
Language Factories and Modular Interpreters

Tony Clark

June 16, 2010

Figure 1: State Machine

1 Introduction

Languages have a syntax and semantics. Often, when
we talk of a language, for example a state-machine
language, an expression language or an action lan-
guage, we might mean a particular syntax and seman-
tics, and at other times we might want the named lan-
guage to denote a family of related languages. For ex-
ample, the term ‘state-machine’ might be used in the
context of deterministic machines whose nodes are la-
belled with simple states and whose edges are labelled
with simple events, or ‘state-machine’ might be used
to denote any element of a set of possible languages
including deterministic machines, non-deterministic
machines, priority-driven machines, action-based ma-
chines etc.

Most language definition systems do not support
language families because the syntax and semantics
of any language is fixed. A Language Factory ap-
proach is different because it aims to capture a fam-
ily in a single definition so that individual languages
in the family can be instantiated from the definition.
Think of a language factory as a kind of template

or language pattern. This approach is motivated by
the aim of creating libraries of language module def-
initions so that new languages can be created by in-
stantiating a composing modules.

2 A State-Machine Factory

Consider figure 1 that shows a state machine with 3
states (labelled S1,S2,S3) and 4 transitions. The la-
bels on the transitions are pairs of events (e1,e2,e3)
and tags (p1,p2,p3,p4). The idea is that the tags
can be used to encode extra information on the tran-
sitions - some interpretations of the state machine
might use the tags and some might not. Therefore,
the syntax of the machine in figure 1 is actually a
family of syntaxes that differ in terms of whether la-
bels are allowed or not. Each element of the syntax
family defines its own well-formedness rules.

Each element of the family must define a semantics.
The semantics of each element will have common fea-
tures: the machine always starts in S1; the machine is
event-driven; an event causes a state change defined
by the outgoing event labels on the transitions from
the node labelled with the current state. Here are a
few possible semantic options:

• The machine is deterministic: each outgoing
transition from a state must have a unique event
label.

• The machine is single-threaded: some strategy
is used to select one amongst multiple outgoing
transitions with the same event label (variations
include the first, the last, random choice, priori-
tization via transition tags).

1

• The machine is non-determinstic (multi-
threaded): all possible transitions with the same
label are chosen causing the machine to be in
one of any number of states at any given time.

• The machine counts steps: a (single- or multi-
threaded) machine keeps track of both its cur-
rent state and the number of transitions it has
performed.

The rest of this article describes how to encode all of
these choices using XPL using a Language Factories
approach. Syntax families are implemented by pa-
rameterising over the concrete syntax of a state ma-
chine. Semantic families are implemented by defin-
ing a modular interpreter for a state machine. The
modular interpreter is written using a monadic-style
that abstracts the key interpretive steps of machine
execution as a standardized package of machine oper-
ations. The semantic variations are implemented by
supplying different packages of machine operations.

3 Syntax Factories

Consider the representation of a simple state-
machine:

{states = [’S1’,’S2’,’S3’];
trans = [
{source=’S1’;event=’e1’;tag=’’;target=’S2’},
{source=’S2’;event=’e2’;tag=’’;target=’S1’},
{source=’S2’;event=’e2’;tag=’’;target=’S3’},
{source=’S3’;event=’e3’;tag=’’;target=’S1’}]}

This representation is the abstract syntax of a state-
machine. We would like a more user-friendly style
that hides the use of records and lists to represent the
machine. This is achieved in XPL using a grammar
definition. The grammar will process a representa-
tion as follows:

machine[S1,S2,S3] {
S1-(e1)->S2
S2-(e2)->S1
S2-(e2)->S3
S3-(e3)->S1

}

However, we want the syntax definition for state-
machines to allow for a family of languages. Each
member of the family differs in terms of the extra
syntax used to represent transition labels. There-
fore, we define the syntax of a state-machine as a
function that maps a grammar of tags to a grammar
of machines:

machine(tag) = {
machine -> ’machine’ ss=states ’{’ t=trans* ’}’ {
[| { states = ${listExp(ss)};

trans = ${listExp(t)}} |]
};
states -> ’[’ s=name ss=(’,’ name)* ’]’ {
map(fun(s) s.lift(),s:ss)

};
trans -> s=name e=event t=name x=tag {
[| { source = ${s.lift()};

event = ${e.lift()};
target = ${t.lift()};
tag = ${x}} |]

};
event -> ’-(’ n=name ’)->’ { n }

}

The function machine maps a grammar tag to a
grammar that parses machines. The rule machine
processes states, transitions and synthesizes a record
containing fields states and trans. The function
listExp transforms a sequence of expressions to a list
expression. The rule states recognizes a sequence of
names and returns a sequence of string expressions.
The rule trans recognizes a source name, an event
tag, a target name and a tag, and then synthesizes a
record with named fields whose values are the appro-
priate values. Note that the tag rule is supplied as
an argument. The event rule recognizes and returns
an event name.

The machine grammar synthesizes XPL expres-
sions. An expression is constructed using quasi-
quotes [| and |] that surround concrete XPL syn-
tax. Instead is parsing an evaluating the expression,
the quotes cause the expression to be parsed and
returns as a value of type abstract-syntax. Within
the quasi-quotes, the drop quotes ${ and } surround
expressions that are parsed and evaluated as usual.
Therefore, [| x + ${y} |] constructs a binary ex-
pression whose operator is +, whose left hand operand

2

is the variable x and whose right hand operand is
the value of variable y (which should be of type
abstract-syntax). All values may be sent a message
lift() that translates the receiver into an expres-
sion that recreates the receiver when the expression is
evaluated. The operstor listExp([e1,e2,...,en])
maps a sequence of expressions [e1,e2,...,en] to
an expression [| [e1,e2,...,en] |].

The machine operator is a language factory for pro-
ducing state-machine grammars. The family mem-
bers differ in terms of the tag syntax that is supplied
as an argument to machine. Here are two members
of the family:

simpleMachine = machine({
rule -> { [| ’’ |] } })

prorityMachine = machine({
rule -> ’priority’ n=[’0’,’9’] { n.lift() } })

The grammar simpleMachine ignores tags; each
transition has an empty string as its tag value. The
grammar priorityMachine expects each transition
to have a keyword priority followed by a number
in the range 0 to 9 which is returned (lifted as an
expression).

Here are two examples:

m1 = intern simpleMachine {
machine[S1,S2,S3] {
S1-(e1)->S2
S2-(e2)->S1
S2-(e2)->S3
S3-(e3)->S1

}
}

m2 = intern priorityMachine {
machine[S1,S2,S3] {
S1-(e1)->S2 priority 1
S2-(e2)->S1 priority 3
S2-(e2)->S3 priority 2
S3-(e3)->S1 priority 1

}
}

4 Modular Interpreters
The semantics of state-machines can be defined in
terms of transitions that are triggered in response to
receiving events. As described above, there may be
more than one semantics for a given state-machine.
However, it turns out that many of the possible se-
mantics have a similar pattern that involves checking
the current state, matching transitions that are la-
belled with the next event and changing the current
state of the machine. Such a semantic pattern con-
stitutes a modular interpreter for state-machines.

A modular interpreter is parameterized with re-
spect to the key steps that are required in order to
run a program (in this case the program is a state-
machine and a sequence of events). Different seman-
tics can be implemented for the same machine by
supplying the interpreter with different packages of
step-implementations. This approach is related to
the monadic-interpreters of Hudak and to monads in
general.

Semantic processing of a state-machine involves the
following steps:

new Create and start a new machine.

state Return the current state of the machine.

trans Select a transition that satisfies a given
predicate.

become Change to a new state.

stop Stop the machine.

The steps take arguments that allows them to be
composed in order to create state-machine processors.
The arguments are defined as follows:

new(p) A new machine is processed by p which
is a processor created by composing the
steps listed below.

state(f) Supply the current machine state to the
function f which returns a machine pro-
cessor.

trans(p,t,a) Supply function t with a transition
that satisfies p. If no transition satisfies

3

p then do a. Both a and the result of t
are machine processors.

become(s,p) The current machine state changes to
s and execution continues with processor
p.

Given suitable implementations of the machine-
steps listed above, the following code implements a
monadic interpreter for a state-machine:

run(es) =
letrec eval(es) =
case es {
[] -> stop;
e:es ->
state(fun(s)
trans(fun(t) s = t.source and e = t.event,

fun(t) become(t.target,eval(es)),
eval(es)))

}
in new(eval(es))

Notice how the interpreter abstracts away from the
implementation of the machine and from the mech-
anisms by which the transitions and current state of
the machine are processed. In fact with a little bit of
sugar we would get the following which I would hope
you would agree is simple and captures the essential
features of an interpreter for a state-machine:

run(es) =
letrec eval(es) =
case es {
[] -> stop;
e:es ->
let s = state
in let t = trans

where s = t.source and
e = t.event

in become t.target;
eval(es)

}
in let m = new in eval(es)

As it stands, the definition of run uses a fixed col-
lection of step implementations (new, state, trans,
become and stop). However, we want run to capture
a family of different state-machine semantics. There-
fore, run is modified in order to supply the package
of step-implementations:

run(mpkg)(es) =
import mpkg {
letrec eval(es) =
case es {
[] -> stop;
e:es ->
state(fun(s)
trans(fun(t) s = t.source and e = t.event,

fun(t) become(t.target,eval(es)),
eval(es)))

}
in new(eval(es))

}

5 Semantics Factories

A Language Factory approach allows a family of lan-
guages to be defined and instantiated from a single
pattern definition. We have set up a family of con-
crete syntax in section 3 for state-machines. The def-
inition of run in section 4 defines a family of related
semantics for state-machines. The members of the
family must all implement the step operations: new,
state, trans, become and stop and a package con-
taining the implementation is supplied to run. This
section shows how the different semantics outlined
in section 2 are all implemented as packages of step
operations.

5.1 Deterministic

A deterministic (or more accurately single-threaded)
state-machine is in one state at any given time. In
the following semantics, multiple transitions with the
same event label from the same source state will cause
the first transition to be selected:

DET(m) = {
new(next) = next(head(m.states));
stop(state) = state;
trans(p,next,alt) =
let T = filter(p,m.trans)
in case T {

[] -> alt;
t:ts -> next(t)

};
become(state,next)(ignore) = next(state);

4

state(f)(state) = (f(state))(state)
}

The steps are used in the following execution:

run(DET(m1))([’e1’,’e2’,’e1’])
=> s2

5.2 Non-Deterministic

A non-deterministic (or multi-threaded) state-
machine can be in multiple states at any given time.
This can be implemented by changing the DET pack-
age of steps slightly in order to return a sequence
of states. The stop step is altered to produce a se-
quence of current states. The trans step might find
a sequence of applicable transitions T. Instead of se-
lecting the first (as in DET), NONDET uses all of
the applicable transitions. This produces a list of
state-lists that must be flattened:

NONDET(m) = {
new = DET(m).new;
stop(state) = [state];
trans(p,next,alt) =
let T = filter(p,m.trans)
in case T {

[] -> alt;
ts -> fun(state)
let funs = map(next,ts)
in flatten(map(fun(f) f(state),funs))

};
become = DET(m).become;
state = DET(m).state

}

The steps are used in the following execution:

run(NONDET(m1))([’e1’,’e2’,’e1’])
=> [s2,s3]

5.3 Counting Steps

The current state of the machine interpreter run as
defined in sections 5.1 and 5.2 is a state-name. In
the case of NONDET, a sequence of events is pro-
cessed leading to multiple paths through the ma-
chine states. Some of these paths might terminate
prematurely since the machine reaches a state for

which there is no outgoing transition with the ap-
propriate event label. Given a sequence of terminal
states, it might be useful to know how many events
were processed in order to reach each individual state.
This can be implemented by a package of step oper-
ations that manage the interpreter state as a record:
{state=s;count=n} where s is the current machine-
state and n is the number of events that have been
processed to reach s:

COUNT(m) = {
new(next) = next({state=head(m.states);count=0});
stop = NONDET(m).stop;
trans = NONDET(m).trans;
become(state,next)(previous) =
next({state=state;count=previous.count + 1});

state = NONDET(m).state
}

The steps are used in the following execution:

run(COUNT(m1))([’e1’,’e2’,’e1’])
=> [{state=s2;count=3},{state=s3;count=2}]

5.4 Priority Based
Finally, a deterministic state-machine might include
multiple transitions leading from a state that all have
the same event label. In order to control this we chose
the first transition in section 5.1. However, we might
want to compute the order dynamically, or to allow
the programmer to specify the order. To do this we
use a different syntax in the machine family. And
order the transitions based on their priority:

tagLess(t1,t2) = t1.tag < t2.tag;
PRIO(m) = {
new = DET(m).new;
stop = DET(m).stop;
trans(p,next,alt) =
let trans = sort(tagLess,filter(p,m.trans))
in case trans {

[] -> alt;
t:ts -> next(t)

};
become = DET(m).become;
state = DET(m).state

}

The steps are used in the following execution:

5

run(PRIO(m2))([’e1’,’e2’,’e1’])
=> s2

Alternatively, changing the priority:

m3 = intern priorityMachine {
machine[S1,S2,S3] {
S1-(e1)->S2 priority 1
S2-(e2)->S1 priority 2
S2-(e2)->S3 priority 3
S3-(e3)->S1 priority 1

}
}
run(PRIO(m3))([’e1’,’e2’,’e1’])
=> s3

6 Conclusion
This article has described the idea of Language Fac-
tories as a single definition that captures the idea of
a family of related languages. A syntax factory can
be defined as a grammar that is parameterized over
variation points. Where the language has an opera-
tional semantics (in the case of a state-machine that
processes sequences of events), a semantics factory
can be defined as a modular interpreter that uses
general-purpose steps to process programs (in this
case a state machine + event sequences). Particular
languages can be defined using different implementa-
tions of the steps that are supplied to the interpreter.

6

