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1.0 Introduction

This paper describes a Meta-Modeling Framework (MMF) that addresses many of the deficiencies in the
definition of The unified Modeling Language (UML), and promises to support the OMG's newly
announced strategy, Model Driven Architecture (MDA) [OMG01]. The facility comprises a language
(MML) for defining modeling notations, a tool (MMT) that checks and executes those definitions, and a
method (MMM) consisting of a model based approach to language definition and a set of patterns
embodying good practice in language definition.

The development of MMF by the pUML group ([pUML]) is ongoing and has been supported by IBM
and Rational Inc. The work reported in this paper is a simplified version of the work described in out ini-
tial submission to the UML 2.0 revision initiative [Cla01] which is expected to be completed in 2002.

The need for the definition of UML are recognized, in part, by the infrastructure RFP for UML 2.0
[OMG00]. In Section 3.0 on page 14 we identify some of the main requirements of the RFP, show how
these relate to the needs described above, and outline how MMF addresses them.

This paper is structured as follows. The three main components (method, language and tool) to the MMF
approach is described. The MMF approach is then applied to a simple description of a modelling lan-
guage. The language, called SML, is a simplified version of a typical object-oriented static modelling
language. MMF allows modelling language properties to be defined as a collection of templates. The
templates for SML are defined and then used to construct models of syntax and semantics. Finally we
place this work into context and outline future work.

1.1 A Method for Meta-Modelling (MMM)

The UML is a collection of notations, some visual some textual. These notations currently have a loose
mapping to an abstract syntax (which is imprecisely defined), which in turn is given an informal seman-
tics written in natural language. The UML needs to become a precisely defined family of modeling lan-
guages, where a modeling language comprises a notation (concrete syntax), abstract syntax and
semantics.

Software Engineers define languages as a collection of models with mappings between them. Typically a
language consists of models for concrete syntax, abstract syntax and for the semantic domain. Mappings
are defined by associating model elements. A language has mappings between concrete syntax and
abstract syntax and between abstract syntax and the semantic domain. For example, a language for class
diagrams can be defined in terms of a model for boxes and lines, a model for classes, attributes and asso-
ciations, and a model for objects and slots. A mapping between abstract and concrete syntax relates
classes, attributes and associations to boxes, text and lines. A mapping between abstract syntax and the
semantic domain relates classes, attributes and associations to objects and slots.

The MMF approach applies OO modelling to the definition of OO modelling languages. Each language
component is defined as a package containing a class diagram. Package specialization is employed to
support reusable, modular, incremental language design. OCL [War99] [Ric99] is used to define well-
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formedness constraints on the language components. Mappings between language components are
defined in terms of OCL constraints on associations between model elements.

The MMF approach uses two key features of OO modelling technology: package specialization and tem-
plates. Package specialization permits (possible partial) definitions of model elements in a super-pack-
age to be consistently specialized in a sub-package. Templates are parametric model elements; supplying
model elements as parameter values stamps out the template to produce a fresh model element. Tem-
plates provide a means of representing reusable modelling patterns; the MMF approach uses templates
to capture patterns that occur repeatedly in OO modelling languages thereby providing a framework for
defining language families.

This technology is not specific to MMF, UML has package specialization and parametric model ele-
ments and in particular the Catalysis approach [D’So98] advocates the use of these features as part of an
OO method. Algebraic specification languages such as Clear and OBJ and abstract programming lan-
guages such as ML and Haskell provide a means of constructing libraries of parameteric components
and organising systems by combining these components in different ways. However, MMF has provided
the most precise definition of these concepts within the scope of OO modelling to date.

1.2 A Language for Meta-Modelling (MML)

MML is a static OO modelling language that aims to be small, meta-circular and as consistent as possi-
ble with UML 1.3. MML achieves parsimony by providing a small number of highly expressive orthog-
onal modelling features. MML is sufficiently expressive that it describes itself. This feature is not
sufficient to guarantee that MML is unambiguous; however, it reduces the language to a handful of prim-
itive semantic features that can be precisely captured by an external formal system.

The complete definition of MML is beyond the scope of this paper; the reader is directed to [Cla00a] ,
[Cla00b] and [Eva99] for an overview of the MMF approach, to [Clark01a] for the meta-circular defini-
tion of MML and to [Cla01b] and [Cla01c] for its formal definition.

The rest of this section gives an overview of the main features of MML which are an OCL-like expres-
sion language; class definitions; package definitions and templates.

1.2.1 A Basic Expression Language

MML consists of a basic expression language which is based on OCL. This language is not primitive to
the approach which uses a much smaller MML calculus described in [Cla01c], however it encodes many
of the abstractions which are both useful and familar to modellers.

The language provides a basic collection of data types including integers, booleans and strings together
with standard operations over values of these types. Object slot reference and (synchronous) message
passing is performed using the standard ‘.’ operator. MML supports sets and sequences together with a
small number of standard OCL interation constructs:

Concrete
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Abstract
Syntax

Semantic
Domain

Display
Mapping

Semantic
Mapping
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Set{1,2,3}->select(x | x > 1)->iterate(y n = 0 | n + y)

denotes 5. The full list of iteration constructs is defined in \cite{semantics}.

Since MML is a meta-circular language, types are values with state and operations. Objects are created
by sending a ‘new’ message to a class together with sequence of iinitial slot values (the ‘init’ method of
the class will deal with processing the initial values):

Person.new(Seq{“Fred”,28,true})

produces a new object of type Person named Fred, age 28 who is married.

1.2.2 Class Definitions

MML classes define the structure, behaviour and invariants of their instances. The following defines a
class of people.

class Person
name : String;
age : Integer;
married : Boolean;
children : Set(Person);
parents : Set(Person);
init(s:Seq(Instance)):Person

self.name := s->at(0) []
self.age := s->at(1) []
self;

averageChildAge():Integer
self.children->iterate(c a = 0 | a + c.age)/self.children->size;

inv
IfMarriedThenOver15

self.married implies self.age >= 16;
OnlyTwoParents

self.parents->size = 2

end

The definition of the class Person shows a number of MML features. In general, an MML definition con-
sists of a name and an expression. Once the definition is evaluated the name is associated with the value
of the expression for a given scope. The name is a definition is usually a literal (i.e. not an evaluated
expression). A class definition introduces a new name whose scope is the class definition and relative to
the package in which the class is defined using the ‘::’ operator, for example SomePackage::Person.

A class has a number of attributes each of which is a definition consisting of a name and a type. The
scope of an attribute name is relative to an instance of the class using the ‘.’ operator (slot reference) and
relative to the class or one of its sub-classes using the ‘::’ operator. The scope of a class definition
includes the body of the class (hence, children can be declared of type Person).

A class definition may include method definitions each of which have typed parameters, a return type
and a body. The scope of a method name is relative to an instance of the class using the ‘.’ operator (mes-
sage passing) and relative to a class or one of its sub-classes using the ‘::’ operator. The body of a
method is an expression which provides the return value when the method is called by sending an

instance of the class a message. The init method of a class is automatically invoked1 when a new
instance of the class is created. All classes inherit from Object by default; Object provides a method
called init which simply returns the receiver.

1. Since MML is a meta-language, meta-classes are reponsible for defining their own object creation protocol. The
default protocol is provided by the class named Class in terms of a method called new that creates a new instance
of the receiver and then sends the new instance an init message with the initialisation parameters.
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A class definition may include invariant constraint definitions following the keyword inv. The scope fo
the constraint name is relative to the class using the ‘::’ operator. Each constraint consists of a name and
a boolean expression. The constraints express well formedness properties of the instances of the class.
For example, in order to be married a person must be aged 16 or over.

1.2.3 Association Definitions

Classes may be associated to show logical dependency between instances of the classes. Currently MML
supports only binary associations. A binary association consists of the two classes being associated, the
name of the association and two association ends (one for each class). An association end is a definition
consisting of a name and a multiplicity. The multiplicity constraint the number of instances of the
attached class that can be associated with an instance of the class attached to the other end. For example,
suppose that the children and parents attributes of the Person class were defined via an association:

association Family
parents : Person mult: 2
children : Person mult: *

end

The multiplicity 2 requires all people to have two parents. The multiplicity permits all people to have
any number of children (including 0).

An association introduces a number of implicit definitions. Each association end introduces an attribute
definition to the attached class. Each multiplicity introduces an invariant constraint to the appropriate
class. Both classes have a round trip invariant constraint that requires consistency when using the associ-
ation to navigate from one class to the other and then back again.

1.2.4 Package Definitions

Packages are used in MML to group definitions of model elements. MML provides a powerful package
specialization mechanism that allows packages to inherit from parent packages and to consistently spe-
cialize all of the inherited contents. For example:

package People
class Person

// as given above...
end;
association Family

// as given above...
end

end

Note that the association Family refers to the class Person as defined in the package People. Now, sup-
pose that we want to extend the notion of being a person with an employer:

package Employment extends People
class Person

yearsInService : Integer
end;
class Company

name : String
end;
association Works

company : Company mult: 1
employees : Person mult: *

end
end

The package Employment extends the package People and therefore includes all of the definitions from
People. A package is a name space and we may refer to two different classes called Person: People::Per-
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son and Employment::Person. Employment::Person contains all the definitions from People::Person
extended with a new attribute named yearsInService.

A package may only contain one definition with any given name. Therefore the association named Fam-
ily in the package Employment must refer to the extended definition of Person. All definitions given by
People have been consistently extended in Employment. The notion of consistent extension for model
elements defined in a package is similar to the idea of virtual methods in C++.

Package specialization supports multiple inheritance. For example, a basic model of companies could be
factored out from Employment into a package called Companies . The package Employment would then
be redefined to have two super-packages: People and Companies.

Packages may be nested in which case the for package specialization outlined above hold for the nested
packages. For example, we may define a language as a package called L1 that contains nested packages
named ConcreteSyntax, AbstractSyntax, SemanticDomain in addition to packages that define appropri-
ate mappings. To define an extension of L1 we may define a package L2 that extends L1 and contains
the apaporpriate extensions. The MML package specialization mechanism will ensure that all the models
in L2 are correctly linked together.

1.2.5 Templates

A template is a parametric model element1. When parameters are supplied to the template the result is a

new model element2. The supplied parameter values are model elements3 that are used by the template
to construct, or stamp out, the new model element. Templates are used to capture patterns of recurring
structure, behaviour and constraints that occur in models. Templates differ from specialization, which
also captures patterns, in that there is no dependency between the template and the result of stamping it
out. Specialization captures patterns in terms of (abstract) model elements that are specialized rather
than stamped out. The process of specialization can lead to dependencies both between a super-model
element and its sub-model elements and can also lead to sibling dependencies between different sub-
model elements. Templates are not a replacement for specialization; they offer a new tool to the modeller
that should be used where appropriate.

Suppose that we wish to capture the notion of containment. This involves two classes: a container and a
contained element. Suppose also that all containers provide access to their contained elements via a
method with the same name as the contained element class. Finally, suppose that we know all contained
elements are named and that the container cannot contain two different elements with the same name.
This can be expressed as a template in MML:

package Contains(Container,n1,m1,Contained,n2,m2)
class <<Container>>

<<n2>>():Set(<<Contained>>)
self.<<n2>>

inv
<<“Every” + Contained + “HasADifferentName”>>

self.<<n2>>->forAll(c1 c2 |
c1.name = c2.name implies c1 = c2)

end;
association <<Container + Contains>>

<<n1>> : <<Container>> mult: <<m1>>
<<n2>> : <<Contained>> mult: <<m2>>

end
end

1. Currently our approach has made extensive use of template packages. There is no technical reason why this
approach should not be applied to any model element.

2. Currently the results are ground model elements, i.e. not new templates. There is no technical reason why this
approach should not allow a curried form of template instantiation.

3. This paper uses names as the parameter values. Our approach has used names up to this point, but we feel that
more structured values will be required in general.
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The package Contains is defined to have six parameters. Container is the name of the container class,
Contained is the name of the contained elemnt class, n1 is the name used by an instance of the contained
class to refer to its container and n2 is the name used by an instance of the container class to refer to its
contents. The parameters m1 and m2 are the appropriate multiplicities for the containment.

Throughout the body of the template definition literal names may be turned into expressions that are
evaluated by encluding them in << and >>. The names are supplied as strings and therefore the string
concatenation operator + is used to construct new names.

Suppose that we wished to express the containment relationship between a person and their children:

package People
extends

Container(“Person”,”children”,*,”Person”,”parents”,2)
class Person

// atribute and method definitions
end

end

Stamping out the container template produces a new package that can be used as the parent package of
People. Defining the parents and children attributes this way has not saved much effort, however the
template can be reused when defining the Employment package:

package Employment
extends
Companies,
People,
Container(“Company”,”employees”,*,”Person”,”employer”,1)

end

The Employment package has been completely defined by reusing models and template defined pat-
terns.

1.3 A Tool for Meta-Modelling (MMT)

MMT is a prototype tool written in Java that supports the MMF approach. MMT consists of a virtual
machine that runs the MML calculus which is a simlple object-based calculus that supports higher order
functions. All the MML examples contained in this paper are derived from MML code running on MMT
(some slight simplifications have been applied). MMT defines MML by loading a collection of meta-cir-
cular boot files written in MML. MMT support a Swing-like graphics library in terms of machine primi-
tives. A collection of libraries have been constructed that implement model editors, diagram viewers and
a mechanism for performing all well-formedness checks on a given model.

2.0 The Definition of a Simple Modelling Language

MMF advocates a particular method for defining modelling languages. This approach is currently being
applied to the definition of the modelling language UML and part of the UML 2.0 revision initiative.
The approach leads to a collection of template libraries that capture reusable language properties. These
libraries are then used to express UML as a family of languages.

The libraries of templates and the MMM approach are not limited to the definition of UML. This section
shows how the approach can be used to construct a simple modelling language (SML). A small library of
templates is constructed that capture the essential properties of the modelling language. SML is then
defined by stamping out the templates. Due to space considerations we limit the definition of SML to the
abstract syntax, the semantic domain and the mapping between the two.

SML is a static modelling language that consists of packages and classes with attributes. Packages can
contain both packages and classes. Classes contain attributes. An attribute has a name and a type. SML
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supports inheritance: packages may have super-packages, classes may have super-classes and attributes
may have super-attributes.

The meaning of SML package models is given by snapshots that contain objects. Each object is a con-
tainer of slots which are named values. A package is a classifier for snapshots that contain sub-snapshots
and objects corresponding to the packages and classes in the package. The structure of the syntax,
semantic domain and semantic mapping for SML follows standard patterns that occur in modelling lan-
guages. The following sections show how these patterns can be captured as templates and then how
SML can be defined by stamping out the templates.

2.1 Templates

2.1.1 Named Model Elements

Most modelling elements in SML are named. Like Java, MMT makes use of a toString method when
displaying objects. Note that there is no reason why nameable model elements could not inherit from an
abstract class, however Named is an example of a simple template.

2.1.2 Cloning Model Elements

Packages may have parents. A child package is defined to contain all the model elements defined by the
parent package. A given model element is defined in a single name space; a package provides the name
space for all of its elements. Therefore, when a model element is inherited from a parent package, the
element must be copied and the containing name space must be updated to be the child package.

The process of inheriting a copy of a model element and updating its containing name space is referred
to as cloning. The cloning pattern occurs in two distinct stages: (1) a model element is shallow copied
(no copying of slots) and the containing name space is updated; (2) the slots are copied.

Figure 2 on page 7 shows the definition of a template Clonable that can be used to declare a clonable
model element. The definition uses knowledge about the MML meta-level in order to copy an instance
of the container class. Every object has a method named ‘copy’ that produces a shallpw copy of the
receiver. The template updates the value of the container to be the name space supplied to ‘clone’ and
then invokes all of the methods defined by the container class named ‘cloneAux’. Each method will deal
with copying the slots of the new object ‘o’.

package Named(Model)
class <<Model>>

name : String;
toString():String

"<" + self.of.name + self.name + ">"
end

end

TABLE 1. A template for naming model elements.

package Clonable(Container,Contained)
class <<Contained>>

clone(nameSpace:<<Container>>):<<Container>>
let o = self.copy()

ms = self.of.allMethods()
cs = ms->select(m | m.name = "cloneAux")

in o.<<Container>> := nameSpace []
cs->collect(m | (m.body)(o,nameSpace)) []
o

end
end

end

TABLE 2. A template for clonable model elements.
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2.1.3 Name Spaces

A name space is a container of named model elements that provides a protocol for accessing the ele-
ments by name. There are a variety of increasingly sophisticated approaches to organising name spaces;
options include access modes such as private, public and protected definitions in Java and include the
decision relating to name ownership (should the contained model element own its name or should the
container own all the names of contained elements).

Figure 3 on page 8 shows a template that defines a simple notion of name space in which contained ele-
ments are assumed to own their own names. The template defines a name space lookup protocol involv-
ing local lookup and inherited lookup. The template therefore represents a mixin that requires the
container to define a pair of methods for the contained elements that returns the local contains and the
inherited contents.

2.1.4 Containers

Many model elements in SML contain other model elements. Figure 4 on page 8 defines a simple con-
tainment template. The contains template defines a method for accessing the contained elements; provid-
ing method access allows the contained elements to be encapsulated. A variation of Contains is
SelfContains which has a single parameter. SelfContains is used to express model elements that can con-
tain other model elements of the same type. A root self container contains itself; the method providing
access to the contained elements of a self container removes the ‘self’ from the elements it returns

package NameSpace(Container,Contained)
class <<Container>>
<<"locallyDefines"+Contained>>(name:String):Boolean

self.<<Contained+"s">>()->exists(m | m.name = name);
<<"localLookup"+Contained>>(name:String):Set(<<Contained>>)

self.<<Contained+"s">>()->select(m | m.name = name);
<<"defines"+Contained>>(name:String):Boolean

self.<<"all"+Contained+"s">>()->exists(m | m.name = name);
<<"lookup"+Contained>>(name:String):<<Contained>>

if self.<<"locallyDefines"+Contained>>(name)
then self.<<"localLookup"+Contained>>(name).selectElement()
else if self.<<"defines"+Contained>>(name)

then self.<<"all"+Contained+"s">>()->select(m |
m.name = name).selectElement()

else state.error("NameSpace::lookup")
endif

endif
end

end

TABLE 3. A template for name spaces.

package Contains(Container,Contained)
class <<Container>>

<<Contained + "s">>():Set(<<Contained>>)
self.<<Contained + "s">>

cloneAux(me:<<Container>>,nameSpace:<<Container>>)
me.<<Contained + "s">> :=

(me.<<Contained + "s">>()->collect(x |
x.clone(nameSpace.<<"lookup" + Container>>(me.name))))

end;
association <<Container + Contained>>

<<Container>> : Contains::<<Container>> mult: 1
<<Contained + "s">> : Contains::<<Contained>> mult: *

end
end

TABLE 4. A template for container model elements.
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(thereby satisfying the round trip constraint and also preventing cycles occurring when processing the
contained elements).

The template defines a method for cloning the contained elements when a container instance is cloned.
The cloneAux method is supplied with the model element to clone (me) and the current name space
(nameSpace) containing the model element. Each contained element is passed its name space by looking
up the appropriate model element in nameSpace. In the absence of package specialization, the name-
Spaces passed to model elements when they are cloned will be the appropriate copy of the original
nameSpace container for the element. However, if a package is specialized, nameSpaces may be
extended in which case the cloning mechanism will guarantee that the most specific definition is sup-
plied to clone as the containing name space.

2.1.5 Specialization

Specialization in modelling languages is a relationship between model elements. Specialization occurs
in many different variations, for example inheritance is usually used to mean the ability to extend exist-
ing definitions with new features; conformance requires instances of one class to be substitutable for
instances of another class in some or all contexts. We claim that variations of specialization can be cap-
tured as a collection of patterns that are combined in a number of different ways. It is beyond the scope
of this paper to deal with the issue of specialization in depth, however we give a collection of templates
for a simple version of inheritance in SML.

In SML packages may be extended to contain new definitions; classes can be extended to contain new
attributes, methods and constraints. Specialization may occur explicitly when the modeller defines a
package to extend a super-package or defines a class to extend a super-class. Specialization may occur

implicitly when the container of a model element m specializes another container that defines a model
element m’ such that m and m’ have the same name. Figure 5 on page 9 defines a template that captures
the basic notion of a specializable model element. Every specializable model element must have a set of
parents of the same type. The method allLocalParents is the transitive closure of the parents relation.

The contents of a container are defined by its parents. The parents of a container are the local parents, as
defined above, any any parents which are inherited from its own container. The following diagram
shows how this works:

Package P defines classes A and B and a binary association between them. The binary association has
ends named a and b causing two attributes to be added to the classes at opposite ends of the association.
Package Q defines two classes A and B with an attribute and an operation respectively. Package P is the

package Specializable(Model)
class <<Model>>

parents : Set(<<Model>>);
allLocalParents() : Set(<<Model>>)

self.parents->iterate(parent P = self.parents |
P->union(parent.allLocalParents()))

end
end

TABLE 5. A template for specializable model elements.

A +a

*

+b

*

P

Q

B

+x : int

A

+m() : bool

B
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parent of package Q. In order to compute the attributes of Q::A we must first compute its parents. A has
no parents in Q but since the container of Q::A has parents we must inspect P in order to check whether
it defines a class named A. We find it does and that P::A has an attributes named b. Therefore Q::A
defines an attribute named b. The type of Q::A::b is a class called B which must be referenced with
respect to the container of Q::A, namely Q. We find that Q defines Q::B and therefore the type of Q::A::b
is Q::B. If we repeat this process for Q::B we find that Q::B defines Q::B::a whose type is Q::A. If we
flatten the package inheritance the result is as follows:

A specializable container requires both the container and the contained model elements to be specializa-

ble. The complete set of parents for the contained model elements are defined by computing both the
local parents (the transitive closure of the parents relation) and the inherited parents via the container.
The contents of a container are computed with respect to all parents of the container. The template for
specializable containers is defined in Figure 6 on page 10.

All the contained elements of a specializable container are constructed as follows. Firstly all the parents
of the container are constructed (recall that the parents of a model element will include both the locally
defined parents and the parents inherited from the container’s container). The locally defined contents
are merged with the contents of all the parents after removing any parent contents that are shadowed
locally. Finally, all inherited contents must be cloned in order that they are correctly contained.

package SpecializableContainer(Container,Contained)
extends Specializable(Container),Specializable(Contained)

class <<Container>>
<<"all" + Contained + "s">>() : Set(<<Contained>>)
self.allParents()->iterate(parent S = self.<<Contained+"s">>() |

S->union(parent.<<"all"+Contained+"s">>()->reject(c |
self.<<“locallyDefines + Contained>>(c.name))->collect(c |

c.clone(self))))
inv

<<Contained + “sHaveDifferentNames”>>
self.<<“all” + Contained + “s”>>()->forAll(c1 c2 |

c1.name = c2.name implies c1 = c2)

end;

class <<Contained>>
allParents() : Set(<<Contained>>)

self.allLocalParents()->union(self.allInheritedParents());
allInheritedParents() : Set(<<Contained>>)

if self.<<Container>> = self
then Set{}
else self.<<Container>>.allParents()->iterate(parent S = Set{} |

S->union(parent.<<"all"+Contained+"s">>()->select(m |
m.name = self.name)))

endif
end

end

TABLE 6. A template for specializable containers.

Q

+x : int

A

+m() : bool

B+a

*

+b

*
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The container class invariant requires all the contents of a container to have different names. This cin-
straint forces multiple definitions with the same name to be merged. The rules for merging can differ
quite widely between modelling languages and between different modelling elements in the same lan-
guage. Merging is therefore left open in SML.

2.1.6 Relations

A relation has a name and holds between a class of domain elements and a class of range elements. A
relation is essentially an association class that defines a constraint on pairs of domain and range
instances. Figure 7 on page 11 defines a template for general purpose relations.

2.1.7 Instantiation

A key feature of the MMF approach is the definition of modelling languages in terms of their abstract
syntax and semantic domain. The abstract syntax is a model of the legal sentences of the language. The
semantic domain is a model of the legal meanings that sentances can take. A language definition is com-
pleted by a model of the mapping between the abstract syntax and the semantic domain.

The relation between abstract syntax and semantic domain is referred to as instantiation. In general the
instantiation relation between a model element and its instances may be aribitrary (expressions denote
values, classes denote objects, state machines denote filmstrips, etc). However, if we know the structure
of the abstract syntax and semantic domain then this places structure on the instantiation relationship.
This structure can be expressed as templates.

Consider Figure 8 on page 11 which shows a typical instantation relationship between two containers
called ContainsInstances1. The instantiable model elements are shown on the left of the diagram and the
instances are shown on the right. Elements of type A contain elements of type B and elements of type X
contain elements of type Y. Elements of type A have instances of type X and elements of type B have
instances of type Y. We wish to express the instantiation constraint that in order for an X to be classified
as an instance of an A (R1) every Y that the X contains must be an instance of some B that the A con-
tains (R2).

package Relation(Name,Domain,Range)
class <<Name>>

left : <<Domain>>;
right : <<Range>>

end
end

TABLE 7. A template for general purpose relations between model elements.

TABLE 8. Instantiable Containment

ContainsInstances1(R1,A,B,R2,X,Y)

R1

A
X

B

B
B

B

B

Y
Y

Y
Y

R2

R2

R2
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This form of instantiation relationship occurs between packages and snapshots where every object in the
snapshot must be an instance of some class in the package, however not all classes need to be instanti-
ated in the snapshot.

Figure 9 on page 12 shows this relationship defined as a template. Other instantiation relationships are
possible. For example, if we view slots as the instances of attributes and objects as the instances of
classes then classes contain attributes and objects contain slots. An object is a well formed instance of a
class when all the attributes have instances. This relationship can be defined as a template which we will
call ContainsInstances2. Finally, there is an instantiation relationship which is defined as follows:

package ContainsInstances(R1,A,B,R2,X,Y)
extends

ContainsInstances1(R1,A,B,R2,X,Y),
ContainsInstances2(R1,A,B,R2,X,Y)

end

2.1.8 Relationships between attributes

Figure 10 on page 12 shows the definition of a template for relating attributes between models and two
specializations of the template. An attribute relation involves a domain class and a range class. The rela-
tion specifies the domain and range attributes that are to be associated and also specified the predicate
that will be used to check the values of the attributes. The invariant constraint in RelateAtt simply
applies the predicate to the values of the slots in domain and range objects.

package ContainsInstances1(
R1,ModelContainer,ModelContained,
R2,InstanceContainer,InstanceContained)

extends
Relation(R1,ModelContainer,InstanceContainer),
Relation(R2,ModelContained,InstanceContained)

class <<R1>>
left : <<ModelContainer>>;
right : <<InstanceContainer>>
inv
<<"InstancesOf"+ModelContainer+"ContainsInstancesOf"+ModelContained>>
self.right.<<InstanceContained + "s">>()->forAll(i |

self.left.<<"all" + ModelContained + "s">>()->exists(m |
<<R2>>.new(Seq{m,i}).check() = Set{}))

end
end

TABLE 9. A template for instantiable containers.

package RelateAtt(R,Domain,Range,DomainAtt,RangeAtt,Pred)
extends Relation(R,Domain,Range)
class <<R>>
inv

<<"Relate"+Domain+"::"+DomainAtt+"To"+Range+"::"+RangeAtt>>
Pred(self.left.<<DomainAtt>>,self.right.<<RangeAtt>>)

end
end;

package SameName(R,Domain,Range)
extends

RelateAtt(R,Domain,Range,"name","name",=)
end;

package TypeCorrect(R,Domain,Range)
extends

RelateAtt(R,Domain,Range,"type","value",check)
end

TABLE 10. A template for relating attributes and a specialization for names.
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SameName associates a domain and range object by requireing that they have the same values for the
slot ‘name’. In SML this constraint is required when associating the attributes of a class with the slots of
an instance of the class. TypeCorrect associates a domain class with an attribute named ‘type’ and a
range class with an attribute named ‘value’. The predicate is satisfied when all the invariant constraints
of the type return true for the value.

2.2 Definition of SML

We have described the MMF approach to language definition which is to model all components of the
languages and to employ object-oriented techniques to achieve modularity and reuse. The previous sec-
tion has used the novel technology of package specialization and templates to define a library of model-
ling language patterns. This section shows how the patterns can be used to construct a simple modelling
language called SML.

2.2.1 Abstract Syntax

Figure 11 on page 13 shows the definition of the abstract syntax model for SML. It is interesting to note
that the MMF approach achieves a declarative specification of the model in terms of its properties
explicitly listed in the ‘extends’ clause for the package. For example, we know that a package has the
properties of a specializable container, that a package contains both packages and classes, and so on. If
we were to define the abstract syntax as the result of flattening this definition, many of these properties
would be implicit and therefore difficult to extract.

package AbstractSyntax

extends

SelfContains("Package"),

SpecializableContainer("Package","Package"),

SpecializableContainer("Package","Class"),

SpecializableContainer("Class","Attribute"),

Specializable("Attribute"),

Contains("Package","Class"),

Contains("Class","Attribute"),

Clonable("Package","Class"),

Clonable("Package","Package"),

Clonable("Class","Attribute"),

Named("Package"),

Named("Class"),

Named("Attribute"),

NameSpace("Package","Package"),

NameSpace("Package","Class"),

NameSpace("Class","Attribute")

class Attribute

type : Class

cloneAux(me:Attribute_,nameSpace:Class)

me.type := (nameSpace.Package.lookupClass(me.type.name))

end

end

TABLE 11. The SML Abstract Syntax Model
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2.2.2 Semantic Domain

Figure 12 on page 14 shows the semantic domain for SML. This domain is much simpler than the
abstract syntax model. In our work using templates to define a UML 2.0 infrastructure we have a much
richer semantic domain (for example, snapshots, objects and slots have parents). One of the benefits of
the MMF approach is that we can easily refactor the structure of a model in terms of its properties by
adding new templates to the ‘extends’ clause of the package.

2.2.3 Semantic Mapping

Figure 13 on page 14 shows the semantic mapping for SML. The semantic mapping includes all of the
elements from the abstract syntax and semantic domain and then constructs relations between them. For
example, the relation PackXSnap is defined to check that every object contained in a snapshot is an
instance of some class in the corresponding package.

3.0 MMF, UML 2.0 and MDA

This section considers in more detail how elements of MMF address issues of the current UML 2.0 revi-
sion and the newly-announced OMG MDA strategy. The main impact of MMF ideas is in the area of
UML infrastructure, as distilled in the UML 2.0 infrastructure RFP. The RFP requires that the UML
meta-model be restructured to separate kernel constructs from the standard elements that depend on
them, that the meta-model be organised as a collection of packages, that the meta-model enfore a sepa-
ration of concerns between notation and semantics with mappings between them, and that the kernel
should support profiles. We believe that the MMF approach addresses all of these requirements.

In a wider context, MMF tackles a number of issues essential to realise the Model Driven Development
(MDD) dream, which has at least one incarnation in the new OMG strategy of Model Driven Architec-
ture (MDA) [OMG01]. An interesting vision of MDD/MDA has been presented by Desmond D'Souza
[D’So01].

package SemanticDomain

extends

SelfContains("Snapshot"),

Contains("Snapshot","Object"),

Contains("Object","Slot"),

Named("Snapshot"),

Named("Slot")

class Slot value : Object end

end

TABLE 12. The SML Semantic Domain Model

package SemanticMapping

extends
AbstractSyntax,
SemanticDomain,
ContainsInstances1(

"PackXSnap","Package","Class",
"ClassXObj","Snapshot","Object"),

ContainsInstances(
"ClassXObj","Class","Attribute",
"AttXSlot","Object","Slot"),

SameName("AttXSlot","Attribute","Slot")
TypeCorrect("AttXSlot","Attribute","Slot")

end

TABLE 13. The SML Semantic Domain Model
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4.0 Conclusion and Future Work

This paper has described the MMF approach to engineering ModelingLanguages. The approach sepa-
rates the issues of how to modelsyntax and semantics domains and allows languages to be develope-
dfrom modular units. The approach also supports reusable patternsfor language engineering. The paper
has illustrated the approachwith a small modeling language which is then extended in twodifferent ways:
a static extension and a dynamic extension. The potential application of the MMF approach to the revi-
sion of UMLand to realizing Model Driven Architecture (MDA) has been discussed.

MMF aims to provide coherent methods, technology and tools for engineering modelling languages. The
core technology is not new, the methods for defining languages are well developed, the techology has its
roots in Catalysis [D’So98] and has been developed further in [Cl01d] and [D’So99]. The novelty in
MMF arises from bringing these otherwise disparate technologies together within a single consistent
object-oriented framework.

The MMF approach does not use a formal mathematical language toexpress the semantics of the lan-
guages; however, it is sufficiently expressive to support the infrastructure of these approaches and there-
fore can benefit from many of the results such as [Bot00] and [Ric00b]. The MMTtool is still under
development and has its roots in OO meta-programming theory and systems such as Smalltalk, CLOS
and the ObjVLisp model; the consequence of this is that the tool is very flexible. Other tools exist, such
as Argo and USE [Ric00a] [Hus00] that can be used to model languages; however these tools tend to
have a fixed meta-model.

Further work is focussing on a number of areas. We are applying the approach to the definition of rich
and expressive visual modeling languages, such as [Ken97] and [How99]. In particular, the syntax
employed in these diagrams is more sophisticated than that typically employed in UML. We are engaged
in the UML 2.0 revision process, and using MML ideas to help redefine aspects of UML with one of the
main submission teams. But perhaps our most ambitious plans are in applying the MMF approach to
realise MDA. For example, we are looking at the use of MMF to define mappings from precise OO spec-
ifications of e-Business systems down onto their realisation on particular combinations of implementa-
tion technologies. In a similar context, we are looking at Model Driven Testing. We are exploring the use
of packages to encode modeling patterns in specific application areas, as well as encoding different
implementation strategies as patterns at the meta-modelling level.
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