
Lecture Notes in Computer Science 1

A Meta-Model Facility for a Family of UML Constraint

Languages

Tony Clark1, Andy Evans2, and Stuart Kent3

1 Department of Computing, Kings College, London, UK
anclark@doc.kcl.ac.uk

2 Department of Computer Science, University of York, York, UK
andye@cs.york.ac.uk

3 Computing Laboratory, University of Kent, Canterbury, UK
s.j.h.kent@ukc.ac.uk

Abstract. With the move towards UML becoming a family of modelling lan-

guages, there is a need to view the Object Constraint Language in the same

light. The aim of this paper is to identify a meta-modelling facility that encom-

passes the specification of the semantics of a family of object constraint lan-

guages. This facility defines a common set of model concepts, semantic domain

concepts and semantic mappings that can be conveniently reused when con-

structing new family members.

1 Introduction

The Object Constraint Language (OCL) [Warmer98] is a language for expressing

constraints on UML models. Recently, significant efforts have been made to provide a

more precise description of the OCL. For example, a meta-model for the abstract syn-

tax of OCL [Richters98] has been proposed. An outline meta-model of its semantics is

presented in [Kent99], whilst a variety of other work has developed formal descrip-

tions of the OCL semantics (see [Clark00a] for an overview).

At the time these approaches were developed, UML was viewed as a single, albeit

large, modelling language. However, with the advent of UML 2.0 it is likely that UML

will become a family of languages [Cook00]. In UML 2.0, it is intended that the se-

mantics of each family member will be encapsulated by a single UML profile. Each

profile will tailor UML to a specific application domain. For instance, one might have

a UML for real-time modelling, e-business modelling or business process modelling.

The impact of these changes will not just affect the diagrammatical components of

UML. Specific extensions of OCL are also likely to be required. Indeed, there is early

evidence of the need for such extensions in industry [Kleppe00, Knapman00a, Knap-

man00b]. The OMG’s recent proposal for MDA (model driven architecture)

[OMG01] also mandates the use of profiles, each with a potentially different con-

straint language.

A problem faced by the developers of profiles is to avoid the task of re-inventing

meta-models for families of related languages. The aim of this paper is to show how

Lecture Notes in Computer Science 2

the semantics of a family of OCL languages might be precisely captured within a

meta-model. In doing so, it aims to highlight two key mechanisms which can aid in the

large grained reuse of constraint language meta-models: language definition patterns

and package extension and import.

The work presented in this paper is based on the Meta-Modelling Facility (MMF),

which comprises a meta-modelling language (MML) a meta-modelling tool (MMT)

and a method (MMM). This work has arisen out of an IBM funded project [Clark00]

to investigate the feasibility of re-architecting UML as a family of languages. The

work is currently being prepared as input to the UML 2.0 revision process under the

auspices of the precise UML (pUML) group (http://www.puml.org).

This paper is structured as follows: Section 2 gives an overview of the MMF and

the basic patterns and architecture used to describe meta-models. Section 3 presents

the core meta-model of MML (a typical UML like core meta-model). Section 4 then

extends the core model with the features of a static constraint language. Finally, sec-

tion 5 discusses some general approaches to constructing profiles.

2 The MMF

The Meta-Modelling Facility (MMF) [Clark00a] aims to provide a modular and ex-

tensible method for defining and using modelling languages. MMF comprises a lan-

guage (MML), used to write language definitions, a tool (MMT) used to interpret

those definitions, and a method (MMM) that provides guidelines and patterns for

good practice in language definition. This section introduces the language and the

tool.

2.1 The Language

MML is a language for meta-modelling, which incorporates a subset of the UML.

The language is defined in itself using a precise meta-modelling approach, in which

mappings are defined between its modelling concepts and the concepts in its semantic

domain. The development of the language is ongoing and has been supported by

IBM.

The main modelling features of MML are packages, classes, attributes and a con-

straint language. These are introduced briefly below, being careful to identify differ-

ences with the standard UML interpretation. Examples of their use can be found in

subsequent sections.

A package is a container of classes and/or other packages. This is familiar UML.

Perhaps more unfamiliar is the ability to specialize and import packages, which has

been borrowed from Catalysis [D’Souza98] and enhanced. Packages and package

import and specialisation are the key constructs in MML that support modular, exten-

sible definitions of languages based on a set of fundamental patterns. Our contribution

is to provide a precise, tool-supported definition of this concept, and to show it can

facilitate the development of precise meta-modelling definitions.

Lecture Notes in Computer Science 3

Package import is shown by placing a UML dependency arrow between the pack-

ages. The child package copies all (and therefore contains all) of the contents of the

parent package. In addition, it may specialise the copied contents, in which case the

copies are hidden and only the specialised contents are shown. A class, package, at-

tribute or method within the scope of the package may be renamed through specialisa-

tion. This is indicated by a specialisation annotation on the corresponding import

arrow. So if a package B imports A, copying class C and specialising it to D and copy-

ing attribute a in C and specialising it to b, one would annotate the arrow with

[D<C[b<a]]. This is a nested syntax, reflecting the notion that there is a containment

hierarchy of modelling elements.

An example of package import is shown in Figure 1. The elements in red (lighter

colour) represent those elements that appear in the child package by virtue of import

from the parent(s). The blue elements (darker colour) have been added separately.

They have been included to help clarify the meaning of package import. They could

be generated automatically from the import relationship and renaming annotations,

and, indeed, are by MMT. When an attribute is imported, its multiplicity may change,

for example from “*” (zero or many) to “1” (exactly one). This can be included in the

renaming annotation, so if, in the preceding example, the multiplicity of the attribute a

was also specialised to 1, the renaming annotation would have been [D<C[b<a[1<*]].

4Way

C D

*

+toC

[Element1 < A, E lement2 < B[toB <toE2]]

[E lement1 < C, E lement2 < A[toA <toE2]]

[E lement1 < B, E lement2 < D[toD <toE2]]

[E lement1 < D, E lement2 < C]toC <toE2]]

Relationship

Element2Element1

*

+toE2

*

A

*
+toA

*

B

*

+toB

*

*
+toD

*

X

1
11

1

Figure 1 Package Import

A generalisation arrow between packages denotes package generalisation. Package

generalisation results in the contents of the package being specialised by the contents

Lecture Notes in Computer Science 4

of the child class package. A renaming list can be attached to the generalisation arrow

in a similar way to that used by import.

2.2 The MML Architecture and Patterns

The MML meta-model is specifically structured to provide a framework that can be

readily used to construct precise definitions of families of modelling languages. To

support this, a modular architecture is adopted, in which variation points are separated

into packages. For example, MML includes packages for data types, extension

mechanisms and constraints, all of which are extended from a single core package (see

Figure 2). The aim is that new languages can be rapidly constructed by changing or

extending specific packages. For example, one could readily adapt the data types used

by a specific modelling language by extending the data types package. If necessary,

specific parts of the meta-model can be designated as mandatory, thereby ensuring

cross language compatibility.

MML makes use of package generalisation to facilitate the construction of a lay-

ered framework of language definition components.

Core

datatypes reflection
model

Management

uml

constraints associations

methods

mml

Figure 2 The MML Architecture

MML also aims to identify patterns of language elements. These capture cross cut-

ting structures and relationships that appear throughout meta-models. They include

language definition patterns and a collection of language element patterns. The lan-

guage definition pattern is used to structure the concrete syntax, abstract syntax and

semantic elements of languages and to define mappings between them. This pattern is

shown in Figure 3.

Lecture Notes in Computer Science 5

Semant ic s

Abs tra c tS yntax SemanticDomain

Figure 3 The MML Language Definition Pattern

2.2.1 Language Element Patterns

The language element patterns capture common structural relationships between

language elements. Six core patterns are shown in Figure 4. A brief description of

each pattern follows:

Instance: This pattern captures the semantic relationship found between types and

their “instances”. For example, instances of classes are objects. Note that in this

pattern, abstract syntax concepts and semantic domain concepts are separated into

different packages. Types are viewed as abstract syntax concepts, whilst instances

belong to the semantic domain.

Containment: Elements may contain other elements. An example here is a class

containing its attributes, or a package containing its classes.

Conformance: Elements conform to other elements; for instance, classes may con-

form to their parents.

Relationship: Many elements are related to other elements.

Comparable: Elements are comparable. For example a package can be compared

with another package, or an object compared to another object. An element may be

sub-equivalent to another element if they have a subset of the properties necessary

for equivalence. If two elements are sub-equivalent to each other they are equiva-

lent.

Inheritance: Elements may inherit features from their parents. All parents is the

transitive closure of all parents of a elements. This pattern does not permit circular

inheritance.

Lecture Notes in Computer Science 6

Conformanc e

Element

*+conformsTo *

Relationship

Instances

Containment

ContainedContaining

*

+elements

*

AbstractSyntax

(from Instances)

SemanticDomain

(from Instances)

InstanceE lement

*1

+inst ances

*

+of

1

Comparable

Elem ent

*

*

+equals

*

+equals*

*

+equivalent

*
*

+s ubEquival ent
*

Element inv:

equivalent -> forall(e |

 self.subEquivalent -> includes(e) and

e.subEquivalent -> includes(self))

E lement2Element1

** **

Inheritance

Element

*

+parents

* **

+allParents

Element inv: allParents =

parents->union(parents.allParents)

Element inv: all

Parents->excludes(self)

Figure 4 Language Element Patterns

2.2.2 Composite Patterns

The core language element patterns can be combined to describe more complex

patterns. The first of these is shown in Figure 5. It describes the relationship between

containers and their instances. A container has instances whose elements are instances

of the elements of the container. The OCL constraint ensures that the relationship is

commutative.

Lecture Notes in Computer Science 7

ContainerIns t ances

context Conta iningInstance inv: elem ent s .o f = of.elem ents

[Abstrac tSyntax.ContainingElement < Element,

SemanticDomain.ContainedElement < Instance]

[Abstrac tSyntax.ContainedElement < Element,

SemanticDomain.ContainedInstance < Ins tance]

[Abstrac tSyntax.ContainingElement < Containing

SemanticDomain.ContainingInstance < Containing]

[Abstrac tSyntax.ContainedElement < Contained,

SemanticDomain.ContainedInstance < Contained]

Ins tances

(from CorePatterns)

Containment

(from CorePatterns)

Abstrac tSyntax

(from ContainerInstances)

SemanticDomain

(from ContainerInstances)

ContainingInstanceContainingElement

*1

+meaning

*

+of

1

ContainedInstance

*
+e lem ents

*

ContainedElement

*
+elements

*

*1

+meaning

*

+of

1

Figure 5 Container Instances

Another useful pattern relates to conformance. Conformance is a general property

that relates language elements of the same type. Many language elements can be

compared to decide whether they are conformant to the properties of their parents.

Container conformance, as shown in Figure 6, is one of many possible different

kinds of conformance pattern. It states that two containers are conformant if their

contained elements are conformant. As an example, consider treating a class as a con-

tainer of its operations. The result of applying this pattern would be a rule for class

containment that requires that for every operation belonging to a parent class, there

must be an operation belonging to the child class that it is conformant to.

Finally, a possible static semantics for container conformance is described by the

pattern shown in Figure 7. This states that for an element to be conformant, its in-

stances must be conformance to those of its parent. Here, conformance implies struc-

tural conformance, i.e. both the element and its instances must have the same structure

as those of their parents.

Lecture Notes in Computer Science 8

Conformance

(from CorePatterns)

ContainerConformance

Container inv:

elem ents.conforms To =

conformsTo.elem ents

Container

*

+conformsTo

*

Contained

*

+elements

* **

+conformsTo

[Cont ainer < E lement,

Contained < E lement]

Figure 6 Container Conformance

ContainerInstances

(from StructuralPatterns)

[Abs tractSyntax.Container < Container,

Abstrac tSyntax .Contained < Con tained]

[Sem ant icDom ain.Container < Container,

SemanticDomain.Contained < Contained]

ContainerConformance

ContainerConformance

Inst ances

AbstractSyntax

(from ContainerConformance

Instances)

SemanticDomain

(from ContainerConformance

Instances)

ContainingElement

*

+conformsTo

*

Containing Instance

*
1

+instances

*

+of

1

*

+conformsTo

*

ContainedElement

*
+elem ents

*

*

+conformsTo

*

ContainedInstance

*
+elements

*

*1

+ins t ances

*

+of

1

*
+conformsTo

*

[Abst ractSyntax.ContainingElement < Element,

Semant icDomain.ContainingIns tance < Inst ance]

[AbstractSyntax.ContainedElement < Element,

SemanticDomain.ContainedInstance < Ins tance]

Figure 7 Container Conformance Instances

Lecture Notes in Computer Science 9

3 The Core Package

The core package (see Figure 8) provides the core modelling concepts required for

meta-modelling in the MML. It is used here to illustrate the typical core modelling

components of a static UML-like language. Note that we will not address the behav-

ioural aspects of the core model (these will be described elsewhere). In Section 4, it

will be extended with a static constraint language.

The core is divided into two packages: abstract syntax and semantic domain. As

described above, an instances association is used to map between elements of the

abstract syntax and elements of the semantic domain.

[Abstract Syntax .Class < AbstractSynt ax.ContainingE lem ent

[at tr ibutes < elem ents],

AbstractSyntax. At tr ibute < Abst ract Syntax.Cont ainedElem ent],

[S emanti cDomain.Objec t < Semanti cDomain.ContainingInstance

[slots < e lem ents],

Semant ic Domain.Slot < Semant icDom ain.Cont ainedIns tance],

[A bst ract Syntax .A tt ribut e < AbstractSyntax.ContainingElem ent

[type < elements],

AbstractSyntax.Classifier < AbstractSyntax.ContainedElement],

[Sem anticDom ain. Slot < Semanti cDomain.ContaininIns tance

[va lue < elem ents],

Semant ic Domain.Ins tance < Semanti cDomain.ContainedInst ance]

Cont ainerConformance

Instances

(from ConformancePatterns)

Core

A bst ractSyntax

(from Core)

Sem anticDom ain

(from Core)

Classifier

Class

*

+conformsTo

*

Attribute

*

+conformsTo

*

*
+attributes

*

1

+type

1

Object

id : Identity

*

+conformsTo

*

*1

+instanc es

*

+of

1

Instance

Slot

*

+conformsTo

*
*1

+instances

*

+of

1

*
+s lots

*

1

+value

1

Figure 8 Core Package

The container conformance instances pattern has been applied twice to construct a

type/instance relationship for classes and attributes. The instances of a class are given

by the collection of objects whose contents (slots) conform to the contents of the class

Lecture Notes in Computer Science 10

(attributes). Objects and slots conform to the containership of class and attribute and

are structurally conformant.

The effect of applying the patterns generates the following constraints:

[1] The slots of an object commute with the attributes of the object’s class (from

ContainerInstances):

context Object inv: slots.of = of.attributes

[2] The value of a slot commutes with the type of the slot’s attribute (from Contain-

erInstances):

context Slot inv: value.of = of.type

A number of conformance constraints are also generated for classes, attributes, ob-

jects and slots. For example, a class conforms to another class if its instances (objects)

conform to the instances of the parent.

4 Constraints

This section extends the core modeling concepts defined in section 3 with a simple

static language for describing constraints. To support a family of constraint languages,

the definition is structured to make a clear distinction between core concepts and lan-

guage specific concepts.

The core constraints package (see Figure 9) identifies concepts common to all ob-

ject constraint languages. We assume that classifiers are associated with expressions.

Expressions describe the constraints that must be evaluated on their instances. Expres-

sions may also have sub-expressions and are associated with a collection of free vari-

ables. An important constraint that relates to free variables is that they are inherited by

sub-expressions.

The static semantics of expressions are given by calculations. A calculation associ-

ates an expression and an environment (a set of variable bindings) with a value. The

value is the result of evaluating the expression in the context of the binding. A distin-

guished variable, self, identifies the instance the expression is being evaluated against.

In the core constraints package, the pattern for container conformance is applied to

classifiers, their expressions and their semantic domains: instances and calculations.

This imposes properties of structural conformance and containership. The same prop-

erties also apply to expressions, their free variables, calculations and bindings. An

implication is that the conformance of one expression to another is expressed in terms

of substitutability of the values that are obtained from evaluating an expression. An

expression is substitutable for another expression if the set of calculations, variable

bindings and results satisfying the expression is a subset of those of its parent.

Lecture Notes in Computer Science 11

ContainerConformance

Instances

(from ConformancePatterns)

CoreConstraintConcepts

AbstractSyntax

(from CoreConstraintConcepts)

[Exp < ContainingElement[context < elements], Classifier < Contained

Element, Calc < ContainingInstance[context < elements], Instance <

ContainedIns tance],

[Exp < ContainingElement[freevars < elements], Variable < Contained

Element, Calc < ContainingInstance[, env < elements], Binding <

ContainedIns tance],

[Variable < Conta iningElement[type < elements], Type < Contained

Element[value < elements], B inding < ContainingInstance, Instance <

ContainedIns tance]

ContainerInstances

(from StructuralPatterns)

[Exp < ContainingElement

[sub < elements],

Exp < ContainedE lement,

Calc < ContainingInstance

[sub < elements],

Calc < Conta ined Inst ance]

context Exp inv: sub -> forall(x | x.freevars -> includesAll(freevars))

context Calc inv: self.env -> exists(e | e.name = "self" and e.value = self.context)

SemanticDomain

(from CoreConstraintConcepts)

Constraint

name : String

Instance

Binding

*

+c onformsTo

*

1

Calc

*

+sub

**
+conformsTo

*

1+result 1

1+context 1

*

+env

*

Variable

*

+conformsTo

*
*1

+inst ances

*

+of

1

Exp

*

+sub

* *

+conformsTo

*

*+freevars *

*

1

+instances

*

+of

1

Classi fi er

1

+type

1

1+resulttype 1

1+context 1

Figure 9 Core Constraints Semantics

Lecture Notes in Computer Science 12

4.1 Language Specific Constraints

This section gives an example of an extension to the core constraint package (Figure

10). It defines the core language expressions of a simple OCL-like profile for describ-

ing static constraints. These include logical expressions (and, not, equals, includes),

slot references, variables and iterations. Note that most other constructs of an OCL-

profile, for example or, collect, set union, could be easily defined in terms of the basic

expressions defined here. This could be achieved by extension of translation (see

Section 5).

CoreOCL

CoreConstraintConcepts ContainershipInstances(From Structural Patterns)

[And < ContainingElement,

Exp < ContainedElement,

And. x < elements,

AndCalc < Cont ainingInstance,

Calc < Conta inedInst ance,

AndCalc. x < element s]

[And < ContainingElement,

Boolean < ContainedElement,

A nd. res ult ype < elements,

AndCalc < Cont ainingInstance,

BooleanValue < Cont ained Instance

AndCalc. result < elements]

[.. .] , [. ..], . ..

Figure 10 OCL Language Extension

The abstract syntax for the core OCL package is shown in Figure 11, whilst the cor-

responding semantic domain package is shown in Figure 12. Applying the container-

ship instances pattern to the core OCL package results in the appropriate instances

associations and constraints being set up between each expression in the abstract syn-

tax and its corresponding semantic domain element (note that not all the relevant sub-

stitutions are given in Figure 10 for brevity). For example, the instances of an “And”

expression will be “AndCalc”, and so on.

Lecture Notes in Computer Science 13

AbstractSyntax

(from CoreOCL)

Exp

B inaryLogicalExp

x, y : Exp

UnaryLogicalExp

x : Exp

Slo tRef

slotname : String

obj : Exp

Iterate

variable : Variable

initial : Exp

collection : Exp

body : Exp

NotEqualsIncludesAnd

Figure 11 Core OCL Abstract Syntax

SemanticDom ain

(from CoreOCL)

AndCalc

x, y : Calc

NotCalc

x : Calc

SlotRefCalc

obj : Calc

VariableCalcBinaryLogicalCalc

IncludesCalc

x, y : Calc

EqualsCalc

x,y : Calc

UnaryCalc

Calc

Figure 12 Core OCL Semantic Domain

Lecture Notes in Computer Science 14

Finally, to complete the meta-model, a constraint is required for each calculation to

describe its evaluation. For example, the result of an “And” expression is the conjunc-

tion of the value of its x and y expressions:

[1] And implies conjunction.
context AndCalc inv:

self.value = self.x.value and self.y.value

Similar constraints are required for other calculations, for example:

[2] The result of a not expression is the negation of the value of its x expression.
context NotCalc inv:

self.value = not self.x.value

[3] The result of an includes expression is true if the value of its y expression is a

member of its x expression.

context Includes inv:
self.value = self.x.value ->includes(self.y.value)

[4] The result of an equals expression is true if the value of its y expression is equal

to its x expression.

context Equals inv:

self.value = self.x.value = self.y.value

[5] The result of a slot reference calculation is the value of the slot belonging to obj

whose slotname is equal to the referenced slot name.

context SlotRefCalc inv:

self.obj.value.slots -> exists(b |
 b.value = self.value and b.name = self.exp.slotname)

[6] The result of evaluating a variable expression is the variable’s binding.

context VariableCalc inv:

self.env -> exists(e |
 e.value = self.value and e.variable.name = self.exp.name)

A similar approach can be used to define the semantics for iterate, although the re-

sulting constraints are too large to include here. The reader is referred to [Clark00] for

an illustration of the approach.

Lecture Notes in Computer Science 15

4.2 Example

Figure 13 gives a simple example of a constraint expressed as an instance of the

core OCL meta-model. The expression “x > 5” is associated with a class A, which

contains an attribute x of type Integer (we assume there is an appropriate package of

data types and data values).

A :

Class

: >

5:Const

: SlotRef

self :Var

s elf :

Object

: >Calc

Boolean t rue

A :Class

:Slot

RefCalc

5:Const

self :

Ob ject

x :A ttribute

Integer

x :Slot

6

self:Binding

instances

instances

instances

meaning

inst ances

instances

instanc es

instances

resulttype result

context cont ext

freevars env

obj obj

x

y

x

y

resultresulttype

type value

Figure 13 Constraint Instance Example

An object satisfies the properties of A if:

• The object contains a slot corresponding to the attribute of A. This follows

from the containership instances pattern.

• There is a calculation which evaluates the “x > 5” expression of A. This

follows from the containership instances pattern, which ensures that any

calculations associated with A conform to A’s constraint expression.

• The result of comparing the value of the slot is greater than the constant

“5” is true. This follows from the “greater than” evaluation constraint.

Lecture Notes in Computer Science 16

5 Profiles

This section describes two strategies that can be used to defining new profiles in

MML. These strategies form an important part of the meta-modelling method

(MMM). The first strategy, which we call the extensional strategy, involves extending

appropriate core meta-model packages using package extension. This is the approach

used in this paper. We identified core-modelling elements common to a number of

constraint languages and extended their definition, gradually constructing a layered

definition of a simple constraint language (a profile). Further extensions to this lan-

guage can be described by additional packages. Figure 14 illustrates how a family of

constraint languages might be constructed by extending the core package.

The advantage of the extensional approach is that is intuitive – extending a lan-

guage simply involves choosing an appropriate extension point and then defining the

special cases. Furthermore, meta-models built in this way tend to have pleasing struc-

tural properties, for example one soon identifies a structure preserving relationship

between elements in the abstract syntax and elements in the semantic domain.

CoreOCL

S tandardOCL

Tim edOCL

Tem poral

Cons traints

Tem poral

C ons t rai nts

S tandardOCL Tim edOCL

<<m ap> >

CoreCons traints CoreC ons t rai nts

(Ex t ens i on) (Trans lat ion)

<<map>><<m ap>>

Figure 14 Extension versus Translation

However, when it comes to implementation, the extensional approach suffers from

weak interoperability. Consider two implemented profiles that extend a common core

package. Tools that implement these profiles cannot readily share facilities for analys-

ing properties of models because the relationship between the two models is based on

the arbitrary extension of their profiles.

This leads to an alternative approach to profile construction, which we call the

translation or interpretative approach (Figure 14). Here, a common core language is

defined with a minimal but expressive collection of modelling elements. Profiles are

constructed by defining mappings from elements in the profile to elements in the core

Lecture Notes in Computer Science 17

language. The key advantage of this approach is as follows - any facilities offered by a

tool that implements the core language can be applied to any profile, provided that the

profile is first translated into the core language. The trade-off here is that the core

language must be sufficiently expressive to capture a wide variety of useful profile

interpretations.

To support the definition of a family of constraint languages using the translation

approach, a core constraint language must provide a minimal but expressive collection

of logical expressions. For example, a core OCL-like constraint language should at

least have the basic expressions of predicate and first-order logic, and arguably, higher

order logics. Identifying the most appropriate expression set is not easy. Luckily,

existing formal languages, many of which have been developed with minimal expres-

sion sets in mind, can guide us.

5 Conclusions

Over the next few years it is likely that an increasing number of UML profiles will

be required. However, designing a profile from scratch is both time-consuming and

inefficient. It ignores the significant amount of work invested in the development of

other profiles. Instead, common variations between profiles must be identified and

reused. A modular architecture should be designed in a way that allows new compo-

nents of profiles to be readily plugged in to a common specification framework. The

use of patterns to help identify common meta-modelling structures is essential if im-

portant cross cutting concerns such as conformance, modularity and consistency are to

be properly addressed.

This paper has proposed one such framework for constraints based on the MMF.

Constraint languages are likely to vary across profiles, and may even be shared. Con-

straint languages are also difficult to define from scratch, as they require a detailed

knowledge of the principles of constraint language semantics. Thus, identifying core

constraint language concepts is an essential step towards facilitating the development

of families of constraint languages. This paper has defined such a core, and has de-

scribed two approaches to viewing constraint language profiles as extensions or inter-

pretations of the core.

Lecture Notes in Computer Science 18

References

[Warmer98] J.Warmer and A.Kleppe. The Object Constraint Language: Precise Modeling

with UML. Addison-Wesley, 1998.

[Richters98] M.Richters and M.Gogolla. On Formalising the UML Object Constraint Lan-

guage. In Tok Wang Ling, Sudha Ram and Mong Li Lee, editors, Proc 17th Int. Conf. Con-

ceptual Modeling (ER’98), volume 1507 of LNCS, pages 449-464, Springer, 1998.

[Kent99] S.Kent, S.Gaito, N.Ross. A meta-model semantics for structural constraints in UML

In H.Kilov and B.Rumpe, editors, Behavioural Specifications for Businesses and Systems,

Kluwer, 1999.

[Clark00a] A.Clark, S.Kent and J.Warmer. OCL Semantics FAQ, Workshop on the Object

Constraint Language (OCL), Computing Laboratory, University of Kent, Canterbury, UK.

Internet: http://www.cs.ukc.ac.uk/research/sse/oclws2k/index.html, March 2000.

[Evans00] A.Evans, S.Kent and B.Selic, editors, Proc 3rd Int. Conf. The Unified Modeling

Language (<<UML>>2000), volume 1949 of LNCS, Springer, 2000.

[Cook00] S.Cook. The UML Family: Profiles, Prefaces and Packages. In [Evans00].

[Kleppe00]] A.Kleppe and J.Warmer. Extending OCL to Include Actions. In [Evans00].

[Knapman00a] J.Knapman. Business- Oriented Constraint Language. In [Evans00].

[Knapman00b] J.Knapman. Statistical Constraints for EAI. In [Evans00].

[OMG01] Model Driven Architecture. Available from http://www.omg.org/mda.

[Clark00b] A.Clark, A.Evans, S.Kent. Rearchitecting UML as a Family of Language using a

Precise OO Meta-Modelling Approach. Available from http://www.puml.org/mmf, 2000.

[Clark01] A.Clark, A.Evans, S.Kent. Engineering Modelling Languages: A Precise Meta-

Modelling Approach. Available from http://www.puml.org/mmf/langeng.ps, 2001.

[D’Souza98] D.D’Souza, A.Wills. Object Components and Frameworks with UML: The Ca-

talysis Approach, Addison-Wesley, 1998.

