
A Common Basis for Modelling Service-Oriented and
Event-Driven Architecture

Tony Clark
School of Engineering and Information Sciences

Middlesex University
London, UK

t.n.clark@mdx.ac.uk

Balbir S. Barn
School of Engineering and Information Sciences

Middlesex University
London, UK

b.barn@mdx.ac.uk

ABSTRACT
Component based approaches to Enterprise Architecture
(EA) include Service Oriented Architecture (SOA) and Event
Driven Architecture (EDA). Model-based approaches to EA
support SOA in terms of components and services expressed
as interfaces and messages. However, there are few model-
based approaches that support EDA even though SOA and
EDA are both based on components. UML has components,
however there is no support for events and no support for
component patterns (or templates). This paper describes a
simple extension to UML that supports both SOA and EDA.
Components have both operation and event interfaces. The
modelling language is implemented using a higher-order sim-
ulation language where templates are defined as functions
over component definitions. The languages are described
using a case study that has been implemented in Java.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.0 [Computer Systems Organization]: Systems Archi-
tectures

General Terms
Modelling, Enterprise Architecture

Keywords
Service Oriented Architecture, Event Driven Architecture,
Model Driven Engineering

1. INTRODUCTION
Enterprise Architecture (EA) describes a collection of ap-

proaches that support the design and analysis of an IT in-
frastructure and how it relates to the goals, directives, pro-
cesses and organization of a business. The approaches differ
in details, but most involve the identification of logical or
physical business units, or components, that manage their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC ’12 Feb 22-25, 2012, Kanpur, UP, India.
Copyright 2012 ACM 978-1-4503-1142-7/12/02 ...$10.00.

own data and resources, implement a collection of business
processes, and communicate with other components using a
variety of message passing styles.

EA aims to capture the essentials of a business, its IT and
its evolution, and to support analysis of this information: ‘[it
is] a coherent whole of principles, methods, and models that
are used in the design and realization of an enterprise’s orga-
nizational structure, business processes, information systems
and infrastructure.’ [1].

Several different styles of architecture are possible. A Ser-
vice Oriented Architecture (SOA) involves the publication of
logically coherent groups of business functionality as inter-
faces, that can be used by components using synchronous or
asynchronous messaging. An alternative style, argued as re-
ducing coupling between components and thereby increasing
the scope for component reuse, is Event Driven Architecture
(EDA) whereby components are event generators and con-
sumers.

An important difference between SOA and EDA is that
the latter generally provides scope for Complex Event Pro-
cessing (CEP) where the business processes within a compo-
nent are triggered by multiple, possibly temporally related,
events. In SOA there is no notion of relating the invocation
of a single business process to a condition holding between
the data passed to a collection of calls on one of the compo-
nent’s interfaces.

As described in [2] and [3], complex events can be the ba-
sis for a style of EA design. EDA replaces interfaces with
events that trigger organizational activities. This creates the
flexibility necessary to adapt to changing circumstances and
makes it possible to generate new processes by a sequence
of events [4]. Whilst a complex event based approach to
architectural design must take efficiency concerns into ac-
count, the primary concern is how to capture, represent and
analyze architectural information as an enterprise design.

EDA and SOA are closely related since events are one
way of viewing the communications between system compo-
nents. The relationship between event driven SOA and EA
is described in [5] where a framework is proposed that al-
lows enterprise architects to formulate and analyze research
questions including ‘how to model and plan EA-evolution to
SOA-style in a holistic way’ and ‘how to model the enterprise
on a formal basis so that further research for automation can
be done.’

Our claim is that system architectures should be based
on both EDA and SOA. Therefore our aim is to provide a
basis for modelling architectures based on both services and
events. In the rest of the paper we will refer to EDA lan-

guages which should be read as a basis for both event and
service based architectures. Our contribution is to anal-
yse the requirements for EDA and then to propose a mod-
elling language and a corresponding simulation language. To
achieve the most general basis possible and to take advan-
tage of the large number of UML modelling tools available,
the modelling language is based on UML. The simulation
language is an extension to a general purpose functional lan-
guage. In particular, the functional language allows us to
capture architectural patterns as functions over components
which is an essential, but underdeveloped, area of architec-
tural design. The modelling language has been implemented
as stereotyped UML elements and the simulation language
has been implemented as an interpreter in Java.

The paper is structured as follows. Section 2 reviews com-
plex event processing and EA modelling languages. Section
3 performs a domain analysis on EDA and describes an EDA
modelling language. Section 4 describes a case study as an
EDA model. Section 5 describes an EDA simulation lan-
guage and provides an example by implementing the case
study. The simulation language has been implemented in
Java and is described in section 6.

2. EVENT DRIVEN EA

2.1 Service Oriented Architecture
Service Oriented Architecture (SOA) organizes a system

in terms of components that communicate via operations or
services. Components publish services that they implement
as business processes. Interaction amongst components is
achieved through orchestration at a local level or choreogra-
phy at a global level.

Its proponents argue that SOA provides loose coupling,
location transparency and protocol independence [6] when
compared to more traditional implementation techniques.
The organization of systems into coherent interfaces has
been argued [7] as having disadvantages in terms of: ex-
tensions; accommodating new business functions; associat-
ing single business processes with complex multi-component
interactions. These can be addressed in terms of CEP as
described in the next section.

2.2 Complex Event Processing
Complex Event Processing (CEP) [8] can be used to pro-

cess events that are generated from implementation-level
systems by aggregation and transformation in order to dis-
cover the business level, actionable information behind all
these data. It has evolved into the paradigm of choice for
the development of monitoring and reactive applications [9].

CEP processes events in terms of business rules compared
to SOA that implements operations using business processes.
Typically, a business rule can depend on multiple, possibly
temporally related, events, whereas a business process is in-
voked on receipt of a single operation request.

There are various proposals for how complex events can
be used efficiently to process streams of data such as those
generated in applications including hotel booking systems,
banking on-line credit systems, business activity monitor-
ing (BAM), real-time stock analysis, and real-time security
analysis. Most proposals aim to address efficiency issues re-
lated to the scale and frequency of the information that is
generated [10]. The current state of the art is described in
[11] where the key features of an event driven architecture

(EDA) are outlined as including an architecture diagram
showing the processes of the system and their interconnec-
tions, a behaviour specification including the rules used to
process events and to control data, and the specification of
inter-process communications.

As described in [12] events can be extracted from services,
database, RFID and activities. The events are processed by
rules that detect relationships, including temporal, between
events in order to transform multiple events over time into
business actions. In [12] the authors describe the imple-
mentation of a complex event processing architecture that
involves attaching an extractor to event sources and com-
piling event processing rules into complex event recognition
tables. The language does not address modularity issues
and how the complex event architecture maps onto mod-
ern approaches to EA. Wu et al [13] describe a language
called SASE for processing complex events from RFID de-
vices. The language is based expressing patterns of events
over events in time-windows and the authors describe vari-
ous optimizations that can be performed. The language is
general purpose but does not implement negation or offer
features for modularity.

The approach described in [14] is based on logic program-
ming for complex event processing and in a way is the op-
posite to our forward-driven approach. The authors use
Prolog-style backtracking to find solutions to goals.

3. EVENT DRIVEN MODELLING
An EA aims to represent an organization and its essential

elements. However the complexity of the problem domain
cannot be adequately addressed by one architectural style.
In this paper we have proposed that two specific styles SOA
and EDA have between them the necessary concepts that
are able to provide more complete representation of EA.
This section provides a overview of the unification of EDA
and SOA by identifying the common features in section 3.1
and proposing a specialization of UML class models that
support the features in section 3.2.

3.1 Features
Our aim is to provide a modelling and simulation language

for EDA that is based on features provided by UML. In order
to do this we need to identify characteristic EDA features.
This section lists the features and the following section de-
scribes how they are to be implemented using UML class
model stereotypes and an extension to OCL.

An EDA architecture is based on components each of
which represents an organizational unit. Components map
onto physical IT systems or organizational units. Each com-
ponent manages local private data that maps onto databases
(relational, files, etc). As in SOA, a component may offer
operations that can be invoked by sending messages. An
operation is specified in terms of pre and post conditions
expressed in terms of the component’s data. In addition to
modifying local data, an operation may send messages and
raise events. An event is used by a component to signify
a significant change in state that may be of interest to any
component that is listening. Components use rules to pro-
cess events; a rule matches against local state and one or
more events that are received by the component. The body
of a rule is an action in terms of local state changes, events
and messages. Components are designed in isolation, how-
ever global invariants place constraints on component state

synchronization and lead to implementation requirements in
terms of event connectivity between components.

Thus the characteristics are drawn from established and
well understood concepts from component based design, dis-
tributed architectures.

3.2 An EDA Modelling Language
Section 3.1 has outlined the key features that characterize

EDA models. This section describes how each of the features
are represented as a conservative extension to UML in a
similar way to component models described in [15] and [16].
The extension is deliberately minimal in order that existing
UML tools can support EDA models in terms of stereotypes
and, where OCL cannot be extended, comments. Section 4
uses the extended UML to implement a case study and is a
key contribution of the paper.

Figure 1 shows a simple meta-model and its extension for
EDA modelling. The basic modelling language consists of
packages of classes and associations. Each class contains
a collection of attributes and operations. An operation is
specified using pre and post conditions.

The EDA language extends the basic language with the
following features. CmpDef is a specialization of Package

that defines a single component. Each of the other classes
contained in a CmpDef must be structured types since they
cannot have any behaviour. All classes in a CmpDef must
be associated directly or indirectly to the component. Com-

ponent is a specialization of Class that has business rules
and input/output events. A component listens for output
events raised by other components; when an output event
is produced it is received as an input event by the listening
component. Components may be nested, a parent always
listens to the events raised by its children. CmpOperation is
a component operation specification that can involve an ac-
tion that, in addition to pre and post-conditions, defines the
events that are raised by the operation. Action is used in
a component operation to specify the events that are raised
when the operation completes. An action is either single
event Raise or is a Loop through a collection of elements,
where an action is performed for each member of the collec-
tion. A BizRule has a guard that must be satisfied before the
rule can be fired. After the rule is fired, the post-condition of
the rule is satisfied and the rule action is performed. A Pat-

tern matches against the events that have been received by
a component. A pattern may match a single event Event-

Pattern, may be conjunctions or disjunctions of patterns,
or may be a negated pattern.

The meta-model in figure 1 describes an extension to con-
ventional UML class diagrams. Although, UML has com-
ponents, they do not correspond to Component and CmpDef

in the meta-model, so we use stereotypes to tag and ex-
tend the appropriate UML elements; this allows standard
UML modelling tools to be used to support EDA compo-
nent modelling. Component definitions are represented as
UML packages (class diagrams) with exactly one class with
the stereotype <<component>>. Components may have at-
tributes and operations which are interpreted as standard
class features although operations are invoked using mes-
sages in the sense of SOA.

Associations on the UML class diagram from the compo-
nent to classes define the local structured data of the com-
ponent. These classes may have attributes and associations,
but do not have any operations since all execution is defined

by component interaction.
In addition, a component may have operations with stereo-

types <<eventin>> and <<eventout>> The signature of the
operation defines the name and internal structure of events.
An input event declares that the event will be received via
some externally monitored component. An output event
declares that the component will raise the event via an op-
eration or a business rule.

Operations are specified using standard OCL pre and post
conditions. A CmpOperation can be defined for operations
that includes an action:

context C::o(arg*) pre exp post exp action

The action part of a constraint is used to specify the events
that are raised by an operation (or a business rule). An
action may involve a single event or may loop through a
collection in order to raise several events:

action ::= raise name(exp*) |
with name:type in exp [when exp] do action

Business rules monitor events received by a component. A
rule may depend on multiple events and the current state of
the component. The rule may cause a state change to the
component and may raise events. We propose a new form
of OCL that supports business rules that match event and
data patterns such as those described in [17] as follows:

context C on pattern* pre exp post exp action

4. CASE STUDY

4.1 Overview
The use of shared services has become an increasingly im-

portant strategic driver in the UK. Our approach presents
one possible technology for addressing some of the issues
currently prevalent in this sector. A recent report into the
use of IT in HE [18] argues that there is little high-level
strategic impetus behind the integration and that the sector
is struggling to get systems to talk to each other. The asso-
ciated JISC report1 describes the public sector support for
SOA in HE with the intention of leading to shared services
across the sector. It argues that EA can address problems
relating to data silos, information flow, regulatory compli-
ance, strategic integration, institutional agility reduction in
duplication and reporting to senior management.

EA can be applied within an organization in order to de-
termine how to comply with externally applied regulations.
Models can answer questions about the reuse of existing
components, the locality of regulatory information and to
identify the need for new information sources. This section
describes a case study which is typical of current issues fac-
ing the UK HE sector. We describe the case study and then
use the EDA modelling and simulation languages to describe
an EA for the application.
Requirement: The UK Borders Agency requires all Higher
Education institutions to produce a report that details the
number of points of contact between the institution and any
student that has been issued with a student visa. This regu-
lation places a requirement on the institution to ensure that
the information is gathered at the appropriate points of con-
tact. Furthermore, there is a business imperative for each

1http://www.jisc.ac.uk/media/documents/techwatch/
jisc_ea_pilot_study.pdf

Figure 1: EDA Meta Model

institution to be able to detect students that may be likely to
fail to record the required number of contact points in order
to take remedial action and thereby avoid paying penalties
with respect to trusted status whereby visas are granted via
a lightweight process.

4.2 Components
The University of Middle England (UME) decides to con-

struct an EA model in order to determine the components,
data stores and interactions that are required to comply with
the regulations and to generate simulations. The first step
is to construct a model of the components that will be re-
quired. New components can be designed as part of the
model, however reuse of existing components is preferred to
keep costs down.

UME makes a list of existing systems that can be used to
track student interactions: the Library; Departments; the
Registry. Each department has a student office that handles
student assignments, and a collection of lecturers. A new
component, the Monitor, is required in order to aggregate
the events raised by the components and to manage a point
of contact database.

4.2.1 The Registry
The registry is responsible for managing the list of all

UME students and their course of study. It is the first point
of contact for any student where the student registers for a
particular course:

The Registry component manages a database of students

containing the student’s name (assumed to be unique) and
the name of the course they are to study. Currently the reg-
istry does not inform any other UME system of a new regis-
tration. However, student registration is a point of contact
and therefore our model requires that an event is raised:

context Registry::register(name:String,course:String)
pre not students->exists(s | s.name = name)
post students->exists(s | s.name = name)
raise register(name,course)

4.2.2 The Library
Once a course has started, students use the library in or-

der to access learning resources. Students must register with
the library, after which they can borrow and return books.
The current library system manages a database of registered
students, books and borrowing records.

The current library system provides an interface of oper-
ations for registration and book borrowing. Each opera-
tion counts as a point of contact and therefore should raise
events. The event just informs any listener of a library trans-
action for a particular student:

context Library::register(name:String)
pre not students->exists(s | s.name = name)
post students->exists(s | s.name = name)
raise library(name)

context Library::borrow(student:String,book:String)
pre students->exists(s | s.name = student) and

books->exists(b | b.name = book and
not borrows->exists(b | b.book = b))

post borrows->exists(b | b.student.name = student and
b.book.name = book)

raise library(name)

4.2.3 Time
The UK Borders Agency requires UME to report on stu-

dents by a given date which we will measure in the number
of elapsed weeks after the start of a course. Therefore, the
UME IT architecture must be aware of how many weeks
have passed and includes a timing component that ticks at

the end of each week:

4.2.4 Departments
Each UME department has a student office and a numvber

of academics. The student office manages student assign-
ments and the lecturers have tutorial meetings with stu-
dents; both of these count as points of contact. Late course-
work is an indicator that things are going wrong for a stu-
dent. A department is an example of how components nest:

A department contains a component that implements the
student office and a collection of components that represent
the information system that academics use to manage stu-
dent meetings. The office maintains a database of all courses
including modules and courseworks. Each coursework has a
due date (measured in weeks).

Registration events can be processed by each student office
in order to initialize a student with their department:

context StudentOffice
on register(student:String,course:String)
post students->exists(s | s.name = student and

s.course.name = course and
s.submitted->size = 0)

Coursework submission counts as a point of contact and
therefore the student office is required to raise an event:

context StudentOffice::handin(student:String,cw:String)
post students->exists(s |

s.name = student and
s.submitted->includes(
s.course.modules.assessments->select(a | a.id = cw)))

raise office(student)

The student office processes timing events by checking whether
there are any outstanding coursework and generating late
coursework events. Such events can be used to remind stu-
dents that they have a deadline and thereby improve the
number of contacts within the limits imposed by the UK BA.
The following query operations calculate a set of records of
the form {name=n;cw=i} where n is the name of a student
and i is a coursework identifier:

context StudentOffice::missed(time:Integer) =
students->iterate(s R=Set{} |
let req = s.course.modules.courseworks->select(c | c.due<time)
in R + missed(s.name,req,s.submitted))

context StudentOffice::missed(s,req:Set(CW),done:Set(CW)) =
(req-done)->collect(cw | {name=s;cw=cw.id})

The student office generates a missing event for each missing
coursework:

context StudentOffice
on tick(time:Integer)
with x:{name:String;cw:String} in missed() do
raise missing(x.name,x.cw)

A lecturer may have a meeting with a student. The meeting
is registered on the department’s tutorial information system
and raises an event:

context Lecturer::meeting(student:String)
raise meeting(name,student)

Since the Department component contains lecturer and office
component it will automatically receive any evenets that
they raise. The department conflates the contact messages
into a single department event:

context Department
on office(student) or meeting(lecturer,student)
raise department(student)

4.2.5 The Monitor
Finally, UME requires a new component that monitors

student contacts and generates alerts when the limit is reached:

When a student is registered, the monitor must initialize a
local record:

context Monitor
on register(name:String,_)
pre not contacts->exists(c | c.name = name)
post contacts->exists(c | c.name = name and c.contacts = 1)

When the student uses the library or hands in coursework,
the monitor must increase the number of contacts:

context Monitor
on library(name:String) or department(name:String)
pre contacts->exists(c | c.name = name)
post contacts->exists(c |
c.name = name and c.contacts = c.contacts@pre + 1)

The monitor generates an alert when the number of contacts
is insufficient and when time limit has been reached or when
the student has missed a coursework:

context Monitor
on tick(time:Integer)
pre time > limit
with c:Contact in contacts when c.contacts < min_contacts do
raise alert(c.name)

context Monitor
on missing(student:String,cw:String)
pre contents->select(c |
c.name = student and c.contacts < min_contacts)

raise alert(student)

4.3 Invariants
The previous sections have defined modules in isolation.

Each component contains a model of locally managed data,
implements an interface of operations, generates events, and
processes incoming events via rules.

The components must work together to enforce a collec-
tion of invariants. At the specification level we need not be
worried about how the components manage the interactions,
we just state the conditions that must be satisfied.

Each component may have several instances, although it is
often the case in a component based architecture that each
component is deployed once. Therefore, when writing in-
variants, we will associate a component name with its set of
instances, and in the case of a singleton set with the instance
itself. The following invariant ensures that the registry, stu-
dent office and the library are all in-sync when a new student
registers (note that not all students need to register with the
library but if they do they must have been processed by the
registry):

Registry.registered->size =
Department->iterate(d | d.StudentOffice.students->size)

Registry.registered->size >= Library.students->size
Registry.registered->size = Monitor.contacts->size

The number of points of contact must be enforced by an in-
variant that takes into account the number of registrations,
the uses of the library, tutorial meetings and coursework
submissions. The total number of coursework submissions
is maintained by the student office, however the total num-
ber of library interactions is not maintained since the bor-
rowing record is removed when a student returns a book.
Fortunately, each component maintains a list of raised and
received events via special associations: in and out. Events
are just normal data that can be processed via these associ-
ations:

Monitor.contacts->forall(c | c.contacts =
Department.StudentOffice.students->select(s |
s.name = c.name).submitted->size +

Library.out->select(e | e.name = c.name)->size) +
Department.Lecturer.out.size

5. EVENT DRIVEN SIMULATION
Figure 2 shows a domain specific language that has been

defined to support EDA simulation. It is beyond the scope of
this paper to describe the detailed semantics of the language;

exp ::=
component [name] (exp*) { components, monitored
[state { term* }] local data (optional)
[operations { op* }] methods (optional)
[rules { rule* }] event processing (optional)
bind* fields

}
| fun(arg*) exp functions
| exp(exp*) applications
| var variables
| atom integers, strings, booleans
| state local data
| self reference
| { exp* } blocks
| { bind* } records
| [exp | qual*] lists
| new term extension
| delete term deletion
| if exp then exp else exp conditional
| raise term event generation
| case exp { arm* } matching
| let bind* in exp locals
| letrec bind* in exp recursive locals
| exp <- term message passing
| exp . name field reference
pattern ::=
var variables

| name(pattern*) term patterns
| atom ints, strings, bools
| name = pattern pattern binding
| [pattern*] lists
| pattern:pattern cons pairs
| pattern,pattern alternatives
| ? exp predicate
term ::= name(exp*)
arm ::= pattern -> exp
bind ::= pattern = exp
qual ::= pattern <- exp | ?exp
op ::= name(arg*) { exp* }
rule ::= name : pattern* { exp* }

Figure 2: EDA Simulation Language

we give a brief overview and then show how the UME case
study is implemented in the language.

An EDA simulation consists of a collection of component
definitions. Each component monitors events. The local
data of a component is represented as a collection of terms of
the form Name(v,...v). Components have conventional OO
methods that can be invoked synchronously (using .) and
asynchronously (using <-). Component rules match patterns
against events raised by monitored components and then
perform expressions.

Rule and operation bodies are standard functional lan-
guage expressions except for: sequenced blocks, local data
modification (new and delete) and events raise. Access
to the list of all local terms in a component is provided via
state. List comprehensions are useful to process the local
state, for example [name | Person(name,age) <- state,

?(age > 65)] constructs the names of all the people in the
local data that are over 65.

Component expressions contain local state, operations,
rules and fields. An important feature of the language is
that it allows component expressions to be nested, i.e. com-
ponents can contain children and functions can return com-
ponents. The latter feature allows a pattern of components
to be implemented as a function over collections of compo-
nents that can be instantiated by applying the function to
arguments. This feature is called component templates and
is used to implement departments the UME architecture.

An EDA system consists of a collection of named compo-

nents that publish their operation interfaces and that moni-
tor events. Events generated by a component C are received
by all components that monitor C. Component rule patterns
match against received events and against local data. When
all patterns have matched the rule is ready to fire; rules are
fired in any order.

The registry is defined as a component with no initial
state and no rules. The register operation allows new stu-
dents to be added to the local data and raises a registration
event. The students operation is used to query the registry
database:

component registry
operations {
register(student,course) {
new Student(student,course);
raise Register(student,course)

}
students() { state }

}
}

The following component defines a library. The local data
declares all the available books. The register operation
checks whether the student exists, if not then a new student
is created and a library usage event is raised. The borrow

and return operations are as expected. The library defines
an operation books that calculates a list of books currently
borrowed by a student; this will be used by the user interface
component later. The library defines no rules.

component library() {
state { Book(’b1’,’Programming’) Book(’b2’,’Management’) }
operations {
register(student) {

if student?(student)
then print(student + ’ exists in Library.’)
else { new Student(student); raise Library(student) }

}
borrow(student,book) {

if student?(student) and book?(book)
then { new Borrows(student,book); raise Library(student) }
else print(student + ’ cannot borrow ’ + book)

}
return(student,book) {
delete Borrows(student,book);
raise Library(student)

}
student?(name) { [s | Student(s) <- state,?(s=name)] != [] }
book?(id) { [i | Book(i,n) <- state,?(i=id)] != [] }
books(student) {
[book | Borrows(s,id) <- state, ?(s=student),

Book(i,book) <- state, ?(i=id)]
}

}
}

Each department defines a student office that manages as-
signments. Unlike the library the student registry, there are
many departments, therefore many student offices, and the
number of departments may change over time. No matter
how many offices there are, they all perform the same tasks
and only differ in terms of the courses that are available.

We take a template approach to defining departments where
a function is defined whose parameters represent the variable
elements of a component and where the body of the func-
tion returns the component. A department component is
defined using three templates: mk_academic that creates an
academic; mk_student_office that maps a list of courses
to a component; mk_department that maps a department
name, a list of courses and a list of academic’s names to a
department.

An academic is created using the following template that
maps a name to a component. The component provides

an operation that records a tutorial meeting between the
lecturer and a student and raises an event:

mk_academic(n)
component () {
operations {
student_meeting(student) { raise Meeting(name,student) }

}
name = n

}

The student office template is defined below. The course-

work operation queries the currently submitted assessments
for a student. The missed operation calculates the assess-
ments that are outstanding for all students. The handin

operation is used to record each new assessment.The rule
time uses the for operation to raise a missing event for
each outstanding coursework. The register rule initializes
a Student record in the student office, and the missed rule
raises an event when the component detects that a student
has missed a coursework deadline:

mk_student_office(courses) {
component (clock,registry) {
operations {
courseworks(student) {
[id | Coursework(s,m,id,t) <- state, ?(s=student)]

}
students() { state }
missed(time) {
[{name->n;id->id} | Student(n,_,_) <- state,

Course(course,modules) <- courses,
?(course=studying),
Module(mname,assessments) <- modules,
CW(id,due) <- assessments,
?(due<time), ?(not(member(id,cws)))]

}
handin(student,module,coursework) {
new Coursework(student,module,coursework);
case [s | s=Student(n,_,_) <- state, ?(student=n)] {
[Student(s,c,cws)] -> {
delete Student(s,c,cws);
new Student(s,c,cws+[coursework])

}
};
raise Office(student)

}
for(list,action) {
case list {
[] -> true;
x:xs -> { action(x); for(xs,action) }

}
}

}
rules {
missed: Time(t) {
delete Time(t-1);
self.for(self.missed(t),fun(x) raise Missing(x.name,x.id))

}
register : Register(student,course) {
case [x | Course(x,ms) <- courses, ?(x=course)] {
[x] -> new Student(student,course,[])

}
}

}
}

}

Each department is created using the following emplate that
maps a department name, list of courses and list of academic
names to a component. The component offers operations
that query the courseworks for a student, hand-in an as-
signment, record a tutorial, and select an academic. The
component monitors the events produced by the school of-
fice and academic sub-components and the rules map child-
events to department-events:

mk_department(n,courses,academic_names) {

component(self.academics,self.school_office) {
operations{
courseworks(student) { school_office.courseworks(student) }
handin(student,module,coursework) {
school_office.handin(student,module,coursework)

}
meeting(student,academic) {
(get_academic(academic)).student_meeting(student)

}
get_academic(n) {
case [a | a <- academics, ?((a.name) = n)] { [a] -> a }

}
}
rules{
meeting: Meeting(lec,student) { raise Department(student) }
office: Office(student) { raise Department(student) }
missing: Missing(student,cw) { raise Missing(student,cw) }

}
school_office = mk_student_office(courses)
academics = [mk_academic(n) | n <- academic_names]
name = n

}
}

UME decides to trial the new architecture with two depart-
ments: Computer Science and the Business School. Al-
though each department has different courses and academics,
the student monitoring system is created using the sme tem-
plates that are defined above:

computer_science = mk_department(’Computer Science’,[
Course(’Business and IT’,[
Module(’Marketing’,[CW(’BIT_MCW1’,4),CW(’BIT_MCW2’,6)])]),

Course(’Business Informatics’,[
Module(’Marketing’,[CW(’BI_MCW1’,3),CW(’BI_MCW2’,9)])])

],[’Dr Piercemuller’,’Prof Plumb’])

business_school = mk_department(’Business School’,[
Course(’MBA’,[
Module(’Marketing’,[CW(’MCW1’,5),CW(’MCW2’,8)])]),

Course(’Business’,[
Module(’Marketing’,[CW(’B_MCW1’,6),CW(’B_MCW2’,9)])]),

Course(’Business and Marketing’,[
Module(’Marketing’,[CW(’BM_MCW1’,5),CW(’BM_MCW2’,11)])])

],[’Prof Inglenook’,’Dr Who’])

The monitor component listens to events from all other com-
ponents. It handles registration events by initializing a Con-

tact record. Library and student office events increase the
contact count by 1. A Missing event occurs when a stu-
dent has not handed the coursework in on time and raises
an alarm. An alarm is also raised when the required number
of contacts have not been achieved by the required time.

component monitor
(clock,registry,computer_science,business_school,library) {

state { Limit(10) MinContacts(4) }
operations {
count(student) {
case [c | c=Contact(s,n) <- state, ?(s=student)] {
[Contact(s,n)] -> n;
x -> 0

}
}

}
rules {
register: Register(s,c) { new Contact(s,1) }
library: Library(s) c=Contact(s,n) {
delete c;
new Contact(s,n+1)

}
department: Department(s) c=Contact(s,n) {
delete c;
new Contact(s,n+1)

}
missing: Missing(s,cw) { raise Alarm(s,’COURSEWORK’) }
alarm: Time(t) Contact(s,n) Limit(t) MinContacts(m) ?(n<m) {
raise Alarm(s,’CONTACTS’)

}
time: Time(n) { delete Time(n-1) }

}
}

6. IMPLEMENTATION
The components defined in the previous section respond to

messages and events. This section describes how the simu-
lation is controlled (section 6.1), presented to the user (sec-
tions 6.2 and 6.3) and how the language is implemented
(section 6.4).

6.1 The Simulator Component
In order to run, the simulation must be seeded with some

events that populate the components. For simulation pur-
poses we define two new components: the simulator and
the screen. The simulator component has a state consist-
ing of a collection of terms each of which is a message to one
of the UME components. The message contains a time and
a simulation rule matches each clock tick against the time
in a message term; when the time matches, the message is
sent via the built-in send operation:

component simulator(clock,monitor) {
state { Send(1,registry,’register’,[’stud01’,’MBA’]) ... }
rules {
time: Time(n) { delete Time(n-1) }
step: Time(t) Send(t,target,message,args) {
send(target,message,args)

}
contact: Alarm(s,’CONTACTS’) { raise Display(s,’red’) }
assess: Alarm(s,’COURSEWORK’) { raise Display(s,’green’) }

}
}

In addition to sending messages, simulator monitors Alarm
events. Each event contains the name of a student and a
tag that describes the context of the alarm. The simulator
generates events that describe the level of importance as-
sociated with each student: green means that the student
is giving cause for concern and red means that the student
may cause UME to fail to achieve a key business goal.

6.2 HTML
The implementation uses a web-server to display infor-

mation about students. The information to be displayed is
encoded as HTML using terms. Figure 3 shows part of the
screen model that is used to encode HTML. Each class is
encoded as a term, attributes are encoded as term data and
associations are encoded as sub-terms. For example, to pro-
duce a screen that contains a single table with two students:

Screen(
Table([[Text(’s1’),Text(’MBA’)],[Text(’s2’),Text(’Business’)]
])

)

A Button has a label and an action. The action is a function
with no arguments; when the button is pressed in a web-
browser, the function is called causing any actions in the
body of the function to be performed.

A Div term acts like a <DIV> element in HTML. The
record is used to set style attributes for the scope of the
entries in the body of the div. The optional record attached
to a Table performs the same function.

6.3 The Screen Component
The screen component is defined below:

component screen(clock,simulator) {
operations {

Figure 3: Screen Model

screen() { Table([[depts()],[Table([[step(),ticker()]])]]) }
text(n,c,s) {
Div({style->’font-size:’+n+’px; color:’+c+’;’},[Text(s)])

}
headers(str) { text(22,’black’,str) }
display(name,s) {
case [c | Display(s,c) <- state, ?(name=s)] {
[’red’],[’red’,’green’],[’green’,’red’]->text(16,’red’,s);
[’green’] -> text(16,’green’,str);
otherwise -> text(16,’black’,str);

}
}
level(name) {
case [c | Display(s,c) <- state, ?(name=s)] {
[’red’],[’red’,’green’],[’green’,’red’]->Text(’!!!’);
[’green’] -> Text(’???’);
otherwise -> Text(’.’)

}
}
courseworks(stud) {
display(stud,list([d.courseworks(stud) | d <- departments]))

}
student_details(name) {
[level(name),display(name,name),display(name,course),
display(name,monitor.count(name)),books(name),
courseworks(name),
Button(’Contact ’ + name, fun() {
delete Display(name,’red’);
self <- update_display(name) })]

}
depts() {

Table([
[Table([[Text(department.name)])],[students(department)]]
| department <- departments])

}
students(department) {
let body = [student_details(name) | Student(name,course) <-

department.school_office.students()]
in Table([map(headers,cols)] + body)

}
books(stud) { display(stud,list(library.books(stud))) }
list(l) {
case l { [] -> ’.’; [t] -> t; t:ts -> t + ’, ’ + (list(ts)) }

}
ticker () { Text(’Time: ’ + time()) }
time() { case [t | Time(t) <- state] { [t] -> t; [] -> 0 } }
step() { Button(’Step’,fun() clock <- tick()) }
server() { case [s | Server(s) <- state] { [s] -> s } }
update_display() { server() <- display(Screen(screen())) }
tick(s) { new Server(s); s <- display(Screen(screen())) }

}
rules {
tick_screen: t=Time(n) { delete Time(n-1); self.update_display() }

}
departments = [computer_science,business_school]
cols = [’LVL’,’NAME’,’COURSE’,’CONTACTS’,’BOOKS’,’CWK’]

}

The life-cycle of screen is as follows. When the web-server
first connects to screen it calls tick and supplies a web-
server server. The server is stored in the local data of
screen as the term Server(server) and is accessed using

Figure 4: Implementation Architecture

the function server(). When screen wants to update web-
server, it sends a message browser <- display(s) where s

is a screen (a term-instance of the model in figure 3). The
initial screen contains a table of student information and a
button created by the operation step(); the button-action
is a function that sends a tick() message to the clock caus-
ing a Tick(t) event to be raised and received by all compo-
nents monitoring clock. The rule tick_screen is fired when
screen receives a Tick(t) event and causes the web-server
to be supplied with a new screen via update_display.

6.4 Implementation Architecture
The implementation is written in Java and has an archi-

tecture as shown in figure 4. A standard web-server runs a
servlet labelled GUI that processes a term-encoding of the
model in figure 3. When the GUI starts, it supplies a han-
dle to itself (tick(server)) to the screen component. The
screen component informs GUI of a new screen server <-

display(Screen(...)) and prompts the clock to advance
under user control via the button-action tick().

A sequence of simulation snapshots is shown in figure 5;
each snapshot is a browser screen-shot generated after sev-
eral clicks of the Step button. Figure 5a shows the situa-
tion just after students have registered. Figure 5b occurs
a little later and shows that student stud02 has handed in
coursework on time but that student stud04 has missed the
assignment deadline. Figure 5c shows the situation just af-
ter the UK BA deadline; students stud03 and stud04 have
insufficient contacts to meet the regulations; student stud01
has sufficient contacts, but has missed a deadline; stud02 is
doing fine. Figure 5d shows the situation where a member
of the academic team has contacted stud04 directly and has
used manual override to change the status.

6.5 Summary
Event Driven Architecture is a style of system design that

lacks modelling notation. We have analyzed EDA, identified
its characteristic features, and have proposed a modelling
notation and associated simulation language. The modelling
language is defined as a conservative extension to UML so
that existing tools can use stereotyped UML elements to
support component models. The simulation language has
been implemented as a Java interpreter2. Each component
is deployed on a server that handles communication via sock-
ets; so that each component can be written in the language
or can be a wrapper around a pre-existing IT system. Any
data, including functions and components, can be sent via

2http://bit.ly/voEbod and http://bit.ly/vjNzX7

(a) Student Registration

(b) Missing Coursework

(c) Business Goal in Jeopardy

(d) Manual Override

Figure 5: Simulation

messages; Java serialization is used to pass information and
global naming is used to manage component identities.

7. REFERENCES
[1] M. Lankhorst, “Introduction to enterprise

architecture,” in Enterprise Architecture at Work, ser.
The Enterprise Engineering Series. Springer Berlin
Heidelberg, 2009.

[2] B. Michelson, “Event-driven architecture overview,”
Patricia Seybold Group, 2006.

[3] G. Sharon and O. Etzion, “Event-processing network
model and implementation,” IBM Systems Journal,
vol. 47, no. 2, pp. 321–334, 2008.

[4] S. Overbeek, B. Klievink, and M. Janssen, “A flexible,
event-driven, service-oriented architecture for
orchestrating service delivery,” IEEE Intelligent
Systems, vol. 24, no. 5, pp. 31–41, 2009.

[5] M. Assmann and G. Engels, “Transition to
service-oriented enterprise architecture,” Software
Architecture, pp. 346–349, 2008.

[6] D. Barry, Web services and service-oriented
architecture: the savvy manager’s guide. Morgan
Kaufmann Pub, 2003.

[7] G. Wang and C. Fung, “Architecture paradigms and
their influences and impacts on component-based
software systems,” 2004.

[8] L. David, “The power of events: an introduction to
complex event processing in distributed enterprise
systems,” 2002.

[9] A. Buchmann and B. Koldehofe, “Complex event
processing,” it-Information Technology, vol. 51, no. 5,
pp. 241–242, 2009.

[10] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman,
“Efficient pattern matching over event streams,” in
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. ACM, 2008, pp.
147–160.

[11] D. Robins, “Complex event processing,” 2010.

[12] C. Zang and Y. Fan, “Complex event processing in
enterprise information systems based on rfid,”
Enterprise Information Systems, vol. 1, no. 1, pp.
3–23, 2007.

[13] E. Wu, Y. Diao, and S. Rizvi, “High-performance
complex event processing over streams,” in Proceedings
of the 2006 ACM SIGMOD international conference
on Management of data. ACM, 2006, pp. 407–418.

[14] A. Paschke, A. Kozlenkov, and H. Boley, “A
homogeneous reaction rule language for complex event
processing,” Arxiv preprint arXiv:1008.0823, 2010.

[15] J. Cheesman and J. Daniels, UML components.
Addison-Wesley, 2001.

[16] D. Lienhart, “Softbench 5.0: The evolution of an
integrated software development environment,”
Hewlett Packard Journal, vol. 48, pp. 6–7, 1997.

[17] A. Barros, G. Decker, and A. Grosskopf, “Complex
events in business processes,” in Business Information
Systems. Springer, 2007, pp. 29–40.

[18] E. Deeson, “The e-revolution and post-compulsory
education–by boys, jos & ford, peter,” British Journal
of Educational Technology, vol. 39, no. 4, pp. 750–750,
2008.

