTER 10. GRAPHS

let e1 =
@Operation(g,E)

g.addToEdges(E("e1",g.nodeFor("n1")Seq{d},g.nodeFor("n2")))
end;

e2 =
@Operation(g,E)

g.addToEdges(E("e1",g.nodeFor("n1"),g.nodeFor("n3")))
end then

edges = addEdges(e1,e2)
in g.addToNodes(N("n2"));

nodeConstructor(g,N,E,addEdges(edgeConstructor,edges))
end

end
end

The complete graph can now be defined by linking the node constructors together and
supplying a graph:

let nc = addNodes(n1,addNodes(n2,addNodes(n3,noNodes)))
in nc(G(),N,E,@Operation(g,E) g end)
end

Each of the node constructors are linked via an operation addNodes. The left-hand ar-
gument of addNodes is an operation that maps a node constructor to a node constructor.
The right-hand argument is a node constructor. It is easier to see how this works from
the definition:

@Operation addNodes(nodeCnstrCnstr,nodeCnstr2)
@Operation(g,N,E,edgeConstructor)

let nodeCnstr1 = nodeCnstrCnstr(nodeCnstr2)
in nodeCnstr1(g,N,E,edgeConstructor)
end

end
end

The mechanism used by addNodes is an example of a typical pattern that threads se-
quences of operations together. It allows the node constructor encoded in nodeCnstrC-
nstr to occur before that encoded in nodeCnstr2 while also allowing the edge construc-
tors produced by the first to be handed on to the second (because they are to be deferred
until all the nodes are added to the graph).

There are two types of constructor, each of which can occur repeatedly in a sequence:

c©Ceteva 2008.

185

nodes and edges. When this occurs, it is usual to have some way to encode an empty
sequence; in this case there are noNodes and noEdges. Both of these are constructors:

@Operation noNodes(g,N,E,edgeConstuctor)
edgeConstructor(g,E)

end

@Operation noEdges(g,E)
null

end

noNodes is a node constructor that starts edge construction. Therefore, noNodes should
be the right-most node constructor in a sequence that is combined using addNodes.
noEdges does nothing, and can occur anywhere in a sequence.

The grammar for graph definition synthesizes node and edge constructors combined
using addNodes and addEdge. When an empty sequence is encountered, the grammar
synthesizes noNodes and noEdges respectively. The grammar is defined below:

@Grammar extends OCL::OCL.grammar
Data ::= ’(’ es = CommaSepExps ’)’ { SetExp("Seq",es) }.
Edges(s) ::= e = Edgeˆ(s) es = Edgesˆ(s)

{ [| addEdges(<e>,<es>) |] }
| { [| noEdges |] }.
Edge(s) ::= l = Label d = OptData ’->’ t = Label { [|
@Operation(g,E)
g.addToEdges(E(<l>,<d>,g.nodeFor(<s>),g.nodeFor(<t>)))

end
|] }.
Graph ::= ’(’ mkGraph = Exp ’,’ mkNode = Exp ’,’ mkEdge = Exp’)’
GraphBodyˆ(mkGraph,mkNode,mkEdge).

GraphBody(mkGraph,mkNode,mkEdge) ::= ns = Nodes ’end’ { [|
<ns>(<mkGraph>(),<mkNode>,<mkEdge>,@Operation(g,E) g end)

|] }.
Label ::= NameExp | { "".lift() }.
NameExp ::= n = Name { n.lift() }.
Nodes ::= n = Node ns = Nodes

{ [| addNodes(<n>,<ns>) |] }
| { [| noNodes |] }.
Node ::= l = Label d = Data e = Edgesˆ(l) { [|
@Operation(Cn)
@Operation(g,N,E,Ce)

g.addToNodes(N(<l>,<d>));
Cn(g,N,E,addEdges(<e>,Ce))

c©Ceteva 2008.

186 CHAPTER 10. GRAPHS

end
end

|] }.
OptData ::= Data | { [| Seq{} |] }.

end

c©Ceteva 2008.

CHAPTER 11

COLLECTIONS AND
COMPREHENSIONS

It is usual for data to form collections: employees; customer transactions; connected
clients. When modelling collections of data it is very convenient to have language
structures that make it easy to create, transform and filter the collections. This chap-
ter describes how such a language construct can be defined.

A typical example of data collections occurs in a relational database. Figure 11.1
shows a portion of a MS Access database containing three tables relating to a pain man-
ufacturing company. The Customers table shows all the customers who have bought
paint from the company; each customer has a unique id, a name, an address and a
running tally of the number of orders that have been placed.

The Products table shows all the types of paint that the company sells along with the
current price per unit. Finally, the Orders table shows the orders that have been placed,
linking customers, products and amount.

Database tables contain records expressed as rows. Each table is modelled as a class
and the records modelled as instances of the class grouped together as a set. The dia-
gram in figure 11.2 shows three classes corresponding to the three database tables above.

The model above has chosen to represent the database tables directly: each table uses
the id field as a primary key and each class has modelled this directly. Unlike database
records, objects have a unique identity, so this is not strictly necessary. It is useful to
retain the id field to show how database style queries and operations are supported by
the collection language construct below.

The database records are modelled as instances of the classes as shown below:

Root::Customers := Set{
Customer("C1","Blue Co.","Blue Lane, London",100),
Customer("C2","Green Co.","Green Lane, Glasgow",55),

c©Ceteva 2008.

188 CHAPTER 11. COLLECTIONS AND COMPREHENSIONS

Figure 11.1.: A Customer Order Database

Figure 11.2.: Database Tables as Classes

c©Ceteva 2008.

189

Customer("C3","Black Co.","Black Lane, Dublin",311),
Customer("C4","Brown Co.","Brown Lane, Bristol",45),
Customer("C5","Red Co.","Red Lane, Berlin",44),
Customer("C6","Yellow Co.","Yellow Lane, Paris",312),
Customer("C7","Orange Co.","Orange Lane, Birmingham",122)

};
Root::Products := Set{

Product("P1","White",16),
Product("P2","Magnolia",14),
Product("P3","Sky Blue",17),
Product("P4","Green",16),
Product("P5","Yellow",15),
Product("P6","Dark Blue",14),
Product("P7","Grey",12)

};
Root::Orders := Set{
Order("O1","20/01/2005","C1","P1",100),
Order("O2","13/03/2004","C2","P1",33),
Order("O3","25/25/2006","C3","P2",123),
Order("O4","10/07/2006","C1","P5",23),
Order("O5","11/07/2006","C2","P7",15)

};

Each table is modelled as a global variable whose value is a set of objects. New records
can be added by updating the variable:

@Operation newId(E:Set(ElementWithId)):String
let i = 0
in @While (not E->isEmpty) and

(not E->exists(e | e.id = "X" + i)) do
i := i + 1

end;
i

end
end
@Operation addCustomer(name:String,address:String)
let id = newId(Customers) then

newCustomer = Customer(id,name,address,0)
in Root::Customers := Customers->including(newCustomer)
end

end

The operation newId is defined to automatically calculate a new identifier for a col-

c©Ceteva 2008.

190 CHAPTER 11. COLLECTIONS AND COMPREHENSIONS

lection of elements. The addCustomer operation modifies the collection of customers
by adding a newly constructed customer. Removing customers can be achieved by a
similar update to the global variable.

A query on one or more database tables involves performing a test on each of the
records in the table and producing a new table as a result. In the model, a table is
represented as a collection of elements. The new language construct Cmp (short for
comprehension) allows us to do a query as follows:

(1) @Operation ordersGreaterThan(x:Integer):Seq(Customer)
(2) @Cmp customer where
(3) customer <- Customers,
(4) ? customer.orders > x

end
end

The operation ordersGreaterThan (1) takes an integer x and returns a collection of cus-
tomers. Line (2) introduces the query as a Cmp expression that returns all those cus-
tomers (2) where each customer is an element of the Customers table (3) and for which
the orders of each customer are grater than x (4).

A Cmp expression has the following general form:

@Cmp body where clauses end

A clause is either a binding (name ¡- collection) or a filter (? test). The Cmp expres-
sion performs each clause in turn. A binding selects each element from the collection in
turn and, for each selection, evaluates the rest of the Cmp expression. A filter evaluates
the test (referencing any names bound from its left); if the test succeeds then evalua-
tion proceeds, otherwise evaluation retuns to the last selection and tried with another
element.

Consider the definition of ordersGreaterThan again. Line (3) causes each successive
customer to be selected from the Customers table. Line 4 allows only those customers to
proceed whose orders value passes the test. Finally, a sequence is returned containing
all those customers (2) that get through the test.

The following is an example of a query that involves multiple binding and filters:

@Operation customersWhoBuy(product:String):Seq(String)
@Cmp c.name where

c <- Customers,
o <- Orders,
p <- Products,
? p.name = product,

c©Ceteva 2008.

191

? o.customer = c.id,
? o.product = p.id

end
end

The operation customersWhoBuy is supplied with the name of a product and returns a
sequence of customer names for those customers who have bought the supplied prod-
uct.

A typical operation that occurs in a database is a join where two different tables are
joined on two fields with the same value. The records that have been defined so far
have been instances of specific classes. A join does not necessary produce a record
with a meaningful type (although it might); section 9.1 defines a language construct for
representing arbitrary records. The following expression performs a join on the three
tables producing a new table of records showing the amount of each product for each
customer:

@Cmp
@Record
customerName = c.name,
productName = p.name,
amount = o.amount

end
where

c <- Customers,
p <- Products,
o <- Orders,
? o.customer = c.id,
? o.product = p.id

end

A Cmp expression is defined in terms of a package of syntax classes shown in figure
11.3. The class Cmp is defined as sugar which means that it must define an operation
called desugar that turns an instance of Cmp into a Performable thing (usually an in-
stance of OCL classes).

A Cmp has a performable body and a sequence of clauses. Each clause is either a
binding or a filer. A Cmp is desugared as follows:

@Operation desugar()
@Case self of

(1) Cmp(body,Seq{}) do
[| Seq{<body>} |]

end

c©Ceteva 2008.

192 CHAPTER 11. COLLECTIONS AND COMPREHENSIONS

Figure 11.3.: Comprehensions

(2) Cmp(body,Seq{Bind(n,v)}) do
[| <v> ->asSeq ->collect(<n> | <body>) |]

end
(3) Cmp(body,Seq{Bind(n,v)|clauses}) do

[| <Cmp(Cmp(body,clauses),Seq{Bind(n,v)})>.flatten() |]
end

(4) Cmp(body,Seq{Filter(e)|clauses}) do
[| if <e> then <Cmp(body,clauses)> else Seq{} end |]

end
end

end

The translation of a Cmp expression into basic XOCL is defined by case analysis. Case
(1) occurs when there are no clauses. In this case the body is transformed into a single
element sequence. Case (2) occurs when there is a single binding. In this case the value
of the binding produces a collection and the body is performed for each element of the
collection producing a sequence.

Case (3) occurs when there is a binding and some clauses. In this case the following
equivalence is used:

@Cmp b where @Cmp
x <- S, is equivalent to @Cmp b where Cs end

c©Ceteva 2008.

11.1. TRANSFORMING COMPREHENSIONS 193

Cs where
end x <- S

end->flatten

Case (4) tests the expression e. If the result is true then the Cmp expression proceeds
otherwise it produces no elements. This has the effect of filtering out the current vari-
ables that have been bound so far.

Finally, the Cmp expression has a grammar that synthesizes an instance of Cmp that,
since it is an instance of Sugar, calls desugar automatically:

@Grammar extends OCL::OCL.grammar
Cmp ::= body = Exp cs = Clauses ’end’ { Cmp(body,cs) }.
Clauses ::= Where | { Seq{} }.
Clause ::= Bind | Filter.
Bind ::= n = Name ’<-’ e = Exp { Bind(n,e) }.
Filter ::= ’?’ e = Exp { Filter(e) }.
Where ::= ’where’ c = Clause cs = (’,’ Clause)* { Seq{c|cs} }

end

Applications for business intelligence and KPIs.

11.1. Transforming Comprehensions

The previous section has shown how a comprehension expression can be transformed
into an XOCL expression, thereby enriching XOCL with a new language construct.
Comprehensions have often been proposed as a construct suitable for performing database
queries since they abstract away from the details of how the queries are performed and
how the result sets are built up.

A comprehension can be viewed as a query over a database if the tables are viewed
as sets of records. In this way the queries are performed by selecting records, filtering
them with predicates and joining them back together. However, whilst this is an at-
tractive way to construct database queries, it does not solve the problems of how the
queries are performed and how the comprehensions can be embedded into a standard
programming language.

This section sketches out how comprehensions can be viewed as database queries by
showing how to desugar a comprehension into a standard imperative language that
provides a database interface. The translation is deliberately simple; once it has been
described the conclusion outlines how the translation can be made more realistic.

Instead of the Cmp::desugar operation defined in the previous section, a new oper-
ation is defined. The operation is called toSQL and takes two arguments: the an ex-
pression to be transformed into an imperative program and a variable. At run-time, the

c©Ceteva 2008.

194 CHAPTER 11. COLLECTIONS AND COMPREHENSIONS

variable will be bound to a set of values; after performing the comprehension program,
the set will contain the result.

The toSQL operation proceeds by case analysis on the expression, each case is ad-
dressed in turn. The first case deals with the situation where there are no qualifiers:

@Operation toSQL(cmp,var)
@Case cmp of
Cmp(body,Seq{}) do
[| let S = Set{}

in <toSQL(body,[| S |])>;
<var> := <var> ->including(S)

end |]
end

The resulting program code creates a new set S and then uses this as the container for
the body of the comprehension. The resulting set S is added to the supplied set (value
of var). The next case deals with a single filter:

Cmp(body,Seq{Filter(p)}) do
[| if <p>

then <self.toSQL(Cmp(body,Seq{}),var)>
else <var> := <var> ->including(Set{})
end |]

end

If the predicate expression p is true then the body of the comprehension is performed
with the supplied var as the target set. Otherwise the empty set is added to the target
var. The next case deals with the situation where there are multiple qualifiers:

Cmp(body,Seq{q|qs}) do
[| <self.toSQL(Cmp(Cmp(body,qs),Seq{q}),var)>;

<var> := <var> ->flatten;
<var>

|]
end

The same transformation as before is applied to the comprehension whereby the multi-
ple qualifiers are reduces by nesting the comprehension. In this case the transformation
on the nested comprehension will produce an imperative program that updates the sup-
plied set. Therefore, after the supplied set is updated it is flattened before returning it.
Finally, the case where variables are bound is dealt with as follows:

c©Ceteva 2008.

11.1. TRANSFORMING COMPREHENSIONS 195

Cmp(body,Seq{Bind(name,OCL::Var(tableName))}) do
[| let S = DB.SQL("SELECT * FROM " + <tableName.lift()>);

P = Set{}
in @For <name> in S do

<self.toSQL(body,[| P |])>
end;
<var> := <var> ->including(P)

end |]
end

end
end

Here it is assumed that all bindings select their elements from named database tables. In
this case the result set S is constructed by calling a builtin procedure DB.SQL that takes
an SQL query as a string. A for-loop is used to iterate through the result set and the
body of the loop is generated by translating the body of the comprehension. Notice that
the set supplied to the body translation is P - the new set created as part of the binding.
The final action is to add the set P to the supplied set var.

let S = DB.SQL("SELECT * FROM " + "V");
P = Set{}

in @For x in S do
let S = DB.SQL("SELECT * FROM " + "W");

P = Set{}
in @For y in S do

if x < y
then

let S = Set{}
in S := S->including(x);

P := P->including(S)
end

else
P := P->including(Set{})

end
end;
P := P->including(P)

end;
P := P->flatten

end;
S := S->including(P)

end;
S := S->flatten

c©Ceteva 2008.

196 CHAPTER 11. COLLECTIONS AND COMPREHENSIONS

c©Ceteva 2008.

CHAPTER 12

LANGUAGE EMULATION

Superlanguages provide support for syntax extension and for weaving new language
constructs into the base superlanguage. In addition they must allow new external lan-
guages to be defined so that applications can be constructed by combining components
that are written in mixtures of languages.

In addition to inventing new language constructs that capture programming idioms
and that provide domain specific abstractions, a superlanguage should allow constructs
from existing conventional languages to be used. Ultimately, a superlanguage should
provide support for complete emulation of an existing conventional language or some
sub-set of it.

A superlanguage must be able to assimilate conventional languages because most
projects do not start with a clean sheet. Existing code must be weaved into a new
application and a superlanguage should be able to accommodate legacy code whilst
providing scope for DSLs and new language features.

This chapter describes how XMF can be used to support features from existing con-
ventional languages.

12.1. MicroJava

XMF is shipped with an implementation of Java. The definition is found in the package
Languages::MicroJava. MicroJava is a sub-set of the Java language that supports classes,
fields and methods. The MicroJava grammar supports most Java features and is a useful
starting point for designing Java-like languages.

The MicroJava language does not support direct execution of programs. There is no
MicroJava compiler or interpreter. MicroJava is intended as a starting point for exper-
imentation with Java or as a mechanism for exporting Java code from XMF. MicroJava
supports:

c©Ceteva 2008.

198 CHAPTER 12. LANGUAGE EMULATION

• A grammar that translates MicroJava concrete syntax into an instance of the Mi-
croJava model.

• A pretty-printer that exports a textual representation of MicroJava source code (a
Java export mechanism).

• A translation from MicroJava abstract syntax to XOCL abstract syntax.

Therefore, to execute MicroJava you can: pretty-print it and use a Java compiler on the
result; translate it to XOCL and execute that; write your own MicroJava compiler or
interpreter.

The grammar for MicroJava is defined by the class Java in the Languages::MicroJava
package. The following shows an example MicroJava program defined in a standard
XMF source file:

parserImport XOCL;
parserImport Languages::MicroJava;

context Root

@Java

public class Printer {

private int copies;
private String string;

public Test(int copies,String string) {
}

private boolean printCount() {
while(copies > 0) {
this.write(string);

this.copies = this.copies - 1;
}
return true;

}

// Embedded XOCL

with JOCL {
@Operation write(string:String)
format(stdout,"˜S˜%",Seq{string})

end
}

c©Ceteva 2008.

12.2. LISP 199

}

end

The @Java construct will cause the MicroJava program text to be parsed, an instance of
the MicroJava abstract syntax model to be created and then the translator to XOCL to
be performed. The result of the parse is XOCL abstract syntax which is then compiled
or interpreted by the XOCL execution system as normal.

You could use MicroJava to experiment with interesting language extensions to Java.
Each new construct can be added to the MicroJava abstract syntax model. If you add
a toXOCL operation to the new abstract syntax class then the new MicroJava construct
can be executed via a translation to XOCL. See the source code for MicroJava for more
details about how the toXOCL operation works for each abstract syntax class.

Notice in the MicroJava program shown above the use of a non-Java construct: with.
The with keyword is followed by the name of a class (that must be in-scope) that de-
fines (via a grammar) a language. The source code between { and } in the with is
written in the language.

The with construct allows arbitrary languages to be nested in MicroJava. In the ex-
ample above, XOCL has been nested in MicroJava using the following class definition
for JOCL:

context Root
@Class JOCL
@Grammar extends OCL::OCL.grammar

// A grammar invoked using @X must be defined
// by a class named X and have a clause named X.
// The JOCL clause just proxies the SimpleExp
// clause defined by OCL...
JOCL ::= SimpleExp.

end
end

12.2. Lisp

Lisp is an interesting language because its syntax is very unconventional. Lisp has a
very small meta-syntax (just lists and atoms). The language is built around this syntax
in two ways:

• By adding builtin operators. The more orthogonal builtin operators are added to
a Lisp engine, the more applications can be built.

c©Ceteva 2008.

200 CHAPTER 12. LANGUAGE EMULATION

• By adding special forms. A special form is a Lisp list that is recognized by the Lisp
interpreter or compiler and treated specially.

This section provides a complete mini-Lisp system including a package of builtin oper-
ators that you can extend. Execution of the Lisp system is performed by a translation
to XOCL. The translator is called from the grammar rules - so there is no abstract syn-
tax representation of Lisp in this example (but you could add one in if you wanted to
manipulate the Lisp expressions). The translator, shows how Lisp special forms are
handled.

Here is an example Lisp program:

parserImport XOCL;

import LispOps;

context Root
@Operation testFact(n:Integer):Integer
// Define a factorial function and supply the
// integer n...
@Lisp
(let ((fact (Y (lambda(fact)

(lambda(n)
(if (eql n 0)

1
(mult n (fact (sub n 1)))))))))

(fact n))
end

end

The builtin operators are defined in the package LispOps. A Lisp program is executed
in the current scope so that Lisp variables are the same as XOCL variables.

Note that recursive definitions are handled using a Y operator that is defined in
LispOps. It is beyond the scope of this book to go into the detailed semantics of Lisp
and Y - you’ll just have to trust us that Y is the fixed point operator for which:

((Y f) x) = x

The grammar for Lisp parses the text and construct a sequence containing the Lisp pro-
gram. The program is then passed to an operator eval that is defined in the package
LispAux which translates the sequence to XOCL code. The grammar is defined below:

parserImport XOCL;

c©Ceteva 2008.

12.2. LISP 201

parserImport Parser::BNF;

import OCL;
import LispAux;

context Root
@Class Lisp
@Grammar
Lisp ::= e = Exp ’end’ { eval(e) }.

Exp ::=
Atom // A basic syntax element.

| List // A sequence of expressions.
| Const // A (back)quoted element.
| Comma. // An unquoted element.

Atom ::=
Int // Integers.

| Str // Strings.
| Float // Floats
| n = Name // Names are turned into variables for syntax.

{ Var(n) }.

List ::= ’(’ es = Exp* ListTailˆ(es).

ListTail(es) ::=
// A list tail may be a ’.’ followed by an element then ’)’
// or may just be a ’)’...
’.’ e = Exp ’)’
{ es->butLast + Seq{es->last | e} }

| ’)’ { es }.

Const ::=
// A constant is a quoted expression. Use backquote
// which allows comma to be used to unquote within
// the scope of a constant...
’‘’ e = Exp
{ Seq{Var("BackQuote"),e} }.

Comma ::=
// A comma can be used within the scope of a
// backquote to unquote the next expression...
’,’ e = Exp
{ Seq{Var("Comma"),e} }.

c©Ceteva 2008.

202 CHAPTER 12. LANGUAGE EMULATION

end
end

The auxiliary definition eval and quote perform opposite translation duties. The
eval operation translates Lisp source code that is to be evaluated into XOCL code.
The quote operation translates Lisp source code that is protected by a quote (actually
a backquote character here which allows comma to be used). The function of these two
operations is given below:

parserImport XOCL;
parserImport Parser::BNF;

import OCL;

context Root
@Package LispAux
// Operations that are used by the Lisp language when
// translating the parsed syntax into XOCL...
@Operation eval(e):Performable

// This operation takes a single value produced by the Lisp
// parser and produces an XOCL performable element...
@TypeCase(e)
// Atoms all produce the XOCL equivalent syntax...
Integer do

e.lift()
end
Float do
e.lift()

end
Var do
// Variables are evaluated in the surrounding lexical
// environment...
e

end
String do

e.lift()
end
Seq(Element) do
// Sequences may start with special names which are
// evaluated specially...
@Case e of

Seq{Var("BackQuote"),e} do
// Suppress the evaluation of the expression e in the
// XOCL code that is produced...

c©Ceteva 2008.

12.2. LISP 203

quote(e)
end
Seq{Var("Comma"),e} do
// Only legal within the scope of a backquote and
// therefore can only be processed by the quote
// operation defined below...
self.error("Comma found without backquote")

end
Seq{Var("lambda"),args,body} do

// Create a lexical closure....
lambda(args,eval(body))

end
Seq{Var("if"),test,e1,e2} do

// Choose which of the two expressions e1 and e2
// to evaluate based on the result of the test...
[| if <eval(test)> then <eval(e1)> else <eval(e2)> end |

]
end
Seq{Var("let"),bindings,body} do

// A let-expression introduces identifier bindings into
// the current lexical environment. This can be viewed
// as simple sugar for the equivalent lambda-application

...
let formals = bindings->collect(b | b->head);

actuals = bindings->collect(b | b->at(1))
in eval(Seq{Seq{Var("lambda"),formals,body} | actuals})
end

end
Seq{op | args} do
// Evaluate the argument expressions...
[| let A = <SetExp("Seq",args->collect(arg | eval(arg)))

>
in

// Then invoke the operation...
<eval(op)>.invoke(self,A)

end
|]

end
Seq{} do

// nil is self evaluating...
[| Seq{} |]

end
end

end
end

c©Ceteva 2008.

204 CHAPTER 12. LANGUAGE EMULATION

end

@Operation quote(e):Performable
// This operation takes a singlelisp expression produced by the
// grammar and returns an XOCL expression that protects the
// evaluation (similar to lifting the value represented by the
// expression)...
@Case e of
Seq{Var("Comma"),e} do

// Comma undoes the effect of backquote...
eval(e)

end
Seq{h | t} do
// Create a pair...
[| Seq{ <quote(h)> | <quote(t)> } |]

end
Seq{} do

// The empty sequence (nil in Lisp)...
[| Seq{} |]

end
Var(n) do
// Protected names are just strings (symbols in Lisp)...
n.lift()

end
else
// Otherwise just return an XOCL expression
// that recreates the atomic value...
e.lift()

end
end

@Operation lambda(A,body:Performable):Operation
// Returns an XOCL operation expression that
// expects the arguments represented vy the sequence
// A...
Operation("lambda",args(A),NamedType(),body)

end

@Operation args(A)
// Turn a sequence of OCL::Var into a sequence of
// OCL::Varp (because operation expressions in XOCL use
// Varp as the class of simple named arguments)...
@Case A of
Seq{} do

A

c©Ceteva 2008.

12.2. LISP 205

end
Seq{Var(n) | A} do
Seq{Varp(n) | args(A)}

end
end

end
end

You can see from the definition of eval that the translation must handle a number of
special forms. These are all sequences whose head is a variable with a special name.
These are:

lambda A function. This must create a closure and can be directly translated to an
XOCL operation.

Quote A protected sequence. The rest of the sequence is handed to quote which
translates the elements to the equivalent XOCL constant builtin expressions. Note
that quote must detect the occurrence of comma which un-quotes the a Lisp ex-
pression. Unquoting is handled by calling eval again.

if An is-expression just translates directly onto an XOCL if-expression.

let A let-expression performs parallel binding. This can be achieved by a translation
to a Lisp expression that creates local variables by applying a lambda-function.

The builtin operators of Lisp are all defined in the LispOps package which is imported
for the scope of any Lisp program. You can add any operation definitions you like into
this package. Here are some examples including the infamous Y operator:

parserImport XOCL;
parserImport Parser::BNF;

import OCL;

context Root
@Package LispOps
// A package of basic Lisp operations. Think of these
// as the builtin operations and make sure you import
// them before referencing them...
@Operation add():Integer

// Adding up integers...
args->iterate(arg n = 0 | n + arg)

end

@Operation mult(.args:Seq(Integer)):Integer

c©Ceteva 2008.

206 CHAPTER 12. LANGUAGE EMULATION

// Multiplying integers...
args->iterate(arg n = 1 | n * arg)

end

@Operation sub(x:Integer,y:Integer):Integer
// Subtracting...
x - y

end

@Operation list(.args):Seq(Element)
// Creating a list from some elements...
args

end

@Operation Y(f)
// The infamous Y combinator for finding a fixed point...
let op = @Operation(x) f(@Operation(.y) (x(x)).invoke(null,y)

end) end
in op(op)
end

end

@Operation eql(x,y):Boolean
// Comparing two elements...
x = y

end
end

c©Ceteva 2008.

CHAPTER 13

BUSINESS RULES

Businesses are run in terms of various types of information. This includes resource
information, marketing strategies, customer information, etc. A key part of the infor-
mation underlying a business are the policies by which the business operates. Policies
are the guidelines by which all components of the business are co-ordinated. Policies
are used to determine what happens when various events take place within the busi-
ness. Events include day-to-day occurrences such as new customer contact, and also
include longer term strategic events such as a company merger or implementing a new
product.

Often the rules that drive a business are left implicit within the structure of the or-
ganisation. Some of the rules may be written down in company literature (such as an
employee handbook) and others may simply be in the heads of individuals. There is sig-
nificant advantage in producing a complete collection of the rules that drive a business.
Once the rules are brought together in a uniform representation they can be analysed in
terms of their impact on the business.

Representing the rules as executable models has added benefit: the rules can be used
to simulate the business in different scenarios. By executing the business in terms of
its models, it is possible to try out different strategies and to get a feel for the effect of
changes to how the business operates. Furthermore, it may be possible to run certain
parts of the business directly from the executable business rules; changes to the strategy
can then be implemented directly by changing the rules.

Typically, business rule systems are event driven. The rules monitor business data;
changes to the business data are detected as events by the rules which in turn fire actions
that update the business data. For example, rules may monitor an invoice database; an
event is raised when an invoice is received from a customer causing the rule to fire and
an email to the appropriate sales manager is sent.

A rules engine must manage large collections of rules that monitor events across a
very large amount of business information. A naive implementation of a business rules

c©Ceteva 2008.

208 CHAPTER 13. BUSINESS RULES

Figure 13.1.: A Sales Order Information Model

engine might run all rules against all the business data each time an event occurs. This
is far too expensive because of the speed of change in many businesses and the combi-
nations of data that must be checked.

Fortunately, the problem has been solved by a special type of matching algorithm
called the Rete Algorithm that uses caching of partial matches to produce huge reduc-
tions in the amount of retesting required by a rule engine each time the data changes.
This chapter describes how to develop language constructs for business rules and to
implement a business rule engine using XOCL.

13.1. Example Business Rules

Consider the sales order information model shown in figure 13.1. This is part of a larger
information model that is used to represent the state of a company at any moment in
time. Customers initially contact the company with a sales order for a named product. If
the customer does not already exist then they are added to the customers database. The
order is then analysed to determine whether it can be met. An order can only be pro-
cessed if the company has sufficient amount of the required product. If the order cannot
be met then it is placed in the rejected orders database and the customer is informed by
letter.

The order may also be rejected if the customer pays late. The company has a pol-
icy that requires payment for an order to be received within 30 days of the order be-
ing received. If the customer fail to satisfy this policy then they become marked and
all subsequent orders are rejected until appropriate representations are made to senior
management.

Once an order has been received and accepted, the product is packaged up and sent

c©Ceteva 2008.

13.1. EXAMPLE BUSINESS RULES 209

to the customer. On dispatching the goods, the order is moved to the completed orders
database.

The order system described above includes an number of policies that can be ex-
pressed using business rules. Business rules are grouped into business aspects, the sales
order processing system is such an aspect:

@RuleBase OrderProcessing
// Business Rules...

end

Each major policy that is used to drive the business is expressed as a rule. The following
rule describes what happens when an order is received:

context OrderProcessing
(1) @Rule ReceiveOrder
(2) Company[c]
(3) Order[o]
(4) ? not c.hasOrder(o) end
(5) ->
(6) c.addToOrders(o)

end

The rule named ReceiveOrder is defined in line (1). It has a head (lines (2) - (4)) and
a body (line(6)). The head of the rule describes a situation that may occur in the busi-
ness. ReceiveOrder describes a situation where an order is received by the business but
has not yet been entered into the orders database. Line (2) detects any company and
associates the variable c with the company. Line (3) detects any order and associates
variable o with it. Line (4) is a general condition that can be any XOCL expression using
any of the variables in scope.

The body of a rule is an action that updates the current state of the business. Receive-
Order has a body that updates the orders database. Line (6) is the action performed by
the rule and may be any XOCL action. In this case the order is added to the company.

An order cannot be satisfied when there is insufficient product:

context OrderProcessing
@Rule UnableToSatisfyOrder
Company[c]

(1) Order[o,product=pName,customer=cName,amount=pRequested,delivered=0
]

(2) Product[p,name=pName,amount=pAvailable]
(3) Customer[k,name=cName,paysLate=false]

c©Ceteva 2008.

210 CHAPTER 13. BUSINESS RULES

(4) ? c.orders()->includes(o) end
(5) ? c.products()->includes(p) end
(6) ? c.customers()->includes(k) end
(7) ? pRequested > pAvailable end

-> c.deleteFromOrders(o);
c.addToRejected(o)

end

The UnableToSatisfyorder rule matches a company, an order, a product and a customer
and places conditions on the relationships between them. Line (1) matches any order
whose delivered date is 0 (signifying that the order has yet to be delivered). The slots
product, customer and amount are matched to variables that are referenced elsewhere
in the rule.

Line (2) matches a product whose name is referenced in the product in line (1). Line
(3) matches a customer whose name matches that used in the order matched in line (1).
The customer must pay on time for this business rule to apply. Lines (4 - 7) are condi-
tions on the values of the variables matched in lines (1 - 3). In particular the condition
on line (7) states that the requested amount of product exceeds the available amount
and therefore the order cannot be satisfied.

The body of the UnableToSatisfyOrder removes the order from the orders database
and adds it to the rejected orders database.

The company has a policy of rejecting orders from customers who pay late:

context OrderProcessing
@Rule RejectOrder
Company[c]
Order[o,customer=cName]
Customer[k,name=cName,paysLate=true]
?c.orders()->includes(o) end

-> c.deleteFromOrders(o);
c.addToRejected(o)

end

An order is completed when the sales staff update the database with the data of dis-
patch. At this point the order is removed from the orders database and added to the
completed orders database. At this point the amount of product is reduced by the re-
quired amount:

context OrderProcessing
@Rule CompleteOrder
Company[c]
Order[o,delivered=dTime,product=pName,amount=pRequested]

c©Ceteva 2008.

13.1. EXAMPLE BUSINESS RULES 211

Product[p,name=pName]
? dTime > 0 end
? c.orders()->includes(o) end
? c.products()->includes(p) end

-> c.deleteFromOrders(o);
c.addToCompleted(o);
p.setAmount(p.amount() - pRequested)

end

Finally, the company has a policy of marking customers who pay late. The payment
period is set at 30 days:

context OrderProcessing
@Rule OrderPaid
Company[c]
Order[o,customer=cName,placed=placedDate,paid=paidDate]
Customer[k,name=cName,paysLate=false]
? paidDate > placedDate + 30 end

-> k.setPaysLate(true)
end

Suppose a company has a customer and a product. The following shows an instance of
the class Company:

Company[
rejected = Set{},
completed = Set{},
orders = Set{},
customers = Set{Customer[

paysLate = false,
name = C1]},

products = Set{Product[
amount = 100,
name = P1]}]

An order is received and is processed by business rule ReceiveOrder. The following
shows how the company object is updated when the order is received:

Company[
rejected = Set{},
completed = Set{},

c©Ceteva 2008.

212 CHAPTER 13. BUSINESS RULES

orders = Set{Order[
paid = 0,
delivered = 0,
placed = 0,
amount = 34,
product = P1,
customer = C1]},

customers = Set{Customer[
paysLate = false,
name = C1]},

products = Set{Product[
amount = 100,
name = P1]}]

The order is delivered at time 10. By rule CompleteOrder, the state is as follows:

Company[
rejected = Set{},
completed = Set{Order[

paid = 0,
delivered = 10,
placed = 0,
amount = 34,
product = P1,
customer = C1]},

orders = Set{},
customers = Set{Customer[

paysLate = false,
name = C1]},

products = Set{Product[
amount = 66,
name = P1]}]

Suppose the system is reset, and run again, but this time the payment is received at
time 50. The delay in payment is greater than 30 days which is the business policy of
the company,. Therefore, by rule OrderPaid the new state is:

Company[
rejected = Set{},
completed = Set{Order[

paid = 50,
delivered = 10,

c©Ceteva 2008.

13.2. BUSINESS RULES IMPLEMENTATION 213

placed = 0,
amount = 34,
product = P1,
customer = C1]},

orders = Set{},
customers = Set{Customer[

paysLate = true,
name = C1]},

products = Set{Product[
amount = 66,
name = P1]}]

Now, if a new order is received from the same customer then by rule RejectOrder:

Company[
rejected = Set{Order[

paid = 0,
delivered = 0,
placed = 0,
amount = 20,
product = P1,
customer = C1]},

completed = Set{Order[
paid = 50,
delivered = 10,
placed = 0,
amount = 34,
product = P1,
customer = C1]},

orders = Set{},
customers = Set{Customer[

paysLate = true,
name = C1]},

products = Set{Product[
amount = 66,
name = P1]}]

13.2. Business Rules Implementation

The first step in implementing the business rules engine describes in the previous sec-
tion is to construct some syntax classes and a grammar that synthesizes the rules. Figure

c©Ceteva 2008.

214 CHAPTER 13. BUSINESS RULES

Figure 13.2.: Business Rules Model

c©Ceteva 2008.

13.2. BUSINESS RULES IMPLEMENTATION 215

13.2 shows the model of the business rules syntax. All the classes in the model inherit
from XOCL::Syntax so that instances of the classes evaluate to themselves (i.e. there is
no evaluation phase-shift). The class RuleBase is a name-space for rules; name-spaces
are special and inherit from SyntaxNameSpace. Each rule is a named element and has
a head and a body. Each element of the rule-head is a pattern: either an object pattern
or a predicate pattern. An object pattern references a type by giving its absolute path as
a sequence of strings. An object pattern has an id that names an object that matches the
pattern. Each slot of an object pattern has a name and an atomic value; the atomic value
is either a variable or a constant.

A predicate pattern is an expression. The free variables of the predicate are encoded
as arguments of the expression. This makes it easy to supply the values of the free
variables to the expression when it is evaluated. The body of a rule is also an expression.

The rest of this section describes the grammar that translates from concrete rule-base
syntax to instances of the rule-base classes described above.

A rule-base is a name-space and as such contains a collection of sub-expressions each
of which are added to the rule-base:

@Grammar extends OCL::OCL.grammar
RuleBase ::= name = Name rules = Exp* ’end’ {
rules->iterate(r rb = RuleBase(name) | rb.add(r))

}.
end

The syntax for rules is defined separately from that of rule-bases. A rule is defined in
isolation and is then added to the rule-base either as part of the rule-base definition
or via a context definition. The grammar definition for Rule is straightforward except
for the use of XOCL::Exp to encode the predicate patterns and the rule-bodies. Note
how the FV operation of Performable is used to calculate the free variables referenced
in an expression and set them as the arguments of the operation that implements the
expression:

@Grammar extends OCL::OCL.grammar
Rule ::=
name = Name
patterns = RulePattern* ’->’ exp = Exp ’end’ {

Rule(name,patterns,Exp(exp,exp.FV()->asSeq,null))
}.
RulePattern ::=
ObjPattern

| PredPattern.
PredPattern ::= ’?’ exp = Exp ’end’ {
PredPattern(Exp(exp,exp.FV()->asSeq,null))

c©Ceteva 2008.

216 CHAPTER 13. BUSINESS RULES

}.
ObjPattern ::=

type = PType ’[’ id = Name slots = (’,’ Slot)* ’]’ {
ObjPattern(type,id,slots)

}.
PType ::= n = Name ns = (’::’ Name)* { Seq{n | ns} }.
Slot ::= name = Name ’=’ a = SlotValue { Slot(name,a) }.
SlotValue ::=

n = Name { Var(n) }
| s = Str { Const(s) }
| i = Int { Const(i) }
| ’true’ { Const(true) }
| ’false’ { Const(false) }.

end

13.3. Rete Networks

A naive implementation of business rules would use an engine that applies all business
rules to all business data each time an event occurs. Unfortunately, the performance
of such an engine would not be acceptable. Each rule typically involves matching and
combining multiple data elements. Each head pattern may contain multiple object pat-
terns. Each object pattern may match many different data elements and a rule will
become enabled for each combination of matching elements. As the numbers of data el-
ements increase, the number of combinations that cause a rule to become enabled rises
dramatically. If all combinations must be checked and re-checked for each change in the
business data then the performance of rule matching will quickly become unacceptable.

The Rete Network matching algorithm was developed to address this problem. It
caches partial rule matches so that when a business event occurs, only rule matching
activities involving the changed data are necessary. No matching involving unchanged
data needs to take place. This leads to a rule matching engine that can accommodate
very large number of rules and business data.

To see how the matching algorithm works, consider a simple rule:

@Rule Example
C1[c1,s1=v]
C2[c2,s2=s1,s3=w]
? v > w end

-> e
end

c©Ceteva 2008.

13.3. RETE NETWORKS 217

Figure 13.3.: A Rete-Network Fragment

c©Ceteva 2008.

218 CHAPTER 13. BUSINESS RULES

The example rule matches any number of C1 and C2 instances such that c2.s2 = c1.s1
and where c1.s1 ¿ c2.s3. Rete proceeds as follows: all new instances of C1 match the first
pattern and are stored in the rule memory. All new instance of C2 match the second
pattern (ignoring the s2 consistency issue), these are also stored in the rule memory.
The two parts of the rule memory are referred to as left and right (C1 and C2 instances).

As soon as a change occurs that leads to elements in both left and right memories,
the rule then matches the most recent entry with all elements in the other memory. If a
c1 is added to the left memory then it is compared with element elements in the right
memory; if a c2 is added to the right memory then it is compared to all elements in the
left memory. Comparison checks for slot consistency: c2.s2 = c1.s1. For each pair that
passes the consistency test, the algorithm continues with the match.

Combined pairs of C1 and C2 instances are then filtered by the predicate pattern v ¿ w
where v is a slot from the left-memory element and w is from the right-memory element.
If the predicate is satisfied then the pair passes through and, since there is nothing left
to check , the rule is enabled. An enabled rule is added to the conflict set. If there is a
non-empty conflict set then a rule is selected (using a suitable choice algorithm) and its
body is performed with respect to the pair of C1 and C2 instances.

The structure of a Rete Network for Example is given in figure 13.3. A new or changed
data element is supplied to the network root node. The root node feeds the element to
test nodes that check the type of the element. In the case of Example, the types are C1
and C2 respectively. If the type checks pass then the elements are passed on to alpha-
nodes that check the internal consistency of the data and bind any variables. In the case
of Example, C1 requires a single alpha-node to match s1, C2 requires two alpha nodes
to match s2 and s3.

Alpha nodes then feed into the left and right memories of a beta-node. A beta-node is
responsible for pairing up matching data from the left and right and performing inter-
data checks. Once the beta-nodes are satisfied they pass the data on to inter-element
predicate nodes and then on to nodes that fire rules into the conflict set.

Rules may have more patterns than Example given above. In this case, for each object
pattern pairing, the rule will have a pair of left and right memories to store matching
elements. The rest of this section describes an executable model for Rete Networks.

Figure 13.4 shows the model for a Rete Network. A network consists of a collection of
type checking nodes and a collection of enabled rules. The rest of the network consists
of nodes of different types, all of which have 0 or more children.

Alpha nodes are either binding nodes or slot checking nodes. Predicate and action
nodes use expressions to represent executable predicates and rule bodies respectively.
Beta nodes have a left and right memory.

Tokens contain data elements to be matched by the network. A token is either a single
element of data (TokenLeaf) together with an environment that binds rule variables
with slot values, or a combination of two tokens (TokenPair). The idea is that a leaf is
initially added to the network; each time the token is combined via a beta-node, the
tokens from the left and right memories are combined to become token pairs. After
several combinations, a rule is fired into the conflict set together with a tree of tokens.

c©Ceteva 2008.

13.3. RETE NETWORKS 219

Figure 13.4.: Rete Network Model

c©Ceteva 2008.

220 CHAPTER 13. BUSINESS RULES

context Network
@Operation add(value)
@For node in nodes do
node.add(TokenLeaf(value,Seq{}),self)

end
end

context TypeCheck
@Operation add(token,network)

if token.data().isKindOf(type->lookup)
then

@For node in children do
node.add(token.bind(id,token.data()),self,network)

end
end

end

context SlotCheck
@Operation add(token,parent,network)

if token.data().hasSlot(slot) andthen
token.data().get(slot) = value

then
@For node in children do
node.add(token,self,network)

end
end

end

context BindVar
@Operation add(token,parent,network)

if token.data().hasSlot(slot)
then

@For node in children do
node.add(token.bind(var,token.data().get(slot)),self,network)

end
end

end

c©Ceteva 2008.

13.4. RULE COMPILATION 221

context Beta
@Operation add(token,parent when parent = leftParent,network)

self.addToLeft(token);
@For rightToken in right do
let token = token + rightToken
in if token.consistent()

then
@For node in children do
node.add(token,self,network)

end
end

end
end

end

context Predicate
@Operation add(token,parent,network)

let args = exp.args->collect(a | self.lookup(a,token))
in if exp.op.invoke(network,args)

then super(token,parent,network)
end

end
end

context Action
@Operation add(token,parent,network)

network.addToConflictSet(Enabled(token,exp))
end

13.4. Rule Compilation

Rules are compiled into a network by translating each of the head patterns into se-
quences of alpha nodes and then combining the patterns using beta-nodes. Compila-
tion of a rule-base is supplied with a network. The compiler updates the network with
all the rules:

context RuleBase

c©Ceteva 2008.

222 CHAPTER 13. BUSINESS RULES

@Operation compile(network)
@For rule in self.contentsOf(Rule) do
rule.compile(network)

end;
network

end

A rule consists of a head and a body. The head consists of a sequence of patterns; each
pattern may be an object pattern or a predicate pattern. The object patterns are compiled
first. Each object pattern is of the form C[s1,s2,...,sn] where C is a classifier and each si
is a slot. An object pattern is compiled into a sequence of nodes that test properties
of tokens that are added to the network. The nodes must check that the token has an
object of type C and then must check each of the slots of the token. Each slot must
match each of the slots si in turn: of the slot requires a variable to be bound then the
token is extended with a binding for the variable. if the slot requires the object to have
a particular slot value then the token is checked, if the token’s object does not have the
required slot value then the token is discarded.

If a rule head contains a sequence of object patterns then they are compiled and the
resulting sequences of nodes are combined pair-wise using beta-nodes. The beta-nodes
merge the tokens that match the two object patterns. Beta-nodes are also responsible for
checking the consistency of bindings for repeated variable occurrences.

Finally, after each of the object patterns have been added to the network and merged
using beta-nodes, the predicate patterns are compiled. Each predicate pattern produces
a node that is supplied with a token. If the predicate is satisfied by the data and envi-
ronment in the token then the token is passed on otherwise it is discarded:

context Rule
@Operation compile(network)
let oPatterns = head->select(p | p.isKindOf(ObjPattern));

pPatterns = head->select(p | p.isKindOf(PredPattern))
in pPatterns->iterate(p node = self.compilePatterns(oPatterns,

network) |
let newNode = p.compile()
in node.addToChildren(newNode);

newNode
end).addToChildren(Action(body))

end
end

context Rule
@Operation compilePatterns(Seq{pattern},network)

pattern.compile(network)
end

context Rule

c©Ceteva 2008.

13.4. RULE COMPILATION 223

@Operation compilePatterns(Seq{pattern | patterns},network)
pattern.compile(network)

.join(self.compilePatterns(patterns,network))
end

Nodes are joined together as follows:

context Node
@Operation join(node when node.isKindOf(Predicate))
self.addToChildren(node);
node

end
context Node

@Operation join(node)
let beta = Beta(self,node)
in self.addToChildren(beta);

node.addToChildren(beta);
beta

end
end

A predicate pattern is compiled to become a predicate node:

context PredPattern
@Operation compile()
Predicate(exp)

end

An object pattern is compiled into a type checking node followed by a sequence of slot
checking nodes:

context ObjPattern
@Operation compile(network)
self.compileSlots(slots,network.typeCheck(type,id))

end
context ObjPattern

@Operation compileSlots(Seq{},node)
node

end
context ObjPattern

@Operation compileSlots(Seq{slot | slots},node)

c©Ceteva 2008.

224 CHAPTER 13. BUSINESS RULES

let newNode = slot.compile()
in node.addToChildren(newNode);

self.compileSlots(slots,newNode)
end

end

An object pattern requires that the type of the data in a token is checked. A TypeCheck
node is added to the network. When a token is received by a type check node, the type
of the token data is checked. If the type matches the required classifier then the token
passes on otherwise it is discarded:

context Network
@Operation typeCheck(type,id)

@Find(node,nodes)
when node.type() = type
else
let node = TypeCheck(type,id)
in self.addToNodes(node);

node
end

end
end

Slots are compiled to become nodes that bind variable or check the values in slots:

context Slot
@Operation compile()
value.compile(name)

end
context Var

@Operation compile(slot)
BindVar(slot,name)

end
context Const

@Operation compile(slot)
SlotCheck(slot,value)

end

The following rule-base:

@RuleBase Test

c©Ceteva 2008.

13.4. RULE COMPILATION 225

@Rule r1
C[c,slot1=v,slot2=100]
D[d,slot3=v]
? v > 10 end

->
e

end
end

is compiled by Test.compile(Network()) to produce the following network:

Network[
conflictSet = Seq{},
nodes =

Seq{
TypeCheck[

type = Seq{D},
id = d,
children =

Set{
#(3)=BindVar[

slot = slot3,
var = v,
children =

Set{#(4)=Beta[
left = Set{},
right = Set{},
leftParent = #(5)=SlotCheck[

slot = slot2,
value = 100,
children = Set{#(4)}],

rightParent = #(3),
children =

Set{Predicate[
exp = [| v > 10 |],
children =

Set{Action[
exp =

[| e |],
children = Set{}]}]}]}]}],

TypeCheck[
type = Seq{C},
id = c,
children = Set{BindVar[

c©Ceteva 2008.

226 CHAPTER 13. BUSINESS RULES

slot = slot1,
var = v,
children = Set{#(5)}]}]}]

13.5. Network Execution

Once compiled, the network is used to implement the rules. When an object is created
it is added to the network. The state of the object is recorded in the network in order
to maximise the speed of multiple object matching. When an object changes, the object
is removed from the network and then re-introduced. This section describes how the
network executes in terms of adding and removing objects.

Objects are added to a network as tokens. The token allows the engine to manage
the object along with any variable bindings that have been associated with it during the
match:

@Class Token isabstract
@Operation add(other:Token):Token

TokenPair(self,other)
end
@Operation consistent()
// Repeated use of variables have the same values...
self.env()->forAll(b1 |

self.env()->forAll(b2 |
b1->head = b2->head implies b1->tail = b2->tail))

end
@AbstractOp env():Seq(Element)
end
@AbstractOp lookup(name:String)
// Look up the supplied variable name

end
end

When an object is introduced to the network, a leaf-token is created to contain and
manage it. The class LeafToken is a sub-class of Token that uses an environment to
lookup the supplied variable name. Two tokens are merged on the output of a beta-
node. Two tokens are merged to produce a single token as an instance of TokenPair
which is a sub-class of Token and just contains two component token instances. The
token-pair implements lookup by delegating to the two component tokens.

An object is added to the network as follows:

c©Ceteva 2008.

13.5. NETWORK EXECUTION 227

context Network
@Operation add(value)
@For node in nodes do
node.add(TokenLeaf(value,Seq{}),self)

end;
self

end

In general, a node just passes a token on to its children:

context Node
@Operation add(token,parent,network)

@For node in children do
node.add(token,self,network)

end
end

One of the first nodes in a network is a type-check node that filters out objects by type:

context TypeCheck
@Operation add(token,network)

if token.data().isKindOf(type->lookup)
then

@For node in children do
node.add(token.bind(id,token.data()),self,network)

end
end

end

Once an object has been determined to be of the required type it must pass all the alpha-
node checks before joining beta-memories and possibly firing rules into the conflict set.
Each rule may involve slot-checks:

context SlotCheck
@Operation add(token,parent,network)

if token.data().hasSlot(slot) andthen
token.data().get(slot) = value

then
@For node in children do
node.add(token,self,network)

end

c©Ceteva 2008.

228 CHAPTER 13. BUSINESS RULES

end
end

If the rule specifies that the slot value is just a variable then the following node is used
to bind the variable:

context BindVar
@Operation add(token,parent,network)

if token.data().hasSlot(slot)
then

@For node in children do
node.add(token.bind(var,token.data().get(slot)),self,network)

end
end

end

A predicate node is used to check an arbitrary boolean expression using the values of
variables that have been bound at that point in the match:

context Predicate
@Operation add(token,parent,network)

let args = exp.args->collect(a | self.lookup(a,token))
in if exp.op.invoke(network,args)

then super(token,parent,network)
end

end
end

That concludes the alpha-nodes. Next we must deal with the inter-clause and inter-rule
matching. This is handles by beta-nodes. The behaviour of a beta-nodes when a token is
added depends on whether the token arrives form the left or the right. This is tested by
defining two ’add’ operations in BetaNode that use guards on the operation arguments
comparing the supplied parent with the left and right parent of the node:

context BetaNode
@Operation add(token,parent when parent = leftParent,network)

self.addToLeft(token);
@For rightToken in right do

let token = token + rightToken
in if token.consistent()

then

c©Ceteva 2008.

13.6. MONITORING CLASSES 229

@For node in children do
node.add(token,self,network)

end
end

end
end

end
context BetaNode

@Operation add(token,parent when parent = rightParent,network)
self.addToRight(token);
@For leftToken in left do

let token = leftToken + token
in if token.consistent()

then
@For node in children do
node.add(token,self,network)
end

end
end

end
end

If a token ever reaches an action node then it has enabled a rule and the rule is added to
the conflict set of the network:

context Action
@Operation add(token,parent,network)

network.addToConflictSet(Enabled(token,exp))
end

The network implements a remove operation that performs the same function as add
defined above, except that the tokens are removed from the beta-memories when they
arrive at beta-nodes and also removed from the conflict set of the rule becomes enabled.

13.6. Monitoring Classes

In order to complete the implementation of business rules we require that newly cre-
ated objects are added to the network and when the object’s state is updated, they are
removed and then re-inserted into the network. To do this automatically we implement
a new-meta-class that manages instances appropriately:

c©Ceteva 2008.

230 CHAPTER 13. BUSINESS RULES

import Daemon;

context Root
@Class MonitoredClass extends Class
// Classes whose instances are to be monitored by a
// rule-based that has been compiled into a network
// should be instances of the meta-class MonitoredClass.
@Bind daemon =
// The following daemon is added to all new instances
// of monitored classes. The daemon ensures that all
// changes to the object cause the network to be
// informed via add and remove...
Daemon("MonitorDaemon",ANY,

@Operation(object,slot,new,old)
object.of().network().remove(object);
object.of().network().add(object)

end)
end

// Each monitored-class must specify which network is
// to be used for its instances...
@Attribute network : Network (?,!) end

@Operation add(element)
// The network for a monitored-class can be
// specified in the definition of the class
// and added to the class via this operation...
@TypeCase(element)
Network do
self.network := element

end
else super(element)

end
end

@Operation invoke(this,args)
// By defining an invoke operation we hi-jack the
// class instantiation process for a monitored-class.
// The new instance is created in the usual way but
// the daemon is added to the object before it is returned
// and the new object is added to the network...
let newObj = super(this,args)
in newObj.addDaemon(MonitoredClass::daemon);

network.add(newObj);
newObj

c©Ceteva 2008.

13.6. MONITORING CLASSES 231

end
end

end

c©Ceteva 2008.

232 CHAPTER 13. BUSINESS RULES

c©Ceteva 2008.

CHAPTER 14

MODEL VIEW CONTROLLERS

A typical example of model synchronization occurs when a model is visualized as a
diagram. There are many software tools available that provide access to a model via
a diagram. You can create an instance of the model by interacting with the diagram.
Sometimes, the tool also supports interacting with the model instance via other routes:
via property editors or a scripting language. Where the instance can be modified in
this way, it is important that the diagram view is updated to be consistent. Consistency
update may be automatic or may be explicitly invoked via a refresh.

This chapter defines a modelling language, a diagram model and shows how the
two can be synchronized by modelling a mapping between them. It turns out that the
mappings conform to a small number of patterns that can be reused to create model
synchronizers.

Figure 14.1 provides an overview of the synchronization architecture for the example.
The left-hand package defines a simple data modelling language consisting of the usu-

Figure 14.1.: Overview

c©Ceteva 2008.

234 CHAPTER 14. MODEL VIEW CONTROLLERS

Figure 14.2.: Data Models

ally components: packages; classes; attributes and inheritance. The right-hand package
defines a simple model for diagrams including: diagrams; nodes; edges and display
elements. A diagram display element has a position and may be either a box (container
of display elements) or a text string.

The package in the centre contains a definition of mappings that are used to synchro-
nize models and diagrams. The idea is that a mapping connects instances from the left
with their corresponding instances on the right such that when a change occurs on one
side, the change can be reflected in the corresponding element on the other side.

14.1. Model-Diagram Synchronization

Here’s an example. Support there is a class named C in a package. Then there should
be a diagram with a node for C. The node for C contains a box which in turn contains a
text item whose text is the string “C”. Mappings are used to:

• connect the package to the diagram

• connect the class to the node

• connect the class name to the text item

c©Ceteva 2008.

14.2. MODELS 235

Figure 14.3.: Example

Suppose that the name of C is changed on the diagram by editing the text item. The
change is propagated to the mapping between the class name and the text item. Since
the text item has changed, the class is updated to be consistent. Alternatively, if the class
name is changed then the mapping allows the change to be propagated to the text item.

Notice that in both the scenarios given above, it was not necessary for the model el-
ement to know about the diagram element and vice versa. This is an important issue:
when model instances are synchronized, the machinery must ensure a separation of
concerns. There is no reason why the model should know about the diagram – to do so
would compromise reusability of the model. Similarly, if the diagram elements are di-
rectly associated with the model elements then this makes it difficult to use the diagram
model in a variety of circumstances (domain specific languages for example).

14.2. Models

Figure 14.2 shows a simple data model consisting of packages, classes, attributes and
generalizations. This model is representative of many data modelling notations.

Figure 14.3 shows an example model as it would be seen in a diagram editor. The
snapshot shown in figure 14.4 shows the same model as an instance of figure 14.2.

14.3. Diagrams

Diagrams contain nodes with edges between them. Each node has a position on the
diagram and contains a collection of displays. A display has a co-ordinate that is relative
to its container; it may be a text item or a box (bordered container of display elements).
The model for diagrams is shown in figure 14.5.

The diagram of the model shown in figure 14.3 is shown in figure 14.6. A diagram
has a label that is intended to be the same as the name of the corresponding package.

c©Ceteva 2008.

236 CHAPTER 14. MODEL VIEW CONTROLLERS

Figure 14.4.: Model Snapshot

Each class is shown as a node and generalizations are shown as edges between class
nodes. A class is drawn as a box, with the name as a text item at the top followed by
attribute boxes. Each attribute box contains text items for the name, “:” and the type
of the attribute. Note that in the example, the positions of the nodes and displays are
illustrative.

Diagrams know nothing about classes, attributes and generalizations. This is as it
should be since we could choose to use the diagram model to display a variety of infor-
mation including class-models, snapshot-models, CPM networks and decision trees.

14.4. Mappings

Figure 14.7 shows a model of mappings that can be used to synchronize a class-model
with a diagram. A mapping is a tree structure that link elements from a left-hand model
with elements from a right-hand model. Each mapping has a label that can be used to
distinguish between different mappings between the same left and right elements.

Mappings sit between the left and right-hand elements in order to record the fact
that they should be the same in some sense. As such, a mapping can have intimate
knowledge of the left and right-hand model structures. In the case of a class-model and
a diagram, mappings can be expected to know that a class has a name and the related
diagram node has a text item that is used to display the class name. Neither the class-
model or the diagram model know anything about each other, so there is a clear division

c©Ceteva 2008.

14.4. MAPPINGS 237

Figure 14.5.: Diagrams

c©Ceteva 2008.

238 CHAPTER 14. MODEL VIEW CONTROLLERS

Figure 14.6.: Diagram Snapshot

c©Ceteva 2008.

14.4. MAPPINGS 239

Figure 14.7.: Mappings

of concerns: cross-model information is limited to the mapping.
Mappings can be used to relate any elements from the left and right-hand models

and a mapping is is a tree structured thing (made up of maplets). It is up to us as mod-
ellers to decide how to structure and use the mapping. Each mapping has children that
are other mapping components. The idea is that if the left and right elements are com-
posed of children then the mapping will have maplets that appropriately relate those
children. For example, a package may be related to a diagram via a mapping composed
of maplets that relate the package’s classes with the diagram’s nodes.

Mappings simply record the associations between left and right-hand elements. There
is no requirement for mappings to be used in any particular way. However, it turns out
that there are useful patterns of mapping usage, both in terms of how they relate models
that are themselves structured using standard patterns.

Figure 14.8 shows how a package and a diagram are associated using mappings. This
is a root mapping and is responsible for synchronizing the package with all its compo-
nents against the diagram with all its components. The mapping object12 is individually
responsible for keeping the name of the package synchronized with the diagram label;
it devolves responsibility for the class and generalization synchronization to its child
maplets.

Figure 14.9 shows the child maplets of the root package/diagram mapping. The root
mapping has two children:; object14 and object16 that are responsible for associating
classes A and B with their corresponding diagram nodes. In each case the maplets have
labels (the detail of which is not shown) that identify them as being class-associating

c©Ceteva 2008.

240 CHAPTER 14. MODEL VIEW CONTROLLERS

Figure 14.8.: A Package Mapping

Figure 14.9.: Class Mappings

c©Ceteva 2008.

14.5. MAPPING PATTERNS 241

mappings.
It is worth considering how this mapping might be used as part of a tool. Suppose

that the name of the package (object8) is modified, to X. The resulting event causes
a synchronization to occur (or the user manually causes a synchronization to occur)
which in turn asks the mapping (object12) to synchronize its left and right elements. At
this stage, the name at object8 is X whereas the label at objct3 is Example. The mapping
object12 detects this inconsistency and modifies the label (causing a change in the GUI).
The story would be much the same if the label was changed causing the package name
to be modified.

Now consider what happens if we add a class node to the diagram. Suppose that
objects 6, 16 and 10 have yet to be added (i.e. the model contains only class A). The user
adds a node to the diagram (object6) and the synchronization is started, as before, at
object12.

Part of the synchronization task of object12 is to ensure that, if the diagram has
changed, every node has a corresponding class. The mapping object12 can do this be-
cause it has access to (and knowledge of) both packages and diagrams. When this check
is performed, object12 detects that there is a node (object6) for which there is no child
maplet. Therefore, the model and diagram are inconsistent. The remedy is to create a
class (object10) and associate it via a new maplet object16 with the diagram node. The
story is much the same if a class is added to the model: a new node is added to the
diagram and a maplet to the root mapping.

14.5. Mapping Patterns

Mappings are used to link left-hand instances to right-hand instances and mappings
are structured into trees of maplets. So far, synchronization has been described in rather
hand-wavy terms. This is because, in general, many different synchronization strategies
and implementations are possible ranging from those that are implemented by hand
(and guided by the mappings) to those that are fully automated.

In many circumstances, it is possible to define mapping patterns such that mappings
can be applied to instances of left and right models in chunks. Moreover, the pattern
chunks can be made to be self manging in terms of synchronization. The next couple
of sections show how an analysis of the model-diagram example leads to patterns and
then shows how the patterns can be defined in XMF. The following section then gives
the full implementation of the model diagram application in terms of the patterns.

14.6. Equality Pattern

Consider classes and attributes. They have a feature in common: they both have names.
Consider class diagrams and the rendering of classes and attributes. They are each

c©Ceteva 2008.

242 CHAPTER 14. MODEL VIEW CONTROLLERS

rendered as text items in boxes such that the synchronization ties up the name with the
string in the text item.

Class and attribute name synchronization is an example of and equality pattern. Where
a left-hand item (the name) is defined to be equal to a right-hand item (the string).
The difference between the two examples, occurs in terms of how the name/string is
accessed, updated and created.

Suppose that an equality synchronization pattern is defined. What are its different
modes of operation:

1. If a left-hand instance exists but a right-hand instance does not then the mapping
is being used to generate the right from the left. It must be possible to create a
new instance of the appropriate right-hand element and link it to the left with a
maplet.

2. If a left-hand instance changes then we must be able to update the right-hand
instance.

3. If a right-hand instance exists, but a left-hand instance does not then proceed as
for 1 (right to left).

4. If a right-hand instance changes then proceed as for 2 (right to left).

There are clearly two major modes (left, right) each of which has minor modes (in-sync,
update, generate). Assuming that it is always possible to tell which side has changed,
the two major modes can be defined separately. The following XMF operation definition
gives the left-major mode definition for the equality pattern:

@Operation syncEqualLeft(lab,getLeft,setRight,newRight,mapping)
(1) let left = mapping.left();

right = mapping.right()
(2) in @Find(child,mapping.children())
(3) when child.label() = lab
(4) do if getLeft(left) <> child.left()

then
(5) child.setLeft(getLeft(left));

child.setRight(getLeft(left));
setRight(right,getLeft(left))

end
else

(6) let new = newRight(right,getLeft(left)) then
(7) child = Mapping(lab,getLeft(left),new)
(8) in mapping.addToChildren(child)

end
end

end

c©Ceteva 2008.

14.7. CONTAINMENT PATTERN 243

end

The operation syncEqualLeft takes 5 arguments: a label used to mark the equality
maplet; an accessor for the left-hand element; an updater for the right-hand element;
a creator for the right-hand element; and a mapping. The mapping associates two el-
ements that have sub-components related by equality. For example, the mapping may
associate a package and a diagram such that the name and label are synchronized. For
example, the mapping may associate a class and a node such that the class-name and
the string in a text item are synchronized.

Line (1) extracts the left and right elements from the mapping. Lines (2-3) select a
maplet linking the synchronized elements. If this exists then a check is made at (4) to see
if the left-hand element has changed.t-hand element has changed. If it has changed then
the element will be out of sync with the maplet and lines (5-) update the appropriate
components thereby synchronizing.

Line (6) occurs when the maplet for the synchronized elements dos not exist. This
occurs when the right-hand element is being generated from the left. In this case, a new
right-hand element is constructed (6). Imagine class-names being synchronized with
text items: the arguments in (6) are the node and the class-name.

Line (7) creates a new maplet (assumed synchronized) and (8) adds the maplet to the
parent mapping.

14.7. Containment Pattern

Consider packages and classes (similarly classes and attributes) compared with dia-
grams and nodes (similarly nodes and contained boxes). In both cases one element con-
tains a collection of sub-elements: packages contain classes; diagrams contain nodes.
Synchronization of such elements can be captured as a containment pattern with the
following modes:

1. Addition of a new left-hand instance (e.g. a class) causes addition of a correspond-
ing right-hand instance (e.g. a node).

2. Deletion of a left-hand instance causes deletion of the corresponding right-hand
instance.

3. Addition of a right-hand instance (as for 1 but right to left).

4. Deletion of a right-hand instance (as for 2 but right-to-left).

The pattern can be applied to many different types of containment structure. The dif-
ferences occur in terms of access to, creation of and deletion of the contained elements.
Also, as for equality, there are two modes depending on whether the left hand element

c©Ceteva 2008.

244 CHAPTER 14. MODEL VIEW CONTROLLERS

has changed or the right. The left-hand mode is defined by the following XMF opera-
tion:

@Operation syncSetsLeft(lab,getLeft,newRight,deleteRight,mapping,
subSync)

(1) let left = mapping.left();
right = mapping.right()

(2) in @For x in getLeft(left) do
(3) @Find(child,mapping.children())
(4) when child.left() = x
(5) do subSync(child)

else
(6) let y = newRight(mapping,x,right) then
(7) child = Mapping(lab,x,y)
(8) in mapping.addToChildren(child);
(9) subSync(child)

end
end

end;
(a) @For child in mapping.children()
(b) when child.label() = lab
(c) do @Find(x,getLeft(left))
(d) when child.left() = x

else
(e) mapping.deleteFromChildren(child);
(f) deleteRight(right,child.right())

end
end

end
end

The operation syncSetsLeft expects 6 arguments:; a label used to tag maplets; an acces-
sor for components of the left element; a constructor for new right-hand elements; an
operation that deletes right-hand elements, a mapping and an element synchronizer.

Line (1) extracts the left and right-hand elements. Each sub-component x is extracted
at (2) and handled in turn. A maplet that associates x is extracted at (3-4). If the maplet
child exists then the synchronizer is applied to it.

Otherwise (6) creates a new right-hand element, (7) creates a new maplet, (8) adds the
maplet to the parent mapping and (9) applies the synchronizer.

Lines (a-f) check whether any children have been deleted from the left-hand element.
At (e) a maplet exists for which there is no longer a sub-component x. In this case (e)
removes the maplet and (f) deletes the right-hand element.

c©Ceteva 2008.

14.8. MODEL-DIAGRAM IMPLEMENTATION 245

14.8. Model-Diagram Implementation

The model-diagram synchronizer can now be implemented in terms of the patterns de-
fined in the previous sections. A synchronizer is an operation that accepts a mapping
and synchronizes the left and right-hand elements. The implementation of the synchro-
nizer that is used when a model element changes is shown below:

@Operation syncPackage(mapping)
syncEqualLeft("name",

getName,
setLabel,
newLabel,
mapping);

syncSetsLeft("classes",
getClasses,
newClassNode,
deleteClassNode,
mapping,
syncClass);

syncSetsLeft("inherits",
getGens,
newGenEdge,
deleteGenEdge,
mapping,
emptyMap)

end

@Operation syncClass(mapping)
syncEqualLeft("name",

getName,
setClassNodeName,
newClassNodeName,
mapping);

syncSetsLeft("atts",
getAtts,
newAttBox,
deleteAttBox,
mapping,
syncAttribute)

end

@Operation syncAttribute(mapping)
syncEqualLeft("att",
getNameAndType,
setNameAndType,

c©Ceteva 2008.

246 CHAPTER 14. MODEL VIEW CONTROLLERS

newNameAndType,
mapping)

end

The operation syncPackage causes changes in the package name to update the di-
agram label, changes in the package classes to update the nodes on the diagram, and
changes in the generalization links to cause corresponding changes in the diagram. Each
class is synchronized using syncClass.

The operation syncClass causes changes in the class name to update the text in the
class node name box, and changes to the class attributes to cause corresponding changes
to the boxes on the diagram.

14.9. A Simple Database Synchronizer

The following shows how the patterns can be used to synchronise packages and classes
with database tables. A table is represented simply as a sequence of records. Each
record is just a sequence of field values:

Root::Packages := Seq{};

Root::ClassSets := Seq{};

Root::Classes := Seq{};

context Root
@Operation deleteClass(table,id)
Root::ClassSets := table->reject(r | r->head = id)

end

context Root
@Operation setPackageName(id,name)

@Find(package,Packages)
when package->head = id
do Root::Packages :=

Packages->excluding(package)
->including(Seq{id,name,package->at(2)});

name
end

end

context Root
@Operation newClassRecord(map,class,pid)

c©Ceteva 2008.

14.9. A SIMPLE DATABASE SYNCHRONIZER 247

@Find(package,Packages)
when package->head = pid
do let C = ClassSets->select(r | r->head = package->at(2));

cid = "C" + Classes->size
in Root::ClassSets :=

ClassSets->including(Seq{package->at(2),cid});
Root::Classes :=

Classes->including(Seq{cid,class.name()});
cid

end
end

end

context Root
@Operation deleteClassRecord(pid,cid)

@Find(package,Packages)
when package->head = pid
do let Cid = package->at(2)

in @Find(C,ClassSets)
when C->head = Cid and C->at(1) = cid
do Root::ClassSets := ClassSets->excluding(C);

Root::Classes := Classes->reject(r | r->head = cid)
end

end
end

end

context Root
@Operation syncPackageTable(mapping)
syncEqualLeft(getName,setPackageName,setPackageName,mapping);
syncSetsLeft(getClasses,newClassRecord,deleteClassRecord,mapping,

emptyMap)
end

c©Ceteva 2008.

248 CHAPTER 14. MODEL VIEW CONTROLLERS

c©Ceteva 2008.

CHAPTER 15

GENERATING TEXT FROM MODELS

15.1. Introduction

An important transformation involves turning data into text. The text may be program
code, HTML, XML, natural language, or some other format. The output may be an
end in itself (for example documentation) or may be an intermediate format ready to
be processed by a tool (for example HTML or program code) or may be a save format
(for example XML). Many modelling tools provide support for code templates that allow
models to be transformed to program code. These are a special case of a model to text
transformation.

Often, text is generated by running over the data producing standard chunks of text
(or boiler plate) with data inserted at appropriate points. For example, when produc-
ing HTML, there will usually be a standard header and standard components of table
definitions.

This chapter describes a language construct that allows text to be conveniently pro-
duced from models. Furthermore, the construct makes it possible to dip in-and-out of
the model and the text interleaved to any depth, making it easy to structure the trans-
formation so that it reflects the text as seen in the output.

15.2. Examples

Consider the following operation that expects a class as an argument and produces a
table definition:

@Operation classToTable(c)
(1) @Table(stdout,7)
(2) table <c.name> {

c©Ceteva 2008.

250 CHAPTER 15. GENERATING TEXT FROM MODELS

(3) // Table for <c.path()>
(4) <@For a in c.attributes do
(5) [field <a.name> : <a.type.name>;
(6)]
(7) e_nd>
(8) }
(9) end
end

Line (1) introduces a text transformation of type Table. In general a text transformation
produces literal text interspersed with text generated by arbitrary bits of XOCL pro-
gram. Each text transformation differs in terms of the delimiters used to start and end
the literal text and the XOCL programs. In the case of Table, the delimiters are ¡, ¿, [and
].

The arguments used by Table in line (1) are an output channel (to send the text to)
and an integer that indicates where the left margin should start. In the example, the left
margin starts at position 7: when generating text, whitespace characters up to position
7 are ignored; or, put another way, everything is left-shifted by 7 characters.

Line (2) starts with some literal text (table) that is sent to the output channel. Then
the drop delimiters ¡ and ¿ are encountered. The drop delimiters surround XOCL code
that produces some text to be sent to the output channel. In this case, the name of the
supplied class is generated. Line (2) concludes with more literal text.

Line (3) is a mixture of literal text (a comment) and the path of the supplied class.
Line (4) introduces a dropped XOCL expression: a for-loop. Each attribute of the class
c produces some text in lines (5-6) which are surrounded by lift delimiters [and]. The
lift delimiters are used within a dropped expression to surround literal text. It should
be noted that lifts and drops can be arbitrarily interleaved.

Lines (5-6) produce text output that describes each of the attributes in turn. Note that
the newline at the end of line (5) is part of the output.

Line (7) completes the dropped for-loop. Note that normally an XOCL for-loop is
terminated by an end keyword. Within a dropped expression, end cannot be used since
it will confuse the lifting mechanism (as explained below), so the convention is to use
e nd within lifted text. The only end-keyword that is permitted must be that at the end
of the outermost lifted text – line (9).

In review, the Table construct is an example of a model to text template. The body of
the template is literal text, up to an open drop delimiter. The text inside the drop de-
limiter, up to the corresponding closing drop delimiter, is XOCL code (containing e nd
instead of end where necessary). The dropped XOCL code can do anything, but should
return a string that is dropped into the surrounding literal text of the template. Within
dropped XOCL code, literal text can be used surrounded by lift delimiters. The lift de-
limiters surround a model to text template (just like Table), however, nested templates
can use the delimiters rather than the @TemplateName ... end notation. Drops and lifts

c©Ceteva 2008.

15.2. EXAMPLES 251

can be nested to any depth, and in general the actual delimiters used to demote the lift
and drop can be defined (so that they do not clash with literal text used in the body of
the template). Newlines within lifted text are carried through to the output with the
left hand margin affected by the initial value supplied to the template (7 in the example
above).

Supplying Class to the Table template produces the following:

table Class {
// Table for Root::XCore::Class
field attributes : Set(Attribute);
field isAbstract : Boolean;
field constructors : Seq(Constructor);

}

Notice how the literal text in the lifted parts has been copied through verbatim, whereas
the name of the class and the names of the attributes have been dropped into the text.
The following example shows how drops and lifts can be interleaved to good effect. The
aim is to produce an HTML page containing the description of a class. The attributes of
the class are to be rendered as a table; each row of the table describes an attribute: the
first row is the name of the attribute and the second row is the name of the attribute’s
type.

@Operation classToHTML(class:Class,out:OutputChannel)
@HTML(out,4)
<HTML>
<HEAD>

<TITLE> {class.name} </TITLE>
</HEAD>

 { class.name }

<HR>

Overview

<P> {c.doc().doc}

<HR>

Parents:

{ @For p in class.allParents() do

[{ p.name.toString() }]

c©Ceteva 2008.

252 CHAPTER 15. GENERATING TEXT FROM MODELS

e_nd }

<HR>

<TABLE WIDTH="100%" CELLPADDING="3" CELLSPACING="0">

<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">
<TD COLSPAN=3>

Attributes

</TD>

</TR>
{ @For a in class.attributes do

[<TR>
<TD>

 {a.name.toString()}
</TD>
<TD>

 { a.type.name().toString() }
</TD>

</TR>
]

e_nd
}

</TABLE>
</HTML>

end
end

In classToHTML notice how the table rows for each attribute are produced by a
dropped for-loop. The body of the for-loop is a lifted table-row, where the attribute
name and type are dropped in. This interleaving is typical of the template mechanism.
Notice how the structure of the required output is retained (i.e. an HTML page) where
the model data is dropped in at appropriate points. The HTML page for the class Clas-
sifier is viewed in a web browser as shown in figure 15.1.

15.3. Specification

Code templates can be implemented as a transformation into XOCL code. Each element
of the text in a template is turned into a format statement. Literal text ets turned into
a format statement that just prints out the text. Dropped expressions are transformed
into format statements that evaluate the expressions and then print out their results. The
complications arise from keeping track of the indentation and from the interleaving of
lifts and drops.

To understand how the transformation works it is useful to look at a few examples.

c©Ceteva 2008.

15.3. SPECIFICATION 253

Figure 15.1.: Generating HTML

c©Ceteva 2008.

254 CHAPTER 15. GENERATING TEXT FROM MODELS

Suppose we have a construct X that is defined to be a template:

@X(out,0)
Some text.

end

is translated to the following code:

// Output spaces...
format(out,"˜V",Seq{3});
// Output the text...
format(out,"Some text.")

If newlines are included in the text then they are faithfully
recreated

in the output:

\begin{lstlisting}
@X(out,0)
Some

text.
end

produces the following code...

// Output spaces...
format(out,"˜V",Seq{3});
// Output the text...
format(out,"Some");
// Newline and pad to the appropriate column...
format(out,"˜%˜V",Seq{5});
format(out,"text.")

Now, suppose that a simple expression is dropped into the middle...

@X(out,0)
Some { dropped } text.

end

The output should include the value of the variable named ’dropped’ in between the

c©Ceteva 2008.

15.3. SPECIFICATION 255

literal text for “Some” and “text.”. Therefore the code that is produced looks like the
following:

// Pad to the appropriate column...
format(out,"˜V",Seq{3});
// Output the literal...
format(out,"Some "});
// Get the value of dropped and check
// that it is a string. If so then
// print it...
let str = dropped
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
// The rest of the literal output...
format(out," text.")

Within a dropped expression it is possible to introduce a lifted literal:

@X(out,0)
Some { dropped1 [then lifted] dropped2 } text.

end

What we would like to achieve for the nested lifting is the following:

format(out,"˜V",Seq{3});
format(out,"Some "});
let str1 = dropped1
in if str1.isReallyKindOf(String)

then format(out,str1);
format(out," then lifted ");
let str2 = dropped2
in if str2.isReallyKindOf(String)

then format(out,"str2)
end

end
end

end;
format(out," text.")

c©Ceteva 2008.

256 CHAPTER 15. GENERATING TEXT FROM MODELS

Note that the nested lift, is equivalent to another occurrence of @X ... end, therefore we
could just produce the following code:

format(out,"˜V",Seq{3});
format(out,"Some "});
let str = dropped1
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
@X(out,3) then lifted end;
let str = dropped2
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
format(out," text.")

Now we have a general rule for dealing with nested lifts: just wrap the nested lift up in
the appropriate template construct (passing in the current margin for indentation). This
will deal with any level of nesting and interleaving:

@X(out,0)
Some { dropped1 [then { nested } lifted] dropped2 } text.

end

Is translated to:

format(out,"˜V",Seq{3});
format(out,"Some "});
let str = dropped1
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
@X(out,3) then { nested } lifted end;
let str = dropped2
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
format(out," text.")

c©Ceteva 2008.

15.4. DESIGN 257

which in turn becomes:

format(out,"˜V",Seq{3});
format(out,"Some "});
let str = dropped1
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
format(out," then ");
let str = nested
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
format(out," lifted ");
let str = dropped2
in if str.isReallyKindOf(String)

then format(out,str)
end

end;
format(out," text.")

15.4. Design

In order to perform the transformation from a template to code, we must keep track of
the level of nesting. This can be done using a simple two-state transition machine. the
machine is wither currently lifting or is currently dropping. At each stage the machine
consumes input characters until it receives a lifting or dropping token. When it receives
a token it changes state. The machine builds literals, lifts and drops. Each time a literal
character is encountered it is added to the literal currently being constructed. When the
machine encounters an end token, it constructs an appropriate element (either a lift or
a drop) and consumes the literal tokens. When the machine encounters a start-token
(either lift or drop) then it changes state and starts a new collection of literals:

The state machine consumes an input string and produces a code element that repre-
sents the structure of the template. The model of code elements is shown below:

A code element is a literal string containing text that is to be printed on the output
channel. Code elements retain newlines so that the indentation can be controlled. The
structure of lift and drop blocks in a template is retained by constructing instances of
Lift and Drop. An lift or drop object contains a sequence of code elements produced by
translating the input string in between the start and end tokens.

c©Ceteva 2008.

258 CHAPTER 15. GENERATING TEXT FROM MODELS

Figure 15.2.: Lift and Drop Mechanism

Figure 15.3.: Code Elements

c©Ceteva 2008.

15.4. DESIGN 259

For example, the template:

@X(out,0)
Some text.

end

produces the following code elements when processed by the state machine:

Lift(0,Seq{
NewLine(0,3),
Literal(Some text.),
NewLine(0,1),
Literal()

})

Note that the NewLine instances contain two values. The first value is the amount to
left-shift all input. This value is supplied to the template as the argument after the
output channel. In the example, @X(out,0) ... end supplied 0 as the adjustment to the
left-hand margin.

The following example includes further newlines:

@X(out,0)
Some

text.
end

and produces the following code elements:

Lift(0,Seq{
NewLine(0,3),
Literal(Some),
NewLine(0,5),
Literal(text.),
NewLine(0,1),
Literal()

})

Dropped text becomes wrapped in an instance of Drop:

c©Ceteva 2008.

260 CHAPTER 15. GENERATING TEXT FROM MODELS

@X(out,0)
Some { dropped } text.

end

is translated into the following instance by the state machine:

Lift(0,Seq{
NewLine(0,3),
Literal(Some),
Drop(Seq{
Literal(dropped)

}),
Literal(text.)

})

Finally, if we interleave drops and lifts then these are faithfully reproduced in the code
element structure:

@X(out,0)
Some { dropped1 [then { nested } lifted] dropped2 } text.

end

becomes:

Lift(0,Seq{
NewLine(0,3),
Literal(Some),
Drop(Seq{
Literal(dropped1),
Lift(2,Seq{

Literal(then),
Drop(Seq{
Literal(nested)

}),
Literal(lifted)

}),
Literal(dropped2)

}),
Literal(text.)

})

c©Ceteva 2008.

15.5. IMPLEMENTATION 261

15.5. Implementation

A code template is implemented as a language construct that is defined in terms of to-
kens for the start and end of lift and drop respectively. The language construct grammar
simply consumes all the text in between the start of the template and the keyword ’end’.
The text is then loaded onto the machine and the machine is executed to produce a code
element. The code element is then transformed into abstract syntax that is the returned
by the grammar. Here is an example template:

@Class X extends CodeGen::Generator
@Grammar extends OCL::OCL.grammar

X ::=
’(’ // Get the output channel...

out = Exp
// get the current level of indent...
’,’ indent = Int

’)’
// Get the raw text...
s = Char*
’end’
{ let // The control tokens for the code generator...

startLift = "[";
endLift = "]";
startDrop = "{";
endDrop = "}";
// All references to ’end’ are protected...
protectEnd = s.asString().subst("end","e_nd",true) then
// All references to newline characters are protected..

.
protectNewline = protectEnd.subst("\n","\\n",true) then
newString = startLift + protectNewline + endLift then
// Create the mapping to a code element...
mapping = Mapping(newString,startLift,endLift,startDrop

,endDrop) then
// Perform the mapping (run the machine) ...
lift = mapping.processLift(indent,indent)

in
// Translate the code element to abstract syntax and

return...
lift.desugar("CodeGen::X",
startLift,endLift,startDrop,endDrop,startExtract,

endExtract,out,0)
end

}.

c©Ceteva 2008.

262 CHAPTER 15. GENERATING TEXT FROM MODELS

end

In the example template X defined above, the start- and end-lift tokens are [and] re-
spectively, and the start- and end-drop tokens are { and } respectively. Note how the
keyword ’end’ replaces occurrences of the keyword ’e nd’ before the machine is per-
formed. Including XOCL code in templates must use the keyword ’e nd’ instead of
’end’ in order that the transation does not get confused.

The mapping is loaded with the token information and the input string. Notice how
the input text (protectNewline) is loaded onto the machine by surrounding it with the
start- and end-lift tokens. This is because the main body of the template is equivalent to
an outermost ’lift’.

The machine is executed with respect to the following state:

@Class Mapping
// The input string...
@Attribute chars : String end
// The stack of code elements being generated...
@Attribute stack : Stack = Stack() end
// The current position in the string...
@Attribute index : Integer end
// The token indicating a start lift...
@Attribute startLift : String end
// The token indicating the end of a lift...
@Attribute endLift : String end
// The token indicating the start of a drop...
@Attribute startDrop : String end
// The token indicating the end of a drop...
@Attribute endDrop : String end
// The constructor...
@Constructor(chars,startLift,endLift,startDrop,endDrop) end
...

The machine constructs values on a stack. At any given time there is a sequence of code
elements being built at the head of the stack. To support this, the machine arranges for
the head element of the stack to be another stack onto which the current sequence of
code elements are pushed. The following operations manipulate the stack:

context Mapping
@Operation pushChar()
// Elements are added to the top-stack. Generally
// the head element is a buffer. The next literal
// char is added to the top-buffer...

c©Ceteva 2008.

15.5. IMPLEMENTATION 263

let elements = stack.top() then
b = elements.top()

in b.add(chars->at(index));
self.index := index + 1

end
end

context Mapping
@Operation pushElement(element)
// Add an element to the top-stack...
let elements = stack.top()
in elements.push(element)
end

end
context Mapping

@Operation reduceDrop()
// An end-drop has been consumed. The top-stack
// contains the elements to be dropped...
let elements = stack.pop().asSeq()
in Drop(elements)
end

end
context Mapping

@Operation reduceLift()
// An end-lift has been encountered. The top-stack
// contains the elements to be lifted...
let elements = stack.pop().asSeq()
in Lift(elements)
end

end
context Mapping

@Operation reduceLit()
// The literal being constructed at the head of the
// top-stack has terminated. The buffer is replaced
// by a literal...
let elements = stack.top() then

b = elements.pop() then
str = b.toString()

in elements.push(Literal(str))
end

end
context Mapping

@Operation reduceNewLine()
// When new-lines are encountered in the template
// they are retained in the code-element so that
// indentation can be manipulated...

c©Ceteva 2008.

264 CHAPTER 15. GENERATING TEXT FROM MODELS

self.reduceLit();
self.index := index + 1;
let whiteSpace = self.skipWhiteSpace()
in stack.top().push(NewLine(margin,whiteSpace));

self.restart();
whiteSpace

end
end

context Mapping
@Operation restart()
// Create a new empty literal buffer in a
// sequence of existing code-elements...
let elements = stack.top()
in elements.push(Buffer(10,true))
end

end
context Mapping

@Operation start()
// Start a completely new sequence of code-elements...
let elements = Stack()
in stack.push(elements);

self.restart()
end

end

The machine needs to recognize when the current position in the input corresponds to
one of the tokens. a number of token predicates are implemented. All token recognition
predicates follow the same basic implementation which is shown as follows:

context Mapping
@Operation hasPrefix(p:String):Boolean

// Returns true when the current input starts
// with the token p...
let hasPrefix = true;

i = index
in @While hasPrefix and not i = chars->size and (i - index) < p->

size do
hasPrefix := chars->at(i) = p->at(i - index);
i := i + 1

end;
hasPrefix

end
end

context Mapping

c©Ceteva 2008.

15.5. IMPLEMENTATION 265

@Operation isStartLift():Boolean
// Returns true when the next token is start-lift...
self.hasPrefix(startLift)

end

The machine is implemented using two main operations: processLift and processDrop.
Each operation defines the state-machine processing that occurs when the machine is
in the corresponding state. The first operation that is called is processLift (since the
complete template corresponds to an outermost lift):

@Operation processLift()
// Advance past the start-lift token...
self.consumeStartLift();
// Until we get to the end of this lift...
@While not self.isEndLift() do
if self.isNewLine()
then

// Record the newline...
self.reduceNewLine()

elseif self.isStartDrop()
then
// A nested drop is to be processed.
// Any literal text is consumed...
self.reduceLit();
// Change state...
self.processDrop();
// Prepare to carry on with the lift...
self.restart()

else
// Consume a literal character...
self.pushChar()

end
end;
// Advance past the end-lift token...
self.consumeEndLift();
// Consume the most recent literal...
self.reduceLit();
// Build a lift from the tokens on the
// stack...
self.reduceLift()

end

The implementation of processdrop is very similar, however it uses different tokens:

c©Ceteva 2008.

266 CHAPTER 15. GENERATING TEXT FROM MODELS

@Operation processDrop(margin,indent0,indent)
self.consumeStartDrop();

@While not not self.isEndDrop() do
if self.isNewLine()
then self.reduceNewLine()
elseif self.isStartLift()
then
self.reduceLit();
self.processLift();
self.restart()

else self.pushChar()
end

end;
self.consumeEndDrop();
self.reduceLit();
self.reduceDrop()

end

The code elements produced by the machine are translated into XOCL code. As we
have seen in the design, outer-most literals are simply formatted to the output channel.
Nested drops are translated to XOCL code that evaluates an expression to produce a
string and then formats the string to the output channel. Lifts that are nested within
drops are translated to templates are re-processed using the machine. The re-processing
is now at the outermost level and therefore produces XOCL code.

The processing is implemented using two code element operations: desugar and
dropString. The outermost Lift instance is sent a ’desugar’ message in order to pro-
duce the XOCL code:

context Lift
@Operation desugar(path:String,

lstart:String,
lend:String,
dstart:String,
dend:String,
out:Performable,
nesting:Integer):Performable

// The arguments are the name-space path to the template
// the tokens, the output channel and the level of nesting.
// Desugar the lifted elements. Lifting an element produces code,
// each code element will produce some string output when it is
// executed...
elements->iterate(e code = [| null |] |
[| <code>;

c©Ceteva 2008.

15.5. IMPLEMENTATION 267

// Add 1 to the level of nesting...
<e.desugar(path,lstart,lend,dstart,dend,out,level+1)>

|])
end

Desugaring a literal or a new-line is straightforward:

context Literal
@Operation desugar(path:String,lstart,lend,dstart,dend,out,level):

Performable
[| format(<out>,"˜S",Seq{<chars.lift()>}) |]

end

context Newline
@Operation desugar(path:String,lstart,lend,dstart,dend,out,level):

Performable
[| format(<out>,"˜%˜V",Seq{<(indent - base).lift()>}) |]

end

Desugaring an instance of Drop involves inserting the code for the dropped expression
and then printing the resulting string to the output channel at run-time. The literals
in between the start of the drop and the end of the drop is to be viewed as XOCL
code. Therefore we must construct a string containing the code, then turn the string
into XOCL code by parsing it. Code elements can be transformed into strings ready for
the XOCL parser using the ’dropString’ operation as called in the following operation:

context Drop
@Operation desugar(path:String,lstart,lend,dstart,dend,out,level):

Performable
// Turn the elements into code. The elements are strings that
// are concatenated to produce XOCL code that is parsed using
// the OCL grammar...
let str = elements->iterate(e s = "" |

s + e.dropString(path,out,lstart,lend,dstart,dend,0)
) then

code = OCL::OCL.grammar.parseString(str,"Exp1",Seq{XOCL})
in [| let s = <code>

in if s.isReallyKindOf(XCore::String)
then format(<out>,s)
end

end
|]

c©Ceteva 2008.

268 CHAPTER 15. GENERATING TEXT FROM MODELS

end
end

Now we need to implement ’dropString’ for each of the code element classes. The result
from ’dropString’ must be a string that corresponds to the XOCL code for the element.
Literals and Newlines are straightforward:

context Literal
@Operation dropString(path:String,out,lstart,lend,dstart,dend,level)

:String
// Careful to replace outermost occurrences of e_nd in user code

with
// end...
if level = 0
then chars.subst("end","e_nd",true)
else chars
end

end
context Newline

@Operation dropString(path:String,out,lstart,lend,dstart,dend,level)
:String

"\n" + formats("˜V",Seq{indent})
end

A Lift is dropped by transforming it into a template construct:

context Lift
@Operation dropString(path:String,out,lstart,lend,dstart,dend,,level

):String
// Dropping a lift with respect to the level of nesting. If the
// level is 0 then the lift and drop cancel out and we produce the
// code as a string (ready to splice into surrounding code)...
if level = 0
then
"@"+path+"(" + out.pprint() + "," + margin + ") " +

elements->iterate(e s = "" |
s + e.dropString(path,out,lstart,lend,dstart,dend,level+1))

+
" end"

else
lstart +
elements->iterate(e s = "" |

c©Ceteva 2008.

15.5. IMPLEMENTATION 269

s + e.dropString(path,out,lstart,lend,dstart,dend,level+1))
+

lend
end

Finally, a Drop generates a drop string by wrapping itself with drop start- and end-
tokens:

context Drop
@Operation dropString(path,out,lstart,lend,dstart,dend,level):String

// To create a string from a drop. Wrap it with the
// drop-start and drop-end tokens...

dstart + elements->iterate(e s = "" |
s + e.dropString(path,out,lstart,lend,dstart,dend,level)) +

dend
end

c©Ceteva 2008.

270 CHAPTER 15. GENERATING TEXT FROM MODELS

c©Ceteva 2008.

CHAPTER 16

A PROBLEM OF COMPOSITION

Pattern matching is a useful technique when manipulating data. This chapter describes
how to implement pattern directed rules that transform data and how to address a prob-
lem that arises with this approach. The implementation also shows how to use opera-
tions to delay expressions in rules and how to get the variables bound by the pattern
matching into the delayed expressions.

When mapping models to code (and other structured targets) it would be nice of
the structure of the target matched the structure of the source. When this happens,
individual elements in the source model can be transformed into elements of the target
model, and the resulting target elements are then just grouped together to form the
result. For example, when translating UML model classes with attributes to Java class
definitions, each UML class turns into a Java class definition, each attribute in the UML
class produces a corresponding attribute in the Java class. The structure is the same, but
the detail of representation is different.

Unfortunately this situation does not often occur. For example, UML models consist
of separate elements for classes, associations and state machines; each of these model
elements are distinct, but they reference each other. A translation from UML to Java
may choose to produce a single class definition consisting of:

• Java classes for UML classes;

• Java fields for UML class attributes and association role ends;

• A state field.

• An enumeration in each Java class for each UML message.

• A single Java method in a class for handling messages;

• A case for each transition within the message handler.

c©Ceteva 2008.

272 CHAPTER 16. A PROBLEM OF COMPOSITION

Figure 16.1.: Classes for a simple cruise control in a car engine system. Typical of a
system that is to be controlled via a state machine.

The information in the Java program is nested within the Java class. The corresponding
information in the UML model is spread out. The structures are not equivalent.

It is certainly possible to pass tables around the source model and build up the re-
quired parts of the target model. However, it is possible to do better than that and to
use a language driven approach to hide away the details of how the target model is
built up. The transformation language constructs can be pattern directed and the out-
put can be declarative in such a way as to focus on mapping source elements to target
elements without having to say too much about the mechanisms by which the output is
produced.

This chapter is about the design of a language for producing code for models that
solves the composition problem. The structure of this chapter is as follows: section 16.1
describes a simple executable model and its translation to Java; section 16.2 describes
the architecture of the solution; section 16.3 describes a language for rule based model
transformation and shows how it can be used to implement the transformation rules for
the example; section 16.4 provides the implementation of the language constructs.

16.1. Translating Executable Models

This section describes a typical scenario where the translation from models to program
code requires the target code to pull together information from different parts of the
source model. A fully executable program is produced by translating class models and
state machines to Java. The example is a car cruise controller and is very simple, but is
representative of a large number of strategies for producing programs from models.

Figure 16.1 shows a simple model consisting of classes, attributes and associations. A
car engine controller manages the speed of the car and communicates with the cruise
control system. The cruise control system is managed via a mechanical switch on the
dashboard.

c©Ceteva 2008.

16.1. TRANSLATING EXECUTABLE MODELS 273

Figure 16.2.: A state machine describing the behaviour of the Controller class for the car
cruise control system. The controller exists in one of the states (labelled
ellipses). Transitions between states occur when the controller receives the
messages. Guards in [and] determine whether the transition is legal. Ac-
tions on the transitions describe what happens when the transition takes
place.

c©Ceteva 2008.

274 CHAPTER 16. A PROBLEM OF COMPOSITION

Figure 16.2 shows a state machine that defines the behaviour of the engine controller.
The engine starts in the Idle state when it is switched on. When the controller detects
the accelerator being pressed, it switches to the Accelerate state. When the car is ac-
celerating, the driver can press the cruise control button on the dashboard causing the
controller to switch to the Cruise state providing that the speed is less than a preset
amount (120). In the cruising state, the driver can switch the control off by pressing
the accelerator. When switching to and from the cruising state, the engine controller
communicates with the cruise controller, setting its ’on’ state.

Given the behavioural models defined in figures 16.1 and 16.2, it is possible to pro-
duce a fully executable Java program. The program consists of class definitions for the
two classes in the model. Each class includes fields, accessors, updaters and a message
handling operation; the definition of these components comes from different aspects of
the source model.

The rest of this section shows the program code generated from the Controller class.
The example is representative of the code generated from any class in a behavioural
model. Firstly, each model class produces a Java class definition (the missing definitions
are given subsequently):

class Controller {
// Messages...
// Fields...
// Accessors...
// Updaters...
// Message passing...

}

The state machine for a class defines a collection of messages on the transitions. Each
of the messages has a unique identifier that is defined as a collection of constants in the
class:

// Messages...
public static final int accel = 0;
public static final int cruise = 1;
public static final int off = 2;
public static final int cancel = 3;

The state of an object is given by field definitions that come from different aspects of the
behavioural model:

• Each model class defines a collection of attributes with simple types (such as String
or Integer); for example the engine controller class defines an attribute ’speed’ of
type ’Float’.

c©Ceteva 2008.

16.1. TRANSLATING EXECUTABLE MODELS 275

• The model requires that each object exists in one of a given number of states; for
example the engine controller has states for Idle, Cruise and Accelerate.

• The model contains a number of associations between classes. The associations al-
low instances of the classes to communicate with each other. The engine controller
class has an association with the cruise controller class with role end names cruise
and controller.

The Java field definitions for the engine controller are given below:

// Fields...
Float speed; // Simple attribute.
String state; // Current state.
CruiseControl cruise; // Association role end.

Each of the Java fields given above are private to the class definition. To provide access
to the state of a Java instance, the following accessors and updaters are defined:

// Accessors and updaters...
public CruiseControl getcruise() { return cruise; }
public Float getspeed() { return speed; }
public void setcruise(CruiseControl cruise) {

this.cruise = cruise;
}
public void setspeed(Float speed) {

this.speed = speed;
}

State machines define the behaviour of objects in response to receiving messages. This
can be defined in Java using a method in each class that handles messages:

public void send(int message,Object[] args) {
switch(message) {

// Transitions...
}

}

Each transition consists of source and target states s and t, the transition occurs when a
message m is received and when a guard g is true. When the transition fires, an action a
is performed and the receiver changes to the target state t. Each message is implemented
as a case in the Java switch statement:

c©Ceteva 2008.

276 CHAPTER 16. A PROBLEM OF COMPOSITION

case m:
// Transition...
if(state == s && g) {
a;
state = t;

}
break;

The state machine for the engine controller is shown below:

// Message passing...
public void send(int message,Object[] args) {
switch(message) {

case Controller.accel:
if(state.equals("Idle"))
state = "Accelerate";

break;
case Controller.cruise:
if(state.equals("Accelerate") && speed < 120)

cruise.seton(true);
state = "Cruise";

break;
case Controller.off:
if(state.equals("Accelerate"))

state = "Idle";
break;

case Controller.cancel:
if(state.equals("Cruise"))

cruise.seton(false);
state = "Accelerate";

break;
case Controller.off:
if(state.equals("Cruise"))

state = "Idle";
break;

default: throw new Error("No message " + message);
}

c©Ceteva 2008.

16.2. TRANSFORMATION ARCHITECTURE 277

16.2. Transformation Architecture

Before looking at a language that supports the generation of code for models, it is worth
considering the steps taken by a mechanical process. The idea is that the mechanical
process is driven by code generation rules and that the rules encode any domain specific
information about the models being transformed. The code generation rules are pattern
directed and follow the structure of the source model:

for each class c
emit a Java class definition.
emit a state field.
for each attribute a of c

emit a field definition for a.
emit an access and updater for a.

emit a message handling method.
for each association A

emit a field for end1
emit a field for end2

for each state machine m for class c
for each transition t of m

emit a constant field to c for message(t)
emit a message case for t to c

The transformation defined above follows the structure of the source model. However,
the code that is produced (or emitted) by the transformation rules does not follow the
same structure; for example fields arising from associations must be added to class def-
initions that are produced by other parts of the transformation. It is attractive to have
the transformation follow the structure of the source model but some technology must
be employed to tie up the various target components. An effective way to do this is
to use labels: emitted code is labelled and may contain labels, once the labelled target
components are produced a subsequent phase is used to resolve label references.

An overview of the architecture of the transformation process shown in figure 16.3.
Model elements are supplied to the rules in the rule base. Each rule consists of a source
pattern and a target pattern. Two rules are shown:

1. R1: Pattern P1 matches a class in the model. The output pattern describes a Java
class labelled with the class name.

2. R2: Pattern P2 matches an attribute in the model. The output pattern describes a
Java field labelled with the name of the owning class.

When model elements are supplied to a rule-base consisting of a collection of rules,
each rule is tried in turn. If the input elements match the patterns then the rule is en-

c©Ceteva 2008.

278 CHAPTER 16. A PROBLEM OF COMPOSITION

Figure 16.3.: An overview of rule firing. Elements match against patterns, document
templates are produced. The templates contain label references. A resolu-
tion step replaces label references with the documents that they refer to.

abled. Patterns contain variable names and an enabled rule has an environment of vari-
able bindings. The first enabled rule is fired. Firing a rule produces a document template
by replacing all occurrences of pattern variables in the output pattern. Turning an out-
put pattern into a document template is referred to as forcing the output pattern with
respect to the environment.

Figure 16.3 shows three document templates produced from the rule-base. The first is
labelled with classX and is the result of mapping a model class named X to a Java class.
The second and third are both labelled with XAtts and are the result of mapping two
class attributes named x and y to Java fields. The classX template contains a reference
to a label XAtts that is a placeholder for the fields of the class.

A document template is transformed into a document by replacing all label references
with documents. This process is called displaying the document template. The display
process is shown as the final step in figure 16.3 where the occurrence of XAtts in the
class definition is replaced with all the field definitions labelled XAtts.

Rule firing may involve multiple passes over the data; the output pattern of each rule
may refer to other rule-bases (including its own) and supply data to those rule-bases
to produce the final document templates. For example, the rule R1 is supplied with a
class, emits a document template for the class but also calls the rule-base again with the
attributes of the class so that rule R2 fires on each attribute. All rule firing is completed
before document display takes place.

16.3. A Rule Based Language

The transformation from a model to code is performed by a rule-base containing a col-
lection of rules. The rule base is supplied with one or more model elements as input. It
tries the rules in turn until one of the rules matches the input. The body of the matching
rule is forced to produce a document template. The template may be labelled and may

c©Ceteva 2008.

16.3. A RULE BASED LANGUAGE 279

contain labelled placeholders. The rule-base may be performed multiple times against
different model elements. Once execution is complete, the templates are displayed by
matching placeholder labels against labelled output. The result is an output document
with no unresolved labels that can be displayed as text. This section describes the fea-
tures of the rule-base language and concludes with the complete behavioural modelling
rule-base as described in the previous section.

A rule-base with the name N has the following format:

@RuleBase N
// Rules...

end

A rule named R has the following format:

@Rule R P1,P2,...,Pn ->
D1 D2 ... Dm

end

where each Pi is an element pattern and each Di is a document pattern. The idea of a
rule is that it must be supplied with n inputs. If each of the n inputs match the patterns
then the rule is enabled. An enabled rule is fired by forcing the output defined by each Di
in turn. The result produced by the rule firing is the last document Dm. Each pattern Pi
may contain variables that match against the corresponding input. If the rule is enabled
then the collection of variables and values provides an environment for the rule firing.

Here is a simple example of a rule:

@Rule Anything x ->
<x>

end

The pattern ’x’ matches anything as input. A document ¡ exp ¿ performs the expression
exp in the supplied rule-firing environment. The result of x is either a document or an
element that is transformed into a string. In the case of Anything, the rule will produce
the stringified version of x as a document.

A pattern may match an object:

@Rule ToJava Class[name=n] ->
"public class " + <n> + "{"

end

c©Ceteva 2008.

280 CHAPTER 16. A PROBLEM OF COMPOSITION

The pattern in the rule ToJava matches instances of Class and matches the name of
the class with the variable ’n’. Two documents are composed using the ’+’ operator.
Supplying the class Element to this rule (firing and displaying the result) produces:

public class Element {

Indentation in a document is produced using the matching directives -¿[and]:

@Rule ToJava Class[name=n] ->
"public class " + <n> + "{" +
->[nl +

"public String state;"
] + nl +

"}"
end

Supplying Element to the above rule produces:

public class Element {
public String state;

}

The nl directive produces a newline and tabs to the current level of indentation. Collec-
tions are processed using the { and } directives:

@Rule ToJava Class[name=n,attributes=A] ->
"public class " + <n> + "{" +
->[nl +

"public String state;" + nl
{ <A> <map> nl empty }

] + nl +
"}"

end

The { and } contain four components { S M C D }where: S defines the collection; M de-
fines a mapping that is applied to each element of S in turn; C is a document combinator
and D is a default document. The easiest way to understand this construct is via an ex-
ample. Given a collection S = {x,y,z} then { S M C D} produces C(M(x),C(M(y),M(z))).
Given a collection S = {} then the default D is produced.

c©Ceteva 2008.

16.3. A RULE BASED LANGUAGE 281

The collection component S may be a label or an expression. In the example above
¡A¿ is an expression where A is provided by the context of the rule firing. The map-
ping component M is an expression. The variable map always refers to the containing
rule-base and therefore allows the rule base to be applied as part of a rule firing. The
combiner nl causes the documents to be combined by joining them together with new-
lines. The document empty is just that. Note that nl and empty are builtin so we don’t
put ¡ and ¿ round them.

Suppose that C is a class with two attributes x and y of type String and Integer re-
spectively. Using the above definition to transform C produces the following (assuming
suitable rule definitions for attribute to field transformation):

public class C {
public String state;
String x;
int y;

}

The ToJava rule above is incomplete since there is no rule for mapping attributes, here
they are:

@Rule MapStrAtt
Attribute[name=n,type=NamedElement[name="String"]] ->

"String " + <n> + ";"
end
@Rule MapIntAtt
Attribute[name=n,type=NamedElement[name="Integer"]] ->
"int " + <n> + ";"

end
// More cases...

Labels can be used either by themselves in documents or as the source of collection
templates (as in ¡A¿ above). Documents can be tagged with labels using ’emit’. Here
are the class and attribute rules re-written to use labels:

@Rule ToJava Class[name=n,attributes=A] ->
"public class " + <n> + "{" +
->[nl +

"public String state;" + nl
{ [n + "Atts"] <@Operation(a) map(a,n) end> nl empty }

] + nl +
"}"

c©Ceteva 2008.

282 CHAPTER 16. A PROBLEM OF COMPOSITION

end
@Rule MapStrAtt
Attribute[name=n,type=NamedElement[name="String"]],
className ->

emit[className + "Atts"]
"String " + <n> + ";"

end

Notice that the mapping components of the collection expression is modified to become
an operation that supplies two elements to the mapping (a,n). Each attribute mapping
rule has two inputs: the attribute and the name of the class. The attribute rule emits
(and returns) a Java field definition. When a document is emitted against a label (in
this case className + “Atts”), it is added to the collection of documents for that label.
When the resolution phase is performed, the collection expression will use all of the
documents registered against the label.

This concludes the overview of the rule language for transforming model elements.
The key features of element patterns are: constants; variables; object patterns with slots.
The key features of the document patterns are: literal strings; delayed expressions in ¡
... ¿; combination with +; indentation and newlines with -¿[...] and nl; labels with [...
]; tagged documents using ’emit’; combining collections with { ...}.

Finally, the rules for the Java mapping are defined below. There are two rule bases.
The first is used to map model types to Java types and the second is used to map pack-
ages, classes, attributes and state machines to Java classes. The first rule base is defined
in its entirety below and the second is defined on a rule-by-rule basis.

Model types are named elements. The names must be mapped to the appropriate
Java types. To simplify the example, sets and sequences are translated to vectors:

@RuleBase Types
@Rule String NamedElement[name=’String’] ->
"String"

end
@Rule Integer NamedElement[name=’Integer’] ->

"int"
end
@Rule Integer NamedElement[name=’Boolean’] ->

"boolean"
end
@Rule Sequence Seq[elementType=t] ->

"Vector<" + <map(t)> + ">"
end
@Rule Set Set[elementType=t] ->

"Vector<" + <map(t)> + ">"
end

c©Ceteva 2008.

16.3. A RULE BASED LANGUAGE 283

@Rule Default NamedElement[name=n] ->
<n>

end

A package is a collection of classes, associations and sub-packages. Each package gives
rise to a document labelled with the name of the package. The contents of the document
are produced by mapping the contents:

@Rule TranslatePackage
Package[name=n,classes=C,associations=A,packages=P] ->

emit["Package-" + n]
{ <C> <map> nl empty } +
{ <A> <map> nl empty } +
{ <P> <map> nl empty }

end

A class is transformed into a Java class definition. Some of the components of the Java
class can be produced directly from the model, other components are produced from
model elements that originate elsewhere. The following rule uses labels as placeholders
for the program code that is generated elsewhere. The comments in the rule describe
each of the major components:

@Rule TranslateClass
Class[name=n,attributes=A] ->
// Emit a labelled class definition...
emit["Class-" + n]
"class " + <n> + " {" +
// Indent the body of the definition...
->[nl +

// Transitions define messages,
// each message defines a constant...
{ [n + "transitions"] id nl empty } + nl +
// Each attribute defines a simple-typed Java field...
{ <A> < @Operation(a) map(a,n) end> nl empty } + nl +
// Each instance has its own state...
"String state;" + nl +
// Attributes are defined by associations...
{ [n + "attributes"] id nl empty } + nl +
// Accessors and updaters are defined elsewhere...
{ [n + "accessors"] id nl empty } + nl +
{ [n + "updaters"] id nl empty } + nl +
// Each class has a message handler...

c©Ceteva 2008.

284 CHAPTER 16. A PROBLEM OF COMPOSITION

"public void send(int message,Object[] args) {" +
// Indent the body of the method...
->[nl +

"switch(message) {" +
// Indent the body of the switch
->[nl +

// Each transition produces a message case...
{ [n + "messages"] id nl empty } + nl +
// In case the message is not handled...
"default: throw new Error(\"No message \" + message);"

] + nl +
"}"

]
] + nl +

"}"
end

Each attribute defined by a class in the model produces an accessor, an updater and a
Java field definition. The methods are labelled so that all accessors and updaters for the
class are defined in the same place in the output. The field definition is returned:

@Rule TranslateAttribute Attribute[name=n,type=t],c ->
// Produce an accessor method for this field...
emit[c + "accessors"]

<Types.apply(t)> + " get" + <n> + "()" +
"{ return " + <n> + "; }"

// Produce an updater method for this field...
emit[c + "updaters"]

"void set" + <n> + "(" + <Types.apply(t)> + " " + <n> + ")" +
"{ this." + <n> + " = " + <n> + "; }"

// Produce the field definition...
<Types.apply(t)> + " " + <n> + ";"

end

An association consists of two ends; each end has a name and is attached to a type. An
association produces a pair of field definitions in the Java classes and also adds accessors
and updaters. The transformation is performed by the following two rules:

@Rule TranslateAssociation Association[end1=e1,end2=e2] ->
// Produce definitions for the class at end1...
<map(e1,e2)>
// Produce definitions for the class at end2...

c©Ceteva 2008.

16.3. A RULE BASED LANGUAGE 285

<map(e2,e1)>
// Just for side effect...
empty

end

@Rule TranslateEnd
End[name=n1,type=t1],End[name=n2,type=t2] ->
// produce a field definition for the class t1...
emit[t1.name() + "attributes"]

<Types.apply(t2)> + " " + <n2> + ";"
// Produce an accessor method for t1...
emit[t1.name() + "accessors"]
"public " + <Types.apply(t2)> + " get" + <n2> + "() { " +
->[nl +
"return " + <n2> + ";" + nl

] + nl + "}"
// produce an updater for t1...
emit[t1.name() + "updaters"]
"public void set" + <n2> +

"(" + <Types.apply(t2)> + " " + <n2> + ") { " +
->[nl +
"this." + <n2> + " = " + <n2> + ";" + nl

] + nl + "}"
end

A state machine belongs to a class and defines states and transitions. The state ma-
chine is implemented in Java as an enumerated type for the messages and as a message
handling method. Each transition defines what happens when an instance of the class
receives a message. A message is defined as an enumerated type implemented as a
bunch of constants in the class. A transition is implemented as a case in the message
handling method. The rest of the rules define the transformation of a state machine to
its implementation.

@Rule TranslateMachine StateMachine[class=c,states=S,trans=T] ->
// Translate the messages to constants. Use ->asSet
// to remove duplicate message names...
<map(T.message->asSet->asSeq,T.message->asSet->asSeq,c)>
// translate the transitions to message handling cases...
<map(T,c)>

end

The following rules produce constant definitions for the messages used by the state
machine:

c©Ceteva 2008.

286 CHAPTER 16. A PROBLEM OF COMPOSITION

@Rule TranslateMessages allMessages,Seq{message|messages},class ->
// Produce a constant (use the position
// of the name as its value)...
<map(message,class,allMessages->indexOf(message))>
// Map the rest of the messages...
<map(allMessages,messages,class)>

end
@Rule NoMessagesLeft allMessages,Seq{},class ->
// No messages, requires no constants...
empty

end
@Rule TranslateMessage message,Class[name=className],index ->

// Produce a constant with value index...
emit[className + "transitions"]
"public static int " + <message> + " = " + <index> + ";"

end

Finally, each transition produces a case entry in the message handling method of the
class. The case checks that the receiver is in the correct state and that the guard is true.
If so then the action is performed and the receiver changes to the target state:

@Rule TranslateTrans Seq{
Trans[source=s, // Source state name

target=t, // Target state name
message=m, // Message name
condition=p, // Condition (Java code)
action=a // Action (Java code)
] | T}, // T is more transitions

c -> // Class that owns the transition
// Produce a case definition for the message handling
// method for class c...
emit[c.name() + "messages"]
// This case handles the message m...
"case " + <c.name()> + "." + <m> + ":" +
->[nl +

// check we are in the appropriate state s and
// the predicate p is true...
"if(state.equals(" + <str(s)> + ") && " + <p> + ")" +
->[nl +

// Perform the action...
<a> + ";" + nl +
// Change to the target state...
"state = " + <str(t)> + ";"

c©Ceteva 2008.

16.4. IMPLEMENTATION 287

// Break out of the switch...
] + nl + "break;"

]
// Translate the rest of the transitions...
<map(T,c)>

end

@Rule TranslateNoTrans Seq{},c ->
// The base case...
empty

end

16.4. Implementation

The previous section has defined the syntax of a language for pattern directed document
generation rules. The language addresses the code generation composition problem
whereby the structure of the input model elements does not match the structure of the
output code. Labels are used to tag the generated code (or document templates) and to
define placeholders that are then resolved in a subsequent phase.

This section defines the rule-based document generation language. There are several
parts to the definition: the language of patterns, the language of documents and the
label resolution mechanism. Each of these are explained in turn.

16.4.1. Pattern Matching

Figure 16.4 shows the definition of a pattern language. Patterns occur frequently in
language definitions where it is useful to extract elements from data depending on the
structure of the data. When this is a requirement is it almost always cost effective to
define a pattern language and a pattern matching mechanism that it is to write the
corresponding program code that extracts the elements each time they are required. For
example, the pattern:

C[x=10,y=v]

is equivalent to the code:

if element.isKindOf(C)
then
if element.x = 10
then // bind "v" to 10

c©Ceteva 2008.

288 CHAPTER 16. A PROBLEM OF COMPOSITION

Figure 16.4.: Patterns

else // fail match
end

else // fail match
end

Given that patterns can involve multiple elements and can be nested, the saving in terms
of code is quite significant. Furthermore, modelling the pattern language provides other
benefits. The language becomes circumscribed and its processing can be very effectively
controlled. For example error handling can be reported in terms of the original patterns
and not the implementation of the patterns. Optimizations for pattern matching can be
universally and retrospectively applied. The patterns can be translated to other imple-
mentation platforms, for example by exporting to a programming language.

The simplified grammar for patterns is shown below:

@Grammar
Constant ::=
s = Str { Const(s) }

| i = Int { Const(i) }
| ’true’ { Const(true) }
| ’false’ { Const(false) }.
EmptySeq ::= ’}’ { Const(Seq{}) }.
HeadTail ::= h = Pattern ’|’ t = Pattern ’}’ { Pair(h,t) }.

c©Ceteva 2008.

16.4. IMPLEMENTATION 289

Pair ::= ’Seq{’ (HeadTail | EmptySeq).
Path ::= p = (’::’ Name)* { p }.
Pattern ::=

Constant
| n = Name NameTailˆ(n)
| Pair.
NameTail(n) ::=
p = Path ’[’ s = Slots ’]’ { Object(Seq{n|p},s) }

| { Var(n) }.
Slots ::=

s = Slot ss = (’,’ Slot)* { Seq{s | ss} }
| { Seq{} }.
Slot ::= n = Name ’=’ p = Pattern { Slot(n,p) }.

end

Given an element and a pattern, matching is implemented as a mechanism that con-
structs an environment of variable bindings. Each binding associates a variable with
a value such that substituting each variable for its value in the pattern produces the
original element. For example, given the pattern:

C[x=10,y=v]

and an instance o of C such that o.x = 10 and o.y = 20 then the environment associating
y with 20 allows the pattern to be equivalent to the element o. The mechanism is imple-
mented by defining a match operation for each of the pattern classes. Each operation
is called match and expects two arguments: the value to be matched and the current
variable binding environment. The result of the match is either the variable binding
environment or null, if the match fails. For constants:

context Const
@Operation match(value,env)

if value = self.value
then env
else null
end

end

A variable pattern matches anything:

context Var
@Operation match(value,env)

c©Ceteva 2008.

290 CHAPTER 16. A PROBLEM OF COMPOSITION

env->bind(name,value)
end

A pair pattern must match a sequence (and not an empty sequence since that is treated
as a constant) such that the head and tail of the pattern matches the corresponding
elements of the value:

context Pair
@Operation match(value,env)

if value.isReallyKindOf(Seq(Element)) and
not value = Seq{}

then
env := head.match(value->head,env);
if env <> null
then tail.match(value->tail,env)
else env
end

else null
end

end

An object pattern matches an instance of the appropriate class where all the slot patterns
match the appropriate slot values:

context Object
@Operation match(value,env)

if value.isReallyKindOf(self.classifier())
then

@For slot in slots do
if env <> null
then env := slot.match(value,env)
end

end;
env

else null
end

end

Each slot matches the appropriate slot value:

context Slot

c©Ceteva 2008.

16.4. IMPLEMENTATION 291

Figure 16.5.: Document Model

@Operation match(object,env)
if object.hasSlot(name)
then pattern.match(object.get(name),env)
else null
end

end

16.4.2. Documents

Once patterns have matched a collection of elements, document templates are produced
in the context of the matched environment. The document model is shown in figure
16.5. The model is used in three ways: to represent document patterns in rules; to rep-
resent document templates; to represent document displays. The difference between

c©Ceteva 2008.

292 CHAPTER 16. A PROBLEM OF COMPOSITION

these three uses is: patterns may contain delayed expressions; templates may contain
unresolved labels; document displays contain no unresolved labels and no delayed ex-
pressions.

The classes in the model match the constructs in the language examples from the pre-
vious section. The following classes are worth noting: the source, mapper and combiner
of a collect are classes that are specialized in specific ways for different kinds of builtin
collection operations; Label is a class that is either specialized as a delayed label or a
literal label.

Delayed document components are used to allow arbitrary expressions to be embed-
ded. The expressions are to be evaluated when the document is created in the context
of the environment produced by successful pattern matching. When the delayed docu-
ment is created, the expression is turned into an operation whose arguments correspond
to the variable names used in the expression. Delayed components include: source,
mapper and combiner of a collect; a delayed document; and a delayed label.

The grammar for documents is shown below:

@Grammar extends OCL::OCL.grammar
Doc(FV) ::= d = AtomicDocˆ(FV) DocTailˆ(FV,d).
AtomicDoc(FV) ::=
Buildˆ(FV)

| Delayedˆ(FV)
| Emitˆ(FV)
| Empty
| Newline
| Refˆ(FV)
| Literal
| Indentˆ(FV)
| Labelˆ(FV).
DocTail(FV,d1) ::=

’+’ d2 = Docˆ(FV) { Order(d1,d2) }
| { d1 }.
Build(FV) ::=

’{’ s = Sourceˆ(FV)
m = Mapˆ(FV)
c = Combiner d = Docˆ(FV)

’}’ {
Collect(s,m,c,d)

}.
Source(FV) ::=
LabelSourceˆ(FV)

| DelayedSourceˆ(FV).
LabelSource(FV) ::= ’[’ e = Exp ’]’ op = DocOpˆ(FV,e) {
DelayedLabelSource(op)

}.

c©Ceteva 2008.

16.4. IMPLEMENTATION 293

Map(FV) ::=
’<’ e = DelayedExp ’>’ op = DocOpˆ(FV,e) {

DelayedMapper(op) }
| ’id’ { IdMap() }.
DelayedSource(FV) ::= ’<’ e = Exp ’>’ op = DocOpˆ(FV,e) {
DelayedSource(op)

}.
Combiner ::=
’nl’ { CombineWithNewlines() }
| ’ignore’ { Ignore() }.
Label(FV) ::= ’[’ e = Exp ’]’ op = DocOpˆ(FV,e) {

DelayedLabel(op)
}.
Delayed(FV) ::= ’<’ e = Exp ’>’ op = DocOpˆ(FV,e) {

Delayed(op)
}.
Emit(FV) ::= ’emit’ l = Labelˆ(FV) d = Docˆ(FV) {
Emit(l,d)

}.
Empty ::= ’empty’ { Empty() }.
Newline ::= ’nl’ { Newline() }.
Ref(FV) ::= ’!’ l = Labelˆ(FV) { Ref(l) }.
Literal ::= s = Str { Literal(s) }.
Indent(FV) ::= ’->’ ’[’ d = Docˆ(FV) ’]’ {

Indent(2,d)
}.
DocOp(FV,e) ::= { DocOp(FV,e) }.

end

The document grammar extends the OCL grammar in order to refer to the Exp gram-
mar rule for delayed document components. Many of the grammar clauses for Doc are
parameterized with respect to a set of free variables. This feature allows delayed ex-
pressions to be transformed into operations where the arguments of the operation are
the intersection of the free variables referenced in the expression and those bound in the
current pattern environment. For example, the rule:

@Rule Class[name=n] -> "class " + <toUpper(n)> end

contains a delayed expression: toUpper(n). The delayed expression contains two free
variables: toUpper and n. However, when the rule fires, only one of the free variables
(n) will be bound in the pattern matching environment. The delayed expression is trans-
lated by the parser into an operation:

c©Ceteva 2008.

294 CHAPTER 16. A PROBLEM OF COMPOSITION

Figure 16.6.: Rule Model

@Operation(n) toUpper(n) end

where the arguments (n) are calculated as the intersection of the free variables in the
body {toUpper,n} and the variables bound by the pattern {n}. Patterns implement an
operation FV that calculates the set of variables bound by the pattern; this set is supplied
to the Doc clauses. The set FV is ultimately used in the clause DocOp that creates an
instance of the class DocOp. A DocOp is just like a normal operation except that its
arguments are calculated by taking the intersection of the FV and and free variables of
its body.

The rest of the Doc grammar should be self explanatory. Note that some classes are
used that are not shown in figure 16.5. These are sub-classes of Label and collection
classes; they capture various special cases and associate them with special purpose syn-
tax.

16.4.3. Rules and Rule Bases

Figure 16.6 shows the model of rules and rule bases. A rule consists of a sequence of
patterns and a sequence of documents. A rule base is a sequence of rules that will be

c©Ceteva 2008.

16.4. IMPLEMENTATION 295

tried in turn when the rule base is supplied with elements. A rule base has a table that
is used to hold associations between labels and documents when rules are fired. On the
resolution pass, labels are replaced with their documents from the table. The table also
allows particular documents to be indexed by their name; for example only part of a
document in a large model can be re-generated.

The rest of this section describes how rules are fired and then the resulting document
is produced by resolving labels. Argument elements are supplied to a rule base via the
operation apply defined below.

Each rule is applied to the args in turn until one is enabled by returning a non-null
environment. When this occurs the rule is fired, supplying the environment to the rule.
Notice that the environment is extended with a binding for ’map’ which allows the
document to call the rule-base again:

context RuleBase
@Operation apply(args)
let done = false;

result = null
in @For rule in R when not done do

let env = rule.match(args,Seq{})
in if env <> null

then
let env = env->bind("map",

@Operation(.args)
self.apply(args)

end)
in done := true;

result := rule.fire(env,table)
end

end
end

end;
if not done
then self.error(formats("No rule for (˜{,˜;˜S˜}˜%",Seq{args}))
else result
end

end
end

Rules are matched using the match operation defined below which, in turn, calls the
match operation for each of the patterns:

context Rule
@Operation match(values,env)

c©Ceteva 2008.

296 CHAPTER 16. A PROBLEM OF COMPOSITION

if args->size = values->size
then

@For arg,value in args,values do
if env <> null
then env := arg.match(value,env)
end

end;
env

else null
end

end

16.4.4. Forcing Delayed Documents

A rule is fired by forcing its documents. Forcing a document causes all of the delayed
expressions to be evaluated and all ’emit’ documents to update the rule-base table:

context Rule
@Operation fire(env,table)
let result = null
in @For doc in docs do

result := doc.force(env,table)
end;
result

end
end

Forcing a document achieves two tasks:

• Components of a document may be delayed expressions that evaluate to produce
documents. These include expressions in ¡ .. ¿ and within the [...] part of emit
and label references. Forcing a document evaluates the delayed expressions and
returns the original document with the delayed expressions replaced with the re-
sults.

• Components of a document may be ’emit’-ed. Forcing a document updates the
document table with associations between the emit-label and the emit-document
(after delayed expressions have been evaluated).

Each document class defines a force operation that expects an environment and a ta-
ble. The environment is produces by the pattern matching and contains values for free
variables referenced in the delayed expressions. The table is used to associate labels

c©Ceteva 2008.

16.4. IMPLEMENTATION 297

and documents produced by ’emit’. Many of the force operations just force the sub-
components, for example:

context Collect
@Operation force(env,table)

// Just return the collect with the
// components forced...
Collect(

source.force(env),
mapper.force(env),
combiner,
doc.force(env,table))

end

Delayed expressions are implemented by associating documents with operations. The
arguments of the operation define the free variables that must be supplied by the pattern
matching environment. Components with delayed expressions are implemented in the
same way. Here is the implementation of force for a delayed expression that occurs in
source code as ¡...¿:

context Delayed
@Operation force(env,table)

// Get the bindings from the environment that provide values
// for the parameter names of the operation...
let args = operation.paramNames()

->collect(name |
env->lookup(name.toString())) then

// Force the delayed expression by supplying the argument
// values...
value = operation.invoke(self,args)

in // Coerce the return value to be a document...
@TypeCase(value)

Doc do
value

end
else Literal(value.toString())

end
end

end

Finally, an emit document updates the table:

c©Ceteva 2008.

298 CHAPTER 16. A PROBLEM OF COMPOSITION

context Emit
@Operation force(env,table)

// Force the label...
let label = label.force(env) then

name = label.label();
// Force the body...
doc = doc.force(env,table)

in // Extend the table with an entry for the label...
if table.hasKey(name)
then table.put(name,table.get(name) + Seq{doc})
else table.put(name,Seq{doc})
end;
doc

end
end

16.4.5. Displaying Documents

Once rules have been fired and all documents have been forced, the result is a table that
associates labels with document templates. A document template may contain label
references; it is translated to a document by replacing all the references. This is done
using the display operation of the rule base as shown below:

@Operation display(label:String)
// Display the document with the given label...
if table.hasKey(label)
then

// Use a string output buffer because there may be
// lots of output...
let buffer = Buffer(1000,true)
in table.get(label)->at(0).display(0,table,buffer);

buffer.toString()
end

else self.error("No label in table: " + label)
end

end

Each of the document classes defined an operation called display that takes three ar-
guments: the current level of indentation; the table associating labels with document
templates and an output buffer. Each of the document classes implements the display
operation differently. The rest of this section describes how the documents are dis-

c©Ceteva 2008.

16.4. IMPLEMENTATION 299

played.
The Collect class expects the collect source to produce a sequence of documents, each

of which is mapped and then combined to produce a final single document that is dis-
played:

@Operation display(indent,table,buffer)
source.elements(table)->iterate(element doc = doc |

combiner.combine(doc,mapper.map(element)))
.display(indent,table,buffer)

end

A label reference requires that the label name is a key in the table. The table should
associate a collection of documents with the label name; labels are used to reference the
first element (collection documents are used to combine multiple document entries in
the table):

@Operation display(indent,table,buffer)
if table.hasKey(label)
then table.get(label)->at(0).display(indent,table,buffer)
else self.error("Label: cannot find label " + label)
end

end

A NewLine causes a new-line character to be added to the output buffer. After each
new-line, the current level of indentation is achieved by adding the appropriate number
of spaces:

@Operation display(indent,table,buffer)
buffer.add("\n"->at(0));
buffer.append(formats("˜V",Seq{indent}))

end

Ordered documents just display the first and then the second:

@Operation display(indent,table,buffer)
left.display(indent,table,buffer);
right.display(indent,table,buffer)

end

c©Ceteva 2008.

300 CHAPTER 16. A PROBLEM OF COMPOSITION

c©Ceteva 2008.

CHAPTER 17

THE SECD MACHINE

There are many different types of model used to analyse programs and programming
languages. These include models of source code, e.g. flow-graphs, models of type sys-
tems, models of pre and post conditions, petri-nets and various calculi.

Models of programs and their languages are important because designing and im-
plementing programs, as anyone knows who has tried it for real, is a challenging task.
The key features of what makes a program work, are hidden away inside a black-box.
Even if it was possible to look inside the box, all that would be revealed is a bunch of
electronics, memory addresses, registers and binary data.

Programs are not designed in terms of the implementation platform that is eventu-
ally used to run the code. A program is defined and implemented in terms of models
that describe various abstractions over the implementation platform. The models make
programming feasible for humans.

A key model that is used when constructing programs, is the programming language
itself. When the code is eventually performed on the machine, the program that was
written by the human engineer is certainly not executed directly by the hardware. Over
time, languages have been developed that provide abstractions over the implementa-
tion platform.

Having said that current programming languages (their libraries and the various soft-
ware platforms that are currently used) are abstractions; they still must deal with many
features of implementation detail that allow the hardware to poke through. Take any
serious programming language manual and there will be a section describing how to
make the thing run as fast as possible. Use any commercial library (graphics libraries
being a case in point) and there will be many features that, whilst they shield the user
from the basic underlying hardware, still seem fairly complex.

There is a grand history of models of programming languages. These models are used
to understand the fundamentals of what essential features make a program work for an
intended application. If you like, these models are an abstraction of an abstraction, but

c©Ceteva 2008.

302 CHAPTER 17. THE SECD MACHINE

don’t let that put you off; a familiarity with these models is a sure step in the direction
of being in-control of a wide range of programming notations.

One of the most important programming language models is the lambda-calculus.
It is essentially a model of procedure-call (and method-call) based languages and has
be used to model languages including Pascal, Ada, and Java. There are plenty of texts
describing the lambda-calculus and it is certainly not the intent of this book to provide
a tutorial. Many of the texts are quite theoretical in nature and should be ignored; pick
out some of the more practical looking texts if you are interested, it is certainly worth it.

The rest of this section shows how the lambda-calculus can be modelled. In particular,
a machine is developed that runs the calculus. The SECD machine is a fantastic tool to
understand how programming languages tick. It is simple and can be extended in a
myriad of ways to model useful abstractions of programming language execution.

The syntax of the lambda-calculus is defined as follows:

E ::= Expressions
V Variables

| \V.E Functions (of 1 arg)
| E E Applications

Where an expression is either a variable (just a name), a function (1 arg and an expres-
sion body) or an application (of a function to an arg).

The execution of any calculus expression is also quite simple and takes place with
respect to an environment that associates variable names with values. To evaluate a vari-
able, look up the variable name in the environment. To evaluate a function, produce a
closure that associates the function with the current environment. To evaluate an appli-
cation, first evaluate the function and arg expressions to produce a closure and a value.
Evaluate the body of the closure-function with respect to the closure-environment ex-
tended by associating the closure-arg with the arg-value.

The execution is the essence of programming language execution where procedure
(method) calls evaluate by supplying the arguments and then wherever the body of the
procedure refers to the argument by name, the supplied value is used instead. Of course
there are many caveats and special cases (not least order of evaluation and side-effects),
but these can all be dealt with by equipping the basic calculus with the right machinery.

The lambda-calculus syntax is modelled in figure 17.1. The class Exp extends Syntax
so that lambda expressions are self-evaluating. The grammar is as follows:

@Grammar
Exp ::= Exp1 ’end’.
Exp1 ::= Lambda | a = Atom Compositeˆ(a).
Lambda ::= ’\’ a = Name ’.’ e = Exp1 { Lambda(a,e) }.
Composite(a) ::=

b = Atom c = { Apply(a,b) } Compositeˆ(c)

c©Ceteva 2008.

303

Figure 17.1.: Lambda Calculus

Figure 17.2.: Machine States

| b = Lambda { Apply(a,b) } | { a }.
Atom ::= Var | Integer | ’(’ Exp1 ’)’.
Field ::= n = Name ’=’ e = Exp1 { Field(n,e) }.
Var ::= n = Name { Var(n) }.

end

The definition of Composite provides an interesting feature: left association. Applica-
tions are left associative in the lambda-calculus, therefore the expression a b c is grouped
as the application a b applied to c, or equivalently (a b) c. The Composite rule is defined
using an argument a that accumulates the applications to the left.

Execution of lambda-calculus expressions can be performed by the SECD machine
(whose states are shown in figure 17.2), so-called because it has 4 components:

1. The stack S that is used to hold intermediate results from expressions.

c©Ceteva 2008.

304 CHAPTER 17. THE SECD MACHINE

Figure 17.3.: Control Instructions

2. The environment E that is used to associate variable names with values.

3. The control C that is used to hold sequences of machine instructions.

4. The dump D that is used to hold resumptions.

Execution of the machine is performed by case analysis on the instruction at the head
of the control. The instructions are shown in figure 17.3. Any expression is translated
into an instruction using Do. the App instruction is used to perform an application as
shown below.

The best way to see what how the SECD machine works is to see it running. The
following trace shows the execution of an expression (\v. v v)(\x.x). In order to make
the output readable, the following pretty-printers have been defined for the various
classes: States: (s,e,c,d); sequences: [x1,x2,x3]; pairs: h-¿t; App: @; Do: ignored.

(1) ([],[],[(\v.v v) (\x.x)],null)
(2) ([],[],[(\x.x),(\v.v v),@],null)
(3) ([<x,[],x>],[],[(\v.v v),@],null)
(4) ([<v,[],v v>,<x,[],x>],[],[@],null)
(5) ([],[v-><x,[],x>],[v v],([],[],[],null))
(6) ([],[v-><x,[],x>],[v,v,@],([],[],[],null))
(7) ([<x,[],x>],[v-><x,[],x>],[v,@],([],[],[],null))
(8) ([<x,[],x>,<x,[],x>],[v-><x,[],x>],[@],([],[],[],null))
(9) ([],[x-><x,[],x>],[x],

([],[v-><x,[],x>],[],
([],[],[],null)))

(10) ([<x,[],x>],[x-><x,[],x>],[],

c©Ceteva 2008.

305

([],[v-><x,[],x>],[],
([],[],[],null)))

(11) ([<x,[],x>],[v-><x,[],x>],[],([],[],[],null))
(12)([<x,[],x>],[],[],null)

The first thing to appreciate about the evaluation is roughly what the expression is do-
ing: the function \v.v v is applied to the function \x.x causing the function \x.x to be
applied to itself producing the result \x.x. Now look at the trace and step through it to
see how a machine evaluates the expression. Each step in the trace is a new machine
state produced from the previous state by performing a transition. A transition looks at
the head of the control in the pre-state to determine the next state.

Line (1) is the initial state. the expression is loaded onto the control. Everything else
is empty. Transition (1-2) performs the application expression by unpacking it at the
head of the control and adding an @ instruction. Transition (2-3) evaluates the function
\x.x to produce the closure at the head of the stack. Notice how the stack is used to hold
intermediate results; machine transitions consume 0 or more values at the head of the
stack and produce 0 or 1 new values at the head of the stack. Transition (3-4) evaluates
the function \v. v v. Transition (4-5) performs the @ instruction by setting up the evalu-
ation of the body of the operator. The state of the machine is saved in the dump so that
the return value from the application can be used. Notice how the environment in the
new state (5) contains a binding for the arg v. Transition (5-6) evaluates the application
v v. Transitions (6-9) evaluate the two references to the variable v and then perform
the application (again saving the current state for return). Transition (9-10) evaluates
the reference to x and (10-11) returns a value since the control is exhausted. Transition
(11-12) performs the final return leaving the value of the original expression at the head
of the stack.

The rules of evaluation for the basic lambda-calculus are very simple. They can be
described using pattern matching and are defined in the operation trans below that
performs a single transition. A good understanding of the rules of evaluation and their
many variations is an excellent basis for a deep understanding of how modelling can
inform and enrich programming.

@Operation trans(state:State):State
@Case state of

(1) State(s,e,Seq{Do(Var(n))|c},d) do
State(Seq{e.lookup(n)|s},e,c,d)

end
(2) State(s,e,Seq{Do(Apply(o,a))|c},d) do

State(s,e,Seq{Do(a),Do(o)} + Seq{App()|c},d)
end

(3) State(Seq{Closure(n,e1,b),a} + s,e2,Seq{App()|c},d) do
State(Seq{},e1.bind(n,a),Seq{Do(b)},State(s,e2,c,d))

c©Ceteva 2008.

306 CHAPTER 17. THE SECD MACHINE

end
(4) State(s,e,Seq{Do(Lambda(n,b))|c},d) do

State(Seq{Closure(n,e,b)|s},e,c,d)
end

(5) State(Seq{v},e1,Seq{},State(s,e2,c,d)) do
State(Seq{v|s},e2,c,d)

end
end

end

Transition (1) evaluates a variable by looking its name up in the current environment
and pushing the value on the stack. Transition (2) unpacks an application at the head of
the control. Transition (3) performs an @ instruction at the head of the control. It expects
a closure above an argument at the head of the stack. The current state is pushed onto
the dump and a new state is created from the closure body and environment. Transi-
tion (4) defines evaluation of a function. Finally, transition (5) describes how a value is
returned from a completed function application (the body is exhausted).

17.1. Extending the SECD Machine

As it stands, the calculus and its execution by the SECD machine does not look much
like a standard programming language. Using just the features you have seen, it is
possible to encode virtually all standard programming language concepts. Doing so is
a bit like a cryptic crossword - fiendishly difficult and spectacularly rewarding.

Rather than work with models of programs at the basic calculus level, it is usual to
add extensions. In fact, this is where the calculus and its mechanical execution starts to
be useful: if you have a requirement to understand or design a new novel feature then
see what you need to do to add it to the calculus and SECD machine.

This section shows how the basic model can be extended by adding records, inte-
gers and builtin operations such as +. A record is represented as in [age=56, yearsSer-
vice=10]. A tuple, or vector, is a record where the fields have pre-determined names
(usually represented as numbers); for example a pair is [fst=1,snd=2] rather than (1,2).
This allows builtin operations to take tuples (represented as records) as arguments:
add[fst=1,snd=2] is the same as 1 + 2.

The extensions to the syntax model are shown in figure 17.4 and the grammar exten-
sion is shown below:

Atom ::= Var | Record | Integer | ’(’ Exp1 ’)’.
Record ::= ’[’ f = Field fs = (’,’ Field)* ’]’ { Record(Seq{f|fs}) }.
Field ::= n = Name ’=’ e = Exp1 { Field(n,e) }.
Integer ::= i = Int { Integer(i) }.

c©Ceteva 2008.

17.1. EXTENDING THE SECD MACHINE 307

Figure 17.4.: Extended Syntax Model

The following shows an execution of the expression (\x.\y.add[fst=x,snd=y]) 10 20. The
builtin environment is shown as E. E contains a binding for the name add to the builtin
operation for +.

([],E,[(\x.\y.add [fst=x,snd=y]) 10 20],null)
([],E,[20,(\x.\y.add [fst=x,snd=y]) 10,@],null)
([20],E,[(\x.\y.add [fst=x,snd=y]) 10,@],null)
([20],E,[10,(\x.\y.add [fst=x,snd=y]),@,@],null)
([10,20],E,[(\x.\y.add [fst=x,snd=y]),@,@],null)
([10,20],E,[\x.\y.add [fst=x,snd=y],@,@],null)
([<x,E,\y.add [fst=x,snd=y]>,10,20],E,[@,@],null)

([],E[x->10],[\y.add [fst=x,snd=y]],
([20],E,[@],null))

([<y,E[x->10],add [fst=x,snd=y]>],E[x->10],[],
([20],E,[@],null))

([<y,E[x->10],add [fst=x,snd=y]>,20],E,[@],null)
([],E[y->20,x->10],[add [fst=x,snd=y]],([],E,[],null))
([],E[y->20,x->10],[[fst=x,snd=y],add,@],([],E,[],null))
([],E[y->20,x->10],[x,y,{fst,snd},add,@],([],E,[],null))
([10],E[y->20,x->10],[y,{fst,snd},add,@],([],E,[],null))
([20,10],E[y->20,x->10],[{fst,snd},add,@],([],E,[],null))
([[fst=10,snd=20]],E[y->20,x->10],[add,@],([],E,[],null))
([!add,[fst=10,snd=20]],E[y->20,x->10],[@],([],E,[],null))
([30],E[y->20,x->10],[],([],E,[],null))

([30],E,[],null)

c©Ceteva 2008.

308 CHAPTER 17. THE SECD MACHINE

c©Ceteva 2008.

CHAPTER 18

MODELLING WITH XML DATA

There is a general requirement for model data to be interchangeable between tools. This
is because organisations rely increasingly on tool chains to support their business. No
single tool can support the whole process. Data generated by a modelling tool might
hand the information on to a code-generation tool or might hand the information on to
an engine that runs the models directly. In any case the different tools in the tool chain
need to agree on a format for the data.

In order to have different tools work with shared data there needs to be a common
serialization format. Data is serialized when it is exported into a format that can be
saved in a file. The format of the data in the file needs to be known to all tools in the
chain. The format definition is often referred to as meta-data.

The de-facto standard for data representation is XML. It is a textual format that can
be saved to files. Essentially, XML data is a tree where each node in the tree is either
raw text or is an element. An element has a tag and some name/value attribute pairs.
Each element has a sequence of child nodes. Often you can think of the node tag as
the type of the node (for example: an employee record or a customer transaction) and
the attribute pairs as containing node properties (for example: the employee name or
the date of the transaction). The children of the node usually encode relationships (for
example: employee-to-department or transaction-to-product).

XML meta-data (often also encoded as XML) defines the legal structure of the XML
documents. For example it defines the set of tags that can be used in elements, the legal
set of attributes for an element with a given tag and the order in which child nodes can
occur.

Both models and model instance data can be encoded using XML. For example, the
UML modelling language has an XML meta-data definition called XMI that defines how
UML models are serialized and therefore shared between UML tools.

When using a model-driven approach to system development it is important to un-
derstand how to serialize and de-serialize model data. You may be using a standard

c©Ceteva 2008.

310 CHAPTER 18. MODELLING WITH XML DATA

Figure 18.1.: Models

meta-data definition or be designing one of your own. This chapter describes a number
of language driven approaches to using XML data.

Figure 18.1 shows a simple UML-style modelling language consisting of packages
of classes and associations between them. This chapter shows how instances of this
language can be serialized as XML data and how the resulting files can be read back
into models.

18.1. Generating XML Data

Given an instance of the modelling language defined in figure 18.1, the translation to
XML data is straightforward. Each class defines an operation toXML that takes an out-
put channel to which XML is written. The format of XML data is standard, so it is useful
to define a language construct to support its generation. The following shows how the
toXML operation for Package is defined:

@Operation toXML(out:OutputChannel)
@XML(out)
<Package name=self.name>

@For e in elements do
e.toXML(out)

end

c©Ceteva 2008.

18.1. GENERATING XML DATA 311

</Package>
end

end

The XML construct is used to guide the generation of XML data to an output channel.
The output channel is supplied in (and) after @XML. The body of the @XML construct
defines the format of the generated XML data. An XML element has the format:

<TAG ATTS>
CHILDREN

</TAG>

where TAG is just a name, ATTS is a sequence of attribute value pairs, CHILDREN is a
sequence of child nodes and the final ¡/TAG¿ should match up with the corresponding
opening tag. In the example, the tag is Package, there is a single attribute called name.
The value of the name attribute (on the right of the =) is the name of the package.

The @XML language construct allows XML elements to be written as they will appear
in the output, the characters will be send to the supplied output channel. This makes it
easy for the system to check that there are no mistakes in the XML format and removes
the need for the user to have to use a format-statement or equivalent to describe how
the output should appear.

The children part of the @XML construct for packages is an XOCL @For statement that
iterates through the package elements and invokes their toXML operations, supplying
the same output channel.

Figure 18.2 shows a simple library model serialized as XML using the toXML oper-
ations. Notice that the classes attached to the ends of associations are encoded as the
unique identifiers attributes to the classes (in this case the class names are used as the
class identifiers, however in a real implementation some unique string is usually used).
The rest of this section defines the toXML operations for all other classes in the mod-
elling language.

Associations just wrap an association element around the two ends:

@Operation toXML(out)
@XML(out)
<Association name=name>
end1.toXML(out);
end2.toXML(out)

</Association>
end

end

c©Ceteva 2008.

312 CHAPTER 18. MODELLING WITH XML DATA

Figure 18.2.: A Simple Model Serialized as XML

c©Ceteva 2008.

18.2. AN XML GENERATOR 313

An end generates a name and an identifier for the class that it attaches to. The name of
the class is used as the identifier:

@Operation toXML(out)
@XML(out)
<End name=name type=class.name()/>

end
end

A class generates an element with attributes for the name, whether it is abstract and its
identifier. the children are generated by asking each element of the class to generate
some XML:

@Operation toXML(out)
@XML(out)
<Class name=name isAbstract=isAbstract id=name>

@For e in elements do
e.toXML(out)

end
</Class>

end
end

The toXML operations for attributes, operations and arguments are very similar to those
describes above.

18.2. An XML Generator

The previous section uses a simple language construct to generate XML output. The lan-
guage construct allows the output from a model to be described in XML format rather
than using raw character output. This makes it easier to focus on the structure of the
output data rather than the detail of the XML character formatting. This section shows
how the construct is implemented.

Figure 18.3 shows the classes used to implement the XML printing construct. An XML
template is a performable expression (out) and a sequence of nodes. The out expression
will evaluate to an output channel at run-time and a node is a syntax construct that
produces XML output to the channel. A text node is an expression that produces raw
text in the XML output. A call node is a general XOCL expression; this allows any
code to be embedded in the XML template (such as an @For expression). An element
is a syntax construct that formats an XML element to the output channel. The tag and
attribute components are all XOCL expressions that produce strings. An element node

c©Ceteva 2008.

314 CHAPTER 18. MODELLING WITH XML DATA

Figure 18.3.: The PrintXML Classes

c©Ceteva 2008.

18.2. AN XML GENERATOR 315

references sub-elements each of which are XML template nodes.
The XML template construct is parsed by the following grammar:

@Grammar extends OCL::OCL.grammar
AtomicElement ::=
’<’ t = Tag A = Att* ’/>’
{ Element(t,A,Seq{}) }.

Att ::=
n = AttName ’=’ v = Exp
{ Attribute(n,v) }.

AttName ::=
n = Name { OCL::StrExp(n) }

| ’(’ e = Exp ’)’ { e }.
Call ::= e = Exp { Call(e) }.
Element ::=

AtomicElement
| StructuredElement
| Text
| Call.

Out ::=
’(’ e = Exp ’)’ { e }

| { [| stdout |] }.
StructuredElement ::=

’<’ t1 = Tag A = Att* ’>’
E = Element*

’</’ t2 = Tag ’>’
{ Element(t1,A,E) }.

Tag ::=
n = Name { OCL::StrExp(n) }

| ’(’ e = Exp ’)’ { e }.
Text ::= ’Text’ ’(’ e = Exp ’)’ { Text(e) }.
XML ::= out = Out E = Element* { XML(out,E) }.

end

The grammar extends the OCL grammar that provides the Exp rule; producing an in-
stance of XOCL::Performable. The grammar should be self explanatory; it is worth
noting the mechanism by which the template constructs are populated by instances of
Performable. The Out rule recognizes an expression in parentheses or returns the ex-
pression (via the syntax quotes [— and —]) referencing the standard input stdin. The
Tag and AttName rules transforms a recognized name to a string expression.

The grammar synthesizes an instance of the class XML, which is syntactic sugar and
transforms itself into basic XOCL code. The Package XML template:

c©Ceteva 2008.

316 CHAPTER 18. MODELLING WITH XML DATA

@XML(out)
<Package name=self.name>
@For e in elements do

e.toXML(out)
end

</Package>
end

becomes the following XOCL code:

format(out,"<˜S",Seq{"Package"});
format(out," ˜S=’˜X’",Seq{"name",self.name});
format(out,">");
@For x in elements do

x.toXML(out)
end;
format(out,"</˜S>",Seq{"Package"})

Each of the XML template classes defines an operation named desugar. The XOCL
execution engine knows that if it presented with an instance of XOCL::Sugar it will not
know directly how to perform the construct. However, the construct will implement the
desugar operation that can be used to transform it into something the engine does know
how to deal with. The rest of this section describes the desugar operations defined by
the various XML template classes.

The XML::desugar operation is as follows:

@Operation desugar()
nodes->iterate(n e = [| null |] |

[| <e>; <n.desugar(out)> |])
end

Each of the XML nodes is desugared and sequenced using the ’;’ operator. The Text::desugar
operation is straightforward as it just sends the text to the output:

@Operation desugar(out)
[| format(<out>,<text>) |]

end

The Code::desugar operation is also straightforward:

c©Ceteva 2008.

18.3. PARSING XML 317

@Operation desugar(out)
exp

end

Finally, Element::desugar is where the main work is done. The action is different de-
pending on whether the sub-elements are empty or not. In the case of no sub-elements:

@Operation desugarNoElements(out)
[| format(<out>,"<˜S",Seq{<tag>});

<attributes->iterate(a e = [| format(<out>,"/>",Seq{<tag>}) |] |
[| <a.desugar(out)>; <e> |])>

|]
end

All the sub-elements are nodes and can be transformed to code via their desugar oper-
ation:

@Operation desugarWithElements(out)
[| format(<out>,"<˜S",Seq{<tag>});

<attributes->iterate(a e = [| format(<out>,">") |] |
[| <a.desugar(out)>; <e> |])>;

<elements->iterate(e x = [| null |] |
[| <x>; <e.desugar(out)> |])>;

format(<out>,"</˜S>",Seq{<tag>})
|]

end

18.3. Parsing XML

When XML data is read in it must be recognized against a meta-data description and
then the corresponding model data can be synthesized as a result. This is the same ac-
tivity that occurs when a text language is parsed and corresponding data structures are
synthesized. The only significant difference is that instead of parsing a sequence of char-
acters (or tokens) the structure to be parsed in the XML case is a tree of elements. This
section describes how the meta-data description for an XML document can be expressed
as a grammar including actions that synthesize data. An XML document is recognized
and synthesized using a new language construct: an XML grammar; an XML grammar
is defined for the simple package modelling language defined in figure 18.1. This sec-

c©Ceteva 2008.

318 CHAPTER 18. MODELLING WITH XML DATA

tion describes a language construct for expressing XML grammars and shows how it is
implemented.

A standard grammar is used by a parser to process an input sequence of characters.
A parser follows the rules defined by the grammar, consuming text when the grammar
specifies a terminal symbol. The parser takes care to keep track of alternatives; when
the parser encounters a choice point, the current position is marked in the input so that
the parser can return to the position if the choice fails. The parser encounters actions
in the grammar rules, these synthesize elements. The parse succeeds when there is no
further grammar elements to be processed; the parser returns the top-most synthesized
element.

An XML grammar is very similar to a standard grammar with the following differ-
ences:

• An XML parse processes an XML document which is a tree of elements. The ele-
ments that are specified in the grammar and recognized in the parse are elements,
element attributes and element children. Unlike text, an element consists of a start-
ing tag (¡TAG¿) and an terminating tag (¡/TAG¿) with child elements in between.

• XML documents may include identifier references that are used to encode a graph
structure within the tree structure supported by XML. The identifiers are associ-
ated with elements synthesized by the parse and must be resolved by the parser.

The following is an XML grammar for the XML document produced in the previous
section:

(1) @Grammar Models
(2) Attribute ::=
(3) <Attribute n=name t=type/>
(4) { Attribute(n,t)

}.
Class ::=
<Class n=name a=isAbstract id=id>

(5) elements = ClassElement*
(6) </Class> id := {
(7) elements->iterate(e c = Class(n,a="true") |

c.addToElements(e))
}.

(8) ClassElement ::=
Attribute

| Operation.
Model ::= Package.
Operation ::=

<Operation n=name>
as = Arg*

c©Ceteva 2008.

18.3. PARSING XML 319

</Operation> {
Operation(n,as)

}.
Package ::=

<Package n=name>
elements = PackageElement*

</Package> {
elements->iterate(e p = Package(n) |

p.addToElements(e))
}.
PackageElement ::=
Package

| Class
| Association.

(9) Association ::=
<Association n=name>

<End n1=name t1=type/>
<End n2=name t2=type/>

</Association> {
(10) Association(n,End(n1,Ref(t1)),End(n2,Ref(t2)))

}.
end

Line (1) introduces the grammar named Models. Line (2) is a typical example of a gram-
mar clause; it defines a rule for an attribute. Attributes exist in the XML document as
elements with two attributes: name and type. Line (3) declares that an attribute takes the
form of an element with tag Attribute and with XML attributes name and type whose
values are references as n and t respectively. Line (4) is an action that synthesizes an
attribute; the action may refer to any of the variables that have been bound when the
clause matches (in this case n and t).

Attribute is an example of an XML element where the children are of no interest.Such
elements are declared in grammar clauses by ¡TAG ... /¿. The clause for Class is an
example where the children are of interest. Such elements are declared as ¡TAG¿ ...
¡/TAG¿. Line (5) declares that the children of a class element must match the elements
declared in ClassElement and there may be any number of such elements (as defined
by *).

Each class has a unique identifier supplied as the value of the attribute id. Elsewhere
in the XML document, classes may be referenced by association ends. The references
are made using the identifier of the class. An XML grammar registers a synthesized
element against a unique identifier using the declarator :=. Line (6) shows how the
class synthesized by the Class clause is registered against the value of the variable id.
References to the identifier in association ends synthesized by the parser will be auto-
matically resolved as part of the parse. Line (7) shows that a class is synthesized and the

c©Ceteva 2008.

320 CHAPTER 18. MODELLING WITH XML DATA

elements synthesized by the ClassElement clause are each added to the resulting class.
Line (8) shows the definition of the classElement clause. A class may contain at-

tributes and operations. This clause shows how alternatives are declared in clauses us-
ing — to separate the options. When the parser tries to consume the next XML element
against the ClassElement clause, it will try Attribute, if that succeeds in recognizing an
element then the parse continues, otherwise the parse will backtrack and try to recog-
nize an Operation.

Line (9) shows the clause for associations. An association end in the XML document
references the type attached to the end via its class identifier. An association end ele-
ment references the class directly, so the identifier must be resolved to the class (which
is synthesized elsewhere in the parse). Line (10) shows how the grammar can declare
that an identifier reference must be resolved. The class Ref is used to construct an iden-
tifier reference. Providing that the identifier in the reference is registered elsewhere in
the parse (using := as in line 6) then the parse will automatically replace the reference
Ref(id) with the model element registered against the id.

The model for the grammar language is shown in figure XXX.
The grammar for XML grammars is shown below:

@Grammar extends OCL::OCL.grammar

Action ::= ’{’ exp = Exp ’}’ {
Action(Seq{Exp(exp,exp.FV()->asSeq,null)})

}.

Any ::= ’ANY’ { Any() }.

AtomicElement ::= ’<’ tag = Tag as = Attribute* ’/>’ {
Element(tag,as,Empty())

}.

Attribute ::=
var = Name
tag = AttributeTag
default = AttributeDefault {

BindAtt(var,tag,default)
}.

AttributeTag ::=
’=’ Tag

| { "" }.

AttributeDefault ::=
’:=’ d = Exp { Exp(d) }

| { null }.

c©Ceteva 2008.

18.3. PARSING XML 321

Call ::= name = Name { Call(name) } .

Clause ::= name = Name ’::=’ def = Disjunct ’.’ {
Clause(name,def)

}.

ClauseAtom ::=
Element

| Empty
| Action
| Call
| Any
| Text
| Unordered
| ’(’ d = Disjunct ’)’ { Paren(d) }.

Conjunct ::= p = ClauseBind qs = (Conjunct)* {
qs->iterate(q p = p | And(p,q))

}.

ClauseBind ::=
name = Name ’=’ p = Repeat { Bind(Seq{name},p) }

| ClauseUpdate.

ClauseUpdate ::=
name = Name ’:=’ p = Repeat { Update(name,p) }

| Repeat.

Children ::=
Disjunct

| { Empty() }.

CompositeElement ::=
’<’ tag = Tag attributes = Attributes ’>’

children = Children
’</’ Tag ’>’ {
Element(tag,attributes,children)

}.

Disjunct ::= p = Conjunct qs = (’|’ Disjunct)* {
qs->iterate(q p = p | Or(p,q))

}.

Element ::=

c©Ceteva 2008.

322 CHAPTER 18. MODELLING WITH XML DATA

AtomicElement
| CompositeElement.

Empty ::= ’EMPTY’ { Empty() }.

Grammar ::= name = Name clauses = Clause* ’end’ {
XML::Parser::Grammar(name,Seq{},clauses).lift()

}.

Repeat ::=
p = Opt (’*’ { Star(p) }

| ’+’ { Plus(p) }
| ’#’ { Star(p,true) }
| {p}).

Opt ::=
’[’ p = ClauseAtom ’]’ { Opt(p) }

| ClauseAtom.

Tag ::=
Str

| Name.

Text ::= ’TEXT’ { Text() }.

Unordered ::= ’Set’ ’{’ UnorderedElements ’}’.

UnorderedElements ::=
p = ClauseBind
qs = (UnorderedElements)* {

qs->iterate(q p = p | Unordered(p,q))
}.

end

A parser for an XML grammar must process an XML document. If the document con-
forms to one of the possible trees defined by the grammar then the parse succeeds and
the parser returns the value synthesized by the actions that have been performed. At
any stage during the parse, the parser maintains a parse-state containing all the infor-
mation necessary to continue from this point onwards. The elements of the parse state
make up the arguments of a parse operation defined for each class in the XML grammar
model. The parse-state contains the following:

• The grammar. This is used to resolve calls to clauses.

• A variable environment containing the current collection of variable/value bind-

c©Ceteva 2008.

18.3. PARSING XML 323

ings. Each time the parse performs a binding of the form v = X, the value of X is
calculated (possibly as the result of calling a clause) and the environment is ex-
tended with a binding for x. When an action is performed, the variables bound in
the environment are made available for reference in the action expression.

• An identifier binding containing the current collection of identifier/value bind-
ings. Each time the parse performs an identifier binding of the form i := X, the
value of X is calculated and the environment is extended with a binding for iden-
tifier i. When the parse is complete, occurrences of Ref(i) are replaced with the
value of the identifier i from the identifier environment

• A stack of XML input elements. Each time a grammar element of the form ¡TAG¿
is encountered, the stack is popped and the tag of the top element must match
TAG. If this fails then the parse backtracks to the last choice point. Otherwise the
children of the popped element are pushed back on to the stack and the parse
continues with the child elements in the grammar.

• A success continuation. This is an operation that represents what to do next in
the parse. Each time the parse succeeds, it continues by calling the success con-
tinuation. The continuation operation is supplied with parameters: a value; a
variable environment; an identifier environment; a stack of XML elements; and, a
fail continuation. These arguments represent the parse-state components that are
required by the rest of the parse and which may change.

• A fail continuation. This is an operation that represents what to do when the cur-
rent parse fails. A parse fails when the expected tag specified in the grammar does
not match the supplied tag in the input element. A parse continuation operation
has no arguments; it is simply called when the parse fails.

The parse-state is defined by arguments to the operation parse:

context Pattern
@AbstractOp parse(grammar,env,ids,elements,succ,fail)
end

The rest of this section describes the implementation of the parse operation. The first
two definitions are for Empty and Any. Both of these clause patterns succeed; Empty
does not consume any input whereas Any consumes the next XML element. Both pro-
duce the value null:

context Any
@Operation parse(grammar,env,ids,elements,succ,fail)
succ(null,env,ids,elements->tail,fail)

c©Ceteva 2008.

324 CHAPTER 18. MODELLING WITH XML DATA

end

context Empty
@Operation parse(grammar,env,ids,elements,succ,fail)
succ(null,env,ids,elements,fail)

end

An And pattern occurs in a clause when two patterns must occur in sequence. The
left pattern is performed first followed by the right pattern. If it succeeds, the left pat-
tern may have modified the parse-state; this explains why the success continuation has
arguments corresponding to the state that may have changed:

context And
@Operation parse(grammar,env,ids,elements,succ,fail)
left.parse(grammar,env,ids,elements,

@Operation(ignore,env,ids,elements,fail)
right.parse(grammar,env,ids,elements,succ,fail)

end,
fail)

end

An Or pattern occurs in a clause when there is a choice between two patterns. The choice
involves a left and a right pattern. The parse continues with the left pattern. The right
pattern is supplied as the activity performed by a new fail continuation. Notice that
the current parse-state is closed-in to the new fail continuation. If the fail continuation
is ever called, the parse will continue with the parse-state that is current when the fail
continuation is created (not when the continuation is called):

context Or
@Operation parse(grammar,env,ids,elements,succ,fail)
left.parse(grammar,env,ids,elements,succ,

@Operation()
right.parse(grammar,env,ids,elements,succ,fail)

end)
end

An optional pattern can be implemented by Empty and Or:

context Opt
@Operation parse(grammar,env,ids,elements,succ,fail)
Or(pattern,Empty()).parse(grammar,env,ids,elements,succ,fail)

c©Ceteva 2008.

18.3. PARSING XML 325

end

When a clause name is called, the grammar is asked for the named clause, a new parse-
state is constructed and the clause body is parsed. Variables are local to each clause,
therefore when a clause is called the initial variable environment is empty. A new suc-
cess continuation is created that passes the return value of the clause to the caller, but
reinstates the current variable environment:

context Call
@Operation parse(grammar,env,ids,elements,succ,fail)
let clause = grammar.clauseNamed(name)
in clause.body().parse(grammar,Seq{},ids,elements,

@Operation(value,ignore,ids,elements,fail)
succ(value,env,ids,elements,fail)

end,
fail)

end
end

An action consists of an expression. An expression contains free variable references.
These come in two categories: those variables bound by the current clause and global
variables. An action expression encodes the freely referenced variables as arguments
of the operation that implements the expression. Locally bound variables are found in
the variable environment. Globally bound variables are found by looking the names
up in the currently imported name spaces. The operation Grammar::valueOfVar takes
a name, an environment and returns the value (whether it is locally or globally bound):

context Action
@Operation parse(grammar,env,ids,elements,succ,fail)
let args = exp.args->collect(a | grammar.valueOfVar(a,env))
in succ(exp.op.invoke(self,args),env,ids,elements,fail)
end

end

Variables are bound as follows:

context Bind
@Operation parse(grammar,env,ids,elements,succ,fail)
pattern.parse(grammar,env,ids,elements,

@Operation(value,env,ids,elements,fail)
succ(value,env->bind(names->head,value),ids,elements,fail)

c©Ceteva 2008.

326 CHAPTER 18. MODELLING WITH XML DATA

end,
fail)

end

Update works like Bind except that the identifier is bound in a different environment:

context Update
@Operation parse(grammar,env,ids,elements,succ,fail)
pattern.parse(grammar,env,ids,elements,

@Operation(value,env,ids,elements,fail)
let id = env->lookup(name)
in succ(value,env,ids->bind(id,value),elements,fail)
end

end,
fail)

end

An XML element pattern requires that one or more input elements are consumed. The
parse succeeds when the tags of the elements match and when the child element pat-
terns match the child input elements. As part of the match, the attribute values of the
input element are bound to the corresponding pattern attributes. The parser is defined
below. Notice how the attributes may specify a default value in the pattern; if the cor-
responding attribute is not available in the input element then the pattern variable is
bound to the supplied default value (created by evaluating an expression):

context Element
@Operation parse(grammar,env,ids,elements,succ,fail)
if elements->isEmpty
then fail()
else

let e = elements->head
in if e.isKindOf(XML::Element) andthen e.tag() = tag

then
@For p in attributes do

@Find(a,e.attributes())
when a.name = p.att()
do env := env->bind(p.var(),a.value)
else

if p.value() <> null
then env := env->bind(p.var(),p.value().op().invoke(

self,Seq{}))
end

c©Ceteva 2008.

18.3. PARSING XML 327

end
end;
children.parse(grammar,env,ids,e.children(),

@Operation(value,env,ids,ignore,fail)
succ(value,env,ids,elements->tail,fail)

end,
fail)

else fail()
end

end
end

end

The * designator in clauses declares that the preceding underlying pattern may occur
any number of times. The return value from such a pattern is the sequence of return val-
ues from each execution of the underlying pattern. This is implemented as follows. No-
tice that the failure continuation that is used for each execution of Star(pattern) causes
the parse to succeed, but supplies the empty sequence of results. Therefore * cannot fail,
0 executions of the underlying pattern is OK:

context Star
@Operation parse(grammar,env,ids,elements,succ,fail)
pattern.parse(grammar,env,ids,elements,

@Operation(value,env,ids,elements,ignore)
Star(pattern).parse(grammar,env,ids,elements,

@Operation(values,env,ids,elements,ignore)
succ(Seq{value|values},env,ids,elements,fail)

end,
fail)

end,
@Operation()
succ(Seq{},env,ids,elements,fail)

end)
end

Finally, the child of an XML input element may be arbitrary text:

context Text
@Operation parse(grammar,env,ids,elements,succ,fail)
if elements->isEmpty
then fail()
else

c©Ceteva 2008.

328 CHAPTER 18. MODELLING WITH XML DATA

let e = elements->head
in if e.isKindOf(XML::Text)

then succ(e.text,env,ids,elements,fail)
else fail()
end

end
end

end

It remains to define how to invoke the parser. A grammar has an operation parse that
is supplied with the name of the clause that will start the parse and the name of the file
containing the XML document. The class IO::DomInputChannel takes an input channel
as an argument and returns an input channel that translates XML source text into an
instance of the XML model. The parse operation creates an initial parse-state and then
starts the parse by calling the starting clause:

context Grammar
@Operation parse(file,start)
@WithOpenFile(fin <- file)
let din = DOMInputChannel(fin) then

doc = din.parse();
succ =

@Operation(value,env,ids,elements,fail)
self.resolve(ids,value)

end;
fail = @Operation() "FAIL" end

in Call(start).parse(self,Seq{},Seq{},Seq{doc.root},succ,fail)
end

end
end

18.4. Resolving References

A successful parse returns a synthesized value. The value may contain unresolved ref-
erences to identifiers that were encountered during the parse. An identifier is registered
using the i := X construct in a clause and may be used in a synthesized value by con-
structing an instance Ref(i). Resolving the references involves replacing all occurrences
of ref(i) with the corresponding value of X.

Identifier resolution is performed by an operation Grammar::resolve. It is supplied
with an identifier environment and a synthesized value. The ResolveRefs walker ex-

c©Ceteva 2008.

18.4. RESOLVING REFERENCES 329

pects an identifier table (for efficiency), so the environment is translated to a table and
then the synthesized value is walked:

context Grammar
@Operation resolve(ids,value)

let table = Table(100)
in @For id in ids->collect(pair | pair->head) do

table.put(id,ids->lookup(id))
end;
ResolveRefs(table).walk(value,null)

end
end

Resolving references is easy in a meta-circular environment because engines can be de-
fined that process the data as instances of very general data types. ResolveRefs is a
walker that traverses the data and replaces all references (or reports an error if un-
registered identifiers are encountered). The rest of this section gives an overview of
ResolveRefs:

@Class ResolveRefs extends Walker

// The refTable is supplied as a result from the parse.
// The table registers identifiers and elements...

@Attribute refTable : Table end

// It may be desirable to limit the scope of the walk.
// The objPred is used to prevent the walker from
// descending into objects that may be large and are
// guaranteed not to contain identifier references...

@Attribute objPred : Operation =
@Operation(o) true end

end

// A walker must always call initWalker as part
// of creation...

@Constructor(refTable) !
self.initWalker()

end

// The main work is done by walkObject. If the object

c©Ceteva 2008.

330 CHAPTER 18. MODELLING WITH XML DATA

// is a registered identifier then return the result
// of walking associated element. Otherwise the reference
// is illegal. If the object is not a reference then
// objPred controls whether or not the walk descends
// into the object’s slots...

@Operation walkObject(o:Object,arg:Element):Element
if o.isKindOf(Ref)
then

if refTable.hasKey(o.id)
then self.walk(refTable.get(o.id),arg)
else self.error("Reference to undefined id: " + o.id)
end

elseif objPred(o)
then super(o,arg)
else o
end

end

// The following operation is characteristic of the
// rest of the walker...

@Operation walkSeq(s:SeqOfElement,arg:Element):Element
if not s->isEmpty
then

s->head := self.walk(s->head,arg);
s->tail := self.walk(s->tail,arg)

end;
s

end

// More walking operations for basic data types...

end

c©Ceteva 2008.

CHAPTER 19

INTERACTIVE APPLICATIONS

An increasing number of interactive applications can be downloaded onto devices such
as mobile phones, PDAs, web-browsers and TV set-top boxes. The applications involve
presenting the user with information, options, menus and buttons. The user typically
enters information by typing text and choosing amongst alternatives. An event is gener-
ated by the user clicking a button or selecting from a menu. Once an event is generated
an engine that services the interactive application processes the event, updates its inter-
nal state and then produces a new dialog to present to the user.

The dialogs required by the interactive applications tend to be fairly simple and are
often used in conjunction with other applications such as being broadcast together with
TV video and audio content. The technology used to construct the interactive applica-
tion should be accessible to as broad a spectrum of users as possible, including users
whose primary skill is not in developing interactive software applications.

Technologies used for interactive displays include Java-based technologies such as
MHP , HTML, JavaScript etc. These technologies are very platform specific, they include
a great deal of technical detail and are certainly not approachable by a non-specialist.
Furthermore, the general low-level nature of the technologies does not enforce any stan-
dard look-and-feel to interactive applications. The applications developed for a given
client (for example a single TV company) should have a common look and feel that is
difficult to enforce at such a low-level.

A common way to abstract from technical detail and to enforce a common look-and-
feel for a suite of applications it to develop a domain specific language (DSL) whose con-
cepts match the expectations and skill-levels of the intended users. A DSL for interactive
applications will include constructs for expressing textual content, buttons, choices etc.
The DSL leaves the rendering of the display features and the event generation to a dis-
play engine that enforces a given look-and-feel. The display engine can be replaced,
changing the look-and-feel without changing the DSL.

In addition to the DSL supporting high-level features for expressing display content,

c©Ceteva 2008.

332 CHAPTER 19. INTERACTIVE APPLICATIONS

it must provide some means for describing what the application does. Normally, appli-
cation processing algorithms are expressed at a low-level in program-code. If the DSL is
designed with an execution engine then the same approach to abstraction from rendering
detail can be applied to abstraction from the operational detail.

An executable DSL is a language for expressing complete applications without de-
tailed knowledge of implementation technologies. The xDSL is a modelling language,
instances of which are expressed as data. An execution engine processes the data and
runs the application. The xDSL engine can be embedded within devices and other soft-
ware applications in order to run the models.

This chapter describes the design of an xDSL for interactive applications. The xDSL
has a textual syntax and is implemented in XMF. The rest of this paper is structured as
follows: section 19.1 describes an architecture for interactive applications based on an
xDSL; section 19.2 describes the xDSL from the point of view of the application devel-
oper, it outlines the language features in terms of a simple application involving a quiz;
section 19.3 describes how the xDSL is implemented on XMF; section 19.4 shows how
the rendering engine can be simulated and connected to the xDSL engine to simulate the
execution of an interactive application; section 19.5 shows how the application models
can be serialized as XML; section 19.6 concludes by reviewing the key features of the
approach and the technology used to develop the xDSL engine.

19.1. Interactive Application Architecture

Figure 19.1 shows an overview of the architecture for an interactive application xDSL.
XMF is used as the DSL implementation engine. XMF provides facilities for developing
text-based modelling languages and their associated execution engines. The xDSL is
written as a model in XMF, the applications are then loaded onto the xDSL engine and
executed.

The application generates display information in a general-purpose format: in this
case XML. The XML display information is sent to a rendering engine. The engine un-
derstands the display features of the DSL and interprets them in terms of the rendering
technology. This achieves a separation of concerns whereby the DSL can focus on the
information content and execution logic whereas the rendering engine can focus on a
standard way of displaying the information without necessarily having to understand
anything about the application that is being rendered.

The rendering engine controls the hardware that interacts with the user. The user
generates events that are sent back to the xDSL engine. In principle the events can be
very detailed and can be encoded in a suitable DSL. The example presented in this paper
uses a very simple encoding of events.

When the xDSL receives an event, it must process the data in an appropriate way
to produce more display information for the rendering engine. The processing infor-
mation is expressed in the application model running on the xDSL engine. The dis-
play/event loop continues until the application is terminated.

c©Ceteva 2008.

19.2. A DSL FOR INTERACTIVE APPLICATIONS 333

Figure 19.1.: Application Architecture

The architecture shown in figure 19.1 has been used a number of times based on
the XMF processing engine. the development environment XMF-Mosaic is completely
based upon a number of rendering engines based on various features of Eclipse: browsers,
property editors and diagram editors. The architecture has also been successfully used
where XMF is deployed as a web-application and the rendering engine is a standard
web-browser (using various combinations of HTML and GWT).

19.2. A DSL for Interactive Applications

This section presents a simple interactive application expressed using the xDSL and
then shows it running. The following section shows how the xDSL is implemented in
XMF.

Textual languages are developed in XMF by extending the basic language with new
language features. XMF has a small basic language; the rest is developed by extension.
Each new language feature starts with a ’@’ character; the feature may be used wher-
ever any normal language construct is expected. In this way, the XMF engine can be
developed into any special purpose DSL engine.

The following fragment shows the start of an interactive application (@Model ...):

@Model Quiz

c©Ceteva 2008.

334 CHAPTER 19. INTERACTIVE APPLICATIONS

// The Quiz model describes an interactive application
// for a TV quiz. Viewers are presented with a sequence
// of questions and get a final score...
score : Integer;
// Screen definitions...

end

Each model consists of a collection of screens. Each screen describes how it is to be
rendered and how it responds to events. For example, the following screen starts the
application. It places some text above a button names Start. When the engine receives a
Start event then the application makes a transition to the screen named Question1:

screen START()
vertical

text Welcome to the Quiz. Click the button to Start end
button Start

go Question1()
end

end
end

Options are offered using a construct that lists the options (how they are displayed is
up to the rendering engine). The option group is named; the name is used to refer to the
particular option value that the user selects when the event returns to the xDSL engine.
This is a typical way of encoding variable information during dialogs: http does this
and can be used to determine the values of fields and choices on HTML screens. The
first part of the Question1 screen uses options as shown below:

screen Question1()
vertical

text What is the capital of England? end
options Choice

option London;
option Paris;
option Madrid;

end
// Question1 continues...

Layout can be handled using many sophisticated schemes. A useful, simple way to
specify layout is to use horizontal and vertical flow, where these can be nested. The op-
tions are displayed below the text in the fragment given above. In the fragment below,

c©Ceteva 2008.

19.2. A DSL FOR INTERACTIVE APPLICATIONS 335

the buttons for Next and Quit are displayed next to each other (but below the options):

// ... Question1 continues...
horizontal

button Next
// Next action continues...

end
button Quit
go Quit()

end
end

end
end

The Next event is received after the user has chosen an option. If the option is correct
then the user is congratulated and the score is incremented, otherwise the user is told
the correct answer. In both cases the dialog continues with the next question.

Actions may be conditional, the conditional expression may refer to choice variables,
values of variables passed to screens and the current state of the model instance. Actions
may also produce displays (without having to go to a new screen) this allows variables
to be scoped locally within an action 1. In the following, the Next action has two local
displays that are used to respond to the choice:

// ...Next action continues...
if Choice = "London"
then
display

text Well Done end
button Next

score := score + 1;
go Question2()

end
end

else
display

text Wrong! Answer is London. end
button Next

go Question2()
end

end
end

1We really should have a let-construct and some local variables here to show that the nested display has
access to locally-scoped variables over a user-transaction.

c©Ceteva 2008.

336 CHAPTER 19. INTERACTIVE APPLICATIONS

That completes the overview of the DSL for interactions. It is simple and closely matches
the concepts required to define an interactive application. It includes execution by en-
coding event handlers. It deals with complexity by being simple and supporting nest-
ing with local scope and modularity. A non-expert in interactive software applications
should have no problems writing an application in this DSL.

The following shows run-fragment of this application. Since there is no rendering
engine attached, the XML is printed and the responses encoded by hand:

<Screen>
<Vertical>

<Text text=’ Welcome to the Quiz. Click the button to Start ’/>
<Button name=’Start’/>

</Vertical>
</Screen>
Start <-- Event from rendering engine
<Screen>

<Vertical>
<Text text=’ What is the capital of England? ’/>
<Options name=’Choice’>
<Option name=’London’/>
<Option name=’Paris’/>
<Option name=’Madrid’/>

</Options>
<Horizontal>

<Button name=’Next’/>
<Button name=’Quit’/>

</Horizontal>
</Vertical>

</Screen>
Next Choice=London <-- Event from rendering engine
<Screen>

<Text text=’ Well Done ’/>
<Button name=’Next’/>

</Screen>
Next <-- Event from rendering engine

c©Ceteva 2008.

19.3. IMPLEMENTATION 337

Figure 19.2.: Interactive Models

19.3. Implementation

The implementation of the xDSL has two main components: a syntax model and a gram-
mar that transforms text to instances of the syntax model; and, a semantics model that
defines an execution engine. The syntax model defines a modeling language that de-
fines an application type; an instance of the type is defined by the semantics model. This
is a typical way to define a language: models represent things that can be performed in
some sense. Performing the models produces instances whose behaviour is expressed
by the model. Another way to think about this is that we aim to produce libraries of
reusable interactive applications (instances of the syntax model). A run-time occurrence
of an application is described by the semantic model.

XMF provides facilities for working with text including grammars, XML parsers,
XML formatters etc. The models have been developed using the XMF development
engine XMF-Mosaic and then run on the basic engine.

19.3.1. Syntax

The syntax for the DSL has two parts: the abstract syntax and the concrete syntax. The
abstract syntax consists of a collection of models that are described below. The concrete
syntax is defined by a collection of grammars that are defined at the end of this section.

Figure 19.2 shows the top-level model for the interactive application language. A
model consists of a collection of properties and a collection of screens. Each property
is defined by the model in figure 19.3; it has a name and a classifier. XMF has a meta-
model that provides features such as Class, Object etc. A type is called a Classifier in
XMF; Integer, String, Set(Object) are all XMF classifiers.

Screens are shown in figure 19.4. A screen has a collection of arguments. An action
may cause the application to make a transition to a screen in which case the transition
can supply argument values to be used when calculating the display for the screen. Fig-

c©Ceteva 2008.

338 CHAPTER 19. INTERACTIVE APPLICATIONS

Figure 19.3.: Properties

Figure 19.4.: Screens

c©Ceteva 2008.

19.3. IMPLEMENTATION 339

Figure 19.5.: Displays

ure 19.5 shows the model for displays. Each element of the displays model can produce
some XML output that is understood by the rendering engine. In addition, some of the
display elements are associated with actions that will be performed when the appropri-
ate event is received by the xDSL engine.

The display elements of an application model refer to an XOCL class called Exp. This
is used wherever an executable fragment of code is required. It allows features of the
displays to be computed dynamically. For example when a transition to a screen is
made, the names of the buttons may depend on the values of the arguments that are
passed to the screen. This is the reason why a button has an exp: it is used to calculate
the label on the button in terms of the variables that are in scope at the time2. The Exp
class is a way of importing the models for XMF expressions into the displays model.

Menus are shown in figure 19.6, each menu has a label that is computed (again de-
pending on the context) and an action. Actions are defined in figure 19.7. An action is
either a transition to a new screen (Go), a conditional action (If), an update to a variable
currently in scope (Update) or a local display.

The developer of an interactive application does not directly create instances of the
abstract syntax model. The idea is that they write in a text language that is parsed to
synthesize instances of the syntax model3.

2Unfortunately no examples of this feature are given in the document. However, imagine a list of voting
options that will depend on the current state of the system.

3Another way of doing this is to use some form of graphical notation. XMF is designed to interface to
EMF and GMF and therefore provide execution engines for models defined in EMF. The interaction
language seems to lend itself more to a textual representation due to the actions and nesting that needs

c©Ceteva 2008.

340 CHAPTER 19. INTERACTIVE APPLICATIONS

Figure 19.6.: Menus

Figure 19.7.: Actions

c©Ceteva 2008.

19.3. IMPLEMENTATION 341

XMF allows any class to be extended with a grammar. The class then defines a new
syntax construct that is completely integrated into the base language of XMF. Any num-
ber of classes can be added in this way and new syntax classes can build on existing
syntax classes. The following is a simple example of a class definition that implements
a simple guarded expression:

@NotNull [e1].m(e2,e3,e4)
else e5

end

where e1 evaluates to produce an object to which we want to send the message m with
args e2,e3 and e4. However, e1 might produce null in which case we don’t want to
send the message, we want to do e5 instead. This language construct is implemented as
follows in XMF:

@Class NotNull extends Sugar

@Attribute exp : String (?,!) end
@Attribute name : String (?,!) end
@Attribute isMessage : Boolean (?,!) end
@Attribute args : Seq(Performable) end
@Attribute error : Performable (?,!) end

@Constructor(exp,name,error) ! end

@Constructor(exp,name,args,error)
self.isMessage := true

end

@Grammar extends OCL.grammar
NotNull ::=

’[’ e = Exp ’]’ ’.’ n = Name NotNullTailˆ(e,n) ’end’.

NotNullTail(e,n) ::=
’(’ as = NotNullArgs ’)’ x = NotNullElse { NotNull(e,n,as,x) }

| x = NotNullElse { NotNull(e,n,x) }.

NotNullArgs ::=
e = Exp es = (’,’ Exp)* { Seq{e|es} }

| { Seq{} }.

to be expressed.

c©Ceteva 2008.

342 CHAPTER 19. INTERACTIVE APPLICATIONS

NotNullElse ::=
’else’ Exp

| { [| null |] }.

end

@Operation desugar():Performable
[| let notNullValue = <exp>

in if notNullValue = null
then <error>
else <if isMessage

then Send([| notNullValue |],name,args)
else [| notNullValue.<name> |]
end>

end
end

|]
end

end

The key features of the NotNull class are as follows:

• The class extends Sugar which means that it is defining a new syntax construct by
providing an operation called ’desugar’ whose responsibility is to turn an instance
of NotNull into program code.

• The grammar definition extends the OCL grammar and thereby imports all of the
basic grammar-rule definitions. This provides the rule for Exp which is the top-
level grammar-rule for all language constructs.

• Each grammar-rule consists of a name and a body. The rule may optionally have
arguments. The body consists of terminals (in ’ and’), builtins such as Name, rule-
calls (possibly with arguments) and actions (inside { and }). The rule actions are
any program expression, in most cases they use class-constructors to create an
instance of a named class.

• The desugar operation uses lifting-quotes ([— and —]) to create an instance of
syntax-classes. The opposite of lifting is dropping (¡ and ¿) used to calculate syntax
by evaluating an program expression.

The rest of this section describes how the grammar feature of XMF can be used to define
the interaction language. A model consists of a name followed by properties and screen
definitions:

c©Ceteva 2008.

19.3. IMPLEMENTATION 343

context Model
@Grammar extends Property.grammar, Screen.grammar

Model ::= n = Name ps = Property* ss = Screen* ’end’ {
Model(n,ps,ss)

}.
end

A property is a name and a simple expression (that cannot include the ’;’ operator).
The property-rule action uses an interesting feature of syntax classes that allows the
expression to be dropped into the syntax element and is thereby evaluated to produce
a classifier for the property type:

context Property extends OCL::OCL.grammar
@Grammar extends OCL.grammar

Property ::= n = Name ’:’ e = SimpleExp ’;’ {
Property(n,Drop(e))

}.
end

A screen has a name, arguments, menus and display elements. The rule for screen
arguments shows how optional elements are processed: it returns either a non-empty
sequence of names Seq{a—as} (head followed by tail) or the empty sequence Seq{}:

context Screen
@Grammar extends Menu.grammar, Display.grammar
Screen ::=

’screen’ n = Name ’(’ as = ScreenArgs ’)’
ms = Menu*
ds = Display*

’end’ { Screen(n,as,DisplayScreen(ms,ds)) }.
ScreenArgs ::=

a = Name as = (’,’ Name)* { Seq{a|as} }
| { Seq{} }.

end

A menu is shown below. This shows how expressions are captured in data. The rule for
a menu item name returns an instance of the class Exp that is used in data to wrap
an evaluable expression. There are two forms of construction for Exp: Exp(e) and
Exp(e,V,null). In both cases e is an instance of a syntax class. In the second case V is
a collection of variable names that occur freely in e. The values of variables in V can be

c©Ceteva 2008.

344 CHAPTER 19. INTERACTIVE APPLICATIONS

supplied when the expression is evaluated (via keyApply as shown below).

Another interesting feature of the menu item name rule is the use of ’lift’ to transform
a data element (in this case a string n) into an expression whose evaluation produces
the original data element:

context Menu
@Grammar extends OCL.grammar

Menu ::= ’menu’ n = MenuItemName is = MenuItem* ’end’ {
Menu(n,is)

}.
MenuItemName ::=

n = Name { Exp(n.lift()) }
| e = SimpleExp { Exp(e,e.FV(),null) }.
MenuItem ::=

Menu
| ’item’ n = MenuItemName a = Action ’end’ { MenuItem(n,a) }.

end

Since Display is an abstract class, the grammar-rule for Display is a list of concrete al-
ternatives:

context Display
@Grammar extends Action.grammar, OCL.grammar
Display ::=

Text
| Button
| Options
| Horizontal
| Vertical.

Text ::= ’text’ t = Char* ’end’ {
Text(Exp(t.asString().lift()))

}.
Button ::=
’button’ n = ComputedName
as = Action*

’end’ { Button(n,as) }.
ComputedName ::=
n = Name { Exp(n.lift()) }

| e = SimpleExp { Exp(e,e.FV(),null) }.
Options ::=

’options’ n = ComputedName
os = Option*

’end’ { Options(n,os) }.

c©Ceteva 2008.

19.3. IMPLEMENTATION 345

Option ::=
’option’ n = Name ’;’ { n }.

Horizontal ::=
’horizontal’

ds = Display*
’end’ { Horizontal(ds) }.

Vertical ::=
’vertical’

ds = Display*
’end’ { Vertical(ds) }.

end

Action is another example of an abstract class:

context Action
@Grammar extends OCL.grammar

Action ::=
UpdateProperty

| IfAction
| Go
| DisplayScreen.
DisplayScreen ::=

’display’
ms = Menu*
ds = Display*

’end’ { DisplayScreen(ms,ds) }.
UpdateProperty ::=
n = Name ’:=’ e = SimpleExp ’;’ {

Update(n,Exp(e,e.FV(),null))
}.
Go ::= ’go’ n = Name ’(’ as = GoArgs ’)’ { Go(n,as) }.
GoArgs ::=
e = GoArg es = (’,’ GoArg)* { Seq{e|es} }

| { Seq{} }.
GoArg ::= e = SimpleExp { Exp(e) }.
IfAction ::=
’if’ e = SimpleExp
’then’ d = Action
IfActionTailˆ(e,d).

IfActionTail(e,d1) ::=
’else’ d2 = Action ’end’ { If(Exp(e,e.FV(),null),d1,d2) }

| ’end’ { If(Exp(e,e.FV(),null),d1,null) }.
end

c©Ceteva 2008.

346 CHAPTER 19. INTERACTIVE APPLICATIONS

Figure 19.8.: Semantics Model

19.3.2. Semantics

The semantics of the interactive application modelling language defines an instance
model for the syntax and also defines an execution engine for the instances. The instance
model is shown in figure 19.8. An instance of a Model is defined by the class Instance,
it should have a slot for each property of the model. The value of each slot should have
a type that is defined by the classifier of the corresponding property.

The class Engine defines the execution engine. An engine controls an instance and
maintains an id-table that maps event ids to handlers as shown below. The idea is
that each time an event occurs, a handler from the id-table is used to produce a new
XML display that is sent to the rendering engine. The XML data is calculated from the
information in the model and the current state of the instance slots.

The rest of this section defines the engine execution semantics; the following sec-
tion shows how the engine is connected to a rendering engine. The engine processes a
screen-transition using the ’go’ operation defined below. XMF supports many types of
input and output channel; this operation shows an example of a string output channel
used to capture and then return the XML output data as a string:

context Engine
@Operation go(screen:String,args:Seq(Element))

let sout = StringOutputChannel()
in instance.go(screen,args,self,sout);

c©Ceteva 2008.

19.3. IMPLEMENTATION 347

sout.getString()
end

end

An instance handles a screen-transition by looking up the screen in its model. If the
screen exists then it is requested to display itself with the supplied argument values:

context Instance
@Operation go(screen:String,args:Seq(Element),engine:Engine,out:

OutputChannel)
@NotNull [model.indexScreensByName(screen,null)].display(self,args

,engine,out)
else self.error("No screen called " + screen)

end
end

A screen delegates the ’display’ message to its underlying display component. The
screen argument names are bound to the argument values to produce an environment of
bindings using the ’env’ operation:

context Screen
@Operation display(instance,args,engine,out)

display.display(instance,self.env(instance,args),engine,out)
end

context Screen
@Operation env(instance,values)
let env = args.zip(values)
in instance.slots()->iterate(slot env = env |

env.bind(slot.property().name(),slot.value()))
end

end

Each display element type : Button; Text; Horizontal; Vertical; and, Options implements
a ’display’ operation that writes XML data to the supplied output channel. As a side
effect, if any of the elements have event handling actions then the engine is updated
with an appropriate handler for the event when it is received from the rendering engine.

Each ’display’ operation shows the use of an XMF language feature @XML ... end
that is used to write XML output to a channel. The construct has the form:

@XML(out)
<TAG ATTS>

c©Ceteva 2008.

348 CHAPTER 19. INTERACTIVE APPLICATIONS

.. program code ...
</TAG>

end

where the literal XML data is written to the supplied output channel. In-between writ-
ing the starting tag and ending tag, an arbitrary program is processed.

context DisplayScreen
@Operation display(instance,env,engine,out)

@XML(out)
<Screen>
@For menu in menus do
menu.display(instance,env,engine,out)

end
@For display in displays do
display.display(instance,env,engine,out)

end
</Screen>

end
end

The ’display’ operation for text shows an example of the shortened form of @XML ...
end and also the use of the ’keyApply’ operation of the Exp class. The ’env’ argument
supplied to ’display’ contains bindings for all variables in scope. The ’keyApply’ oper-
ation performs the expression in the context of these variables:

context Text
@Operation display(instance,env,engine,out)

@XML(out)
<"Text" text=exp.keyApply(env)/>

end
end

A button contains an action that is used to handle the event arising from the user press-
ing the button in the rendering engine. The ’display’ operation for Button shows how
an event handler is registered in the engine. The arguments passed to ’registerActions’
are the context required to perform the actions when the event associated with ’id’ is
received:

context Button
@Operation display(instance,env,engine,out)

c©Ceteva 2008.

19.3. IMPLEMENTATION 349

let id = exp.keyApply(env)
in engine.registerActions(id,instance,env,actions);

@XML(out)
<Button name=id/>

end
end

end

Horizontal and Vertical are similar:

context Horizontal
@Operation display(instance,env,engine,out)

@XML(out)
<Horizontal>
@For display in displays do

display.display(instance,env,engine,out)
end

</Horizontal>
end

end

the ’display’ operation for Options shows an example of interleaving of XML and pro-
gram code:

context Options
@Operation display(instance,env,engine,out)

@XML(out)
<Options name=exp.keyApply(env)>
@For option in options do

@XML(out)
<Option name=option/>

end
end

</Options>
end

end

The ’registerActions’ operation of Engine must define a handler for an event. The defi-
nition associates the event identifier ’id’ with an operation in the id-table of the engine.
Actions are performed using their ’perform’ operation which expects to receive argu-
ments that include the current environment of variable bindings. The variables avail-

c©Ceteva 2008.

350 CHAPTER 19. INTERACTIVE APPLICATIONS

able to an action include all those bound by selecting options on the display. These
display-bound variables are supplied to the handler (in the same way that http works)
as an environment ’env2’:

contxt Engine
@Operation registerActions(id,instance,env1,actions)

idTable.put(id,
@Operation(env2)
let value = null
in @For action in actions do

value := action.perform(instance,env2 + env1,self)
end;
value

end
end)

end

There are four types of action: If; Update; Go; and, Display. Each action produces
a result and the last action performed should return an XML string to be sent to the
rendering engine. If performs one of two actions (or nothing) depending on the outcome
of a test:

context If
@Operation perform(instance,env,engine)

if exp.keyApply(env + instance.env())
then thenAction.perform(instance,env,engine)
else @NotNull [elseAction].perform(instance,env,engine) end
end

end

An update changes the value of a variable currently in scope. The variables in scope are:
the slots of the instance; the current screen arguments. The following operation checks
whether the named variable is a slot and updates the instance appropriately, or updates
the current environment:;

context Update
@Operation perform(instance,env,engine)

@NotNull [instance.getSlot(name)].setValue(exp.keyApply(env +
instance.env()))

else env.set(name,exp.keyApply(env + instance.env()))
end

end

c©Ceteva 2008.

19.3. IMPLEMENTATION 351

Go makes a transition to a new screen. The screen will produce the XML output. No-
tice that the current ’env’ is not supplied to the ’go’ operation; therefore any variables
currently in scope are not available to the target screen unless their values are passed as
arguments:

context Go
@Operation perform(instance,env,engine)

engine.go(name,exps->collect(exp | exp.keyApply(env)))
end

Display is a way of locally displaying a screen without losing the variables that are
currently in scope:

context Display
@Operation perform(instance,env,engine)

let sout = StringOutputChannel()
in display.perform(instance,env,engine,sout);

sout.getString()
end

end

19.3.3. Handling Events

Events occur when the user interacts with the rendering engine, for example by pressing
a button. When the event occurs, the current screen may contain any number option
groups. Each option group is named and offers a number of alternative values. The
selected option may affect the behaviour of the engine in terms of variable updates and
screen transitions. Therefore, the event sent from the rendering engine to the xDSL
engine must encode the value of any option variables currently displayed.

In addition there may be any number of ways an event can be raised: menu selec-
tion or button press. Each must be uniquely identified and the event must supply the
identifier of the event that occurred.

An event is defined to have a format that starts with the event id and is followed by
any number of option variable/value pairs:

<ID> <VAR>=<VALUE> ... <VAR>=<VALUE>

c©Ceteva 2008.

352 CHAPTER 19. INTERACTIVE APPLICATIONS

The event is encoded as a string and must be decoded by the engine. This is easily done
by defining an event as a grammar-rule:

context Engine
@Grammar
Event ::= n = Name e = Binding* { Seq{n|e} }.
Binding ::= n = Name ’=’ v = Name { Seq{n|v} }.

end

When an event is received by the engine it is supplied to ’getDisplay’ which calculates
a new XML display string for the rendering engine. The operation uses the grammar
defined above to synthesize a pair Seq{id—env} containing the event id and an envi-
ronment of option-group variable bindings. If the id is bound in the id-table then the
handler is supplied with the environment:

context Engine
@Operation getDisplay(event:String)

let pair = Engine.grammar.parseString(event,"Event",Seq{}) then
id = pair->head;
env = pair->tail

in @TableGet handler = idTable[id] do
idTable.clear();
handler(env)

else self.error("No handler for " + name)
end

end
end

19.4. Simulation

Figure 19.1 shows the architecture of an interactive application. The rendering engine
is external to the design of an xDSL; the relationship between the two is defined by the
XML schema for the display language and the format of event strings. However, it is
useful to be able to simulate the rendering engine in order to test the xDSL engine. This
can be done by setting up a simple test harness for a pair of data consumers and linking
the xDSL engine with a rendering engine simulation that reads events strings in from
the terminal.

The following class implements a data producer-consumer pair:

c©Ceteva 2008.

19.4. SIMULATION 353

@Class Consumer

@Attribute filter : Operation end
@Attribute other : Consumer (!) end

@Constructor(filter) ! end

@Operation consume(data)
other.consume(filter(data))

end
end

The filter operation is used to generate data that is supplied to the other consumer. If a
pair of Consumer instances are linked together then the data will bounce back and forth
as required. The following operation creates a filter for the xDSL engine:

@Operation mk_xDSL_filter(model:Model)
let engine = Engine(model.new())
in @Operation(event)

engine.getDisplay(event)
end

end
end

The following filter operation simulates the rendering engine. It does so by pretty-
printing the XML to the standard-output. An XML string can be transformed into an
XML tree using the ’asXML’ operation defined for String. The standard-input is flushed
and a line containing the event is read and returned:

@Operation renderFilter(xml:String)
xml.asXML().pprint(stdout);
"".println();
stdin.skipWhiteSpace();
stdin.readLine().stripTrailingWhiteSpace()

end

Given a model ’model’, the following code produces, and starts, a simulation:

@Operation simulate(model:Model)
let eConsumer = Consumer(mk_xDSL_filter(model));

dConsumer = Consumer(renderFilter)

c©Ceteva 2008.

354 CHAPTER 19. INTERACTIVE APPLICATIONS

in eConsumer.setOther(dConsumer);
dConsumer.setOther(eConsumer);
eConsumer.consume("START")

end
end

19.5. XML Representation for Applications

A requirement for interactive applications is to be able to dynamically update the con-
tent and to be able to transfer the content from remote locations in a standard format.
The application describes in this paper is completely represented in data. This means
that, although the application is executable, it can easily be serialized, send over a com-
munications link, and then uploaded onto the device that is running the xDSL engine.

XMF provides support for encoding any data elements as XML. There is a basic
markup provided for all XMF data; the mechanisms for which can easily be extended to
provide bespoke XML encoding. Using the basic mechanisms, a model can be encoded
as follows:

@WithOpenFile(fout -> "c:/model.xml")
let xout = XMLOutputChannel(fout,NameSpaceXMLFormatter())
in xout.writeValue(model)
end

end

The resulting output is produced in an XML file that is shown in figure 19.9. The
XML markup shown in the figure is the default vanilla-flavour markup provided by
XMF. It is possible to add adapters to an XML output channel that filter the data as it
is processed and thereby use domain specific markup. So instead of seeing Object and
Slot as element tags, we might use Screen and Button.

The XML can be read back in using the following code:

@WithOpenFile(fin <- ModelFile)
let xin = XMLInputChannel(fin,NameSpaceXMLInflater())
in xin.parse()
end

end

c©Ceteva 2008.

19.5. XML REPRESENTATION FOR APPLICATIONS 355

Figure 19.9.: A Serialized Model

c©Ceteva 2008.

356 CHAPTER 19. INTERACTIVE APPLICATIONS

19.6. Conclusion

This chapter has described an approach to modelling systems whereby an engine for an
executable domain specific language (xDSL) is used to develop and run the applications.
The xDSL is designed to use concepts that are suited to the application domain which
allows the language to abstract away from implementation details; the language is then
executable, can be used with different implementation platform technologies, and is
suitable for use by people whose primary skill lies in the application domain rather
than the implementation technology.

A method for developing xDSLs has been shown that involves a separation of con-
cerns between syntax elements that describe type-level features of a model, and seman-
tics elements that define run-time features of an application. Experience has shown
that this separation is natural and allows the xDSL developer to effectively manage the
process.

We have shown how a textual syntax can be added to an xDSL. In practice, most
xDSLs will require a concrete syntax. The precise form of this will depend on the nature
of the application and who the intended users are. Sometimes, a purely graphical syntax
is appropriate (for example UML class-diagrams). Other times a purely textual syntax
works best, especially where executable features are involved and when complexity can
be controlled effectively using textual nesting. Often there is scope for a mixture of the
two where different aspects of the models are constructed using graphical or textual
syntax.

Modelling all features of a language has a number of benefits that arise because every-
thing is reified. Reification involves representing everything as data as opposed to pro-
gram code or transient non-tangible artifacts such as system events. Once everything is
reified, many types of analysis are possible including well-formedness checking, type
checking, application of style rules. It becomes easy to capture and apply patterns and
to perform refactoring. All features of an application can be transformed to a target
technology.

Modelling actions is particularly important here; often actions are left as unprocessed
strings of program code which makes it very difficult to analyze and run as part of an
xDSL engine. The application given in this paper has shown that it is straightforward to
model actions and to integrate them into the execution engine for an xDSL. By following
a few basic guidelines in terms of variable scope and control flow, actions are easy to
implement and are completely integrated into the xDSL, its analysis and transformation.

c©Ceteva 2008.

CHAPTER 20

CHOOSING BETWEEN ALTERNATIVES

Processing information is a linear activity. Listen to anyone describing how something
is performed and you will hear phrases like: ’first get an X, turn it into a Y and feed
it into the Z’. This is great because mechanical processing of models is a linear activity
too; there is a close correspondence between real-world processes and their modelled
equivalent.

However, things are often not that simple. On closer inspection a process can often be
more like: ’select an X, find a way to turn it into a Y and feed it into one of the Zs’. In this
case processing is not so obviously linear. What happens if the X that is selected turns
out to be the wrong choice when trying to make a Y? Can we go back and try another
X? If no Z is available who is at fault: the X or the choice of Y?

The world is full of choices. Modelling the world often needs to take account of
choice. Once choice is admitted into a process, the scope of the choice becomes an im-
portant issue. How far can processing proceed before a particular choice cannot be
undone? In a linear activity, undoing a choice within a particular scope is called back-
tracking, i.e. returning to the last choice point, selecting an alternative and re-processing
from that point.

Choice (or equivalently non-determinism) is a property of a model. Backtracking is a
property of the execution engine for the model. Backtracking is a way of implementing
choice as a linear activity; it is an important and often occurring pattern. This section is
about how to implement the pattern.

20.1. A Choice Pattern

Choice tends to occur as a pattern involving:

• A collection of elements to choose from (or alternative actions).

c©Ceteva 2008.

358 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

• Something to do next with the selected element.

• Something to backtrack with (a failure).

Each use of this pattern tends to be slightly different in the detail. But the principle is
generally the same. The pattern can be encoded as follows:

(1) @Operation select(S,next,fail)
(2) if S->isEmpty
(3) then fail()

else
(4) let e = S->sel then
(5) S = s->excluding(e)
(6) in next(x,@Operation() select(S,next,fail) end)

end
end

The operation select (1) encodes the pattern. It takes 3 arguments: S a set of elements
to choose from, the activity to do next and a fail for backtracking. The next activity is
encoded as an operation that is expecting an element and a fail. The fail argument is
encoded as an operation that takes no arguments and jumps to the last choice point to
choose an alternative.

The idea is that the next operation contains all future processing for a selected el-
ement. Crucially, the next operation may be invoked more than once with different
choices from S. Lines (4-6) show this occurring, where an element e is selected from S
and supplied to next. The failure argument supplied to next is a new choice point; if it is
ever invoked then select is called again with fewer options to choose from, but the same
next and fail. Therefore, select can cause the same next argument to be invoked multiple
times with different elements chosen from S.

If select is ever invoked with no options (2) then the initial failure argument is chosen.
This allows chaining of different uses of select.

A slight variation on this pattern is the inclusion of a predicate that controls whether
the chosen element is valid or not:

(1) @Operation select(S,next,pred,fail)
(2) if S->isEmpty
(3) then fail()

else
(4) let e = S->sel then
(5) S = s->excluding(e)
(6) in if pred(e)
(7) then next(x,@Operation() select(S,next,pred,fail) end)
(8) else select(S,next,pred,fail)

c©Ceteva 2008.

20.1. A CHOICE PATTERN 359

(9) end
end

end

The predicate is used in (6) to test the element. If pred is satisfied then next is invoked
as before (7), otherwise alternatives are tried (8).

This pattern can be encoded as a language construct. The basic mechanism involves
repeated selection from a supplied set of alternatives. The grammar below uses a locally
defined recursive operation to continually backtrack though the elements of a supplied
set:

@Grammar extends OCL::OCL.grammar
Select ::=

’(’ e = Name ’,’ f = Name ’)’ ’from’ s = Exp
test = (’when’ Exp | [| true |]) ’do’
body = Exp

’else’ fail = Exp ’end’
{ [|

@Letrec
select =

@Operation(S,<f>)
if S->isEmpty
then <Var(f)>()
else

let <e> = S->sel then
S = S->excluding(<Var(e)>) then
<f> = @Operation() select(S,<Var(f)>) end

in if <test>
then <body>
else <f>()
end

end
end

end
in select(<s>,@Operation() <fail> end)
end

|] }.
end

Instead of defining a selection operation each time choice is used, the selection construct
can be used as follows:

c©Ceteva 2008.

360 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

Figure 20.1.: Two sacks with numbered balls

@Select(e,f) from S do
next(e,f)

else fail()
end

The variable e is initially bound to an element selected from the set S and the body of the
construct (after the do) is performed. The variable f is bound to an operation; is f is ever
invoked (with 0 args) then another element of S is selected and the body is performed
again. Subsequent uses of f have the same effect until S is exhausted at which point the
alternative part of the construct (after the else) is performed.

Consider a situation, shown in figure 20.1 where two sacks contain an arbitrary col-
lection of numbered balls. Balls are selected from each sack in turn and placed in a
line. The idea is to wind up with a sequence of balls whose numbers form an ascending
sequence.

Since it is not permitted to look inside the sacks when selecting a ball, things can go
wrong at some point during the process; although it is always possible to select the
balls in a way that achieves the desired outcome. If things go wrong then balls can be
put back (balls are appropriately marked as to which sack they came from), and the
selection restarted from any point.

The sacks can be modelled as follows:

c©Ceteva 2008.

20.1. A CHOICE PATTERN 361

@Class Sack
@Attribute balls : Set(Integer) end
@Attribute other : Sack (!,?) end
@Constructor(balls) ! end

end

where two sacks are set up as follows:

let s1 = Sack(Set{1,7,3,5,9});
s2 = Sack(Set{8,2,6,4,10})

in s1.setOther(s2);
s2.setOther(s1)

end

The process of selection is to be modelled as an operation on Sack that builds a sequence
of integers (balls) by ping-ponging between the receiver and ’other’, each optionally
adding an integer. What happens when there are balls left to choose, but which cannot
be added to the sequence because their numbers are too low? Is it always possible to
select so that this situation does not occur? Inspection of the rules shows that this is
not the case (the contents of the other sack cannot be inspected). Therefore, a stalemate
situation can occur, therefore backtracking is a candidate modelling technique.

The rest of this section builds up the implementation of an operation defined by Sack
for ordering the elements selected from two sacks. The operation is called with no
arguments:

@Operation order()
(1) self.order(Seq{},
(2) @Operation(orderedBalls,next,fail)
(3) other.order(orderedBalls,
(4) @Operation(orderedBalls,next2,fail)
(5) next(orderedBalls,next2,fail)
(6) end,fail)

end,
(7) @Operation()

"Error!"
end)

end

The ordering operation needs to initialise the ordered balls and create an initial next
and fail. Line (1) calls a second Sack operation called order that has these as arguments.

c©Ceteva 2008.

362 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

The initial collection of ordered balls is Seq{} (1), the initial next operation and fail are
supplied in lines (2) and (7).

In this example, each next takes 3 arguments: the current sequence of ordered balls, a
next for the other sack and a fail. At line (2) the initial next calls the ordering operation
for the other sack (3) passing it a next at (4) that ping-pongs back.

The initial fail (7) returns an error value because it should always be possible to order
the balls, i.e. this should never occur.

The second order operation is defined as follows:

@Operation order(orderedBalls,next,fail)
(1) if not other.allChosen(orderedBalls)

then
(2) self.order(orderedBalls,balls,next,
(3) @Operation()

next(orderedBalls,
(4) @Operation(orderedBalls,next,fail)
(5) self.order(orderedBalls,next,fail)

end,fail)
end)

(6) else self.order(orderedBalls,balls,next,fail)
end

end

If the other sack is empty (1) then the selection continues with the current sack (7). If
the other sack is not empty then there is a choice: add an element from the current sack
(2) and continue or just continue. This alternative is encoded by extending the fail (3) so
that if things go wrong, the current sack is skipped. If it is skipped then play resumes
with the current sack due to the next continuation (4-5).

The final operation uses Select to continually select from the available balls:

@Operation order(orderedBalls,balls,next,fail)
if balls->isEmpty
then orderedBalls
else

@Select(ball,f) from balls
when not orderedBalls->exists(b | b > ball) do

next(orderedBalls + Seq{ball},
@Operation(orderedBalls,next,fail)

let balls = balls->excluding(ball)
in self.order(orderedBalls,balls,next,fail)
end

end,f)
else fail()

c©Ceteva 2008.

20.2. FINDING A ROUTE 363

Figure 20.2.: Routes in the UK

end
end

end

20.2. Finding a Route

Figure 20.2 shows a map of the UK with locations and roads. One way of modelling this
information is using the graph construct defined in section ??:

@Graph(Routes,City,Road)
Birmingham()
Brighton()
Bristol()

A48 -> Swansea
Carlisle()

A74 -> Glasgow

c©Ceteva 2008.

364 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

A69 -> Newcastle
Glasgow()

M8 -> Edinburgh
M80 -> Perth

London()
M23 -> Brighton
A12 -> Ipswich
A41 -> Oxford
A3 -> Portsmouth
M4 -> Bristol
M1()->Leeds
A1()->Peterborough
M11()->Cambridge

Hull()
Ipswich()
Leeds()

M62()->Bradford
M62 -> Hull
A1()->Newcastle

Oxford()
M40 -> Birmingham

Perth()
M90 -> Edinburgh

Portsmouth()
Swansea()
Bradford()

M62()->Manchester
Newcastle()

A1()->Edinburgh
Manchester()

M61 -> Preston
Preston()

M6 -> Carlisle
Peterborough()

a1 -> Newcastle
Cambridge()
Edinburgh()

A91()-> Dundee
Dundee()

A956()->Aberdeen
Aberdeen()

end

c©Ceteva 2008.

20.2. FINDING A ROUTE 365

Each node of the graph is a city. Each edge of the graph is a road labelled with its name.
For example from London it is possible to go to Brighton using the M23 (and vice versa),
and possible to go to Bristol using the M4.

Consider how to find a route from one city to another. Suppose you want to get from
London to Carlisle. It is possible via the M1, A1 and then A69. Alternatively, you could
go A1, A1, A69. In principle there are many routes between two cities. Ignoring distance
and other criteria that might lead to selecting one route over another, the only rule that
should be applied is that a route does not pass through the same city twice.

How might the construction of a route be modelled? Given a start and end city, if
there is a road linking the two then a route is found. Otherwise, any road from the
start (or end) can be selected leading to a new start (or end) point. Given the new start
(or end) then the process can be repeated until it can be shown that no route exists
(remember you cannot go through the same city twice) or a route is found. Given that
choices are made, if no route can be found then backtracking can b employed to return
and make an alternative choice.

The class Routes extends Graph with an operation for finding a route:

(1) @Operation route(source:String,target:String)
(2) self.route(Set{},source,target,
(3) @Operation(usedRoads,path,fail)
(4) path

end,
(5) @Operation()

"NONE"
end)

end

Given the names of the source and target cities (1), a route is constructed by calling
another operation with a set of used roads, the source, target, a next (3) and a fail (5).
The initial fail is invoked when no route exists, it returns the special no-route-available
value NONE.

A next expects a set of used roads, a path and a fail. The path links the source and
target cities and is a sequence of road names.

The second route operation is defined below:

@Operation path(usedRoads,source,target,next,fail)
if source = target
then succ(usedRoads,Seq{},fail)
else
@Select(road,otherRoad)
from self.edgesIncidentOn(source) - usedRoads do
self.pathAfter(

c©Ceteva 2008.

366 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

usedRoads,source,target,road,otherRoad,next,fail)
else
@Select(road,otherRoad)
from self.edgesIncidentOn(target) - usedRoads do
self.pathBefore(
usedRoads,source,target,road,otherRoad,next,fail)

else fail()
end

end
end

end

@Operation pathAfter(usedRoads,source,target,road,otherRoad,succ,fail)
self.path(usedRoads->including(road),road.otherEnd(source),

target,
@Operation(usedRoads,path,fail)

succ(usedRoads,Seq{road.label()} + path,fail)
end,
otherRoad)

end
@Operation pathBefore(usedRoads,source,target,road,otherRoad,succ,fail

)
self.path(usedRoads->including(road),source,road.otherEnd(

target),
@Operation(usedRoads,path,fail)

succ(usedRoads,path + Seq{road.label()},fail)
end,
otherRoad)

end

20.3. Explanation and NoGood Sets

Patterns of search (as described above) can be encoded using language constructs. Typi-
cally these involve success and failure continuations that maintain the state of the search
and provide a convenient mechanism for branching. Continuations make it easy to
backtrack when it is found that an incorrect branch has been selected. These techniques
work well for finding a configuration amongst a number of alternatives such that the
configuration satisfies a given condition. However, extra work is required to explain
the lack of a satisfactory configuration.

One technique is to invert the condition that selects a correct configuration and to use

c©Ceteva 2008.

20.3. EXPLANATION AND NOGOOD SETS 367

it to explain why no satisfactory configuration could be found. Instead of selecting a
single satisfactory configuration, such an inversion produces a collection of configura-
tions, each of which has a problem. Such configurations are sometimes referred to as
noGood sets. This section describes an application that uses search to select a configura-
tion of business components; noGood sets are used to explain why a solution cannot be
found.

Consider developing a business plan. The business must set out its goals in terms of
what the business wants to achieve. Each goal is supported by a collection of tactics each
of which describes an activity or approach that claims to achieve the goal. In addition,
a goal may be decomposed into a collection of child goals; achieving all the child goals
individually is the same as achieving the overall goal. In order to implement a given
tactic it is necessary to allocate some resource. Resource is provided by organizational
units, which may be company departments or individuals.

A goal may be achieved if it has a supporting tactic that is adequately resourced; or
may be achieved if all of its children are achieved by the same rule. It is important that
a company does not over-commit its resources, therefore a goal can only be achieved if
the unit resource limits are not exceeded.

Here is a high-level goal for a telephone banking business:

The business will be successful if it has happy customers. This goal can be decom-
posed into any number of sub-goals:

where a customer is happy if their calls are answered effectively and their complaints
are handled. Each of the sub-goals has any number of tactics that will achieve the goal:

c©Ceteva 2008.

368 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

Finally, the tactics need to be resourced by an organization unit. A unit may resource
more than one tactic and a tactic may be resourced by more than one unit. In this case
the unit is a telephone call centre:

The models shown above can be used as part of a business as a decision support solu-
tion. Each model describes the goals the business intends to achieve and how the goals
are to be implemented and resourced. The solution provides feedback in terms of the
options for resourcing the tactics that achieve the goals. If the goals cannot be achieved
then the solution will provide feedback on why the different resourcing options fail.

The rest of this section is in two parts: the first part describes how an engine is defined
that finds a resourcing solution; the second part describes how noGood sets are used to
provide feedback when there is no solution.

Figure 20.3 shows a model of the business concepts used by the solution. Figure 20.4
shows a report model that is produced when there is a solution consisting of a collection
of results each of which associates a goal, a tactic and an organization unit.

The following rules are applied to find a solution. A goal g is achievable when:

c©Ceteva 2008.

20.3. EXPLANATION AND NOGOOD SETS 369

Figure 20.3.: The Business Motivation Model

Figure 20.4.: Configuration Results

c©Ceteva 2008.

370 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

1. g is supported by at least one tactic that is established by at least one organization
unit; or

2. g has at least one sub-goal and each sub-goal is achieved; and

3. the number of tactics supported by each unit does not exceed the resource for the
unit.

The rules are implemented as an operation called achievable that is defined below. The
arguments of the operation form the context for the achievable-engine. It is supplied
with a goal, a table of resources, the current results and continuations for success and
failure. The table of resources is an a-list mapping unit names to the current amount of
resource available for that unit. The results are just a collection of result instances.

context BMM_Model
@Operation achievable(goal,resources,results,succ,fail)
@Select tactic:Tactic from goal.getSupported_by() do

@Select unit:Organization_Unit from self.getElements()
when unit.establishes(tactic)
do @Result(goal,tactic,unit)

@Use(unit) end
end

end
else

@Unless goal.getComposed_of().isEmpty() do
@ForAll child in goal.getComposed_of() do

self.achievable(child,resources,results,succ,fail)
end

end
end

end

The success and fail continuations are used to implement a backtracking mechanism.
The rules are implemented by the achievable-engine in terms of search. A choice-point
arises when there is more than one tactic that could be chosen to support a goal and
when there is more than one unit that could be chosen to establish a tactic. In both
cases, one of the options is chosen and a choice point is created that will be used if ever
the search fails.

Failure occurs when a goal cannot be achieved because it has no tactics or a tactic has
no establishing unit. The resource associated with a unit is reduced by 1 each time the
unit is used to establish a tactic. Once the count reaches 0 the unit cannot be used again;
a subsequent attempt to select the unit causes backtracking.

The achievable-engine uses language constructs that are specifically designed to sup-
port the business solution. These constructs are: Select which is used to select from a

c©Ceteva 2008.

20.3. EXPLANATION AND NOGOOD SETS 371

collection; Result which is used to produce a result; Use which is used to reduce the
amount of available resource for a unit; Unless which is used to place a guard on an
action; and, ForAll which is used to require a condition holds for all element of a col-
lection. These language constructs use the arguments of the engine as ’globals’ and are
implemented as follows.

The language construct for Select uses the selection operation to try each element of a
collection:

context Root
@Class Select extends Sugar
@Attribute var : String end
@Attribute type : Performable end
@Attribute collection : Performable end
@Attribute body : Performable end
@Attribute guard : Performable end
@Attribute alt : Performable end
@Constructor(var,type,collection,guard,body,alt) ! end
@Grammar extends OCL::OCL.grammar

Select ::=
v = Name ’:’ t = Exp ’from’ c = Exp g = Guard ’do’

b = Exp a = Alt ’end’ {
Select(v,t,c,g,b,a)

}.
Guard ::=
’when’ Exp

| { [| true |] }.
Alt ::=

’else’ Exp
| { [| fail() |] }.

end
end

The desugar operation for Select builds up a choice-point through the fail continuations:

context Select
@Operation desugar()
[| let // Filter on the type of the elements...

C = <collection>.asSeq()->select(x |
x.isKindOf(<type>)) then

// Filter using the guard...
C = C->select(<var> | <guard>) then
// Set up the action to perform...
action =

c©Ceteva 2008.

372 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

@Operation(<var>,fail)
<body>

end then
// The final fail performs the alternative action...
finalFail =

@Operation()
<alt>

end then
// Build up the choice-tree using fails...
fail = C->iterate(x fail = finalFail |

@Operation()
action(x,fail)

end)
in // Perform the first choice...

fail()
end |]

end

The Result construct adds a new result to the current collection of results. This estab-
lishes a new collection of results for the scope of the Result body:

@Class Result extends Sugar
@Attribute goal : Performable end
@Attribute tactic : Performable end
@Attribute unit : Performable end
@Attribute body : Performable end
@Constructor(goal,tactic,unit,body) ! end
@Grammar extends OCL::OCL.grammar

Result ::= ’(’ g = Exp ’,’ t = Exp ’,’ u = Exp ’)’
b = Exp ’end’ {

Root::Result(g,t,u,b)
}.

end
@Operation desugar()
[| let result = Result(<goal>,<tactic>,<unit>) then

results = results->including(result)
in <body>
end

|]
end

end

When a unit is used to establish a tactic, the number of resources associated with the

c©Ceteva 2008.

20.3. EXPLANATION AND NOGOOD SETS 373

unit must be reduced by one. However a unit cannot use more resource than it owns,
therefore if the resources are exhausted for the required unit then engine uses fail to
select an alternative:

@Class Use extends Sugar
@Attribute unit : Performable end
@Attribute body : Performable end
@Constructor(unit,body) ! end
@Grammar extends OCL::OCL.grammar

Use ::= ’(’ u = Exp ’)’ b = Body ’end’ {
Use(u,b)

}.
Body ::=

Exp
| { [| succ(resources,results,fail) |] }.

end
@Operation desugar()
[| let name = <unit>.getName() then

resource = resources.lookup(name)
in if resource = 0

then fail()
else

let resources = resources.bind(name,resource - 1)
in <body>
end

end
end |]

end
end

The Unless construct simply places a guard on an action; if the guard fails then an
alternative is found using the fail continuation:

@Class Unless extends Sugar
@Attribute guard : Performable end
@Attribute body : Performable end
@Constructor(guard,body) ! end
@Grammar extends OCL::OCL.grammar

Unless ::= g = Exp ’do’ b = Exp ’end’ {
Unless(g,b)

}.
end
@Operation desugar()

c©Ceteva 2008.

374 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

[| if <guard>
then fail()
else <body>
end

|]
end

end

The ForAll construct requires a condition to hold for all elements of a collection. This is
achieved using the success continuation; each element of the collection is selected and
the success continuation returns to the collection to try the next element:

@Class ForAll extends Sugar
@Attribute var : String end
@Attribute collection : Performable end
@Attribute body : Performable end
@Constructor(var,collection,body) ! end
@Grammar extends OCL::OCL.grammar

ForAll ::= v = Name ’in’ c = Exp ’do’ b = Exp ’end’ {
ForAll(v,c,b)

}.
end
@Operation desugar()
[| let next =

@Operation(<var>,resources,results,succ,fail)
<body>

end
in <collection> ->iterate(x succ = succ |

@Operation(resources,results,fail)
next(x,resources,results,succ,fail)

end)
end |]

end
end

That concludes the language constructs for the achievable-engine. The search is con-
trolled using continuations so that all possible combinations of goal, tactic and unit are
tried to see if they are compatible. When an illegal combination is encountered, the fail
continuation is used to backtrack. Therefore, the engine will find a suitable collection of
results if they exist.

When no suitable combination of business elements exists, the engine returns no
value. It simply reports that the goal cannot be achieved. The rest of this section de-
scribes how a noGood sets can be constructed to explain the reasons why a solution

c©Ceteva 2008.

20.3. EXPLANATION AND NOGOOD SETS 375

cannot be found.
A noGood set is a combination of goals, tactics and units that invalidates the achiev-

able rules defined earlier. The rules are invalidated when a goal has no tactics, when
all tactics for a goal lack suitable organization units, or when all the sub-goals of a goal
invalidate the rules. When no valid solution can be found for a goal, it is safe to assume
that at least one noGood set exists for the goal; there may be more than one noGood set
and it is useful to report all of them.

The following operation constructs the noGood sets for a goal:

context BMM_Model
@Operation noGoods(goal)
self.noTacticsOrChildren(goal) +
self.noEstablishingUnits(goal) +
self.overusedUnits(goal) +
self.failingChildren(goal)

end

There are four reasons for a noGood set. Each reason is implemented as a separate
operation. The first operation constructs a singleton set Unachievable(g) when the goal
g has no tactics and no children:

context BMM_Model
@Operation noTacticsOrChildren(goal)
@Cmp [Set] Set{Unachievable(goal)} where
? goal.noChildren() and

goal.noTactics()
end

end

If a goal has a tactic with no establishing units then a noGood set contains Unestab-
lished(g,t):

context BMM_Model
@Operation noEstablishingUnits(goal)
@Cmp [Set] Set{Unestablished(goal,tactic)} where

tactic <- goal.tactics(),
? self.noEstablishingUnit(tactic)

end

If a goal has a tactic with a unit then, since we know that there are no good sets, the unit
must be overused (or the noGood set is incomplete). The following operation records

c©Ceteva 2008.

376 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

allocations that will become illegal when combined with other elements:

contxt BMM_Model
@Operation overusedUnits(goal)
@Cmp [Set] Set{Allocation(goal,tactic,unit)} where

tactic <- goal.tactics(),
unit <- self.establishingUnits(tactic)

end

Finally, each of the children of a goal must fail in a noGood set. The following operation
calculates the noGood sets for each child and then combines them:

context BMM_Model
@Operation failingChildren(goal)
@Iterate1 child <- goal.children()
initially NG = Set{Set{}} do

@Cmp [Set] options1 + options2 where
options1 <- self.noGoods(child),
options2 <- NG

end
else Set{}

end
end

Finally, each noGood set must be interpreted to produce an explanation of why a good
set could not be produced. The following operation translates the noGood sets into
strings that explain why each fails:

context BMM_Model
@Operation noGoodDisplays(NGs)
@Cmp [Set] u.goal.getName() + " has no tactics or children." where

NG <- NGs,
u:Unachievable <- NG

end +
@Cmp [Set] u.goal.getName() +

" cannot be established by " +
u.tactic.getName() +
" because it has no supporting units." where

NG <- NGs,
u:Unestablished <- NG

end +
@Cmp [Set] o.getName() + " is overused." where

c©Ceteva 2008.

20.3. EXPLANATION AND NOGOOD SETS 377

NG <- NGs,
o:Organization_Unit <- self.getElements().asSeq(),
? @Cmp a where

a:Allocation <- NG,
? a.unit = o

end->size > self.resources().lookup(o.getName())
end

end

c©Ceteva 2008.

378 CHAPTER 20. CHOOSING BETWEEN ALTERNATIVES

c©Ceteva 2008.

CHAPTER 21

A COMMAND LANGUAGE

When modelling applications there is often a requirement for some kind of command
language. UML, for example, has state machines where the actions on the transitions are
written in an action language and describe what happens to the state of the system when
the transitions are fired. One way of providing support for actions in a model is to allow
the user to write commands in their favourite programming language; the commands
are represented in the model as strings. This is a very weak form of command language,
since the strings cannot be processed easily by the modelling engines. Typically they
cannot be performed at all until the models are exported as program code, where the
command strings are simply embedded in the output.

More flexibility is provided by modelling the command language. The model in-
stances can then be interpreted by an engine as part of performing the overall model.
Furthermore, since the commands are modelled, they can be analysed in various ways
and transformed to different target implementation languages rather than being limited
to one.

This chapter is concerned with writing interpreters (translators and compilers) for a
command language. When defining an interpretive semantics for a language there is
often a similar language at hand (at least the language in which the interpreter is writ-
ten).There is a choice choice as to whether the syntax structures are directly interpreted
or whether they are translated to syntax phrases in the existing language. The advan-
tage of a translational approach is that the execution engine for the target language
already exists and is probably more efficient than any interpreter we could write for the
source language.

Compilers are translators for languages where the target language is usually highly
optimized and very different from the source language. In principle, however, there is
no essential difference between a translator and a compiler. A language that uses the
translational approach to target a sub-language of itself is often referred to as desugaring
the source language.

c©Ceteva 2008.

380 CHAPTER 21. A COMMAND LANGUAGE

21.1. XCom - A Simple Command Language

XCom is a simple command language with values that are either records or are atomic.
An atomic data value is a string, integer or boolean. A record is a collection of named
values. XCom is block-structured where blocks contain type definitions and value def-
initions. XCom has simple control structures: conditional statements and loops. The
following is a simple example XCom program that builds a list of even numbers from 2
to 100:

begin
type Pair is head tail end
type Nil is end
value length is 100 end
value list is new Nil end
while length > 0 do

begin
if length % 2 = 0
then

begin
value pair is new Pair end
pair.head := length;
pair.tail := list;
list := pair;

end
end;
length := length - 1;

end
end

XCom expressions evaluate to produce XCom values. Values are defined in the Val-
ues package and which is the semantic domain for XCom. Values are either atomic:
integers and booleans, or are records. We use a simple representation for records: a se-
quence of values indexed by names. XCom records are created by instantiating XCom
record types. A record type is a sequence of names. Types raise an interesting design
issue: should the types be included as part of the semantic domain since evaluation of
certain XCom program phrases give rise to types that are used later in the execution to
produce records. The answer to the question involves the phase distinction that occurs
between static analysis (or execution) and dynamic execution. Types are often viewed
as occurring only during static analysis; although this is not always the case.

We will show how the semantics of XCom can be defined with and without dynamic
types. All XCom values are instances of sub-classes of the class Value.

c©Ceteva 2008.

21.1. XCOM - A SIMPLE COMMAND LANGUAGE 381

context Bool
@Operation binAnd(Bool(b))
Bool(value and b)

end
context Bool

@Operation binOr(Bool(b))
Bool(value or b)

end
context Int

@Operation binAdd(Int(n))
Int(value + n)

end

Record types are sequences of names. Records are sequences of values indexed by
names; the names are found by navigating to the

type of the record:

context Record
@Operation lookup(name:String)

fields->at(type.names->indexOf(name))
end

context Record
@Operation update(name:String,value:Element)

fields->setAt(type.names->indexOf(name),value)
end

A new record is produced by performing a new expression. The type to instantiate is
given as a string. An alternative representation for types in new expressions would be
to permit an arbitrary expression that evaluates to produce a type. This design choice
would rule out static typing and force the language to have dynamic types. We wish
to use XCom to illustrate the difference between dynamic and static types in semantic
definitions so we use strings to name types in new expressions:

The concrete syntax of expressions is defined by the XBNF grammar for the class Exp:

@Grammar
// Start at Exp. Logical operators bind weakest.
Exp ::= e = ArithExp [op = LogicalOp l = Exp { BinExp(op,e,l) }].
LogicalOp ::= ’and’ { "and" } | ’or’ { "or" }.
// The ’.’ for field ref binds tighter than ’+’ etc.
ArithExp ::= e = FieldRef [op = ArithOp a = FieldRef { BinExp(op,e,

a) }].
ArithOp ::= ’+’ { "+" }.

c©Ceteva 2008.

382 CHAPTER 21. A COMMAND LANGUAGE

// A field reference ’.’ optionally follows an atomic expression.
FieldRef ::= e = Atom (’.’ n = Name { FieldRef(e,n) } | { e }).
// Atomic expressions can be arbitrary exps if in (and).
Atom ::= Const | Var | New | ’(’ Exp ’)’.
Const ::= IntConst | BoolConst.
IntConst ::= i = Int { Const(i) }.
BoolConst ::= ’true’ { Const(true) } | ’false’ { Const(false) }.
Var ::= n = Name { Var(n) }.
New ::= ’new’ n = Name { New(n) }.

end

XCom statements are used to:

• Introduce new names associated with either types or values.

• Control the flow of execution.

• Perform side effects on records.

A block (as in Pascal or C) contains local definitions. Names introduced in a block are
available for the rest of the statements in the block (including sub-blocks) but are not
available when control exits from the block. A declaration introduces either a type or
a value binding. A type declaration associates a type name with a sequence of field
names. To keep things simple we don’t associate fields with types. A value declaration
associates a name with a new value. The value is produced by performing an expression
at run-time. A while statement involves a test and a body. An if statement involves a
test, a then-part and an else-part:

@Grammar extends Exp.grammar
Statement ::=

Block
| Declaration
| While
| If
| Update
| FieldUpdate.
Block ::= ’begin’ s = Statement* ’end’ { Block(s) }.
Declaration ::=
TypeDeclaration

| ValueDeclaration.
TypeDeclaration ::=
’type’ n = Name ’is’ ns = Name* ’end’
{ TypeDeclaration(n,ns) }.

ValueDeclaration ::=

c©Ceteva 2008.

21.2. AN EVALUATOR FOR XCOM 383

’value’ n = Name ’is’ e = Exp ’end’
{ ValueDeclaration(n,e) }.

FieldUpdate ::=
e = Exp ’.’ n = Name ’:=’ v = Exp ’;’
{ FieldUpdate(e,n,v) }.

While ::=
’while’ e = Exp ’do’ s = Statement ’end’
{ While(e,s) }.

If ::=
’if’ e = Exp
’then’ s1 = Statement
’else’ s2 = Statement
’end’
{ If(e,s1,s2) }.

Update ::=
n = Name ’:=’ e = Exp ’;’
{ Update(n,e) }.

end

21.2. An Evaluator for XCom

As described in the introduction we are interested in defining XCom operational se-
mantics. We will do this in a number of different ways in the rest of this note. The first,
and possibly most straightforward, approach is to define an interpreter for XCom in the
XOCL language. This involves writing an eval operation for each of the XCom syntax
classes. The eval operation must be parameterized with respect to any context informa-
tion that is required to perform the evaluation. An XCom program p is then evaluated
in a context e by: p.eval(e).

21.2.1. Evaluating Expressions

Expression evaluation is defined by adding eval operations to each class. This section
defines the eval operation:

context Const
@Operation eval(env)
@TypeCase(value)
Boolean do Bool(value) end
Integer do Int(value) end

end
end

c©Ceteva 2008.

384 CHAPTER 21. A COMMAND LANGUAGE

Evaluation of a variable involves looking up the current value. The value is found in the
current context of evaluation: this must contain associations between variable names
and their values:

context Var
@Operation eval(env)
env.lookup(name)

end

Evaluation of a binary expression involves evaluation of the sub-expressions and then
selecting an operation based on the operation name. The following shows how XCom
semantics is completely based on XOCL semantics since + in XCom is performed by +
in XOCL:

context BinExp
@Operation eval(env)
@Case op of
"and" do left.eval(env).binAnd(right.eval(env)) end
"or" do left.eval(env).binOr(right.eval(env)) end
"+" do left.eval(env).binAdd(right.eval(env)) end

end
end

Creation of new records is performed by evaluating a new expression. The interpreter
has dynamic types so the type to instantiate is found by looking up the type name in
the current environment:

context New
@Operation eval(env)
env.lookup(type).new()

end

Field reference is defined as follows:

context FieldRef
@Operation eval(env)
value.eval(env).lookup(name)

end

c©Ceteva 2008.

21.2. AN EVALUATOR FOR XCOM 385

21.2.2. Evaluating Statements

XCom statements are performed in order to introduce new names, control flow or to
update a record field. Statements are defined to evaluate in a context and must observe
the rules of scope that require variables are local to the block that introduces them.
The context of execution is an environment; evaluation of a statement may update the
supplied environment, so statement evaluation returns an environment:

context ValueDeclaration
@Operation eval(env)
env.bind(name,value.eval(env))

end

A type declaration extends the supplied environment with a new type:

context TypeDeclaration
@Operation eval(env)
env.bind(name,Type(names))

end

A block must preserve the supplied environment when its evaluation is complete. Each
statement in the block is performed in turn and may update the current environment:

context Block
@Operation eval(originalEnv)
let env = originalEnv
in @For statement in statements do

env := statement.eval(env)
end

end;
originalEnv

end

A while statement continually performs the body while the test expression returns true.
A while body is equivalent to a block; so any updates to the supplied environment that
are performed by the while body are discarded on exit:

context While
@Operation eval(originalEnv)
let env = orginalEnv
in @While test.eval(env).value do

c©Ceteva 2008.

386 CHAPTER 21. A COMMAND LANGUAGE

env := body.eval(env)
end;
originalEnv

end
end

An if statement conditionally performs one of its sub-statements:

context If
@Operation eval(env)
if test.eval(env).value
then thenPart.eval(env)
else elsePart.eval(env)
end

end

context FieldUpdate
@Operation eval(env)
record.eval(env).update(name,value.eval(env))

end
context Update

@Operation eval(env)
env.update(name,value.eval(env))

end

21.3. A Translator for XCom with Run-Time Types

The previous section defines an interpreter for XCom. This is an appealing way to define
the operational semantics of a language because the rules of evaluation work directly
on the abstract syntax structures. However the resulting interpreter can often be very
inefficient. Furthermore, an interpreter can lead to an evaluation phase distinction.

Suppose that XCom is to be embedded in XOCL. XOCL has its own interpretive mech-
anism (the XMF VM); at the boundary between XOCL and XCom the XOCL interpretive
mechanism must hand over to the XCom interpreter – the XCom code that is performed
is a data structure, a completely alien format to the VM. This phase distinction can lead
to problems when using standard tools, such as save and load mechanisms, with re-
spect to the new language. For example a mechanism that can save XOCL code to disk
cannot be used to save XCom code to disk (it can, however, be used to save the XCom

c©Ceteva 2008.

21.3. A TRANSLATOR FOR XCOM WITH RUN-TIME TYPES 387

interpreter to disk).
An alternative strategy is to translate the source code of XCom to a language for

which we have an efficient implementation. No new interpretive mechanism is required
and no phase distinction arises. Translation provides the opportunity for static analy-
sis (since translation is performed prior to executing the program). As we mentioned
earlier, static analysis can translate out any type information from XCom programs; the
resulting program does not require run-time types.

Since static analysis requires a little more work, this section describes a simple trans-
lation from XCom to XOCL that results in run-time types; the subsequent section shows
how this can be extended to analyse types statically and remove them from the semantic
domain.

21.3.1. Translating Expressions

Translation is defined by adding a new operation desugar} to each abstract syntax class.
There is no static analysis, so the operation does not require any arguments. The result
of the operation is a value of type Performable which is the type of elements that can
be executed by the XMF execution engine. An XCom constant is translated to an XOCL
constant:

context Const
@Operation desugar1():Performable
value.lift()

end

An XCom binary expression is translated to an XOCL binary expression. Note that the
sub-expressions are also translated:

context BinExp
@Operation desugar1():Performable
@Case op of
"and" do [| <left.desugar1()> and <right.desugar1()> |] end
"or" do [| <left.desugar1()> and <right.desugar1()> |] end
"+" do [| <left.desugar1()> + <right.desugar1()> |] end

end
end

An XCom new expression involves a type name. Types will be bound to the appropri-
ate variable name in the resulting XOCL program; so the result of translation is just a
message new sent to the value of the variable whose name is the type name:

c©Ceteva 2008.

388 CHAPTER 21. A COMMAND LANGUAGE

context New
@Operation desugar1():Performable
[| <OCL::Var(type)>.new() |]

end

XCom variables are translated to XOCL variables:

context Var
@Operation desugar1():Performable
OCL::Var(name)

end

XCom field references are translated to the appropriate call on a record:

context FieldRef
@Operation desugar1():Performable
[| <value.desugar1()>.ref(<StrExp(name)>) |]

end

21.3.2. Translating Statements

An XCom statement can involve local blocks. The equivalent XOCL expression that
provides local definitions is let. A let expression consists of a name, a value expression
and a body expression. Thus, in order to translate an XCom declaration to an XOCL let
we need to be passed the body of the let. This leads to a translational style for XCom
commands called continuation passing where each desugar1 operation is supplied with
the XOCL command that will be performed next.

A type declaration is translated to a local definition for the type name. Note that the
expression names.lift() translates the sequence of names to an expression that, when
performed, produces the same sequence of names: list is a means of performing evalu-
ation in reverse:

context TypeDeclaration
@Operation desugar1(next:Performable):Performable

[| let <name> = Type(<names.lift()>)
in <next>
end |]

end

c©Ceteva 2008.

21.3. A TRANSLATOR FOR XCOM WITH RUN-TIME TYPES 389

A value declaration is translated to a local definition:

context ValueDeclaration
@Operation desugar1(next:Performable):Performable

[| let <name> = <value.desugar1()>
in <next>
end |]

end

A block requires each sub-statement to be translated in turn. Continuation passing al-
lows us to chain together the sequence of statements and nest the local definitions ap-
propriately. The following auxiliary operation is used to implement block-translation:

context Statements
@Operation desugar1(statements,next:Performable):Performable
@Case statements of
Seq{} do

next
end
Seq{statement | statements} do
statement.desugar1(desugar1(statements,next))

end
end

end

Translation of a block requires that the XOCL local definitions are kept local. Therefore,
the sub-statements are translated by chaining them together and with a final continu-
ation of null. Placing the result in sequence with next ensures that any definitions are
local to the block.

context Block
@Operation desugar1(next:Performable):Performable

[| <desugar1(statements,[| null |])> ;
<next> |]

end

A while statement is translated to the equivalent expression in XOCL:

context While
@Operation desugar1(next:Performable):Performable

c©Ceteva 2008.

390 CHAPTER 21. A COMMAND LANGUAGE

[| @While <test.desugar1()>.value do
<body.desugar1([|null|])>

end;
<next> |]

end

An if statement is translated to an equivalent expression in XOCL:

context If
@Operation desugar1(next:Performable):Performable

[| if <test.desugar1()>.value
then <thenPart.desugar1(next)>
else <elsePart.desugar1(next)>
end |]

end

context FieldUpdate
@Operation desugar1(next:Performable):Performable

[| <record.desugar1()>.update(<StrExp(name)>,<value.desugar1()>);
<next> |]

end
context Update

@Operation desugar1(next:Performable):Performable
[| <name> := <value.desugar1()>;

<next> |]
end

21.4. A Translator for XCom without Run-Time Types

It is usual for languages to have a static (or compile time) phase and a dynamic (or run
time) phase. Many operational features of the language can be performed statically. This
includes type analysis: checking that types are defined before they are used and allocat-
ing appropriate structures when instances of types are created. This section shows how
the translator for XCom to XOCL from the previous section can be modified so that type
analysis is performed and so that types do not occur at run-time.

c©Ceteva 2008.

21.4. A TRANSLATOR FOR XCOM WITHOUT RUN-TIME TYPES 391

21.4.1. Translating Expressions

Since types will no longer occur at run-time we will simplify the semantic domain
slightly and represent records as a-lists. An a-list is a sequence of pairs, the first ele-
ment of each pair is a key and the second element is a value. In this case a record is
an a-list where the keys are field name strings. XOCL provides operations defined on
sequences that are to be used as a-lists: l->lookup(key) and l->set(key,value).

The context for static analysis is a type environment. Types now occur at translation
time instead of run-time therefore that portion of the run-time context that would con-
tain associations between type names and types occurs during translation. Translation
of a constant is as for desugar1. Translation of binary expressions is as for desugar1
except that all translation is performed by desugar2:

context BinExp
@Operation desugar2(typeEnv:Env):Performable

@Case op of
"and" do

[| <left.desugar2(typeEnv)> and
<right.desugar2(typeEnv)> |]

end
"or" do
[| <left.desugar2(typeEnv)> or

<right.desugar2(typeEnv)> |]
end
"+" do
[| <left.desugar2(typeEnv)> +

<right.desugar2(typeEnv)> |] end
end

end

Translation of a variable is as before. A new expression involves a reference to a type
name. The types occur at translation time and therefore part of the evaluation of new
can occur during translation. The type should occur in the supplied type environment;
the type contains the sequence of field names. The result of translation is an XOCL
expression that constructs an a-list based on the names of the fields in the type. The
initial value for each field is null:

context New
@Operation desugar2(typeEnv:Env):Performable

if typeEnv.binds(type)
then
let type = typeEnv.lookup(type)
in type.names->iterate(name exp = [| Seq{} |] |

c©Ceteva 2008.

392 CHAPTER 21. A COMMAND LANGUAGE

[| <exp>->bind(<StrExp(name)>,null) |])
end

else self.error("Unknown type " + type)
end

end

A field reference expression is translated to an a-list lookup expression:

context FieldRef
@Operation desugar2(typeEnv:Env):Performable

[| <value.desugar2(typeEnv)>->lookup(<StrExp(name)>) |]
end

21.4.2. Translating Statements

A statement may contain a local type definition. We have already discussed continu-
ation passing with respect to desugar1 where the context for translation includes the
next XOCL expression to perform. The desugar2 operation cannot be supplied with the
next XOCL expression because this will depend on whether or not the current statement
extends the type environment. Therefore, in desugar2 the continuation is an operation
that is awaiting a type environment and produces the next XOCL expression. A type
declaration binds the type at translation time and supplies the extended type environ-
ment to the continuation:

context TypeDeclaration
@Operation desugar2(typeEnv:Env,next:Operation):Performable

next(typeEnv.bind(name,Type(names)))
end

A value declaration introduces a new local definition; the body is created by supplying
the unchanged type environment to the continuation:

context ValueDeclaration
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| let <name> = <value.desugar2(typeEnv)>
in <next(typeEnv)>
end |]

end

c©Ceteva 2008.

21.4. A TRANSLATOR FOR XCOM WITHOUT RUN-TIME TYPES 393

Translation of a block involves translation of a sequence of sub-statements. The follow-
ing auxiliary operation ensures that the continuations are chained together correctly:

context Statements
@Operation desugar2(statements,typeEnv,next):Performable
@Case statements of
Seq{} do

next(typeEnv)
end
Seq{statement | statements} do
statement.desugar2(

typeEnv,
@Operation(typeEnv)

desugar2(statements,typeEnv,next)
end)

end
end

end

A block is translated to a sequence of statements where local definitions are imple-
mented using nested let expressions in XOCL. The locality of the definitions is main-
tained by sequencing the block statements and the continuation expression:

context Block
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| <desugar2(
statements,
typeEnv,
@Operation(ignore)

[| null |]
end)>;

<next(typeEnv)> |]
end

A while statement is translated so that the XOCL expression is in sequence with the
expression produced by the continuation:

context While
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| @While <test.desugar2(typeEnv)>.value do
<body.desugar2(typeEnv,@Operation(typeEnv) [| null |] end)>

end;

c©Ceteva 2008.

394 CHAPTER 21. A COMMAND LANGUAGE

<next(typeEnv)> |]
end

The if statement is translated to an equivalent XOCL expression:

context If
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| if <test.desugar2(typeEnv)>.value
then <thenPart.desugar2(typeEnv,next)>
else <elsePart.desugar2(typeEnv,next)>
end |]

end

context FieldUpdate
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| <record.desugar2(typeEnv)>.update(
<StrExp(name)>,
<value.desugar2(typeEnv)>);

<next(typeEnv)> |]
end

context Update
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| <name> := <value.desugar2(typeEnv)>;
<next(typeEnv)> |]

end

21.5. Compiling XCom

The previous section shows how to perform static type analysis while translating XCom
to XOCL. XOCL is then translated to XMF VM instructions by the XOCL compiler (an-
other translation process). The result is that XCom cannot to anything that XOCL cannot
do. Whilst this is not a serious restriction, there may be times where a new language
wishes to translate directly to the XMF VM that XOCL does not support. This section
shows how XCom can be translated directly to XMF VM instructions.

21.5.1. Compiling Expressions

c©Ceteva 2008.

21.5. COMPILING XCOM 395

context Exp
@AbstractOp compile(typeEnv:Env,valueEnv:Seq(String)):Seq(Instr)
end

context Const
@Operation compile(typeEnv,valueEnv)
@TypeCase(value)
Boolean do
if value
then Seq{PushTrue()}
else Seq{PushFalse()}
end

end
Integer do

Seq{PushInteger(value)}
end

end
end

context Var
@Operation compile(typeEnv,valueEnv)
let index = valueEnv->indexOf(name)
in if index < 0

then self.error("Unbound variable " + name)
else Seq{LocalRef(index)}
end

end
end

context BinExp
@Operation compile(typeEnv,valueEnv):Seq(Instr)
left.compile(typeEnv,valueEnv) +
right.compile(typeEnv,valueEnv) +
@Case op of
"and" do Seq{And()} end
"or" do Seq{Or()} end
"+" do Seq{Add()} end

end

c©Ceteva 2008.

396 CHAPTER 21. A COMMAND LANGUAGE

end

context New
@Operation compile(typeEnv,valueEnv):Seq(Instr)
self.desugar2(typeEnv).compile()

end

context FieldRef
@Operation compile(typeEnv,valueEnv):Seq(Instr)
Seq{StartCall(),

PushStr(name)} +
value.compile(typeExp,valueExp) +
Seq{Send("lookup",1)}

end

21.5.2. Compiling Statements

context Statement
@AbstractOp compile(typeEnv:Env,varEnv:Seq(String),next:Operation):

Seq(Instr)
end

context TypeDeclaration
@Operation compile(typeEnv,varEnv,next)

next(typeEnv.bind(name,Type(names)),varEnv)
end

context ValueDeclaration
@Operation compile(typeEnv,varEnv,next)

value.compile(typeEnv,varEnv) +
Seq{SetLocal(name,varEnv->size),

Pop()} +
next(typeEnv,varEnv + Seq{name})

c©Ceteva 2008.

21.5. COMPILING XCOM 397

end

context Statements
@Operation compile(statements,typeEnv,varEnv,next)

@Case statements of
Seq{} do

next(typeEnv,varEnv)
end
Seq{statement | statements} do
statement.compile(

typeEnv,
varEnv,
@Operation(typeEnv,varEnv)

compile(statements,typeEnv,varEnv,next)
end)

end
end
end

context Block
@Operation compile(typeEnv,varEnv,next)

compile(
statements,
typeEnv,
varEnv,

@Operation(localTypeEnv,localVarEnv)
next(typeEnv,varEnv)

end)
end

context While
@Operation compile(typeEnv,varEnv,next)

Seq{Noop("START")} +
test.compile(typeEnv,varEnv) +
Seq{SkipFalse("END")} +
body.compile(typeEnv,varEnv,

@Operation(typeEnv,varEnv)
Seq{}

c©Ceteva 2008.

398 CHAPTER 21. A COMMAND LANGUAGE

end) +
Seq{Skip("START")} +
Seq{Noop("END")} +
next(typeEnv,varEnv)

end

21.6. Flow Graphs

The previous section has shown how to represent the abstract syntax of XCom as textual
concrete syntax. We would like to compare this to a graphical concrete syntax for XCom
and show how the XCom programs can be developed graphically rather than textually.

Flow Graphs are a standard way of representing imperative programs. Flow graph
nodes are labelled with either program statements or boolean expressions. Flow graph
edges are labelled with next if the edge represents the control flow between statements,
true if the edge represents the control flow arising when a test succeeds, and false if the
edge represents the flow from a test failure.

Figure 21.1shows an example flow graph corresponding to the original example XCom
program. Note that a while loop is represented as a test node whose true edge eventu-
ally leads back to the test node. XMF provides a packages called Graph that provides
a basic collection of graph structures and operations. A graph node is created: Node(l)
where l is the label on the graph node. A graph edge is created: Edge(l,s,t) where l is
the label on the edge, s is the source node for the edge and t is the target node for the
edge. A graph is created: Graph(N,E) where N is a set of nodes and E is a set of edges.
The graph shown in figure 21.1 is constructed as follows where classes Node and Edge
have been specialized appropriately:

let n1 = Statement("type Pair is head tail end");
n2 = Statement("type Nil is end");
n3 = Statement("value length is 100 end");
n4 = Statement("value list is new Nil end");
n5 = Guard("length > 0");
n6 = Guard("length % 2 = 0");
n7 = Statement("value pair is new Pair end");
n8 = Statement("pair.head := length;");
n9 = Statement("pair.tail := list;");
n10 = Statement("list := pair;");
n11 = Statement("length := length - 1;");
n12 = Statement("skip") then
e1 = Next(n1,n2);
e2 = Next(n2,n3);
e3 = Next(n3,n4);

c©Ceteva 2008.

21.6. FLOW GRAPHS 399

Figure 21.1.: An Example Flow Graph

c©Ceteva 2008.

400 CHAPTER 21. A COMMAND LANGUAGE

e4 = Next(n4,n5);
e5 = True(n5,n6);
e6 = True(n6,n7);
e7 = Next(n7,n8);
e8 = Next(n8,n9);
e9 = Next(n9,n10);
e11 = Next(n10,n11);
e12 = Next(n11,n5);
e13 = False(n6,n11);
e14 = False(n5,n12)
in Graph(Set{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12},
Set{e1,e2,e3,e4,e5,e6,e7,e8,e9,10,e11,e12,e13,e14})
end

Graphs provide an operation reduce that takes a node n and a sub-graph H such that
G.reduce(n,H) produces a new graph that is the result of removing H from G, adding n
to the new graph and re-linking to n any edges left dangling when H is removed.

21.6.1. Flow Graph Patterns

Flow graphs can represent the control flow of a wide variety of different languages
and are used to analyse the structure of programs. The basic elements of flow graphs
are very low level - just nodes (representing statements and expressions) and edges
(representing flow between computational states and the outcome of tests).

The low-level nature of flow-graphs gives rise to a weak correspondence language
features. This is done by identifying patterns in flow-graphs; wherever the pattern oc-
curs, it can be replaced by a single node. The choice of patterns depends on the collec-
tion of program features that we intend to work with. For the purposes of XCom we
will capture the following patterns: P is a pair of statements performed in sequence; C
is an if statement and W is a while-loop.

The rest of this section shows how the pattern matching facilities of XMF can be used
to detect these patterns. We define a flow-graph aspect to XMF graphs by adding re-
duction operations to the class Graph. The simplest case is detecting and reducing a P
node. This occurs when two statements are linked via a next edge. The reduction is
shown in figure 21.2.

context Graph
@Operation reduceP():Graph

@Case self of
// Find two nodes with a then-edge
// between them, replace with a P
// node...
Graph(N->including(n1 = Statement())

c©Ceteva 2008.

21.6. FLOW GRAPHS 401

Figure 21.2.: A P-Reduction Pattern

->including(n2 = Statement()),
E->including(e = Next())

when e.source() = n1 and
e.target() = n2) do

self.reduce(P(e),Graph(Set{n1,n2},Set{e}))
end
// Otherwise, leave the receiver unchanged...
else self

end
end

A W pattern corresponds to a while loop and occurs when a test node has a true out-
come that is a body statement whose next leads back to the test. The false outcome
leads to some root node for the rest of execution. The reduction involves replacing the
test and its body with a W node and adding a new next edge from the W node to the
root. The reduction is shown in figure 21.3.

context Graph
@Operation reduceW():Graph

@Case self of
// Find a test node and a statement that are linked
// via a true outcome and a loop back to the test.
// Replace them with a W node ...
Graph(N->including(test = Guard())

->including(body = Statement())

c©Ceteva 2008.

402 CHAPTER 21. A COMMAND LANGUAGE

Figure 21.3.: A W-Reduction Pattern

->including(root),
E->including(enter = True())
->including(loop = Next())
->including(exit = False())

when enter.source() = test and
enter.target() = body and
exit.source() = test and
exit.target() = root and
loop.source() = body and
loop.target() = test) do

let Wnode = W(test,body);
H = Graph(Set{test,body),Set{enter,loop,exit}) then
newEdge = Next(Wnode,root)

in self.reduce(Wnode,H).addEdge(newEdge)
end

end
// Otherwise, leave the receiver unchanged...
else self

end
end

A C pattern corresponds to an if statement and occurs when there is a test node leading
to two nodes both of which lead to a single root node. This forms a diamond pattern
with the test node at one end. The test, then and else parts of the graph are removed
and replaced with a C node. The reduction is shown in figure 21.4.

context Graph

c©Ceteva 2008.

21.6. FLOW GRAPHS 403

Figure 21.4.: A C-Reduction Pattern

@Operation reduceC():Graph
@Case self of
Graph(N->including(test = Guard())

->including(thenNode)
->including(elseNode)
->including(root),

E->including(trueEdge = True())
->including(falseEdge = False())
->including(endThen = Next())
->including(endElse = Next())

when trueEdge.source() = test and
trueEdge.target() = thenNode and
falseEdge.source() = test and
falseEdge.target() = elseNode and
endThen.source() = thenNode and
endThen.target() = root and
endElse.source() = elseNode and
endElse.target() = root) do

let Cnode = C(trueEdge,falseEdge);
H = Graph(Set{test,thenNode,elseNode},

Set(trueEdge,falseEdge,endThen,endElse}) then
e = Next(Cnode,root)

in self.reduce(Cnode,H).addEdge(e)
end

end
else self

c©Ceteva 2008.

404 CHAPTER 21. A COMMAND LANGUAGE

end
end

Equality on graphs is defined in terms of the labels on the nodes and edges. Two graphs
G and H are equal when they have the same number of nodes, when the respective sets
of labels are equal, when the edges of G correspond to the edges of H in terms of the
source and target nodes and when the respective sets of edge labels are equal.

Graph reduction can involve more than one step. For example, certain configurations
of graph require a P reduction to occur before a C reduction can occur. In order to reduce
a graph fully we continually perform a reduction until no further reductions can take
place:

context Graph
@Operation reduce():Graph
let G = self.reduceP().reduceW().reduceC()
in if G.equals(self)

then G
else G.reduce()
end

end
end

c©Ceteva 2008.

APPENDIX A

IMPLEMENTATION ISSUES

A.1. Working with Files

XMF is a dynamic engine that runs program code loaded from files. Files can be loaded
at any time and the definitions come into immediate effect. It is usual for the files to
be loaded form the top-level command loop (although loading files from an executing
program is also possible). Files have a ’.xmf.’ extension and have a specific format:

<PARSER_IMPORT>*

<IMPORT>*

(<DEFINITIONS> | <COMMAND>)*

The parse imports are used to place syntax classes into scope for the rest of the file.
If a syntax class C is in scope then the file may contain constructs of the form @C ...
end. When the XMF parser encounters such a construct it looks up the syntax classes in
scope, finds a class named C and uses the grammar of C to parse the construct and to
synthesize a performable element. Each parse import has the form:

parserImport <PATH>;

where a path references a name-space containing syntax classes. Typically a file will
contain a single parser-import for the name-space XOCL; this name-space contains all
the syntax classes for XOCL definitions such as For, Class, Package, attribute etc.

c©Ceteva 2008.

406 APPENDIX A. IMPLEMENTATION ISSUES

The imports are used to place named elements in scope for the rest of the file. Each
import references a name-space whose named elements can be referenced within the
file without further qualification. Each import has the form:

import <PATH>;

A definition is used to add an element to a container; typically adding a named element
to a name-space. A definition has the form:

context <PATH>
<EXP>

where the path references a name-space and the expression evaluates to produce a
named element. On loading the file the expression is evaluated, added to the name-
space and then initialised (causing any internal references to be resolved). Typically,
definitions are used to create class and package definitions.

Definitions are also used to add operations to classes. It is usual to spread the defini-
tion of a package and a class over several files, each file contains the definition of various
related features. For example a package may be defined in a file, its classes in several
files and then the operations for each class in several further files. When doing this,
care should be taken to load the files in an appropriate order so that the name-spaces
referenced in a definition are available when the file is loaded.

Commands in files are just XOCL expressions terminated by a ’;’. Typically com-
mands are used for their side-effect.

Here is a typical file:

parserImport XOCL;

import MyModels;
import MyPackage;

// Add a new class. Notice that MyClass
// is imported and needs no further
// qualification...

context MyPackage
@Class NewClass extends MyClass
@Attribute x : MyClass end

end

// Extend MyModels::MyPackage::MyClass...

c©Ceteva 2008.

A.2. MANIFESTS 407

context MyClass
@Operation myOp()
// Some Body

end

A source file is compiled using the operation:

Compiler::compileFile(String,Boolean,Boolean)

This operation takes three arguments: the path to the source file and two boolean values
both of which should be true. If the file compiles correctly then the resulting binary file
has an extension ’.o’ and can be loaded using String::loadBin(). The top-level command
loop has some useful commands that make it easy to compile and load files. The paths
are supplied without file extensions:

?c <PATH> // Compile the source file.
?cl <PATH> // Compile then load the source file.
?l <PATH> // Load the binary file.
?c // Compile the last supplied path.
?l // Load the last supplied path.

A.2. Manifests

XOCL applications tend to run to a number of files. It is possible to write a single file
containing directives to compile and load the application files in the correct order, how-
ever this becomes difficult to manage since paths have to be absolute etc. The manifest
language construct works like a make-file: it is used to list all the files in a module and
all the sub-modules. The manifest uses paths relative to a root so that the module is
easily relocatable. In addition manifests include some useful directives that can be used
to control the compilation and loading of the module.

A manifest file is called Manifest.xmf and has the following structure:

parserImport Manifests;

@Manifest <NAME>
<DIRECTIVE>*

end;

c©Ceteva 2008.

408 APPENDIX A. IMPLEMENTATION ISSUES

The name of the manifest is just used for documentation. A manifest file occurs in a
directory, all directives in the manifest are relative to this directory. A directive refers
either to a file or a directory. A file directive has the following form:

@File [ˆ<LOADTIME>] <PATH> end

The optional load-time directive specifies when the file should be loaded. A manifest is
used to both compile and load files; load-time directives are one of:

CompileTime; RunTime; Both; None. The path to the file is relative to the directory
containing the manifest and should be specified with no file extension. When the man-
ifest is used to compile entries, a file is compiled if the source (.xmf) is out of date with
respect to the binary (.o). Once compiled if the load-time directive is specified as Com-
pileTime or Both then the file is loaded. When the manifest is used to load entries, the
binary is loaded providing that the load-time directive is not specified or is RunTime or
Both.

A directory directive has the following form:

@Ref [ˆ<LOADTIME>] <PATH> end

where the path references a sub-directory that contains a manifest file. On compilation,
the referenced manifest is loaded and its entries compiled. On loading, the referenced
manifest is loaded and its entries are loaded.

The following is a typical manifest:

parserImport Manifests;

@Manifest MyModule
@File MyPackage end
@File MyTopLevelClass end
@File SomeOperations end
@Ref MyFirstSubPackage end
@Ref MySecondSubPackage end

end;

Manifests can be used under program control:

// Load the manifest file...
let m = "someDir/Manifest.o".loadBin()
in // Use the manifest to compile the entries.

// Supply the directory containing the

c©Ceteva 2008.

A.3. XMF STARTUP ARGUMENTS 409

// manifest...
m.build("someDir");
// Use the manifest to load the entries...
m.load("someDir")

end

The top-level command loop provides commands that make it easy to use manifests. In
the following, ¡PATH¿ refers to a directory containing a manifest file:

?m b <PATH> // Compile entries.
?m l <PATH> // Load entries.
?m d <PATH> // Delete binaries.
?m bl <PATH> // Build then load entries.

A.3. XMF Startup Arguments

XMF can be started from a batch file or from Java. In both cases initialisation arguments
are supplied to the VM as it starts up. These arguments are detailed below. Subsequent
sections describe how these arguments are supplied to the different ways of starting
XMF.

• -arg <NAME>:<VALUE> The global object named xmf contains a collection of name/-
value pairs that are supplied via this initialization argument designator. The name
and the value are separated using :. The collection of supplied arguments can be
referenced as xmf.startupArgs(). Given a name n for an argument, the value is
found as xmf.startupArgs()->lookup(n).

• -filename <FILE>. Specifies a binary file containing a replacement for the XMF
top-level command loop when running the evaluator image (see below). When
starting the evaluator image, if this argument designator is supplied then the con-
tents are loaded and executed instead of starting the command loop. When the
file completes then the XMF VM terminates.

• -heapSize <SIZE>. The size of the XMF heap is set using this initialisation ar-
gument designator. The size should be a value in XMF VM words and must be
sufficiently large to accommodate any specified image bearing in mind that the
Java VM will manage two heaps (for garbage collection) of the specified size. A
standard size is 10000.

• -initfile <FILE>. When the eval.img image starts (see below) it will, by default,
start a top-level command loop. Before the loop starts the supplied binary file is
loaded.

c©Ceteva 2008.

410 APPENDIX A. IMPLEMENTATION ISSUES

• -image <FILE>. When the XMF VM starts it loads a saved XMF image into the
heap and continues to run the image from the point at which the image was saved.
This argument designator specified the file containing the image. For the standard
command-line XMF engine, use Images/eval.img.

• -port <INT>. Specifies a port that is used by the XMV VM for socket connections.

• -stackSize <SIZE>. Specifies the size of the XMF VM stack in machine words.
XMF implements tail calling, so it is not usually necessary to specify this argument
designator.

A minimal startup is:

-image %XMFHOME%\Images\eval.img -heapSize 10000

A.4. Starting XMF using a Batch File

There is an example startup file bin/xos.bat for starting the XMF VM with the top-level
command loop defined in eval.img. Run this supplying the value of XMFHOME to start
a top-level command loop:

%XMFHOME%\bin\xos %XMFHOME%

or by supplying a filename to replace the top-level loop:

%XMFHOME%\bin\xos %XMFHOME% -filename <FILE>

A.5. Starting XMF from Java

The XMF VM can be started from Java as follows:

String[] args = {"-heapSize","10000","-image",XMFHOME + "/Images/eval.
img"};

XOS.OperatingSystem os = new XOS.OperatingSystem();
os.init(args)

Different combinations of arguments can be supplied as required.

c©Ceteva 2008.

A.6. REBUILDING XMF 411

A.6. Rebuilding XMF

Rebuilding XMF is in two stages (for mainly historical reasons). Assuming you have all
the binaries recompiled (see the next section):

%XMFHOME%\bin\makexmf %XMFHOME%

The above creates a new image in XMFHOME\Images\xmf.img. This is a basic image
that supports XOCL etc. The next step extends this image by loading libraries most of
which are essential to run the top-level command loop:

%XMFHOME%\bin\makexmf %XMFHOME%

A fresh XMFHOME\Images\eval.img is created.

A.7. Recompiling XMF

XMF can be recompiled only from a valid XMF top-level command loop which requires
a valid eval.img. This is done as follows:

C:\xmf>bin\xos .
[bin/xos .]
[Starting XOS]
[Load ./Images/eval.img]

XMF Copyright (C) Ceteva Ltd, 2003-2008.

Version 2.1

Type ?h for top level help.

[1] XMF> ?m b .
[Loading ./Manifest.o...................... 0:0:0:109 ms]
[Loading ./Kernel/Manifest.o............... 0:0:0:125 ms]
[./Kernel/Boot.o......................... is up to date.]
[./Kernel/Kernel.o....................... is up to date.]
[./Kernel/Doc.o.......................... is up to date.]
[./Kernel/Attribute.o.................... is up to date.]
[./Kernel/Bind.o......................... is up to date.]
[./Kernel/Boolean.o...................... is up to date.]
[./Kernel/Boot.o......................... is up to date.]

c©Ceteva 2008.

412 APPENDIX A. IMPLEMENTATION ISSUES

[./Kernel/Buffer.o....................... is up to date.]
[./Kernel/Class.o........................ is up to date.]
[./Kernel/Classifier.o................... is up to date.]
// Lots more compilation printout....

If you modify the XMF sources in any way then you will need to recompile and the re-
build to create a fresh image. The rebuilsing process is describes in the previous section.

A.8. Debugging

Operations can be traced so that information is printed out when the operation is en-
tered and when it is exited. The output is intended to reflect the call nesting. Use
Operation::trace() to set tracing and Operation::untrace() to remove tracing. Use Con-
tainer::traceAll() to trace all operations in a name-space and Container::untraceAll() to
remove all tracing.

A.9. Boolean Operations

The following list shows the main operations defined by the datatype Boolean:

Boolean::booland(other:Boolean):Boolean
Boolean::boolor(other:Boolean):Boolean
Boolean::boolnot():Boolean

A.10. Float Operations

The following list shows the main operations defined by the datatype Float:

Float::abs():Integer
Float::add(other::Float):Float
Float::ceiling():Integer
Float::cos():Float
Float::floor():Integer
Float::random():Float
Float::sun():Float
Float::slash(other:Float):Float

c©Ceteva 2008.

A.11. INTEGER OPERATIONS 413

A.11. Integer Operations

The following list shows the main operations defined by the datatype Integer:

Integer::add(other:Integer):Integer
Integer::bit(offset:Integer):Integer
Integer::byte(offset:Integer):Integer
Integer::div(other:Integer):Integer
Integer::greater(other:Integer):Integer
Integer::isAlphaChar():Boolean
Integer::isLowerCaseChar():Boolean
Integer::isnewLineChar():Boolean
Integer::isNumericChar():Boolean
Integer::isUpperCaseChar():Boolean
Integer::isWhiteSpaceChar():Boolean
Integer::less(other:Integer):Boolean
Integer::lsh(offset):Integer
Integer::max(other:Integer):Integer
Integer::min(other:Integer):Integer
Integer::mod(other:Integer):Integer
Integer::mul(other:Integer):Integer
Integer::pow(power:Integer):Integer
Integer::random(upper:Integer):Integer
Integer::rsh(offset:Integer):Integer
Integer::slash(Integer):Float
Integer::sqrt():Float
Integer::sub(other:Integer):Integer
Integer::to(upper:Integer):Seq(Integer)

A.12. Sequence Operations

The following list shows the main operations defined by the datatype Seq(Element):

Seq(Element)::append(other:Seq(Element)):Seq(Element)
Seq(Element)::asSeq():Seq(Element)
Seq(Element)::asSet()::Set(Element)
Seq(Element)::asString():String
Seq(Element)::asVector():Vector
Seq(Element)::assoc(key):Seq(Element)
Seq(Element)::at(i:Integer)
Seq(Element)::bind(key,value):Seq(Element)

c©Ceteva 2008.

414 APPENDIX A. IMPLEMENTATION ISSUES

Seq(Element)::butLast():Seq(Element)
Seq(Element)::collect(pred:Operation):Seq(Element)
Seq(Element)::contains(element):Boolean
Seq(Element)::delete(element):Seq(Element)
Seq(Element)::drop(n:Integer):Seq(Element)
Seq(Element)::excluding(element):Seq(Element)
Seq(Element)::exists(pred:Operation):Boolean
Seq(Element)::flatten():Seq(Element)
Seq(Element)::forAll(pred:Operation):Boolean
Seq(Element)::hasPrefix(p:Seq(Element)):Boolean
Seq(Element)::head()
Seq(Element)::includes(Element):Boolean
Seq(Element)::includesAll(other:Seq(Element):Boolean
Seq(Element)::including(element):Seq(Element)
Seq(Element)::indexOf(element):Integer
Seq(Element)::insertAt(element,index:Integer):Seq(Element)
Seq(Element)::intersection(other:Seq(Element)):Seq(Element)
Seq(Element)::isEmpty():Boolean
Seq(Element)::isProperSequence():Boolean
Seq(Element)::iter(iter:Operation,start)
Seq(Element)::last()
Seq(Element)::lookup(key)
Seq(Element)::map(name:String):Seq(Element)
Seq(Element)::max():Integer
Seq(Element)::mul(other:Seq(Element)):Seq(Element)
Seq(Element)::prepend(element):Seq(Element)
Seq(Element)::qsort():Seq(Element)
Seq(Element)::sortNamedElements:Seq(Element)
Seq(Element)::subSequence()
Seq(Element)::subst(new,old,all):Seq(Element)
Seq(Element)::tail()
Seq(Element)::take(n:Integer):Seq(Element)
Seq(Element)::unbind(key):Seq(Element)
Seq(Element)::zip(other:Seq(Element)):Seq(Element)

A.13. Set Operations

The following list shows the main operations defined by the datatype Set(Element):

Set(Element)::asSeq():Seq(Element)
Set(Element)::asSet()::Set(Element)
Set(Element)::collect(pred:Operation):Set(Element)

c©Ceteva 2008.

A.14. STRING OPERATIONS 415

Set(Element)::contains(element):Boolean
Set(Element)::excluding(element):Set(Element)
Set(Element)::exists(pred:Operation):Boolean
Set(Element)::flatten():Set(Element)
Set(Element)::forAll(pred:Operation):Boolean
Set(Element)::includes(Element):Boolean
Set(Element)::includesAll(other:Set(Element):Boolean
Set(Element)::including(element):Set(Element)
Set(Element)::intersection(other:Set(Element)):Set(Element)
Set(Element)::isEmpty():Boolean
Set(Element)::iter(iter:Operation,start)
Set(Element)::map(name:String):Set(Element)
Set(Element)::max():Integer
Set(Element)::mul(other:Set(Element)):Set(Element)
Set(Element)::power():Set(Element)
Set(Element)::sel()
Set(Element)::size():Integer
Set(Element)::union(other::Set(Element)):Set(Element)

A.14. String Operations

The following list shows the main operations defined by the datatype String:

String::asBool():Boolean
String::asFloat():Float
String::asInt():Integer
String::asSeq():Seq(Integer)
String::asXML():XML::Element
String::at(i:Integer):Integer
String::fileExists():Boolean
String::greater(other:String):Boolean
String::hasPrefix(p:String):Boolean
String::hasSuffix(s:String):Boolean
String::isDir():Boolean
String::loadBin()
String::lowerCase():String
String::lowerCaseInitialLetter():String
String::mkDir():Boolean
String::size():Integer
String::splitBy(chars:String,start:Integer,last:Integer):Seq(String)
String::subst(new:String,old:String,all:Boolean):String
String::toLower():String

c©Ceteva 2008.

416 APPENDIX A. IMPLEMENTATION ISSUES

Figure A.1.: Atomic Expressions

String::toUpper():String

A.15. OCL Syntax Classes

This section defines the classes that make up the Object Command Language (the core
part of XOCL). They are defined in the package OCL. The syntax classes are grouped
roughly in terms of their basic properties and usage.

Figure A.1 shows classes for atomic expressions. Figure A.2 shows the classes for
patterns that occur in argument positions of operation expressions (and in @Case ex-
pressions). Briefly, Consp is a pair pattern, Varp is a simple variable, Includingp is a set
pattern, Objectp is a pattern corresponding to a constructor, Addp is a sequence con-
catenation or set union pattern, Constp is a constant (where the constant is the result
of evaluating an expression), Condp is a guard and Keywordp is a pattern matching
objects where the slots are given as keys.

Figure A.3 shows the syntax of let-expressions. Figure A.4 shows the classes for it-
eration expressions. Both set and sequence expressions are represented as instances of
SetExp with the collType set to Set or Seq respectively. A CollExp supports all concrete
expressions of the form S->x(a,b,c) and S->x where the arguments to the latter de-

c©Ceteva 2008.

A.15. OCL SYNTAX CLASSES 417

Figure A.2.: Pattern Expressions

c©Ceteva 2008.

418 APPENDIX A. IMPLEMENTATION ISSUES

Figure A.3.: Let Expressions

fault to the empty sequence. IterExp represents all concrete expressions of the form
S->n(x | e) where n is exists, forAll, select, collect or reject.

Figure A.5 shows the classes for operations. Note that operation arguments are not
shown but are an attribute of type Seq(Pattern). FigureA.6 shows the classes for update
expressions. Updates can be variable, x := e, path P::Q::x := e, or head and tail: s->head
:= e and s->tail := e.

Figure A.7 shows the rest of the expression types.

c©Ceteva 2008.

A.15. OCL SYNTAX CLASSES 419

Figure A.4.: Iteration Expressions

c©Ceteva 2008.

420 APPENDIX A. IMPLEMENTATION ISSUES

Figure A.5.: Operation Expressions
c©Ceteva 2008.

A.15. OCL SYNTAX CLASSES 421

Figure A.6.: Update Expressions

c©Ceteva 2008.

422 APPENDIX A. IMPLEMENTATION ISSUES

Figure A.7.: Misc Expressions

c©Ceteva 2008.

BIBLIOGRAPHY

[CSW08] Tony Clark, Paul Sammut, and James Willans. Applied metamodelling: A
foundation for language driven development. http://www.ceteva.com/
book.html, 2008.

[Dig08] Christopher Diggins. Superlanguages: Syntactic and Semantic Su-
persets of other Languages. http://cdiggins.com/2008/03/11/
superlanguages-syntactic-and-semantic-supersets-of-other-languages/,
2008.

[Dmi04] Sergey Dmitriev. Language Oriented Programming: The next programming
paradigm. http://www.onboard.jetbrains.com/is1/articles/
04/10/lop/, 2004.

[Fow05] Martin Fowler. Language workbenches: The killer-app for do-
main specific languages? http://martinfowler.com/articles/
languageWorkbench.html, 2005.

[Fra03] Dave S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-
puting (OMG). John Wiley and Sons, 2003.

[GSCK04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Facto-
ries: Assembling Applications with Patterns, Models, Frameworks, and Tools. John
Wiley and Sons, 2004.

[War94] Martin Ward. Language oriented programming. Software Concepts and Tools,
15:147–161, 1994.

c©Ceteva 2008.

http://www.ceteva.com/book.html
http://www.ceteva.com/book.html
http://cdiggins.com/2008/03/11/superlanguages-syntactic-and-semantic-supersets-of-other-languages/
http://cdiggins.com/2008/03/11/superlanguages-syntactic-and-semantic-supersets-of-other-languages/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

	Introduction
	The Representation Chasm
	Superlanguages
	Usability
	Expressiveness
	Extensibility

	The Pros and Cons of Superlanguages
	Related Concepts
	Examples of Superlanguages
	The Superlanguage XMF
	Guide to Book

	XMF
	Languages
	Everything is an Element
	Indexing Things
	Naming Things and Looking Them Up
	Classifying Things
	Collections of Things
	Classifying Objects
	Performing Things

	The Executable Object Command Language (XOCL)
	Working With Basic Elements
	Tables
	Sets
	Sequences
	A-Lists
	Iteration Expressions
	Variables and Scope
	Loops
	Operations
	Exception Handling
	Patterns
	Working with Syntax
	Quasi-Quotes and Lifting

	Grammars
	Parsing and Syntheisizing
	Sequences of Elements
	Specializing Grammars
	Synthesizing Syntax
	Simple Language Constructs
	When
	Cond
	Classes and Packages
	Operations
	Enum

	Looping Constructs
	XBNF

	Application Engineering
	Executable Models and Simulation
	A Job-Shop Simulation
	Job-Shop Implementation
	Conflict Analysis

	Pretty Printing
	Example Printing
	A Document Model
	A Pretty Printing Machine
	Machine Implementation
	A Document Mapping

	Team working
	Overview
	Overview of the Proposed Approach
	The Delta Machine
	Model Comparison
	Model Slices
	Conflicts

	Language Engineering
	Domain Specific Languages
	Software Frameworks and Domain Specific Languages
	Example Application
	Abstract Syntax
	Implementation
	Embedded
	Translational

	Concrete Syntax
	Embedded
	XML

	Conclusion

	Data-Centric Language Constructs
	Simple Records
	Trees

	Graphs
	Collections and Comprehensions
	Transforming Comprehensions

	Language Emulation
	MicroJava
	Lisp

	Business Rules
	Example Business Rules
	Business Rules Implementation
	Rete Networks
	Rule Compilation
	Network Execution
	Monitoring Classes

	Model View Controllers
	Model-Diagram Synchronization
	Models
	Diagrams
	Mappings
	Mapping Patterns
	Equality Pattern
	Containment Pattern
	Model-Diagram Implementation
	A Simple Database Synchronizer

	Generating Text from Models
	Introduction
	Examples
	Specification
	Design
	Implementation

	A Problem of Composition
	Translating Executable Models
	Transformation Architecture
	A Rule Based Language
	Implementation
	Pattern Matching
	Documents
	Rules and Rule Bases
	Forcing Delayed Documents
	Displaying Documents

	The SECD Machine
	Extending the SECD Machine

	Modelling with XML Data
	Generating XML Data
	An XML Generator
	Parsing XML
	Resolving References

	Interactive Applications
	Interactive Application Architecture
	A DSL for Interactive Applications
	Implementation
	Syntax
	Semantics
	Handling Events

	Simulation
	XML Representation for Applications
	Conclusion

	Choosing Between Alternatives
	A Choice Pattern
	Finding a Route
	Explanation and NoGood Sets

	A Command Language
	XCom - A Simple Command Language
	An Evaluator for XCom
	Evaluating Expressions
	Evaluating Statements

	A Translator for XCom with Run-Time Types
	Translating Expressions
	Translating Statements

	A Translator for XCom without Run-Time Types
	Translating Expressions
	Translating Statements

	Compiling XCom
	Compiling Expressions
	Compiling Statements

	Flow Graphs
	Flow Graph Patterns

	Appendix
	Implementation Issues
	Working with Files
	Manifests
	XMF Startup Arguments
	Starting XMF using a Batch File
	Starting XMF from Java
	Rebuilding XMF
	Recompiling XMF
	Debugging
	Boolean Operations
	Float Operations
	Integer Operations
	Sequence Operations
	Set Operations
	String Operations
	OCL Syntax Classes

	Bibliography

