
LEAP: A Precise Lightweight Framework for Enterprise
Architecture

Tony Clark
School of Engineering and

Information Sciences
Middlesex University
Hendon, London, UK,

NW44BT
t.n.clark@mdx.ac.uk

Balbir S. Barn
School of Engineering and

Information Sciences
Middlesex University
Hendon, London, UK,

NW44BT
b.barn@mdx.ac.uk

Samia Oussena
School of Computing

University of West London
St. Mary’s Road, Ealing,

London, UK
samia.oussena@tvu.ac.uk

ABSTRACT
This paper proposes LEAP: a simple framework for Enter-
prise Architecture (EA) that views an organization as an
engine that executes in terms of hierarchically decomposed
communicating components. The approach allows all as-
pects of the architecture to be precisely defined using stan-
dard modelling notations. Given that the approach is sim-
ple and precisely defined it can form the basis for a wide
range of EA analysis techniques including simulation, com-
pliance and consistency checking. The paper defines the
LEAP framework and provides an overview in terms of a
case study. LEAP does not mandate any specific notation,
a UML-style notation is used in this paper and the implica-
tions for ArchiMate are analysed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.0 [Computer Systems Organization]: Systems Archi-
tectures

General Terms
Modelling

Keywords
Enterprise Architecture, Model Driven Engineering

1. INTRODUCTION
Enterprise Architecture (EA) aims to provide a holistic

view of a business from the business drivers through to
their implementation using information systems. The lead-
ing technologies for EA provide diagram-based models for
expressing architectures, however the diagrams are not based
on a precise semantics and therefore can become difficult to
manage when, inevitably, EA models become large and com-
plex. Key features of EA technologies are that they provide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC 2011 India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

different views of an organization and that they link the
business motivators (goals) to their realization in technol-
ogy. Model driven approaches can help to add precision to
EA by using models to link various views and by defining
semantics for the modelling languages.

This paper reviews EA in section ?? including a leading
EA technology (ArchiMate in section ??) and one of its pro-
posed extensions (section ??). The key problem we address
is one of precision in EA technologies (section ??). Our
contribution is the definition in section ?? of a precise mod-
elling language for EA, called LEAP, that can be mapped
directly to leading EA technologies. LEAP is used in sec-
tion ?? to develop and analyse part of an architecture for
a university. The proposed extension to ArchiMate involves
adding business goals and we show in section ?? how these
can expressed and formally analysed in LEAP.

2. AN OVERVIEW OF EA
Enterprise Architecture (EA) aims to capture the essen-

tials of a business, its IT and its evolution, and to support
analysis of this information: ‘[it is] a coherent whole of prin-
ciples, methods, and models that are used in the design and
realisation of an enterprise’s organizational structure, busi-
ness processes, informaion systems and infrastructure.’ [?]

A key objective of EA is being able to provide a holistic
understanding of all aspects of a business, connecting the
business drivers and the surrounding business environment,
through the business processes, organizational units, roles
and responsibilities, to the underlying IT systems that the
business relies on. In addition to presenting a coherent ex-
planation of the what, why and how of a business, EA aims
to support specific types of business analysis including [?, ?,
?, ?, ?]:

Alignment Alignment between business functions and IT
systems; identification of inconsistencies and missing
elements.

Business Change EA is often used to describe the cur-
rent state of a business (as-is) and a desired state of a
business (to-be).

Maintenance The de-installation and disposal, upgrading,
procurement and integration of systems including the
prioritization of maintenance needs.

Quality Managing and determining the quality attributes
for aspects of the business such as security, perfor-

mance to ensure a certain level of quality to meet the
needs of the business.

Acquisition and Mergers Businesses often need to plan
to acquire other businesses (or indeed plan to be taken
over). EA can describe the alignment of businesses
and the effect on both when they merge.

Compliance Businesses exist in a regulatory environment
where external constraints are imposed on how the
business operates. An example of regulations is the
Sarbanes-Oxley Act of 2002 that assigns personal re-
sponsibility to senior management of public and non-
public organizations in the U.S.

Strategic Planning Corporate strategy planning, business
process optimisation, business continuity planning, IT
management.

EA has its origins in Zachman’s original EA framework [?]
while other leading examples include the Open Group Archi-
tecture Framework (TOGAF) [?] and the framework pro-
mulgated by the Department of Defense (DoDAF) [?]. In
addition to frameworks that describe the nature of models
required for EA, modeling languages specifically designed for
EA have also emerged. One leading architecture modelling
language is Archimate [?].

2.1 Enterprise Architecture Modelling
The first step in EA analysis is to construct a model of a

business. The model should describe features such as con-
straints, alternatives, impact or feasibility which will help
in decision making processes. If the EA cannot support
such rational decision-making then it cannot be seen as a
good model. Thus there are some key requirements on the
current technologies that are used for EA activity. These
requirements can be summarised as the following and are
consistent with that identified by Johnson et al. [?]:

• To support decision making, an EA language requires
that the notation will support the decision-maker’s
goals, the domain in which the decision is required and
the causal relations between that which is controlled
and the decision.

• The language must display precision such that there is
clarity on any of the represented concepts.

• The language must exhibit behavioral semantics - that
is support how concepts affect each other as a result
of actions.

• The language must support representation of concepts
at different levels of abstraction.

As systems supporting business become increasingly more
significant and complex an important approach to manage-
ment and planning of systems that has gained prominence
is model-based Enterprise Architecture (EA). An Enterprise
Model is a computational representation of the structure, ac-
tivities, processes, information, resources, people, behaviour,
goals and constraints of a business, government, or other en-
terprise. It can be both descriptive and definitional - span-
ning what is and what should be. The role of an enterprise
model is to achieve model-driven enterprise design, analysis
and operation [?].

Figure 1: Basic ArchiMate Modelling

As described in [?]: ‘Holistic approaches to EA deploy
a multi-level framework or a hierarchy of design layers in
order to represent the different views of an enterprise [...].
But these multi-layer approaches are often rather abstract,
do not consider all necessary design layers, or do not specify
consistency in adequate rigor.’

A number of specialized modelling notations have been
proposed for EA modelling. In most cases these notations
provide a number of views or layers that capture the en-
terprise from different perspectives. The notations provide
domain specific modelling languages (DSMLs) for EA and
as such provide a good conceptual fit to the problem of rep-
resenting EA domain elements and their relationships. A
representative example of such a DSML is ArchiMate [?] as
described in the next section.

2.2 ArchiMate
ArchiMate [?] [?] is a standard managed by the Open

Group (http://www.opengroup.org/archimate). It consists
of a framework of layers and aspects similar to the Zach-
man framework [?] that defines a theory or ‘world view’
about the way enterprises are structured. The aspects are
described using a set of modelling concepts that constitute
a DSML for EA. The framework is described in figure ??
which is taken from [?]. The framework distinguishes be-
tween the business layer (concerned with products and ser-
vices offered to customers), the application layer (concerned
with the application services that the company implements
internally), and the technology layer (concerned with the in-
frastructure services necessary to run the applications). To
model each layer, Archimate provides model elements that
express information, behaviour and structure. ArchiMate
provides modelling concepts in each of the three layers:

Business actor; role; collaboration; interface; object; pro-
cess; function; interaction; event; service; representa-
tion; meaning; value; product; contract.

Application component; collaboration; interface; object;
function; interaction; service.

Technology node; device; network; communication path;
interface; software; service; artifact.

Figure 2: UML ArchiMate Profile

Clearly there is a great deal of overlap between the mod-
elling concepts in the different layers; for example, interface
occurs in all three layers, and function occurs in the first two.
There are concepts whose meaning would seem to overlap,
for example process, service and function. Archimate pro-
vides a notation for each of the modelling concepts. The no-
tation has a syntax definition in the form of well-formedness
constraints, however there is no semantics in the sense of
axiomatic, denotational or operational definitions.

There is a proposal for a UML profile for ArchiMate [?].
An overview of the proposal is shown in figure ?? where the
business layer is modelled using class diagrams, the appli-
cation layer using component diagrams and the technology
layer using deployment diagrams. However this does not
constitute a semantics since UML itself does not have a pre-
cise semantics. The lack of semantics makes it difficult to
compare model elements for similarity, difference and redun-
dancy. Futhermore, the lack of semantics makes it difficult
to determine the meaning of extensions to the language as
proposed in the next section.

2.3 Extending ArchiMate
Engelsmanb et al. [?] propose an extension to Archimate

shown in figure ?? that is motivated by features from Goal
Based Requirements Engineering [?] and the Business Moti-
vation Modelling (BMM) notation [?] defined as a standard
by the OMG. Goals are considered as high-level objectives
of some organization or system. Goals are conditions to be
satisfied by some aspect of a system or or a system modifi-
cation. Goals can be decomposed into and-or trees and can
be used with respect to different viewpoints of a system [?,
?].

The extension to ArchiMate for business motivation pro-
posed in [?] allows goals to be added to the business layer

Figure 3: Extended ArchiMate Modelling

Figure 4: Goal Representation

of an EA model. The proposed notation allows goals to
be added to a model as boxes containing free format text.
Goals may be decomposed as trees. The proposal claims
to be able to test whether goals conflict. The example dis-
cussed in [?] involves hospital patient records where the
goal of compliance to security guidelines conflicts with free
access to patient data as shown in figure ?? can be shown
to conflict.

As it stands, ArchiMate provides three aspects: infor-
mation, behaviour, and structure. The proposed extension
adds motivation and value as a new aspect and a new layer
respectively. Motivation expresses features such as goals,
objectives and directives in the different layers so that the
reasons for decisions and the conditions under which busi-
ness processes correctly achieve the business requirements
can be clearly stated and tested. The extension is defined
in [?] with respect to a meta-model and then used to ex-
press motivation in a hospital case study where goals are
decomposed.

2.4 Problem and Contribution
ArchiMate represents a domain specific language for ex-

pressing EA, however it suffers from: (1) overlapping con-
cepts; (2) lack of precision and semantics; (3) lack of refine-
ment relationships between layers. The business motivation
extension to ArchiMate described in section ?? incorporates
mechanisms that have been used elsewhere in requirements
engineering and system modelling, and the resulting exten-
sion allows conditions to be expressed that must be satisfied
by any suitable EA model. However, unlike many system en-
gineering approaches, Archimate is not sufficiently precise to
allow the satisfaction criteria to be tested. Verification is left
to human interpretation, which means that complex archi-
tectures can be prone to error. It is also difficult to see how
tooling can be developed to support motivation modelling.

Figure 5: Precise Meta-Modelling

Figure 6: LEAP Models

Our contribution is to use a precise meta-modelling ap-
proach [?] to define a simple EA modelling language based
on the Unified Modelling Language (UML), that addresses
the problems described above. UML is a good fit for EA as
shown in the ArchiMate profile for UML. The approach is
outlined in figure ?? where a language is modelled in terms
of concrete syntax, abstract syntax and semantics. The re-
lationships between the component models of a language are
defined as mappings.

The language is called LEAP and provides a minimal, but
precisely defined collection of concepts that can be mapped
to ArchiMate model elements. Business motivation that has
been proposed as an extension to ArchiMate is defined in
LEAP using the Object Constraint Language (OCL) stan-
dard that is part of UML. OCL is a formal language that can
be used to precisely define the semantics of motivation and
therefore to check consistency and verify EA models. This
paper defines the LEAP language and shows how it can be
used to express an EA model, including business motivation,
using a case study.

3. LEAP: LIGHTWEIGHT, PRECISE EA

Figure 7: Business Change

Figure 8: Layer Models

3.1 Overview
Fig ?? shows an overview of the models involved in us-

ing LEAP to express an enterprise architecture. LEAP is a
model based approach and therefore all components of the
approach are modelled starting with the business layer which
captures the key information relating to the EA analysis be-
ing undertaken. The business layer captures the business
concepts and the constraints relating to business drivers, di-
rectives and processes. Typically, a business layer will not
include details of organizational structure.

The application layer is a refinement of the business layer.
A refinement is a more detailed viewpoint of the same or-
ganization; typically, a business layer refinement will add
organizational structure and associated business processes
to the information contained in the business layer. It is
important that the information in the application and busi-
ness layers are consistent. To ensure this, the refinement is
modelled. The business refinement model contains elements
that link business and application concepts, ensuring that
no information is lost.

The technology layer is a refinement of the application
layer. Typically it introduces further detail by mapping the
required logical business components to their physical re-
alization in the form of IT systems. Like the business re-
finement, the application refinement is modeled and links
elements to ensure that no information is lost.

LEAP can be used to analyse business change. Figure ??
shows two LEAP models. The first model is used to describe
the current state of the organization and the second is used
to describe a desired configuration of the organization. The
relationship between the two is a business change model that

Figure 9: Refinement Between Layers

Figure 10: Layer Semantics

links elements in the as-is state to elements in the to-be state.
A feature of LEAP that differentiates it from other ap-

proaches to EA, for example the ArchiMate approach, is
the requirement to model the relationships between the dif-
ferent layers and organization states. These models force an
enterprise architect to be specific about the features of the
organization that are being expressed in different viewpoints
of a system. In the case of business change, the models
clearly explain what changes are necessary.

In addition to modelling the relationships between views
and states, LEAP models have a semantics that allows the
models to be checked.

3.2 Modelling Layers
Leap takes some of its inspiration from Catalysis [?] in-

cluding modelling a system as a component and system de-
velopment as step-wise refienement. Each component rep-
resents a coherent grouping of information and behaviour
in the organization. Constraints are used to specify the re-
quired behaviour and express invariants over the information
held in the components. Refinements between layer models
increase the level of detail; refinement is repeatedly applied
until the components are mapped to physical systems (ex-
isting or yet to be implemented). In ArchiMate and related
approaches, there are three layers; however; LEAP is not
limited to three layers and can accommodate any number of
refinements.

The meta-model for LEAP is shown in figure ??. It pro-
vides the essential features of both class and component
UML models. As discussed in [?] the first two layers of

ArchiMate can be expressed using UML class and compo-
nent models respectively. The third layer (technology) can
be expressed using UML deployment models which are es-
sentially component models. We therefore propose that a
combination of class and component models can be used to
express essential ArchiMate-style EA models extended to
more than three layers where appropriate.

In LEAP layer models the entire organization is a top-
level component. Components may contain both classes and
components. Contained classes are used to define the infor-
mation managed by a component. Sub-components are used
to define logical and physical sub-systems in an organization.
The behaviour of a component (business rules) are defined
as operations in LEAP, where the behaviour of an opera-
tion is specified by a pre and post condition. A component
has an invariant that places constraints on its structure and
behaviour.

LEAP uses conditions in two ways: as invariants and as
pre and post conditions on operations. In both cases the con-
ditions are expressed using the Object Constraint Language
(OCL) [?]. This allows constraints to captured in a formal
language that can be checked precisely.

3.3 Refinement
LEAP layer models are related by refinement. A refine-

ment maps different views of a system from a high-level
view to a lower-level view. In ArchiMate, refinement is not
precisely defined. In LEAP the relationships between the
two layers must be modelled. The refinement meta-model
is shown in figure ?? where a refinement relationship holds
between a from component (the high-level layer) and a to

component (the low-level layer). The refinement relation-
ship has two elements: cmaps and omaps that relate com-
ponents and operations respectively. A constraint requires
that all the high-level elements are mapped by the refine-
ment but that the lower-level component may contain more
elements:

context Refinement inv:
from.components = cmaps.from and
from.components.operations = cmaps.operations and
refinements.from = from.components

Although the refinement mapping can be expressed as a di-
agram, it is more convenient to express it using a textual
syntax with the following format:

refine <layer>(<high-level>,<lower-level>) components :
<cmap constraints>
refine <layer>(<high-level>,<lower-level>) operations :
<omap constraints>

where the <cmap constraints> and <omap constraints>

are OCL expressions denoting instances of CMap and OMap

respectively.

3.4 Semantics
The semantics of each architecture layer is defined as a

collection of traces. A trace is a sequence of steps. Each
step describes the system state change that occurs when a
message is sent to a component. A message consists of the
target component, the name of the message (an operation
defined by the target) and a sequence of operation argument
values. The model used to express layer semantics is defined
in figure ??.

We use the semantics later in this paper to show how
a refinement can be verified. We want to be as precise as

possible when describing the verification and therefore make
use of the semantics model. One way to do this is to draw out
object diagrams that are instances of the semantic model.
However, this takes up a great deal of space. A more succinct
way of expressing instances of models is using a text format
where an instance has the form:

(C,o)[n=v;...] when Q

where C is the name of a class, o is an object identifier, n is
the name of a field (or role end), v is a value (another object,
atomic value or a sequence of values [v,w,...]), and Q is
an OCL constraint. A key feature of this approach is that
o, v and Q may contain free-variables allowing the instance
to be a pattern, for example:

(Object,o)[
slots=[
(Slot,s1)[name=’me’;value=o],
(Slot,s2)[name=’age’;value=x]]]
when x < 100

This instance pattern corresponds to an object with two
slots. The first slot is called me and references the object
(note the self reference o) and the second slot is named age

and has any value greater than 100. Note that we may omit
slots and object identifiers when they are not important.

LEAP is a precise modelling language in the sense that
it supports constraints written in OCL, has a semantic do-
main, and requires relationships between different views to
be modelled. The next section shows how LEAP is used to
perform business change analysis in terms of as-is and to-be
models.

4. CASE STUDY
The University of Middle England (UME) is worried about

its future. After some analysis the key reason seems to be
that students find the resources are used for teaching and
learning activities to be badly aligned and that some of the
modules assume that all students have their own lap-tops
(which is not always the case).

As a result of this analysis UME decides to implement a
lap-top loan scheme whereby students who do not have their
own facilities can loan them from UME at no cost. The
scheme raises questions about which modules require lap-
tops, whether the current teaching and learning rooms are
suitable for lap-top usage, and whether UME has suitable
software with appropriate licenses for use by students.

In order to implement the lap-top scheme, UME decides to
use EA. Having used EA to design a migration path, UME
wants to determine whether the scheme is consistent with its
business goals and to understand how its new architecture
operates.

4.1 As-is Analysis
The first step in EA analysis is to get a clear understand-

ing of the current state of the organization. A working group
is tasked by the UME executive to come up with a descrip-
tion of the information structures relating to student teach-
ing and learning. The result is shown in figure ??.

There is a single component university that defines the
essential information structures and operations that are likely
to be effected by the introduction of the lap-top loan scheme.
The model defines the information describing the as-is state
in the business-layer as defined by ArchiMate. The goals of
the layer are specified as an OCL invariant:

Figure 11: As Is (Business)

Figure 12: As Is (Application)

context university_as_is(business) inv:
students.studies->subset(modules) and
schedule->foraAll(s |
rooms->includes(s.room) and
modules->includes(s.room))

The operations are defined using OCL; each operation is
given a context (the owning component), a name, some ar-
guments, and a pre and post condition. The conditions spec-
ify the change in state that occurs as a result of performing
the operation. The following example shows how student
registration is defined (other operations are similar and are
omitted.):

context university_as_is(business)::register(s:Student,m:Module)
post: students->includes(s) and

modules->includes(m) and
student.modules->includes(m)

4.2 Business to Application Refinement
A refinement to the diagram in figure ?? produces an as-

is model of UME that describes the application-layer. The
result of the refinement is shown in figure ?? where two
components have been identified. The registry component
is responsible for maintaining a database of students and
their modules. The resources component is responsible for

maintaining a database of room bookings. The refinement
also re-allocates some of the operations. This can be for a
variety of reasons, for example operations may be reusable if
they are decomposed or may map onto the technology layer
more readily. For example;

context university_as_is(application)
::registerStudent(s:Student)=registry.registerStudent(s)
::registerModule(m:Module)=registry.registerModule(m)
::allocateStudent(s:Student,m:Module)=registry.allocateStudent(s,m)

context university_as_is(application)::registry
::registerStudent(s:Student)) post: students->includes(s)
::registerModule(m:Module) post: modules->includes(m)
::allocateStudent(s:Student,m:Module)
post: s.modules->includes(m)

The refinement is complete when there is a refinement map-
ping between the business layer and the application layer.
The mapping is defined as a sub-class of EA refinement and
is expressed in OCL as follows:

refine university_as_is(business,application) components :
from.students = to.registry.students and
from.modules = to.registry.modules and
from.rooms = to.resources.rooms and
from.modules = to.resources.modules and
from.schedule = to.resources.schedule and
from.funds = to.funds

The component mapping requires all of the application classes
to map onto their business counterparts. Note that although
the class Module appears twice in the application layer, the
refinement requires both occurrences to be the same through
the mapping to the single occurrence in the business layer.
Note also that a student’s modules and room bookings must
be consistent in the application layer.

The refinement must define how each of the operations in
the business layer is implemented in the application layer.
Often business layer operations will have simply been allo-
cated to an application layer component. In that case the
refinement mapping is simple. In other cases the business
layer operation may be implemented by a number of coor-
dinating application layer operations as shown below:

refine university_as_is(business,application) operations :
from.register(s,m) =
to.registerStudent(s);
to.registerModule(m);
to.allocateStudent(s,m)

4.3 Verification of the Refinement
In order to show that the as-is refinement is correct we

must satisfy the condition that all semantic models satisfy-
ing the application layer also satisfy the business layer under
the specified refinement mapping. If the refinement mapping
is applied to the business layer constraints they become ad-
ditional constraints at the application layer:

context university_as_is(application) inv:
registry.students.studies->
subset(registry.modules->union(resources.modules)) and

resources.schedule->forAll(s |
resources.rooms->includes(s.room) and
resources.modules->union(registry.modules)->includes(s.room)) and

resources.modules = registry.modules

Clearly any application layer trace that satisfies this con-
straint will map back to a business layer trace that satisfies
the original business layer invariant.

The operations must also be shown to be valid. Consider
a business layer step that involves registering a student. We
must show that, when the refinement mapping is applied,

Figure 13: To Be (Business)

the resulting application trace maps back correctly to the
business layer.

(Trace)[
steps=[
(Step)[pre=map-1(u);post=map-1(u’’);

message=(Message)[
name=’registerStudent’;target=u;args=[s]]],

(Step)[pre=map-1(u’);post=map-1(u’’);
message=(Message)[
name=’registerModule’;target=u’;args=[m]]],

(Step)[pre=map-1(u’’);post=map-1(u’’’);
message=(Message)[
name=’allocateModule’;target=u’’;args=[s],m]]]

when u’.registry.students->includes(s) and
u’’.registry.modules->includes(m) and
u’’’.registry.students

->select(o | o.id = s.id).studies
->exists(o | o.id = m.id)

Applying the mapping map to this trace produces a business
step as follows:

(Step)[
pre=u
post=u’’’
message=(Message)[name=’register’;target=u;args=[s,m]]]
when u’’’.students->includes(s) and

u’’’.modules->incudes(m) and
u’’’.students
->select(o | o.id = s.id).studies
->exists(o | o.id = m.id)

as required. Therefore the refinement is valid with respect
to the as-is business to application refinement.

4.4 To Be Construction
Having performed an as-is analysis, UME constructs a

to-be collection of models. As described by ArchiMate and
other EA methods, the construction starts with a business
layer that describes the essential features of the desirable
state of the organization. For UME this is shown in figure
??. In practice this probably starts with the model for the
as-is business layer and modified it as required; however this
is not necessary, the analysis could start from scratch. In
the case of UME we add in two new concepts: Laptop and
LaptopBooking. New operations are added:

context university_to_be(business)::registerLaptop(l)
post: laptops->includes(l)

context university_to_be(business)::bookLaptop(s,l,t)
pre: students->includes(s) and laptops->includes(l)
post: bookings->exists(b |
b.time = t and b.laptop = t and b.student = s)

Figure 14: To Be (Application)

As before, the business layer is refined to produce the ap-
plication layer as shown in figure ??. Again, this is based
on the as-is application layer, however a new component
has been introduced to manage the lap-top bookings. The
refinement is much as before:

refine university_to_be(business,application) components:
// as before...
from.laptops = support_services.laptops and
from.students = support_services.students and
from.bookings = student_services.bookings

We omit the operation refinement since no new features are
introduced. The validation of the refinement is straightfor-
ward.

5. BUSINESS GOALS
Having constructed the to-be models based on modifica-

tions to the as-is models UME is now in a position to de-
scribe their business goals as described in the proposed ex-
tension to ArchiMate [?]. However, unlike the proposal,
LEAP can be precise about the goals and can verify that
they are satisfied by the architecture models. Furthermore,
because is a semantics-based model driven approach, it is
possible to formally check whether the goals are inconsistent.
This section describes how this is achieved by specifying a
simple business goal that is composed of sub-goals, showing
how analysis leads to the detection of a problem with the
business goals that can be fixed by a simple modification.

5.1 Precise Description
UME wishes to ensure that every student has access to a

lap-top. Lap-tops are purchased at the start of the academic

year out of UME funds. To simplify the example, we will
assume that the only UME income is student tuition fees.
Firstly, the university funds are expressed as a constraint
(using tuition fees and laptop cost constants):

context university_to_be(business) inv:
funds = students->size * tuition_fees -

laptops->size * laptop_cost

The business goal is expressed in terms of the maximal set
of students that can study at the same time. To calculate
this set, we will assume the existence of an OCL function
sameTimes(T) that returns the set of all sets of instances of
T that have the same time (this assumes that type T has
an attribute time). We also assume the existence of a func-
tion pow(T) that returns the set of all sets of instances of T.
Clearly, sameTimes can be implemented in terms of pow.

The following invariant calculates maxRooms being the max-
imal set of rooms that can be booked at the same time, and
calculates maxStudents being those students that should be
in one of maxRooms because they study the module being
taught there. The invariant constraint requires that UME
does not go into deficit and that there are exactly sufficient
lap-tops for the maximum number of students that must
concurrently attend lectures:

context university_to_be(business)::maxRooms() =
sameTimes(RoomBooking)->select(R |

not sameTimes(RoomBooking)->exists(R’ |
(R->(union(R’))->subset(bookings) and
R’->size > R->size)

context university_to_be(business)::maxStudents() =
pow(Student)->select(S |

S->subset(students) and
S->forAll(s |
s.studies->forAll(m |
maxRooms()->exists(b |
b.module = m))))

context university_to_be(business) inv:
funds > 0 and laptops->size = maxStudents()->size

Using the extension to ArchiMate in [?], the business goal
must be expressed using free text. This makes the goal open
to interpretation and almost impossible to measure accu-
rately. Using the LEAP approach to EA, the goals are ex-
pressed formally in OCL; together with the semantics for the
LEAP language, this makes measurement and analysis very
accurate. For example, the invariant above is expressed in
terms of the business layer. The application and technology
layers are defined as a result of applying precisely defined re-
finements to the business layer and therefore can be applied
to the business goals. Having done this, the semantics can
be used at lower levels of refinement to construct models of,
say, the application or technology layers and to test whether
the business goals have been achieved.

5.2 Inconsistency
This section provides a simple example that shows how

the semantics can be used to check the consistency of busi-
ness goals. We limit ourselves to the business layer, however
the same process can be applied to refined models. UME
has a business driver that is defined in the previous sec-
tion: its funds must always be positive and its reputation
must improve through making a lap-top available on-loan
to all students. The relationship between the UME income
and expenditure involves student and lap-top numbers and
without a precise model it is not possible to check whether
the UME goals are achievable.

Our business goal requires that no semantic trace leads
to a violation of the invariant. The analysis is in two parts:

(1) Can we construct a component instance that violates
the invariant? (2) Is the component instance part of a valid
semantic trace? Suppose that we are given the following
constants:

tuition_fees=1000
laptop_cost=2000

we can construct an instance of university_to_be(business)
where

maxStudents=750
students=1000

The model describes how to calculate funds given the in-
formation above; the result is -500000 which violates the
invariant. The second part requires us to construct a chain
of messages that leads to this state. This is easy since there
is no limit on the number of students that can register at
UME and there are no constraints on the number of con-
current room bookings; therefore there are many semantic
traces that produce this state.

5.3 Strengthening the Conditions
The previous section has shown that a precise modelling

approach to EA allows us to analyse the business goals for
potential inconsistencies. We have seen that there are se-
mantic traces that lead to inconsistent states. Since this is
specified in the business layer and all other layers are linked
via precisely modelled refinements, we know that however
the business is architected, providing it satisfies the busi-
ness layer, the architecture will not satisfy the goals.

The next step is to modify the business layer in order to
ensure that the goals are satisfied by every semantic trace.
This will guarantee that any refinement will satisfy the goals.
Let’s assume that the schedule is set before students register
at UME. Since the number of students that will register
is unkown at this point, some arbitrary scheduling is used
to allocate modules to rooms (perhaps based on UME the
previous year). Each time a student is registered (using
the register operation, the funds available to UME can be
calculated via the income from the new student and any new
lap-top purchases.

As registration progresses (i.e. the semantic trace ex-
tends) one of two things will happen. Either the start of
term will occur and the UME funds will have remained pos-
itive throughout the trace, or the funds will turn negative
because room booking is such that too many lap-tops will
be needed. In the former case no action need be taken. In
the latter case UME needs to reschedule room bookings in
order to try to reduce the number of required lap-tops. How-
ever, this will not always be possible because the number of
available lecture rooms is fixed.

The specification of register is modified to accommodate
these requirements. The pre-condition is modified to check
that it is possible for the funds to remain positive after the
student is registered for the module. The post-condition
simply requires that the funds are still positive. Note that
the post-condition does not mention the schedule and there-
fore allows the schedule to have changed; which may have
been necessary to ensure that the university remains solvent:

context university_as_is(business)::can_reschedule(m)=
let current_time = schedule.select(b | b.module = m).time
in Time.allInstances->exists(t |

rooms->exists(r |
not schedule->exists(b | b.room = r)) and

schedule->select(b | b.time = t)->size <

schedule->select(b | b.time = current_time) - 1)

context univeristy_as_is(business)::register(s:Student,m:Module)
pre: maxRooms()->exists(b | b.module = m) implies can_reschedule(m)
post
students->includes(s) and
modules->includes(m) and
s.students->includes(m)

The query operation can_reschedule returns true when there
is a time where a room is free where the number of concur-
rent room bookings for the new time is less that that for
the module m. By adding this as an extra pre-condition to
the operation register, UME will stop recruiting students
when it cannot reschedule modules in order to reduce the
lap-top purchasing requirements. Given the business goal,
room bookings will be modified as required.

Note that the strengthened business model implies that
all layers that are refinements will also cause the reschedul-
ing to occur. However, unlike the business layer, the appli-
cation and technology layers will need to implement inter-
component messages so that they co-ordinate in order that
the pre-condition is met. Hence, a rather abstract business
goal has potentially huge architectural implementations at
lower levels. Since LEAP requires the goals to be formally
specified, these can be checked throughout all the layers.

6. CONCLUSION
This paper has described Enterprise Architecture and pro-

vided an overview of a leading technology used to build EA
models: ArchiMate. Archimate takes a layered approach to
EA where an organization is modelled at business, applica-
tion and technology layers. However, Archimate does not
formally express the properties of the model elements and
does not formally connect the elements between layers. It
has been argued elasewhere that ArchiMate is weak in terms
of Business Motivation Modelling, and a proposal has been
made for adding a new motivation layer to ArchiMate mod-
els. The proposal uses the OMG BMM approach to business
motivation where goals are expressed using free-format text.
The proposal claims to be able to use goals expressed in this
way to detect inconsistencies in an EA model and thereby
show that an architecture will not satisfy an organization’s
business drivers.

This paper has described a model driven approach to AE
that is based on language engineering. In such an approach,
AE is considered as a domain and a language is described
in terms of its syntax and semantics. This has been used
to define a simple language called LEAP that captures the
essential features of ArchiMate including the proposed busi-
ness motivation extension. Since LEAP is based on formal
modelling, all features have a semantics and ArchiMate lay-
ers are captured using formally modelled refinements. LEAP
provides (1) orthogonal concepts; (2) precision through a se-
mantic domain; (3) precisely modelled refinement relation-
ships. Unlike ArchiMate, there is no limit to the number
of layers in LEAP and each layer is expressed in the same
language (albeit at a different level of detail). Since goals
are captured as OCL constraints over LEAP models they
can be formally checked for consistency. A simple example
involving a student lap-top loan scheme has been used to
explain the key features of LEAP.

LEAP is intended to show how a language driven ap-
proach to modelling can be used to add precision to EA
technologies such as ArchiMate. As discussed earlier, there

is a straightforward mapping between LEAP and ArchiMate
based on a UML profile. In terms of EA methods, LEAP
could be used to add precision to existing ArchiMate mod-
els or ArchiMate could be used to document LEAP-based
models. There are many tools that support UML-style mod-
elling including tools that execute OCL constraints. LEAP
allows these tools to be used for EA.

Other model driven approaches to AE include SEAM [?]
and the Model Driven Architecture (MDA) initiative from
the OMG. However, none of these approaches are aligned
with the leading technologies such as ArchiMate and none
are precise.

LEAP has been used in this paper to show that the pro-
posed business motivation extension to ArchiMate can be
supported in a precise way that allows formal analysis of the
business goals. LEAP has also been used to analyse business
change by precisely modelling a university as-is and to-be.
We claim that LEAP can form the basis of other EA anal-
yses such as quality; compliance and mergers. LEAP can
form the basis of a family of EA domain specific languages
that provide specific support for the precise expression of
models required to undertake the analysis. This is an area
for future work.

