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Abstract.  With the move towards UML becoming a family of modelling lan-

guages, there is a need to view the Object Constraint Language in the same 

light. The aim of this paper is to identify a meta-modelling facility that encom-

passes the specification of the semantics of a family of object constraint lan-

guages. This facility defines a common set of model concepts, semantic domain 

concepts and semantic mappings that can be conveniently reused when con-

structing new family members. 

1   Introduction 

The Object Constraint Language (OCL) [Warmer98] is a language for expressing 

constraints on UML models. Recently, significant efforts have been made to provide a 

more precise description of the OCL. For example, a meta-model for the abstract syn-

tax of OCL [Richters98] has been proposed. An outline meta-model of its semantics is 

presented in [Kent99], whilst a variety of other work has developed formal descrip-

tions of the OCL semantics (see [Clark00a] for an overview).  

At the time these approaches were developed, UML was viewed as a single, albeit 

large, modelling language. However, with the advent of UML 2.0 it is likely that UML 

will become a family of languages [Cook00]. In UML 2.0, it is intended that the se-

mantics of each family member will be encapsulated by a single UML profile. Each 

profile will tailor UML to a specific application domain. For instance, one might have 

a UML for real-time modelling, e-business modelling or business process modelling. 

The impact of these changes will not just affect the diagrammatical components of 

UML. Specific extensions of OCL are also likely to be required. Indeed, there is early 

evidence of the need for such extensions in industry [Kleppe00, Knapman00a, Knap-

man00b]. The OMG’s recent proposal for MDA (model driven architecture) 

[OMG01] also mandates the use of profiles, each with a potentially different con-

straint language. 

A problem faced by the developers of profiles is to avoid the task of re-inventing 

meta-models for families of related languages. The aim of this paper is to show how 
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the semantics of a family of OCL languages might be precisely captured within a 

meta-model. In doing so, it aims to highlight two key mechanisms which can aid in the 

large grained reuse of constraint language meta-models: language definition patterns 

and package extension and import. 

The work presented in this paper is based on the Meta-Modelling Facility (MMF), 

which comprises a meta-modelling language (MML) a meta-modelling tool (MMT) 

and a method (MMM). This work has arisen out of an IBM funded project [Clark00] 

to investigate the feasibility of re-architecting UML as a family of languages. The 

work is currently being prepared as input to the UML 2.0 revision process under the 

auspices of the precise UML (pUML) group (http://www.puml.org). 

This paper is structured as follows: Section 2 gives an overview of the MMF and 

the basic patterns and architecture used to describe meta-models. Section 3 presents 

the core meta-model of MML (a typical UML like core meta-model). Section 4 then 

extends the core model with the features of a static constraint language. Finally, sec-

tion 5 discusses some general approaches to constructing profiles. 

2 The MMF 

The Meta-Modelling Facility (MMF) [Clark00a] aims to provide a modular and ex-

tensible method for defining and using modelling languages. MMF comprises a lan-

guage (MML), used to write language definitions, a tool (MMT) used to interpret 

those definitions, and a method (MMM) that provides guidelines and patterns for 

good practice in language definition. This section introduces the language and the 

tool. 

2.1 The Language 

 

MML is a language for meta-modelling, which incorporates a subset of the UML. 

The language is defined in itself using a precise meta-modelling approach, in which 

mappings are defined between its modelling concepts and the concepts in its semantic 

domain.  The development of the language is ongoing and has been supported by 

IBM. 

The main modelling features of MML are packages, classes, attributes and a con-

straint language. These are introduced briefly below, being careful to identify differ-

ences with the standard UML interpretation. Examples of their use can be found in 

subsequent sections.  

A package is a container of classes and/or other packages. This is familiar UML. 

Perhaps more unfamiliar is the ability to specialize and import packages, which has 

been borrowed from Catalysis [D’Souza98] and enhanced. Packages and package 

import and specialisation are the key constructs in MML that support modular, exten-

sible definitions of languages based on a set of fundamental patterns. Our contribution 

is to provide a precise, tool-supported definition of this concept, and to show it can 

facilitate the development of precise meta-modelling definitions. 
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Package import is shown by placing a UML dependency arrow between the pack-

ages. The child package copies all (and therefore contains all) of the contents of the 

parent package. In addition, it may specialise the copied contents, in which case the 

copies are hidden and only the specialised contents are shown. A class, package, at-

tribute or method within the scope of the package may be renamed through specialisa-

tion. This is indicated by a specialisation annotation on the corresponding import 

arrow. So if a package B imports A, copying class C and specialising it to D and copy-

ing attribute a in C and specialising it to b, one would annotate the arrow with 

[D<C[b<a]]. This is a nested syntax, reflecting the notion that there is a containment 

hierarchy of modelling elements. 

An example of package import is shown in Figure 1. The elements in red (lighter 

colour) represent those elements that appear in the child package by virtue of import 

from the parent(s). The blue elements (darker colour) have been added separately. 

They have been included to help clarify the meaning of package import. They could 

be generated automatically from the import relationship and renaming annotations, 

and, indeed, are by MMT. When an attribute is imported, its multiplicity may change, 

for example from “*” (zero or many) to  “1” (exactly one). This can be included in the 

renaming annotation, so if, in the preceding example, the multiplicity of the attribute a 

was also specialised to 1, the renaming annotation would have been [D<C[b<a[1<*]]. 
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Figure 1 Package Import 

A generalisation arrow between packages denotes package generalisation. Package 

generalisation results in the contents of the package being specialised by the contents 



Lecture Notes in Computer Science      4 

of the child class package. A renaming list can be attached to the generalisation arrow 

in a similar way to that used by import.  

2.2 The MML Architecture and Patterns 

 

The MML meta-model is specifically structured to provide a framework that can be 

readily used to construct precise definitions of families of modelling languages. To 

support this, a modular architecture is adopted, in which variation points are separated 

into packages. For example, MML includes packages for data types, extension 

mechanisms and constraints, all of which are extended from a single core package (see 

Figure 2). The aim is that new languages can be rapidly constructed by changing or 

extending specific packages. For example, one could readily adapt the data types used 

by a specific modelling language by extending the data types package. If necessary, 

specific parts of the meta-model can be designated as mandatory, thereby ensuring 

cross language compatibility.  

MML makes use of package generalisation to facilitate the construction of a lay-

ered framework of language definition components. 

 

Core

datatypes reflection
model

Management

uml

constraints associations

methods

mml

 
 

Figure 2 The MML Architecture 

MML also aims to identify patterns of language elements. These capture cross cut-

ting structures and relationships that appear throughout meta-models. They include 

language definition patterns and a collection of language element patterns. The lan-

guage definition pattern is used to structure the concrete syntax, abstract syntax and 

semantic elements of languages and to define mappings between them. This pattern is 

shown in Figure 3.  
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Figure 3 The MML Language Definition Pattern 

2.2.1 Language Element Patterns 

The language element patterns capture common structural relationships between 

language elements. Six core patterns are shown in Figure 4. A brief description of 

each pattern follows: 

 

Instance: This pattern captures the semantic relationship found between types and 

their “instances”. For example, instances of classes are objects. Note that in this 

pattern, abstract syntax concepts and semantic domain concepts are separated into 

different packages. Types are viewed as abstract syntax concepts, whilst instances 

belong to the semantic domain. 

Containment: Elements may contain other elements. An example here is a class 

containing its attributes, or a package containing its classes.  

Conformance: Elements conform to other elements; for instance, classes may con-

form to their parents. 

Relationship: Many elements are related to other elements. 

Comparable: Elements are comparable. For example a package can be compared 

with another package, or an object compared to another object. An element may be 

sub-equivalent to another element if they have a subset of the properties necessary 

for equivalence. If two elements are sub-equivalent to each other they are equiva-

lent. 

Inheritance: Elements may inherit features from their parents. All parents is the 

transitive closure of all parents of a elements. This pattern does not permit circular 

inheritance. 
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Figure 4 Language Element Patterns 

 

2.2.2 Composite Patterns 

 

The core language element patterns can be combined to describe more complex 

patterns. The first of these is shown in Figure 5. It describes the relationship between 

containers and their instances. A container has instances whose elements are instances 

of the elements of the container. The OCL constraint ensures that the relationship is 

commutative. 
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ContainerIns t ances
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Figure 5 Container Instances 

Another useful pattern relates to conformance. Conformance is a general property 

that relates language elements of the same type.  Many language elements can be 

compared to decide whether they are conformant to the properties of their parents.  

Container conformance, as shown in Figure 6, is one of many possible different 

kinds of conformance pattern. It states that two containers are conformant if their 

contained elements are conformant. As an example, consider treating a class as a con-

tainer of its operations. The result of applying this pattern would be a rule for class 

containment that requires that for every operation belonging to a parent class, there 

must be an operation belonging to the child class that it is conformant to.  

Finally, a possible static semantics for container conformance is described by the 

pattern shown in Figure 7. This states that for an element to be conformant, its in-

stances must be conformance to those of its parent. Here, conformance implies struc-

tural conformance, i.e. both the element and its instances must have the same structure 

as those of their parents. 
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Figure 6 Container Conformance 
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Figure 7 Container Conformance Instances 
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3 The Core Package 

The core package (see Figure 8) provides the core modelling concepts required for 

meta-modelling in the MML. It is used here to illustrate the typical core modelling 

components of a static UML-like language. Note that we will not address the behav-

ioural aspects of the core model (these will be described elsewhere). In Section 4, it 

will be extended with a static constraint language. 

The core is divided into two packages: abstract syntax and semantic domain. As 

described above, an instances association is used to map between elements of the 

abstract syntax and elements of the semantic domain. 

[Abstract Syntax .Class < AbstractSynt ax.ContainingE lem ent

[at tr ibutes <  elem ents],

AbstractSyntax. At tr ibute < Abst ract Syntax.Cont ainedElem ent ],

[S emanti cDomain.Objec t <  Semanti cDomain.ContainingInstance

[slots  <  e lem ents],

Semant ic Domain.Slot < Semant icDom ain.Cont ainedIns tance],

[A bst ract Syntax .A tt ribut e <  AbstractSyntax.ContainingElem ent

[type <  elements],

AbstractSyntax.Classifier <  AbstractSyntax.ContainedElement],

[Sem anticDom ain. Slot < Semanti cDomain.ContaininIns tance

[va lue <  elem ents ],

Semant ic Domain.Ins tance < Semanti cDomain.ContainedInst ance]

Cont ainerConformance

Instances

(from ConformancePatterns)

Core

A bst ractSyntax

(from Core)

Sem anticDom ain

(from Core)

Classifier
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*

+conformsTo

*

Attribute

*
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*

*
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*

1

+type

1

Object

id : Identity

*

+conformsTo

*

*1
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+of

1

Instance
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*
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*
*1

+instances

*

+of

1

*
+s lots

*

1
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Figure 8 Core Package 

The container conformance instances pattern has been applied twice to construct a 

type/instance relationship for classes and attributes. The instances of a class are given 

by the collection of objects whose contents (slots) conform to the contents of the class 
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(attributes). Objects and slots conform to the containership of class and attribute and 

are structurally conformant.  

The effect of applying the patterns generates the following constraints:  

 

[1] The slots of an object commute with the attributes of the object’s class (from 

ContainerInstances): 
 

context  Object inv: slots.of = of.attributes 

 

[2] The value of a slot commutes with the type of the slot’s attribute (from Contain-

erInstances): 
 

context  Slot inv: value.of = of.type 

 

A number of conformance constraints are also generated for classes, attributes, ob-

jects and slots. For example, a class conforms to another class if its instances (objects) 

conform to the instances of the parent. 

4 Constraints 

This section extends the core modeling concepts defined in section 3 with a simple 

static language for describing constraints. To support a family of constraint languages, 

the definition is structured to make a clear distinction between core concepts and lan-

guage specific concepts.  

The core constraints package (see Figure 9) identifies concepts common to all ob-

ject constraint languages. We assume that classifiers are associated with expressions. 

Expressions describe the constraints that must be evaluated on their instances. Expres-

sions may also have sub-expressions and are associated with a collection of free vari-

ables. An important constraint that relates to free variables is that they are inherited by 

sub-expressions. 

The static semantics of expressions are given by calculations. A calculation associ-

ates an expression and an environment (a set of variable bindings) with a value. The 

value is the result of evaluating the expression in the context of the binding.  A distin-

guished variable, self, identifies the instance the expression is being evaluated against. 

In the core constraints package, the pattern for container conformance is applied to 

classifiers, their expressions and their semantic domains: instances and calculations. 

This imposes properties of structural conformance and containership. The same prop-

erties also apply to expressions, their free variables, calculations and bindings. An 

implication is that the conformance of one expression to another is expressed in terms 

of substitutability of the values that are obtained from evaluating an expression. An 

expression is substitutable for another expression if the set of calculations, variable 

bindings and results satisfying the expression is a subset of those of its parent. 
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Figure 9 Core Constraints Semantics 

 

 

 



Lecture Notes in Computer Science      12 

4.1 Language Specific Constraints  

 

This section gives an example of an extension to the core constraint package (Figure 

10). It defines the core language expressions of a simple OCL-like profile for describ-

ing static constraints. These include logical expressions (and, not, equals, includes), 

slot references, variables and iterations. Note that most other constructs of an OCL-

profile, for example or, collect, set union, could be easily defined in terms of the basic 

expressions defined here. This could be achieved by extension of translation (see 

Section 5). 

 

CoreOCL

CoreConstraintConcepts ContainershipInstances(From Structural Patterns)

[And < ContainingElement,

Exp < ContainedElement,

And. x < elements,

AndCalc < Cont ainingInstance,

Calc  <  Conta inedInst ance,

AndCalc. x < element s]

[ And < ContainingElement,

Boolean < ContainedElement,

A nd. res ult ype < elements,

AndCalc < Cont ainingInstance,

BooleanValue < Cont ained Instance

AndCalc. result < elements]

[ .. .] , [. .. ],  . ..

 

Figure 10 OCL Language Extension 

 

The abstract syntax for the core OCL package is shown in Figure 11, whilst the cor-

responding semantic domain package is shown in Figure 12. Applying the container-

ship instances pattern to the core OCL package results in the appropriate instances 

associations and constraints being set up between each expression in the abstract syn-

tax and its corresponding semantic domain element (note that not all the relevant sub-

stitutions are given in Figure 10 for brevity). For example, the instances of an “And” 

expression will be “AndCalc”, and so on. 
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AbstractSyntax

(from CoreOCL)

Exp

B inaryLogicalExp

x, y : Exp

UnaryLogicalExp

x : Exp

Slo tRef

slotname : String

obj : Exp

Iterate

variable : Variable

initial : Exp

collection : Exp

body : Exp

NotEqualsIncludesAnd

 
 

Figure 11 Core OCL Abstract Syntax 

 

SemanticDom ain

(from CoreOCL)

AndCalc

x,  y : Calc

NotCalc

x : Calc

SlotRefCalc

obj : Calc

VariableCalcBinaryLogicalCalc

IncludesCalc

x, y : Calc

EqualsCalc

x,y : Calc

UnaryCalc

Calc

 
 

Figure 12 Core OCL Semantic Domain 

 

 

 

 

 



Lecture Notes in Computer Science      14 

Finally, to complete the meta-model, a constraint is required for each calculation to 

describe its evaluation. For example, the result of an “And” expression is the conjunc-

tion of the value of its x and y expressions: 

 

[1] And implies conjunction.   
context AndCalc inv:  

self.value = self.x.value and self.y.value  

 

Similar constraints are required for other calculations, for example: 

 
[2] The result of a not expression is the negation of the value of its x expression. 
context NotCalc inv: 

self.value = not self.x.value  

 
[3] The result of an includes expression is true if the value of its y expression is a 

member of its x expression.  
 

context Includes inv: 
self.value = self.x.value ->includes(self.y.value) 

  

[4] The result of an equals expression is true if the value of its y expression is equal 

to its x expression. 
 
context Equals inv: 

self.value = self.x.value = self.y.value 
 

[5] The result of a slot reference calculation is the value of the slot belonging to obj 

whose slotname is equal to the referenced slot name. 
 
context SlotRefCalc inv: 

self.obj.value.slots -> exists(b |  
     b.value = self.value and b.name = self.exp.slotname)  
 
[6] The result of evaluating a variable expression is the variable’s binding. 

 
context VariableCalc inv: 

self.env -> exists(e |  
     e.value = self.value and e.variable.name = self.exp.name) 
 

A similar approach can be used to define the semantics for iterate, although the re-

sulting constraints are too large to include here. The reader is referred to [Clark00] for 

an illustration of the approach. 
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4.2 Example 

Figure 13 gives a simple example of a constraint expressed as an instance of the 

core OCL meta-model. The expression “x > 5” is associated with a class A, which 

contains an attribute x of type Integer (we assume there is an appropriate package of 

data types and data values).  

A : 

Class

: >

5:Const

: SlotRef

self :Var

s elf : 

Object

: >Calc

Boolean t rue

A :Class

:Slot

RefCalc

5:Const

self : 

Ob ject

x :A ttribute

Integer

x :Slot

6

self:Binding

instances

instances

instances

meaning

inst ances

instances

instanc es

instances

resulttype result

context cont ext

freevars env

obj obj

x

y

x

y

resultresulttype

type value

 

Figure 13 Constraint Instance Example 

 

An object satisfies the properties of A if: 

 

• The object contains a slot corresponding to the attribute of A. This follows 

from the containership instances pattern. 

• There is a calculation which evaluates the “x > 5” expression of A. This 

follows from the containership instances pattern, which ensures that any 

calculations associated with A conform to A’s constraint expression. 

• The result of comparing the value of the slot is greater than the constant 

“5” is true. This follows from the “greater than” evaluation constraint. 
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5 Profiles 

This section describes two strategies that can be used to defining new profiles in 

MML. These strategies form an important part of the meta-modelling method 

(MMM). The first strategy, which we call the extensional strategy, involves extending 

appropriate core meta-model packages using package extension. This is the approach 

used in this paper. We identified core-modelling elements common to a number of 

constraint languages and extended their definition, gradually constructing a layered 

definition of a simple constraint language (a profile).  Further extensions to this lan-

guage can be described by additional packages. Figure 14 illustrates how a family of 

constraint languages might be constructed by extending the core package.  

The advantage of the extensional approach is that is intuitive – extending a lan-

guage simply involves choosing an appropriate extension point and then defining the 

special cases. Furthermore, meta-models built in this way tend to have pleasing struc-

tural properties, for example one soon identifies a structure preserving relationship 

between elements in the abstract syntax and elements in the semantic domain.  

 

CoreOCL

S tandardOCL

Tim edOCL

Tem poral

Cons traints

Tem poral

C ons t rai nts

S tandardOCL Tim edOCL

<<m ap> >

CoreCons traints CoreC ons t rai nts

(Ex t ens i on) (Trans lat ion)

<<map>><<m ap>>

 

Figure 14 Extension versus Translation 

However, when it comes to implementation, the extensional approach suffers from 

weak interoperability. Consider two implemented profiles that extend a common core 

package. Tools that implement these profiles cannot readily share facilities for analys-

ing properties of models because the relationship between the two models is based on 

the arbitrary extension of their profiles. 

This leads to an alternative approach to profile construction, which we call the 

translation or interpretative approach (Figure 14). Here, a common core language is 

defined with a minimal but expressive collection of modelling elements. Profiles are 

constructed by defining mappings from elements in the profile to elements in the core 
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language. The key advantage of this approach is as follows - any facilities offered by a 

tool that implements the core language can be applied to any profile, provided that the 

profile is first translated into the core language. The trade-off here is that the core 

language must be sufficiently expressive to capture a wide variety of useful profile 

interpretations.  

To support the definition of a family of constraint languages using the translation  

approach, a core constraint language must provide a minimal but expressive collection 

of logical expressions. For example, a core OCL-like constraint language should at 

least have the basic expressions of predicate and first-order logic, and arguably, higher 

order logics. Identifying the most appropriate expression set is not easy. Luckily, 

existing formal languages, many of which have been developed with minimal expres-

sion sets in mind, can guide us.  

5 Conclusions 

Over the next few years it is likely that an increasing number of UML profiles will 

be required. However, designing a profile from scratch is both time-consuming and 

inefficient. It ignores the significant amount of work invested in the development of 

other profiles. Instead, common variations between profiles must be identified and 

reused. A modular architecture should be designed in a way that allows new compo-

nents of profiles to be readily plugged in to a common specification framework. The 

use of patterns to help identify common meta-modelling structures is essential if im-

portant cross cutting concerns such as conformance, modularity and consistency are to 

be properly addressed. 

This paper has proposed one such framework for constraints based on the MMF. 

Constraint languages are likely to vary across profiles, and may even be shared. Con-

straint languages are also difficult to define from scratch, as they require a detailed 

knowledge of the principles of constraint language semantics. Thus, identifying core 

constraint language concepts is an essential step towards facilitating the development 

of families of constraint languages. This paper has defined such a core, and has de-

scribed two approaches to viewing constraint language profiles as extensions or inter-

pretations of the core. 
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