
Patterns for Renaming and Stamping Out Object-Oriented Models

Tony Clark
King’s College London, anclark@dcs.kcl.ac.uk

Andy Evans
University of York, andye@cs.york.ac.uk

Stuart Kent
University of Kent, stuart@mclellankent.com

Abstract
Modern system engineering is supported by a families of

modelling languages; each member of a specific family
addresses a different aspect of the application domain. Con-
structing families of modelling languages is facilitated by the
use of packages and templates. Packages are containers of
modelling elements. Packages may be specialised and
merged. Renamings may be applied to packages. Templates
are parameteric packages. New packages are constructed by
supplying arguments to a template. Packages and templates
rely on the following underlying technology: specialisation;
merging; renaming and stamping. Specialisation and merging
have been described elsewhere; this paper defines mecha-
nisms for renaming and stamping.

Keywords
UML, object-oriented, modelling, templates.

I. INTRODUCTION

Modern system engineering is supported by a families of
modelling languages; each member of a specific family
addresses a different aspect of the application domain. The
initial stages of system specification define a modelling archi-
tecture suitable for the application domain and the develop-
ment method. The architecture identifies the different aspects
of the system that must be developed and the relationships
between aspects. Modelling languages that support each
aspect, including the inter-relationships, are developed to
allow modular system development. The overall architecture
and the inter-relationships act as a specification for the com-
position of the modular components thereby ensuring that the
system and its development method will compose to give the
correct behaviour.

Constructing families of modelling languages is facilitated
by the use of packages and templates. Packages are containers
of modelling elements. Packages may be specialised and
merged. Renamings may be applied to packages. Templates
are parameteric packages. New packages are constructed by
supplying arguments to a template. Packages and templates
rely on the following underlying technology: specialisation;
merging; renaming and stamping.

This paper addresses these issues by defining a model of
the supporting technology for system development viewed as
a collection of interrelated languages. The cornerstone tech-

nology is a model of relationships that is used to define
renaming, template stamping and syntax resolution. In order
to keep the exposition simple and self contained the features
are applied to themselves; therefore all the key components
are used to define a simple modelling language that supports
templates, renaming and resolution. We do not address inherit-
ance and specialisation since these have been covered else-
where; however, the relational approach could be used to
define these in a similar way to the examples given in the
paper.

II. MML

The results described in this paper have been produced as
part of the 2U submission to the UML 2.0 revision initiative.
2U is a consortium of acadmic researchers and industrial soft-
ware practitioners that aim to take a precise language engi-
neering approach to the revision of UML 1.x. The work has
been supported by IBM [2] and Rational Inc. An initial feasi-
bility study [2] shows that the approach can be applied to pro-
duce well structured modelling languages.

The approach is based on a number of novel technologies
and a tool that allows models to be constructed and checked.
The key technologies are package specialisation and tem-
plates. Package specialisation allows different aspects of the
same components to be modelled in different packages; the
packages are merged by constructing a single package that
inherits all of the partial super-packages thereby merging all
of the partial views. Templates allow language patterns to be
constructed and then stamped out as described in this paper.
Package specialisation and templates are based on the con-
cepts described in Catalysis [7] related work on patterns and
templates is described in [6].

The 2U technologies are implemented in a tool called
MMT that runs a language for constructing models called
MML. MML is a generalisation of the Object Constraint Lan-
guage (OCL); it adds features for defining classes, packages,
package specialisation and templates. The semantics of OCL
is analysed in [9] and [10]. MMT is a meta-modelling envi-
ronment that allows models to be analysed and checked. This
paper expresses research results using MML; the examples
have been implemented and checked in MMT. MML is
described in more detail in [3], [4] and [5].

The UML 2.0 revision initiative is scheduled to be com-
pleted in August 2002. More details of all proposals can be



found at the OMG web site: www.omg.org and specific details
of the 2U approach can be found at www.2uworks.org.

III. Relations Between Modelling Languages

A modelling language consists of a collection of related
sub-languages. The sub-language relationships can be
stamped out using relationship templates. This paper defines a
model of relationships and some standard templates that can
be used to construct useful relations.

In order to motivate the definitions we use a simple model-
ling language defined as a collection of related simple sub-
languages. The overall architecture of the language is given as
follows:

AbstractModels defines modelling features that are common
to the sub-languages. Each sub-language extends Abstract-
Models. AbstractModels defined packages, classes and
attributes. TemplateModels extends AbstractModels by defin-
ing string expressions for the names of modelling elements
and the types of attributes. SyntaxModels extends Abstract-
Models by defining strings as the name of modelling elements
and the types of attributes. ConcreteModels extends Abstract-
Models by adding strings for modelling element names and
classes as the types of attributes.

The figure shows relationships between the sub-languages.
TemplateModels are stamped out by supplying values for the
variables in the string expressions. The structure of the tem-
plate bodies is retained by StampOut and string expressions
are replaced by strings. SyntaxModels are resolved by replac-
ing the strings in attribute types with the appropriate class in
the containing package. ConcreteModels can have elements
renamed in which case the structure is preserved whilst the
names of the modelling elements may change.

IV. A Simple Modelling Language

Object-oriented modelling languages, such as UML, pro-
vide notations that express static and dynamic system features.
A common static feature of such languages provides model-
ling elements for classes and attributes. Classes that address a
common aspect of a system are grouped together into pack-
ages.

Modelling languages differ with respect to the semantics
of packages, classes and attributes; however, a number of
common patterns recur. The containership pattern allows one

type of modelling element to structurally contain another. The
containership pattern is expressed as follows:

package Contains(X,Y)
class <<X>>

<<Y+"s">> : Set(<<Y>>);
end
class <<Y>>
end

end

Another recurring pattern allows modelling elements to be
named. The feature that names a modelling element is gener-
ally a string of characters; however, templates will use string
expressions to name elements so the template allows the type
of names to be varied:

package Named(X,Y)
class <<X>>

name : <<Y>>;
end

end

Attributes in models are typed. The type of attribute types varies
depending on whether the attribute occurs in a template (a string
expression), a syntax model (a string) or a concrete model (a class).
The following template is used to type an attribute:

package Typed(X,Y)
class <<X>>

type : <<Y>>
end

end

We develop different modelling languages for templates, syn-
tax models and concrete models. These languages differ with
respect to element naming and attribute typing; however they
have a common intersection defined as a package of abstract
models:

package AbstractModels
extends

Contains(Package,Package),
Contains(Package,Class),
Contains(Class,Attribute)

end

Syntax models use strings for the names of model elements and use
strings for the types of attributes:

package SyntaxModels
extends

AbstractModels[
SPackage/Package,
SClass/Class,
SAttribute/Attribute],

Named(Package,String),
Named(Class,String),
Named(Attribute,String),
Typed(Attribute,String)

AbstractModels

TemplateModels ConcreteModelsSyntaxModels
Resolve

Rename

StampOut



end

Concrete models (or resolved syntax models) are defined by
extending AbstractModels with string names for each type of
modelling element and classes for attribute types. The abstract
modelling elements are renamed:

package ConcreteModels
extends

AbstractModels[
CPackage/Package,
CClass/Class,
CAttribute/Attribute],

Named(CPackage,String),
Named(CClass,String),
Named(CAttribute,String),
Named(CAttribute,CClass)

end

V. Simple Templates

Templates are parametric packages where the names of
elements in a package are expressed using a simple string lan-
guage. A string expression is either a string constant, a string
valued variable or a concatenation of two strings. When the
template is stamped out the package is copied and the string

expressions are evaluated to produce string names for the new
modelling elements.

String expressions are defined by the following package:

package Expressions
class Exp end
class Const extends Exp

value : String;
init(s:Seq(Instance)):Object

self.value := (s->at(0)) []
self

end
eval(env:Env):String

self.value
end

end
class Var extends Exp

name : String;
eval(env:Env):String

env.lookup(self.name)
end

end
class Concat extends Exp

left : Exp;
right : Exp;
eval(env:Env):String

self.left.eval(env) + self.right.eval(env)
end

end
end

Each concrete sub-class of Exp defines a method named ‘eval’
that is used to evaluate the expression in the context of some
variable values. The context is supplied as a value of type Env
(not defined here) that associated strings (variable names)
with strings (their values).

The bodies of templates are expressed in the language defined
by the package TemplateModels:

package TemplateModels
extends

Expressions,
AbstractModels[

TPackage/Package,
TClass/Class,
TAttribute/Attribute],

Named(TPackage,Exp),
Named(TClass,Exp),
Named(TAttribute,Exp),
Type(TAttribute,Exp)

end

-name : String

SPackage

-name : String

SClass

-name : String
-type : String

SAttribute

-SPackages*

-SClasss*

-SAttributes*

-name : String

CPackage

-name : String

CClass

-name : String

CAttribute

-CClasss*

-CAttributes*

-CPackages*

-type



VI. Relations

A relation consists of a domain and a range and a set of
pairs. For the purposes of this paper the domain and range are
classes. Each pair has a left and a right component. The left
component is an instance of the domain and the right compo-
nent is an instance of the range:

A relation is a pattern that can be captured as a template:

package Relation(N,D,R)
class <<N>>

pairs : Set(<<D + "x" + R>>);
dom():Set(<<D>>)

self.pairs->collect(p | p.left)
end
ran():Set(<<R>>)

self.pairs->collect(p | p.right)
end

end
class <<D + "x" + R>>

left : <<D>>;
right : <<R>>;

end
class <<D>> end
class <<R>> end

end

Relations can be expressed between any pair of modelling ele-
ment types by extending an appropriate stamping of the Rela-
tion template:

package Free

extends
ConcreteModels,
Relation(P<->P,CPackage,CPackage),
Relation(C<->C,CClass,CClass),
Relation(A<->A,CAttribute,CAttribute)

end

The package Free defines three relations on packages, classes
and attributes respectively. Since no further constraints are
expressed, these relations are free in the sense that they may
pair up any element of the domain with any element of the
range. In particular, the names of the domain elements may be
different from the names of the range elements. Furthermore,
there is no requirement for the relations to be interdependent,
even though packages contain classes and classes contain
attributes.

VII. Relational Conjuncts and Disjuncts

Relational combinators are templates that are used to con-
struct composite relations. The templates take relations as
arguments and combine them in different ways to produce a
new relation. The following binary relational combinator
builds a new relation that satisfies all the constraints on both
the argument relations:

package And(N,N1,N2,D,R)
extends

Relation(N1,R,D),
Relation(N2,R,D),
Relation(N,R,D)

class N
leftConjunct : <<R1>>;
rightConjunct : <<R2>>;
inv

<<“Pairs satisfy both “ + R1 + “ and “ + R2>>
self.pairs->forAll(p |

self.leftConjuct.pairs->includes(p) and
self.rightConjuct.pairs->includes(p))

fail: “Illegal conjunct.”
end

end
end

The relation And(R,R1,R2,A,B) is the following model:

Similarly, relation disjunction is defined by the following template:

package Or(N,N1,N2,D,R)
extends

Relation(N1,R,D),
Relation(N2,R,D),

TPackage

TClass

TAttribute

Exp

-TClasss*

-TAttributes*

-name

-TPackages *

-name

-name -type

+dom()
+ran()

Relation

DomainxRange

Domain Range

-pairs*

-left -right

R

R1 R2

AxBA B

-leftConjunct -rightConjunct

-pairs*
-left -right



Relation(N,R,D)
class N

leftDisjunct : <<R1>>;
rightDisjunct : <<R2>>;
inv

<<“Pairs satisfy either“ + R1 + “ or“ + R2>>
self.pairs->forAll(p |

self.leftDisjunct.pairs->includes(p) or
self.rightDisjunct.pairs->includes(p))

fail: “Illegal disjunct.”
end

end
end

VIII. Preserving Names

Concrete model elements are named. A renaming operator
is applied to a package and will change the names of some ele-
ments in the package whilst preserving others. The preserva-
tion of names can be expressed as a constraint on a relation.
The constraint may be placed on any relation in which the
domain and range elements are typed, therefore this pattern
can be expressed as a template:

package SameName(N,D,R,T)
extends

Named(D,T),
Named(R,T)

class <<N>>
inv

<<D + “ and “ + R + “ have same name”>>
self.pairs->forAll(p | p.left.name = p.right.name)

fail: "Elements must have the same name."
end

end
end

The template SameName can be used to force the names of
packages, classes and attributes to remain the same:

package PreserveCNames
extends

Free,
SameName(P<->P,CPackage,CPackage,String),
SameName(C<->C,CClass,CClass,String),
SameName(A<->A,CAttribute,CAttribute,String)

end

The package PreserveCNames now forces each relation to
contain pairs where the name of the domain element is the
same string as the name of the range element. However, the
relations do not force containment to be preserved, for exam-
ple if package P contains class C in the domain of P<->P then
there is no requirement for P to contain C in the range of P<-
>P.

IX. Preserving Containment

Relations over domains that are constructed using the
Contains template will typically (but not always, consider

nested packages that are flattened into a single top-level con-
tainer) preserve containment in the range. For example, when
stamping out or renaming the containment pattern between
packages and classes is preserved. Consider the case of two
languages expressed using the containment pattern:

Suppose that we wish to construct a relation from Domain to
Range that preserves the containment structure. To do this we
set of two sub-ordinate relations R1 from A to C and R2 from
B to D and then express a constraint requiring that the follow-
ing diagram commutes:

This can be expressed by setting up a dependency between the
relations R1 and R2. Each R1 pair contains an R2 pair such
that the diagram above commutes. Since this does not depend
on the particular classes A, B, C and D this can be expressed
as a template:

package PreserveContainment(R1,A,C,R2,B,D)
class <<A + "x" + C>>

<<B + "x" + D+ "s">> : Set(<<B + "x" + D>>);
end
class <<R1>>

<<R2>> : <<R2>>
inv

<<“Every “ + “x” + D + “ satisfies “ + R2>>
self.pairs->foraAll(p |

p.<<B + “x” + D + “s”>>->forAll(p’ |
self.<<R2>>.pairs->includes(p’)))

<<B + " maps to " + D>>
self.pairs->forAll(p |

p.left.<<B + "s">>->forAll(c |
p.<<B + "x" + D+ "s">>->exists(p' |

p'.left = c and
p.right.<<D + "s">>->exists(c' |

p'.right = c')))) and
self.pairs->forAll(p |

package Domain
extends

Contains(A,B)
end

package Range
extends

Contains(C,D)
end

A

B

-Bs*

C

D

-Ds*

a:A c:C

b:B d:D

R1

R2



p.right.<<D + "s">>->forAll(c |
p.<<B + "x" + D+ "s">>->exists(p' |

p'.right = c and
p.left.<<B + "s">>->exists(c' |

p'.left = c'))))
fail: "Container fails to commute."

end
end

end

The package PreservesContainment(R1,A,C,R2,D,D) produces the
following model:

Each AxC pair contains a BxD pair that preserves the contain-
ment. Consider an instance p:AxC. Navigating left produces a
set of B instances(Bs), navigating right produces a set of D
instances (Ds). The pair p also contains a set of BxD pairs that
must be a sub-relation of R2. The every element of the set Ds
must be related to a corresponding element of Ds.

This structure exhibits a pattern that occurs in many different
variations on models. The model given above is perhaps one
the of the simplest examples where the structure is preserved
directly. A simple variation occurs where there is a modelling
element in between an A and a B which may or may not be
preserved by the relations. Another variation might require a
particular number of Bs to be related to a different number of
Ds.

The same type of structure arises when types are preserved:

package PreserveTypes(R1,A,C,R2,B,D)
class <<A + “x” + “C”>>

type : <<B + “x” + D>>;
end
class <<R1>>

<<R2>> : <<R2>>;
inv

“Preserve types”
self.pairs->forAll(p |

p.<<B + “x” + D>>.left = p.left.type and
p.<<B + “x” + D>>.right = p.right.type)

end
end

end

The following package defines a relation that preserves the
containment structure of concrete models:

package PreserveCContainment
extends

Free,
PreserveContainment(

P<->P,CPackage,CPackage,
P<->P,CPackage,CPackage),

PreserveContainment(
P<->P,CPackage,CPackage,
C<->C,CClass,CClass),

PreserveContainment(
C<->C,CClass,CClass,
A<->A,CAttribute,CAttribute),

PreserveTypes(
A<->A,CAttribute,CAttribute,
C<->C,CClass,CClass)

end

The relation defined by PreserveCContainment does not state
anything about the names of the elements.

X. Copying

A copy of a model requires that the structure of the model-
ling element is preserved and no names are changed:

package CopyConcreteModels
extends

PreserveCNames,
PreserveCContainment

end

The package CopyConcreteModels defines relations P<->P,
C<->C and A<->A. Consider an instance r:P<->P and a pack-
age p such that p is in the domain of the relation; this is
achieved by requiring that there exists a pair x in r.pairs such
that x.left = p. The corresponding element of the domain is
read off the relation as the package x.right. The properties of
the package p’ = x.right are as follows: (1) p.name = p’.name
since SameName(P<->P,CPackage,CPackage,String); (2) the
classes of p’ must be the image of the C<->C related corre-
sponding classes of p.CClasss since PreservesContain-
ment(P<->P,CPackage,CPackage,C<->C,CClass,CClass); (3)
for each class c’ in p’.CClasss corresponding to a class c in
p.CClasss, c’.name = c.name since SameName(C<-
>,CClass,CClass,String); (4) the attributes of c’ must be the
image of the A<->A related corresponding attributes of c; (5)
for each attribute a’ of c’ corresponding to an attribute a in c,
a.name = a’.name.

XI. Renaming

A renaming is a relation that holds between model ele-
ments. The elements in the domain and range of the relation
differ only with respect to the names of certain elements, in all
other respects they are copies.

R1

AxC

BxD

R2

-pairs*
-left -right

-BxDs*
-left -right

-pairs *

A

B

-Bs*

C

D

-Ds*

-R2



Renaming is based on a simple template that relates ele-
ments in the domain and range:

package Rename(new,old,N,D,R,T)
extends

Relation(N,D,R),
Named(D,T),
Named(R,T),

class <<N>>
inv

<<old + “ becomes ” + new>>
self.pairs->forAll(p |

p.left.name = old implies
p.right.name = new and

p.left.name <> old implies
p.right.name = p.left.name)

end
end

end

In general renaming operators are applied to containers of
model elements. For example the renaming operator [Y/X]
can be applied to a package to renaming the class X to become
Y. Therefore in order to construct a renaming relation we must
know the domain and range of the relation and construct an an
appropriate structure and name preserving/changing relation.
For example, suppose that:

[Y/X] : CPackage -> CPackage

we must construct a relation on packages that preserves the
name of packages and attributes, preserves the containment
structure of packages, classes and attributes, changes the name
of classes called Y to X otherwise preserving the name of
classes:

package RenameClassXToY
extends

PreserveContainment(
P<->P,CPackage,CPackage,
P<->P,CPackage,CPackage),

PreserveContainment(
P<->P,CPackage,CPackage,
C<->C,CClass,CClass),

PreserveContainment(
C<->C,CClass,CClass,
A<->A,CAttribute,CAttribute),

SameName(P<->P,CPackage,CPackage,String),
Rename(Y,X,C<->C,CClass,CClass,String),
SameName(A<->A,CAttribute,CAttribute,String),
PreserveType(

A<->A,CAttribute,CAttribute,
C<->C,CClass,CClass)

end
end

Given a particular language it is possible to define templates for
defining renamings on various model elements. Following from the
package RenameClassXToY we can construct a template for renam-
ing classes:

package RenameClass(N,new,old)
extends

PreserveContainment(
N,CPackage,CPackage,
N,CPackage,CPackage),

PreserveContainment(
N,CPackage,CPackage,
C<->C,CClass,CClass),

PreserveContainment(
C<->C,CClass,CClass,
A<->A,CAttribute,CAttribute),

SameName(N,CPackage,CPackage),
Rename(new,old,C<->C,CClass,CClass,String),
SameName(A<->A,CAttribute,CAttribute,String),
PreserveType(

A<->A,CAttribute,CAttribute,
C<->C,CClass,CClass)

end
end

Renamings can be applied to model elements contained by an
element specified by name. For example the following renam-
ing:

[A.Y/A.X]:CPackage -> CPackage

changes the name of the attribute named X in the class named
A in the range to be an attribute named Y in the class named A
in the range.

package RenameAYAX
extends

PreserveContainment(
P<->P,CPackage,CPackage,
P<->P,CPackage,CPackage),

PreserveContainment(
P<->P,CPackage,CPackage,
C<->C,CClass,CClass),

PreserveContainment(
R1,CClass,CClass,
R2,CAttribute,CAttribute),

PreserveContainment(
R3,CClass,CClass,
R4,CAttribute,CAttribute),

SameName(P<->P,CPackage,CPackage,String),
SameName(R1,CClass,CClass,String),
SameName(R2,CAttribute,CAttribute.,String),
ConstantName(A,R3,CClass,CClass),
Rename(Y,X,R4,CAttribute,CAttribute),
Or(C<->C,R1,R3,CClass,CClass),
PreserveType(

R2,CAttribute,CAttribute,
C<->C,CClass,CClass),

PreserveType(
R4,CAttribute,CAttribute,
C<->C,CClass,CClass)

end



XII. Relational Joins

Relations that are defined in isolation can be joined
together to produce a new relation providing that the domain
of one relation is the same as the range of the other. Relational
joins provide a way of building relations in a modular way.

Consider two relations N1 with domain D and range R’,
and N2 with domain R’ and range R. The join of N1 and N2
produces a new relation N with domain D and range R such
that the domain elements of N are the same as N1 and the
range elements of N are the same as N2. For every pair of N
elements there must be an N1 pair p1 and a N2 pair p2 such
that p1.right = p2.left. The structure of a join is shown on the
following diagram:

The join of two relations is a general pattern that can be
defined as a template:

package Join(N,D,R1,R2,R)
extends Relation(N,D,R)
class <<N>>

<<R1>> : <<R1>>;
<<R2>> : <<R2>>;
inv

<<"Join covers domain of " + R1>>
self.dom() = self.<<R1>>.dom()

fail: "Domain of join is incorrect."
<<"Join covers range of " + R2>>

self.ran() = self.<<R2>>.ran()
fail: "Range of join is incorrect."
<<"Join pairs from " + R1 + " and " + R2>>

self.pairs->forAll(p |
self.<<R1>>.pairs->exists(pairR1 |

pairR1.left = p.left and
self.<<R2>>.pairs->exists(pairR2 |

pairR2.left = pairR1.right and
pairR2.right = p.right)))

fail: "Incorrect join."
end

end
end

Renaming provides an example of relational joins. A renam-
ing can be defined as a structure preserving relation between
models. Given two renamings, the composite renaming is con-
structed by joining the two sub-renamings. The following

renaming changes the name of classes from X to Y and from
A to B:

package RenameClassXtoYAndAToB
extends

RenameClass(R1,Y,X),
RenameClass(R2,B,A),
Join(R,CPackage,R1,R2,CPackage)

end

XIII. Stamping Out Templates

Templates are models in which the names of elements are
string expressions. Templates are stamped out in a context in
which the string expression variables are associated with
strings. Stamping out copies the structure of the template body
and replaces the string expressions with their values.

Stamping out relies on a pattern of sting expression evalu-
ation that can be expressed as a template:

package Eval(env,N,field,Domain,Range)
extends

Relation(N,Domain,Range),
class <<N>>

inv
<<"Eval "+Domain+" to “+Range+" “ + field>>

self.pairs->forAll(p |
p.left.<<field>>.eval(env) = p.right.<<field>>)

fail: "Range is not value of domain expression."
end

end
end

The relation between TemplateModels and SyntaxModels can
now be expressed in terms of structure preservation and name
evaluation:

package StampOut(env)
extends

TemplateModels,
SyntaxModels,
PreserveContainment(

P<->P,TPackage,SPackage,
P<->P,TPackage,SPackage),

PreserveContainment(
P<->P,TPackage,SPackage,
C<->C,TClass,SClass),

PreserveContainment(
C<->C,TClass,SClass,
A<->A,TAttribute,SAttribute),

Eval(env,P<->P,name,TPackage,SPackage),
Eval(env,C<->C,name,TClass,SClass),
Eval(env,A<->A,name,TAttribute,SAttribute),
Eval(env,A<->A,type,TAttribute,SAttribute)

end

N

DxR

N1 N2

DxR' R'xRD

R'

R

-pairs*

-right-left

-left
-pairs*

-right
-left

-right
-pairs*



XIV. Resolving Names in Abstract Syntax

Syntax models contain attributes whose types are names of
classes in the containing package. These names must be
resolved by replacing the names with the appropriate classes.

Syntax resolution can be expressed as a relation from Syn-
taxModels to ConcreteModels. The relation preserves the
structure of the domain and the types of the model elements.
An extra constraint is added to the component relation that
associates packages with packages in order to require that the
names of attributes are resolved:

package Resolve
extends

SyntaxModels,
ConcreteModels,
PreserveContainment(

P<->P,SPackage,CPackage,
P<->P,SPackage,CPackage),

PreserveContainment(
P<->P,SPackage,CPackage,
C<->C,SClass,CClass),

PreserveContainment(
C<->C,SClass,CClass,
A<->A,SAttribute,CAttribute),

SameName(P<->P,SPackage,CPackage,String),
SameName(C<->C,SClass,CClass,String),
SameName(A<->A,SAttribute,CAttribute,String)

class SPackagexCPackage
inv

“Resolve names”
self.SClassxCClasss->forAll(p |

p.SAttributexCAttributes->forAll(p’ |
p’.right.type =

self.right.CClasss->select(c |
c.name = p’.left.type).selectElement()))

fail: “Attribute types not resolved.”
end

end
end

XV. Flattening Nested Package Structure

A variation on the PreserveContainment template is Flat-
tenContainment. This can be used to construct a relation from
a language supporting models containing nested packages to a
language that supports just top-level packages. The relation
preserves all the structure except package nested is flattened.
When flattening nested packages the names of the contained
classes must be modified in order to make then unique when
they are lifted to the outer package. A suitable strategy is to
pre-pend the name of the containing package to the names of
classes that it contains when they are lifted out.

XVI. Conclusion

This paper has described an approach to developing lan-
guages for object-oriented modelling. The approach is based

on packages, package specialisation, templates, renaming and
relations between sub-languages. The approach has been
exemplified in terms of a small static modelling language; the
meta-models for the language are defined using the key tech-
nologies.

The approach must be applied to richer modelling lan-
guages in order to be useful in practice. Relations must be
used to define package specialisation. The key feature of
package specialisation is a relation between a sub-package
and a collection of super-packages; the relation preserves the
structure of the super-packages whilst defining how inherited
modelling components are merged.

As seen in the example templates given in this paper,
string expressions can be used in the bodies of methods and
constraints. The mechanisms used to stamp out more complex
template bodies are the same as those defined in this paper.
For example, a language of templated expressions can be
defined where literal names (slot names and method names)
are supplied as string expressions. The StampOut relation
must then map between templated expressions and expres-
sions, replacing the string expressions with strings as
described here for model element names.

In 2001 the Object Management Group launched a key ini-
tiative to define a framework for Model Driven Architecture
(MDA) [1] [8]. MDA aims to model all aspects of the system
development process including software artifacts, business
processes and development processes. The relationship
approach described in this document provides a framework
within which all features of a development can be specified.
Static modelling notations, such as UML, use associations as a
basis for relationships; the relationships defined in this paper
are more expressive than associations. The semantics of asso-
ciations is described in [11].

The relations described in this paper exist at the meta-level
of the modelling framework. In order to realise the goal of
MDA relations must be available to the modeller at the appli-
cation level; our next aim is to provide new modelling struc-
tures whose semantics is expressed using the constructs given
in this paper.

XVII. References

[1] The OMG (2001) Executive Overview: Model Driven
Architecture. Available from http://www.omg.org/
mda/

[2] Clark A., Evans A., Kent S, Cook S., Brodsky S., (2000) A
feasibility Study in Rearchitecting UML as a Family of Lan-
guages Using a Precise OO Meta-Modeling Approach. Avail-
able at http://www.puml.org/mmt.zip

[3] Clark A., Evans A., Kent S. (2000) The Specification
of a Reference Implementation for UML. Special Issue
of L'Objet on Object Modelling, 2001.

[4] Clark A., Evans A., Kent S. (2000) The Meta-Modeling Lan-
guage Calculus: Foundation Semantics for UML. ETAPS
FASE Conference 2001, Genoa.



[5] Clark A., Evans A., Kent S. (2002) Engineering Mod-
elling Languages: A Precise Meta-Modelling
Approach. Presented at the ETAPS FASE Conference,
Grenoble France, 2002

[6] Clarke S., Walker R. J. (2001) Composition Patterns: An
Approach to Designing Reusable Aspects, in Proceedings of
ICSE'2001, May 2001.

[7] D'Souza D., Wills A. C. (1998) Object Components
and Frameworks with UML -- The Catalysis
Approach. Addison-Wesley.

[8] D'Souza D. (2001) Model Driven Architecture and
Integration. Available from http://www.catalysis.org/
omg/

[9] Richters M., Gogolla M. (1999) A metamodel for
OCL. In France R. & Rumpe B. (eds) UML '99 The
Unified Modeling Language -- Beyond the Standard.
Second International Conference. Fort Collins CO,
USA. 1999. Proceedings volume 1723 LNCS, 156 --
171, Springer-Verlag.

[10] Richters M., Gogolla M. (2000) Validating UML Mod-
els and OCL Constraints. In Evans A., Kent S., Selic
B. (eds) UML 2000 The Unified Modeling Language -
- Advancing the Standard. Third International Confer-
ence. York, UK 2000. Proceedings volume 1939
LNCS, 265 -- 277, Springer-Verlag.

[11] Gogolla M., Richters M (2002) Expressing UML Class
Diagram Properties with OCL. In Clark A, Warmer J.
(eds) Advances in Object Modeling with the OCL.
Springer Verlag, LNCS 2263.


	Patterns for Renaming and Stamping Out Object-Oriented Models
	Keywords
	I. INTRODUCTION
	II. MML
	III. Relations Between Modelling Languages
	IV. A Simple Modelling Language
	V. Simple Templates
	VI. Relations
	VII. Relational Conjuncts and Disjuncts
	VIII. Preserving Names
	IX. Preserving Containment
	X. Copying
	XI. Renaming
	XII. Relational Joins
	XIII. Stamping Out Templates
	XIV. Resolving Names in Abstract Syntax
	XV. Flattening Nested Package Structure
	XVI. Conclusion
	XVII. References


