
Operator Precedence and Associativity

May 21, 2010

Expression languages often come with in�x operators. For example:

x + y * z

It would be useful to be able to write a language module that abstracts the key
properties of expression languages so that the module can be reused in di�erent
contexts. One of the challenges is to abstract the precedence and associativity
rules in order to re�ect the following two parse outcomes:

x + (y * z)

(x + y) * z

Traditional approaches to parsing often use two approaches: (1) encode the
precedence rules into the grammar rules; (2) write the parser so that it knows
about certain types of operator. Both approaches have disadvantages: (1) com-
plex grammar rules; (2) complex parsing machinery. The XPL parser, in con-
junction with the language module approach, allows this to be achieved fairly
painlessly without having to (1) encode the precedence in the rules; or (2) re-
quiring the parser to know about operators.

The approach separates the syntax of operators from their semantics. As an
example we will encode a language called exp with three operators. The syntax
of exp is de�ned as follows:

(1) exp.syntax(semantics) =

(2) import semantics { {

(3) root -> e=exp ';' ?legal(e,10,semantics) {e};

(4) exp -> a=atom postExp^(a);

(5) postExp(l) -> o=operator r=exp postExp^(binExp(l,o,r));

(6) postExp(e) -> { e };

(7) atom -> whitespace c=['a','z'] { var(asString([c])) };

(8) operator -> whitespace o=. op={asString([o])} ?isOp(op) { op};

(9) whitespace -> (32 | 10 | 9 | 13)*

(10) }

(11) }

The syntax operator is supplied with a package of semantic de�nitions at (1)
so that the semantics can be changed when the module is instantiated. The
semantics package is imported at (2) to allow �eld reference without further
quali�cation in the grammar de�nition. The starting non-terminal (3) parses

1

an expression, a terminator (;) and then checks that the expression is legal
before returning it. An expression (4) is an atom followed by a post-atom check
(for operators); an atom (7) is just a single character variable name.

The key processing takes place at (5) and (6) where postExp takes an ex-
pression and returns another expression (possibly after consuming more input).
At (5), if an operator is detected then a right-hand operand expression is con-
sumed. Then to allow for further operators, the postExp rule is called again.
The rule (7) returns e with no further input being consumed.

The e�ect of (5) and (6) is to specify that all possible con�gurations of atomic
expressions and operators are legal expressions. Recall that postExp can succeed
without consuming any input even if an operator is present.Therefore, postExp
is non-determinstic: we can think of it as performing all possible parses, which
in this case means all possible associativity groupings of in�x operators.

The legality check at (3) permits only those expressions e that satisfy the
test. Since (5) and (6) have generated all possible groupings, the predicate legal

at (3) is satis�ed by only those that satisfy the test.
Now set up the semantics for the module. The default constructors will use

XPL syntax constructors:

exp.semantics.binExp(l,o,r) = BinExp(l,o,r)

exp.semantics.var(n) = Var(n)

Recall that we are de�ning a language module for in�x arithmetic expressions
and that the operator set has been de�ned using a predicate isOp:

exp.semantics.isOp(o) =

case o {

'+' -> true;

'*' -> true;

o -> false

}

Furthermore, the operator associativities and precedences are de�ned as part of
the semantics. The associativity is either left or right which determines whether
parentheses are inserted on the left or the right of an operator when 2 or more
operators of the same precedence occur at the same level in an expression. The
precedence of an operator determines how tightly it binds its operands: the
lower the numeric value the tighter it binds:

exp.semantics.isLeft(o) =

case o {

'*' -> true;

'+' -> false

}

exp.semantics.prec(o) =

case o {

'*' -> 9;

'+' -> 8

}

2

Finally, we need to de�ne the predicate legal. This must check that the as-
sociativity rules are correct and that the operator precedence rules are correct
in the supplied expression. The de�nition is by case analysis on the supplied
expression and is explained in the collents given below:

// supply the expression, the current precedence level and the

// package of semantics...

exp.semantics.legal(exp,p,semantics) =

// open the package of semantic operators to get unqualified

// access to prec, isLeft, etc...

import semantics {

case exp {

// two operators of the same precedence must be

// right-associative to have the following shape...

BinExp(l,o,BinExp(ll,oo,rr)) when prec(o) = prec(oo) ->

isLeft(o) = false and

(prec(o) < p or prec(o) = p) and

legal(l,prec(o),semantics) and

legal(BinExp(ll,oo,rr),prec(oo),semantics);

// two operators of the same precedence must be left

// associative to have the following shape...

BinExp(BinExp(l,o,r),oo,rr) when prec(o) = prec(oo) ->

isLeft(o) and

(prec(o) < p or prec(o) = p) and

legal(BinExp(l,o,r),prec(o),semantics) and

legal(rr,prec(oo),semantics);

// a binary operator must have a binding precedence

// that is tighter than or equal to p...

BinExp(l,o,r) ->

if prec(o) < p or prec(o) = p

then legal(l,prec(o),semantics) and legal(r,prec(o),semantics)

else false;

// otherwise we are ok...

x -> true

}

}

}

Given the de�nitions above:

exp.syntax(exp.semantics).parse('a + b + c;')

=> [| a + (b + c) |]

Now change the associativity:

exp.semantics.isLeft('+')

=> true

exp.syntax(exp.semantics).parse('a + b + c;')

=> [| (a + b) + c |]

Now change the precedence and introduce another operator into the expression:

exp.syntax(exp.semantics).parse('a + b * c + d;')

3

=> [| (a + b) * (c + d) |]

Change the precedence:

exp.semantics.prec('+')

=> 9

exp.semantics.prec('*')

=> 8

exp.syntax(exp.semantics).parse('a + b * c + d;')

=> [| (a + (b * c)) + d |]

Finally, change the associativity back to right:

exp.semantics.isLeft('+')

=> false

exp.syntax(exp.semantics).parse('a + b * c + d;')

=> [| a + ((b * c) + d) |]

In conclusion we have shown that the XPL parser and language modules allow a
convenient separation of concerns between the syntactic structure of in�x binary
operators and their semantics, where the semantics includes the associativity
and operator precedence.

4

