
Using Icon-derived technologies to drive model
transformations

Laurence Tratt, Tony Clark
King’s College London, Strand, London, W2 3QH.

July 3, 2003

Abstract

Model transformations are currently the object of much interest and research.
Current proposals for model transformation languages can be divided into two
main camps: those taking a ‘declarative’ approach, and those opting for an ‘imper-
ative’ approach. The Icon programming language is a SNOBOL derivative which
contains several unique constructs which make it particularly well suited to the
job of analyzing and transforming strings. In this paper we discuss model trans-
formations, analyze the relevant parts of Icon that lend themselves to transforming
strings, and then propose how some of Icon’s unique features could be incorporated
into a model transformation approach that partially blurs the distinction between
‘declarative’ and ‘imperative’ approaches.

1 Introduction

Model transformations are currently the object of much interest and research. The Ob-
ject Management Group (OMG), the standards body behind UML, recently published a
Request for Proposals (RFP) named Queries Views Transformations (QVT) [OMG02]
for model transformations which has bought to light an area of modelling technology
that had hitherto been largely ignored. Model transformations are a vital constituent of
the realization of the MDA vision [BG02]. Although there has been some discussion
of the problem at hand [Béz01, dMES02] and some early attempts at tackling the prob-
lem [LB98b, LB98a, HJGP99, Gog00, LKM+02], surprisingly little progress has been
made in tackling real-world transformations. The authors of this paper are members of
the QVT-Partners and have contributed to a submission to the QVT RFP [QVT03] and
who have also been co-authors on a follow up paper [ACR+03].

The Icon programming language [GG96a] is a SNOBOL derivative which contains
several unique constructs which make it particularly well suited to the job of analyzing
and transforming strings. Icon is notable in that whilst a quick glance would suggest it
is a fairly standard imperative programming language, upon closer examination it be-
comes apparent that the fundamental building blocks it is based on on are significantly
different than those found in most other programming languages. The most impor-
tant features for our purposes are the concepts of success and failure, generators and
scanning expressions; see section 3 for details of these features.

In this paper we discuss model transformations in general, analyze those features
of Icon which make it well suited to transforming strings, and then propose how some

1



of these features could be incorporated into model transformations. Following ob-
servations that current approaches to model transformations fall into one of two dis-
tinct camps – crudely categorized as being of the declarative or imperative schools of
thought – we propose that a model transformation language influenced by Icon can blur
some of the distinctions that currently exist.

2 Model transformations

Put simply, the process of model transformation involves two models, one of which is
a changed version of the other. In this paper we are chiefly interested in transformation
implementations – transformations which actually alter a model – as opposed to trans-
formation specifications which check the result of a transformation for correctness.
Transformations are increasingly recognized as a specialized, but highly important,
task for which specialist tools, techniques and methodologies need to be developed.

The QVT RFP has given momentum to the until now rather hesitant work on model
transformations, and thus any current model transformation work needs to be related
to the QVT process. In this section we give an overview of QVT, go into a little more
detail on the two main philosophical approaches currently being proposed for QVT.

2.1 QVT

The QVT process is relevant as it has provided a focus for those developing model
transformation technologies; in section 2.2 we discuss one of the defining differences
between the various approaches that are currently being explored as solutions to the
RFP.

2.2 Declarative and imperative approaches

The model transformation proposals submitted to the QVT RFP can be broadly cate-
gorized as being either declarative or imperative in nature. The terms declarative and
imperative can sometimes be rather contentious, and we use them with no small hesi-
tation. They can also be rather crude mechanisms for classifying approaches.

With that warning in mind, it is important to realize that in the wider context of
programming languages there is a generally accepted consensus as to which of the two
approaches most languages adhere to. Crudely put, a language is considered to be im-
perative if it has side effects and if it forces the programmer to be explicit about the
sequence of steps to be taken when it is executed; languages that are side effect free and
do not force the programmer to be explicit about the execution sequence are consid-
ered to be declarative. Most languages can be easily categorized using this definition
– the difficulty comes when languages place themselves close to the dividing line be-
tween the two camps. To give real world examples, the C programming language is
universally agreed to be an imperative language, and Prolog to be a declarative lan-
guage. Straying into the transformation world, textual regular expressions as found in
e.g. Perl are declarative. XSLT [W3C99] on the other hand is a much harder beast to
classify. Its use of XPATH patterns and the fact that it is side-effect free would seem
to easily classify it as declarative language; however XSLT is, overall, rather procedu-
ral [BMN02]. Although XSLT is generally regarded as being declarative, one could
construct a fairly convincing argument that when stripped of its peculiar syntax (and

2



taking into consideration its somewhat convoluted operation), it could be considered
imperative. In our context XSLT is an example of the dangers of crude categorization.

‘Declarative’ is an umbrella term for an entire array of very different approaches:
the most common styles of declarative languages are functional languages (e.g. Haskell)
and logic languages (e.g. Prolog). Some of the QVT submissions have opted for a dif-
ferent style – constraint solving. Constraint solving is a relatively new area of research,
and is substantially different from the ‘standard’ declarative approaches. The most
obvious difference that this makes is that whereas ‘standard’ declarative languages
are executable, constraint solving introduces significant challenges in relation to ex-
ecutability. We are not overly concerned about constraint solving in this paper as,
whilst a fascinating area of research, it is substantially different from more traditional
approaches, and brings its own set set of largely unresolved issues.

Arguing the case for either declarative or imperative approaches can lead one onto
dangerous ground. In this paper we do not argue for one approach over the other –
what we aim to do is to take some of the benefits of a declarative approach into an
imperative setting.

3 Icon

The Icon programming language, whose chief designer was Ralph Griswold, is a de-
scendant of the SNOBOL series of programming languages – whose design team Gris-
wold had been a part of – and SNOBOL’s short-lived successor SL5. SNOBOL4 in
particular was specifically designed for the task of string manipulation, but an unfortu-
nate dichotomy between pattern matching and the rest of the language, and the more
general problems encountered when trying to use it for more general programming is-
sues ensured that, whilst successful, it never achieved mass acceptance; SL5 suffered
from almost the opposite problem by having an over-generalized and unwieldy proce-
dure mechanism. See Griswold and Griswold [GG93] for an insight into the process
leading to Icon’s conception. Since programs rarely manipulate strings in isolation,
post-SL5 Griswold had as his aim to build a language which whilst being aimed at
non-numeric manipulation also was usable as a general programming language. The
eventual result of this aim was Icon [GG96a, GG96b] which came into life in the late
70’s and is still in active development to this day.

In this section we detail1 what we believe to be the most relevant aspects of Icon,
and explain them partly through the use of examples. We believe that these features
have proven themselves in the real world and that useful lessons can be learned from
them. Given Icon’s decidedly left-of-centre approach to the task at hand this is a sur-
prisingly ambitious task in the space available. Indeed in [GG93], Griswold states that
when designing Icon ‘there was a deliberate attempt not to copy from other languages
or to develop refined versions of their features’, a philosophy that led to the creation
of unique language features, and that even subverts expectations such as ‘array indexes
start at 0’ – in Icon they start at 12. Interested readers should most definitely refer to
[GG96a] for more details.

1In this position paper the full details are elided in the interests of brevity.
2Icon’s indexing is also unusual as it refers to the position to the left of an item for positive indexes in

order to make sense of list sections (perhaps more commonly known as list slices outside of Icon). Working
from the other end of the list, negative indexes refer to the position to the right of an item with the addition
that 0 refers to the position beyond the final list item.

3



3.1 Expressions, success and failure

Icon is an untyped expression based language. However it is unusual in that whereas in
most expression based languages every expression produces a value, Icon expressions
either succeed or fail. If an expression succeeds it also produces a value. This simple
concept is probably the most fundamental feature within Icon that makes it what it is.

3.2 Generators

Another significant part of Icon is generators. Generators are expressions which can
potentially produce more than one result. A simple example of a generator is 1 to
10 which generates the sequence of integers from 1 to 10 inclusive. Generators do
not produce their values in one go: perhaps the easiest way to think of them is as
being a way of implementing lazy programming in an imperative setting. A generator
suspends itself to yield a value, and can then be resumed to potentially produce more
values. They are therefore effectively a restricted form of coroutine [Knu97, Mar80].

3.3 Goal-directed evaluation

If a generator is a part of an expression, then the failure of parts of an expression do not
necessarily cause the entire expression to fail. Instead, Icon backtracks up to the most
recent generator, resumes it to produce another value and then tries to evaluate the rest
of the expression again; this effect is called goal-directed evaluation. Note that whilst
superficially similar to features found in logic languages such as Prolog, goal-directed
evaluation in Icon is unique because the sequence in which alternatives are tried is ex-
plicitly specified. Gudeman [Gud92] has a detailed explanation of goal-directed eval-
uation in general, with its main focus is on Icon, and presents a denotational semantics
for Icon’s goal-directed evaluation scheme.

3.4 String-scanning expressions

Unlike the previous aspects of Icon discussed in this paper, string-scanning expressions
do not introduce a fundamentally different way of approaching programming. They are
instead more of a syntactic convenience, albeit a significant one, as by maintaining two
pseudo-global variables &subject – the string string being scanned – and &pos –
the current position within the string – within expr they free the user from a couple of
common headaches: having to continuously write func(arg1, ..., string,
position) for a large number of standard functions; manual maintenance of the
current scanning position within the string. Note that &subject and &pos aren’t
global variables in the traditional and often abhorred sense of the word – for example,
nested string-scanning expressions properly preserve the correct values of the variables.

3.5 Summary

Icon has a reputation for allowing complex string scanning expressions in an easy and
succinct manner, whilst also being usable as a general programming language. Al-
though in the world of string processing ‘transformation’ is perhaps thought of as a
rather grand term for an everyday task, Icon also excels at transforming strings. By
unburdening the programmer from having to manually create a large amount of te-
dious machinery to analyze and process a string, Icon also puts some distance between

4



itself and most other imperative programming languages. The combination of string-
scanning expressions, goal-directed evaluation, generators and the success/failure con-
cept allow a programmer to concentrate much more on what they want a transformation
to do, freeing them from having to specify as much of the how as might otherwise be
the case. But at the same time, Icon is still most definitely an imperative language, and
thus maintains the benefits, and familiarity, of the imperative approach.

4 Model transformations and Icon: putting it together

In section 2 we outlined the area of model transformations; in section 3 we outlined
some of Icon’s most distinctive and useful features. This section is intended to explain
how we believe Icon’s features can be adapted to, and useful in, the model transforma-
tion world.

In section 2.2 we noted that most current model transformation approaches opt for
either fairly traditional declarative or imperative approaches. Experience would sug-
gest that declarative approaches often incorporate some imperative-like features (e.g.
so-called ‘impure’ functional languages such as ML [MTHM97]); however the con-
verse does not seem to be as common. One of Icon’s unusual features is that whilst
clearly an imperative language, some of its features appear to have been influenced by,
or are analogous to, those more commonly found in declarative languages. In particu-
lar:

• The concepts of success and failure can be seen as being analogous to an implicit
concept found in logic languages such as Prolog.

• Generators can be seen as a more explicit representation of lazy programming.

• Goal-directed evaluation is similar, but not identical, to Prolog’s evaluation style.

The question is thus what use can we make of these sorts of features in model
transformations?

The aim of this paper is, having identified useful features from the Icon program-
ming language, to outline a model transformation system where these features are in-
corporated into. There are several challenges in this including:

• Icon is aimed at string processing and other linear data structures, whereas mod-
els are best represented as graphs. The assumption of linear data structures is
threaded through many areas of Icon, from the language itself to library func-
tions.

• Icon is chiefly aimed at operating on immutable data structures. Again, a funda-
mental assumption built into many areas of Icon is that the linear data structures
over which it operates are immutable. It is often desirable that model transforma-
tions update models in place, and thus this assumption of immutability no longer
holds.

• Icon has only limited facilities for composing transformations. We wish to be
able to compose model transformations in more sophisticated ways.

We believe that the result of integrating Icon-like features into a model transfor-
mation approach will be more advanced transformation languages and libraries, which

5



will allow transformations to be expressed accurately and concisely, and to be created
more quickly than existing approaches.

The first half of the full paper will be structured in a similar manner to this position
paper (but with extended analysis and examples of Icon’s relevant features); the sec-
ond half will be a discussion and analysis of a small indicative model transformation
language that incorporates Icon-esque features.

References

[ACR+03] Biju Appukuttan, Tony Clark, Sreedhar Reddy, Laurence Tratt, and
R. Venkatesh. A model driven approach to model transformations. In
MDAFA 2003, Holland, June 2003.

[Béz01] Jean Bézivin. From object composition to model transformation with the
MDA. In TOOLS 2001, 2001.

[BG02] Jean Bézivin and Sébastien Gérard. A preliminary identification of MDA
components. In Generative Techniques in the context of Model Driven
Architecture, Nov 2002.

[BMN02] Geert Jan Bex, Sebastian Maneth, and Frank Neven. A formal model
for an expressive fragment of XSLT. Information Systems, 28(1):21–39,
2002.

[dMES02] Miguel A. de Miguel, Daniel Exertier, and Serge Salicki. Specification
of model transformations based on meta templates. In Jean Bézivin and
Robert France, editors, Workshop in Software Model Engineering, 2002.

[GG93] Ralph E. Griswold and Madge T. Griswold. History of the Icon program-
ming language. j-SIGPLAN, 28(3):53–68, March 1993.

[GG96a] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Lan-
guage. Peer-to-Peer Communications, third edition, 1996.

[GG96b] Ralph E. Griswold and Madge T. Griswold. The Implementation of the
Icon Programming Language. Peer-to-Peer Communications, third edi-
tion, 1996.

[Gog00] Martin Gogolla. Graph transformations on the UML metamodel. In Jose
D. P. Rolim, Andrei Z. Broder, Andrea Corradini, Roberto Gorrieri, Reiko
Heckel, Juraj Hromkovic, Ugo Vaccaro, and Joe B. Wells, editors, ICALP
Workshop on Graph Transformations and Visual Modeling Techniques,
pages 359–371. Carleton Scientific, 2000.

[Gud92] David A. Gudeman. Denotational semantics of a goal-directed language.
ACM Transactions on Programming Languages and System, 14(1):107–
125, January 1992.

[HJGP99] Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pen-
naneac’h. UMLAUT: An extendible UML transformation framework,
1999.

6



[Knu97] Donald E. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, third edition, 1997.

[LB98a] Kevin Lano and J. Bicarregui. UML refinement and abstraction trans-
formations. In Second Workshop on Rigorous Object Oriented Methods:
ROOM 2, Bradford, May 1998.

[LB98b] Kevin Lano and Juan Bicarregui. Semantics and transformations for UML
models. In Jean Bézivin and Pierre-Alain Muller, editors, The Unified
Modeling Language, UML’98 - Beyond the Notation. First International
Workshop, Mulhouse, France, June 1998, pages 97–106, 1998.

[LKM+02] Tihamer Levendovszky, Gabor Karsai, Miklos Maroti, Akos Ledeczi, and
Hassan Charaf. Model reuse with metamodel-based transformations. In
Cristina Gacek, editor, ICSR, volume 2319 of Lecture Notes in Computer
Science. Springer, 2002.

[Mar80] Christopher D. Marlin. Coroutines: A Programming Methodology, a Lan-
guage Design, and an Implementation. Springer-Verlag, 1980.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
definition of standard ML. MIT Press, 1997.

[OMG02] Object Management Group. Request for Proposal: MOF 2.0 Query /
Views / Transformations RFP, 2002. OMG documentad/2002-04-10.

[QVT03] QVT-Partners initial submission to QVT RFP, 2003. OMG document
ad/03-03-27.

[W3C99] W3C. XSL Transformations (XSLT), 1999.
http://www.w3.org/TR/xslt.

7


