Language Modules

Tony Clark*

May 14, 2010

A language consists of syntax and semantics. The
concrete syntax can be defined using a grammar and
actions in grammar rules can provide a language with
a semantics. For example, a grammar for a simple
integer expression language can evaluate the expres-
sions as the parse progresses. However, fixing the
semantics of a language too early means that the lan-
guage cannot easily be viewed as a reusable module.

Why would we want reusable language modules?
A key driver is that language engineering has become
an increasingly important part of system engineering.
Modern programming languages provide facilities for
extensibility and domain specific languages are devel-
oped as part of system architectures; therefore there
are increasing opportunities for taking parts of one
language and using them as the basis for another lan-
guage.

A paradigmatic example of a language module is
an expression language. Almost all data-related lan-
guages need to represent simple expressions, for ex-
ample languages involving any of the following: ini-
tialization of record fields; state-machine guards; pro-
cedure arguments; rule actions; event construction;
widget positioning. A language system that allows
expression sub-languages to be defined and reused in
different contexts will increase the quality of the re-
sulting products.

However, direct reuse of a language module is not
always realistic. The expected meaning of a mod-
ule will depend on the context of the language in
which the reuse takes place. For example, an integer
expression language may fail when division by zero
takes place or it may degrade gracefully through the
use of exceptions. For example, an integer expression

* http://wuw.eis.mdx.ac.uk/staffpages/tonyclark/

language should be reusable in a context where the
underlying data type is changed to rational numbers
or floating point numbers.

Therefore, a programming system that supports
language modules must provide the user with the
ability to define language families or language fac-
tories. A language factory is a flexible module that
can be transformed into members of a set of fixed lan-
guage modules. A language factory might leave parts
of the syntax undefined or fix the sytax and leave the
semantics flexible.

This document introduces language modules using
some simple examples in XPL and shows how XPL
can support language factories. A language module
in XPL has the following basic structure and can be
used to parse a string written in the language using
the parse operation of a grammar:

module = {
syntax(semantics) = {
// grammar rules
};
semantics = {
// semantic rules
}
}

parseL(L,s) = L.syntax(L.semantics).parse(s)

A language module consists of a two sub-components:
a syntax description and a semantics description.
The syntax description is a function that accepts a
record of semantics and returns a grammar that uses
the semantics as part of the grammar actions. The
semantics descriptions is a record of functions. The
following is an example of a simple integer arithmetic
laguage module:

arithInfixSyntax(semantics) = {
arith -> whitespace a=atom tail~(a);
atom -> i=int | °(C a=arith ’)’ { a };
whitespace -> (32 | 10 | 9 | 13)%*;

int
tail(l) -> o=op r=arith {
semantics.binExp(1l,0,r)
};
tail(l) > {1}
op -> whitespace (°/° | ’%’);
}

arithSemantics = {
binExp(left,op,right) =
case op {
%2 > left * right
’/? -> left / right
3
int(cs) =

}

asInt (cs)

arithInfixL = {
syntax = arithInfixSyntax;
semantics = arithSemantics}

parseL(arithInfixL,’10,/,27)
=>5

Since the syntax and semantics has been defined in-
dependently, we can construct other languages based
on the semantics of simple expressions:

arithPostfixSyntax(semantics) = {

postfix -> a=atom tail~(a);

tail(l) -> r=atom o=op n={
semantics.binExp(1l,0,r)

} tail~(n);

tail(l) > {1}

atom -> int | >’ a=postfix)’ { a };

whitespace -> (32 | 10 | 9 | 13)%*;

int -> whitespace n=([’07,°9°1)+ {
semantics.int (n)

};

op -> whitespace (’/’ | ’%?)

arithPostfixL = {
syntax = arithPostfixSyntax;
semantics = arithSemantics}

parseL(arithPostfixL,’10,2,/’)

=>5

Notice that the reuse has been achieved by making
a grammar the return value (and therefore a first-

-> n=([’07,79’1)+ { semantics.int(n) };class value) of a function. The grammar controls the

use of a package of semantic operators, however the
grammar has no knowledge, other than the interface,
of the implementation of the semantic package. This
allows us to vary the semantics while leaving the syn-
tax the same. For example, suppose that we change
the semantic domain of the languages defined above
to be rational numbers represented as records:

rationalSemantics = {
binExp(1l,o0p,r) =
case op {
%7 -> { num=1.num * r.num;
den=1ft.den * r.den }
’/? -> rationalSemantics.binExp(1l,’*’,
{ num=r.den; den=r.num })

};
int(n) = {
num=asInt (n) ;
den=1
}
}

The new semantics can be combined with the two
previous syntaxes (since the interface is compatible
with them) to form two new languages:

rationalInfixL = {
syntax=arithInfixSyntax;
semantics=rationalSemantics

}

rationalPostfixL = {
syntax=arithPostfixSyntax;
semantics=rationalSemantics

}

parseL(rationalInfixL,’10.,/,2°)
=> {num=10;den=2}

parseL(rationalPostfixL,’10,2,/%)
=> {num=10;den=2}

Things get even more interesting when we define
language module transformations. Suppose that we
want to keep the history of execution (perhaps as

input to a debugger). The execution history of ex-
pressions can be represented as a tree. The leaves of
the tree are the atomic data values and the nodes of
the tree are labelled with the operators that are used
to combine the values produced by sub-trees. It does
not matter what the underlying data values are: they
could be integers or rational numbers (or execution
histories). A suitable language module transforma-
tion is:
history (L) = {

syntax = L.syntax;

semantics = {

binExp(1l,0p,r) = {
calc = op;

pression interface. Therefore, the transformation can
be applied repeatedly. Of course, this does not make
much sense in this particular example, however it is
an important feature, showing that module transfor-
mations are composable:

parseL (history(arithInfixHistL),’104/,27)
=> {calc=/;
children=[
{ calc=int;
children=[];
value={calc=int;children=[];value=10}},
{ calc=int;
children=[];
value={calc=int;children=[];value=2}}];

children = [1,r]; value={
value = L.semantics.binExp(l.value,op,r.value) calc=/;
}: children=[
int(cs) = { {calc=int;children=[] ;value=10},
calc = ’int’; {calc=int;children=[];value=23}];
children = []; value=5}}
value = L.semantics.int(cs) This article has introduced language modules that
) ¥ separate syntax definition and semantics. It has

}

Any language L that implements the binary expres-
sion interface can be transformed to a language over
expression histories:

arithInfixHistL = history(arithInfixL)
arithPostfixHistL = history(arithPostfixL)
rationalInfixHistL = history(rationalInfixL)
rationalPostfixHistL = history(rationalPostfixL)

parseL(arithInfixHistL,’10.,/,2°)
=> {calc=/;
children=[
{calc=int;children=[];value=10},
{calc=int;children=[];value=2}];
value=5}

parseL(rationalPostfixHistL,’10.,,2,/)
=> {calc=/;
children=[
{calc=int;children=[];value={num=10;den=13}},
{calc=int;children=[];value={num=2;den=1}1}];
value={num=10 ;den=2}}

The language that is produced by the language mod-
ule transformation also conforms to the required ex-

shown that, providing both syntax and semantics
components are first-class values in a meta-language,
then the language module approach allows language
reuse including language module transformations.

